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Abstract— Seismocardiography signals (SCG) are acoustic
vibrations generated by heart activity and measured non-
invasively on the surface of the chest. SCG may be used to
diagnose and monitor cardiovascular conditions. The signal
variability may limit the potentially high SCG clinical
utility. It is known that breathing can cause variability, yet
it is not well understood. The objective of this study is to
quantify SCG and heart rate changes during normal
breathing and breath holding (BH). Seismocardiography
(SCG), electrocardiography (ECG), and airflow signals
were recorded in eight healthy subjects during normal
breathing and breath holding (at end inspiration and end
expiration). The SCG events were detected and segmented.
The heart rate was calculated using the R peak of ECG.
Unsupervised machine learning (K-medoid clustering) was
implemented using a dynamic time warping (DTW)
distance to separate normal breathing SCG waveforms into
two clusters. The SCG intra-group variability was
calculated in the time domain. Normalized SCG energy in
the 0-20 Hz range was also investigated. Results showed that
the SCG average intra-cluster variability was 32% lower
during breath holding compared to normal breathing. In
addition, the average heart rate was 8% lower and
normalized SCG energy was 9% lower in breath holding
than normal breathing. Variable airflow and lung volume
during normal breathing may cause these findings. SCG
waveforms during breath holding can be more accurate due
to the decreased variability. Hence, it may be useful to
collect SCG during breath holding. The results of this study
need to be verified with further investigation on a larger
number of subjects.

1. INTRODUCTION

Seismocardiographic (SCG) signals are the vibrations of
the chest wall that are developed because of the
mechanical activity of the heart [1]. These vibrations are
known to correlate with the mechanical processes
surrounding the heart, which include valve closure,
changes in blood momentum, and cardiac muscle
contraction [2]-[6]. SCG can be measured non-
invasively by placing an accelerometer on the surface of
the chest. These signals can provide valuable information
about heart function and can be potentially utilized
to diagnose cardiac diseases. Previous studies have
suggested the usefulness of different cardiac parameters,
such as systolic time intervals and heart rate [2,4].
Currently, ECG is the most widely recognized method to
measure cardiac activity. However, this signal is limited
to the measurement of electrical myocardial activity.
SCG can be used in conjunction with ECG to acquire
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information about both mechanical and electrical heart
activity. In 2015, the leading global cause of mortality
was heart disease. On average, someone in the United
States dies of cardiovascular disease every 36
seconds [7]. From 2016 to 2017, the average annual
direct and indirect cost of cardiovascular disease (CVD)
in the United States was estimated to be 363.4 billion
dollars [7]. Approximately 130 million adults in the US
population (45.1%) are projected to have developed some
form of CVD by 2035. The estimated total cost of CVD
is expected to reach $1.1 trillion by 2035 [7]. In addition,
an earlier study predicted that heart failure would
increase by approximately 46% from 2012 to 2030 in
adults [7]. SCG signals can be utilized as a noninvasive
method for monitoring cardiovascular disease. SCG is
believed to be associated with heart health and, hence,
may be useful for monitoring cardiac conditions.

SCG waveform variability may interfere with extracting
accurate waveforms, which can limit its clinical utility.
The SCG utility can be increased if its variability is
decreased and its sources of variability are better
understood. One known source of variability is breathing.
During breathing, there are changes in the heart position
and pressure around the heart. These changes may
introduce errors in the SCG interpretation yet may
contain SCG morphological features of diagnostic value.
Improved understanding of the sources of variability may
help extract more accurate SCG waveforms and provide
useful features that increase the diagnostic predictive
value of SCG. To our knowledge, limited published
information is available about SCG changes during BH.
The purpose of this study is to quantify SCG and heart
rate changes during regular breathing compared to BH. It
is known that during BH some of the factors leading to
the variability (such as the heart position) are nearly
constant. Documenting SCG morphological changes
under different breathing states may help enhance our
understanding of SCG sources and suggest optimal
breathing states and maneuvers for SCG recording.

II. MATERIALS AND METHODS

Eight healthy subjects were recruited for our study after
IRB approval. Subjects were asked to lay supine on a bed
tilted to 45 degrees head facing forward with their feet
extended horizontally. Figure 1 shows the methodology
of our study.
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Figure 1. Methodology for acquiring and analyzing SCG

A.DATA ACQUISITION

A biopotential recorder (IX-B3G, iWorx Systems, Inc.,
Dover, NH) was used to acquire the ECG signal. A tri-
axial accelerometer (Model: 356A32, PCB Piezotronics,
Depew, NY) was used to acquire SCG signals. The
sensor was applied to the chest surface with double-sided
medical grade tape on the 4th intercostal space near the
left lower sternal border. A recent study [8]-[11] also
used accelerometers to measure acoustic signals. A
spirometer (Model: A-FH-300, iWorx Systems, Inc.,
Dover, NH) was used to measure the breathing flow rate.
Figure 2 shows the experimental setup and sensor
locations.

Subjects first rested for 2 minutes while breathing
through a spirometer. The baseline tidal volume was
measured during this time. Core signals (tri-axial SCG,
ECG, and Spirometer flow rate) were collected for 5
minutes (while subjects maintained a tidal volume of +/-
20% of their baseline). End inspiration BH was done for
20 seconds (or as long as possible) while recording the
signals, followed by a rest period of one minute. This
cycle was repeated two more times (a total of 3 cycles for

p
ECG-”
electrodes Data Acquisition

Device

Biopotential
Amplifier

Figure 2. Sensor locations and experimental set up

IEEE SPMB 2021

Page 2 of 6

Speed: 10000 s/sec  Display Time Mark Wp| ALL  T2-T1(3:88673 - 3322161)= 66512 sec
T AISCEXBNC &y QL fx V2-¥1= 0,007 Voits

2 04l |
i WM"WMWMWMMWA%
UMS[GYBNC aQd Qe V2-V1= -0.013 Volits

o T L L P L T Y S e e L

UA}SEGZBNC AR AL V2-¥1= 0.010 Voits

R o TM» et w%ﬁ«wﬁww«%

o |

VAL Snmm?!erl}!NE O i:\‘l,& ¥2:¥1= 0,087 Volts

2 2.2 P ‘ - - N . T T

E T B / L S oo S Nprit?

