ORIGINAL RESEARCH article

Front. For. Glob. Change, 28 October 2022

Sec. Forest Hydrology

Volume 5 - 2022 | https://doi.org/10.3389/ffgc.2022.898998

Soil moisture and micrometeorological differences across reference and thinned stands during extremes of precipitation, southern Cascade Range

- ¹Lassen National Forest, U.S. Department of Agriculture Forest Service, Fall River Mills, CA, United States
- ²Department of Hydrology and Atmospheric Science, University of Arizona, Tucson, AZ, United States
- ³Department of Geological Sciences and Engineering, University of Nevada, Reno, NV, United States
- ⁴Pacific Northwest Research Station, U.S. Department of Agriculture Forest Service, Corvallis, OR, United States
- ⁵Sierra Cascade Province Ecology Program, U.S. Department of Agriculture Forest Service, Quincy, CA, United States
- ⁶Department of Geography, University of Nevada, Reno, NV, United States
- ⁷Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, United States
- ⁸Idaho Panhandle National Forest, U.S. Department of Agriculture Forest Service, Coeur d'Alene, ID, United States

Modern forest management generally relies on thinning treatments to reduce fuels and mitigate the threat of catastrophic wildfire. They have also been proposed as a tool to augment downstream flows by reducing evapotranspiration. Warming climates are causing many forests to transition from snow-dominated to rain-dominated precipitation regimes—in which water stores are depleted earlier in the summer. However, there are relatively few studies of these systems that directly measure the hydrologic impacts of such treatments during and following snow-free winters. This work compares the below-canopy meteorological and subsurface hydrologic differences between two thinning prescriptions and an unaltered Control during periods of extreme drought and near-record precipitation (with little snow). The field site was within a coniferous forest in the rain-snow transition zone of the southern