T il 2ECG 0.5-30H2 25mV &) &y Qf, V2-V1= 0.205 Voit

e

] T |

: ::L.Lvm_jwwv*/%kuﬂ»wf e
327.2161 3:309661 3347161 3:38.4661 3422160

Figure 3. Raw data of SCG X, SCG Y, SCG Z, flow rate
and ECG signals

end inspiration). Similarly, three trials of end expiration
BH (20 seconds each, or as long as possible) were
performed with 3 minutes of rest between trials. Figure 3
shows the raw data of triaxial SCG, ECG, and spirometer
flow rate. Here, the sampling rate was 10,000 Hz.

B. SIGNAL PROCESSING

A band pass filter with a 0.05-200 Hz cut-off frequency
was used to filter SCG signals after down sampling the
signals to 1000 Hz. This is done to reduce background
noise and baseline wandering due to respiration.
Segmenting the SCG signal into SCG events (SCG
signals during each heart cycle) was done using the R
peaks of the simultaneously acquired ECG.

C.K-MEDOID CLUSTERING

The SCG events were down sampled to 500 Hz before
clustering. An unsupervised machine learning technique
known as k-medoid clustering was used to cluster SCG
events based on their morphology to reduce SCG
variability during normal breathing. Here, dynamic time
warping (DTW) distance was used to perform the
clustering. This method of clustering time series based on
waveform morphology was previously found to be more
accurate than other methods [12].

DTW is a common measure of the similarity between two
time series. The DTW algorithm exploits temporal
distortions between two-time sequences to achieve an
optimal global alignment [13,14]. Here, a measure of
similarity is determined independently of the non-linear
variations in time by "warping" the sequences in the time
domain [13].

C1. DTW PROCEDURE

Consider two time series X = {Xy, Xy, ... X, -... X} and

Y= {yl,yz, ¥ ....ym}. The distance matrix is
recursively filled by using Eq. 1:
D(@,j—1)
D(i,j) = 8(xy,y;) + min{ D@ —1,)) ()
Di-1j-1)
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Figure 4. The optimal warping path between signals X and
Y to illustrate DTW [13]

where 6(x;,y;) = (x; — J/j)z or |x; = y|.

An optimal alignment W = {w;,w,, ....wy, ..., wy } is to
be found where wy = (i,j) represents the alignment
between it" point of X and j*" point of Y. Figure 4 shows
an illustration of a distance matrix and optimal wrapping
path. Equation 2 calculates the optimal wrapping path.

DTW (X,Y) = argmin YX=V D(w) Q)

The K-Medoid clustering algorithm was implemented in
MATLAB. Here, a representative event (medoid) is
selected for the cluster instead of calculating a centroid
for the cluster. Medoid is the event in the cluster that has
the shortest distances to all other events. K-medoid
clustering is advantageous over K-means clustering due
to its low sensitivity to outliers [15].

C2. K-MEDOID ALGORITHM

Step 1: Choose inputs: 1) Cluster number = K; 2) The
SCG events {Xy, X3, X3, ..., X; ..., Xy} where N refers to
the number of events and each event is a feature vector
of signal amplitudes such that X; = {xy, x2, X3, ..., X1, }.

Step 2: Initialize the medoid for each cluster
Ciyer Cjy oo Gy
19 ]

@

e

Average SOD values
o o>

s
]

w

1 2 3 4

Number of Clusters
Figure 5. Average SOD for different number of clusters to
illustrate elbow method
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Step 3: For each SCG event, X;, find the nearest cluster
medoid C; (using DTW as the distance measure) and
assign X; to cluster j.

Step 4: After assigning all events to a cluster, use Eq. 3
to update C; based on the clustered events from the
previous step:

) n;
G = argminye(x, ; x,;,...xij... an}zizjl dtw(y, X;j) 3)

where Xj is the i event of cluster j and n; is the number
of j events after step 2.

Step 5: Repeat steps 3 and 4 until cluster assignments do
not change.

The optimal number of clusters was determined using the
elbow method. Here, a small number of clusters were
selected to optimize intra-cluster variance. Equation 4
calculates the average sum of distances (SOD) between
each event and its cluster medoid, which measures intra-
cluster variability.

) ,
SOD = L ¥y 5L, dtw(G, Xy) @

Here, N is the total number of events, X;; is the i*" event
for cluster medoid Cj, and n; is the number of events for
C;.
Figure 5 shows the average SOD for the different
numbers of clusters. Here, an elbow shape was observed
when the number of clusters was 2, which is consistent
with previous studies [16]-[18]. It can then be concluded
that two clusters would lead to optimal intra-cluster
variance with the fewest number of clusters.

D. DECISION BOUNDARY

After clustering, a decision boundary was calculated
using a support vector machine (SVM) to show how
accurately the two clusters are separated. The SVM
algorithm maximizes the margin between two classes by
finding a hyperplane for n features [19]. A decision
boundary can be defined (for linearly separable data) as
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Figure 6. SVM hyperplane shows decision boundary and
margin between the classes
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w.x; +b =0 and the margins are defined using the
hyperplanes w.x; + b = *1. Marginal data points on the
boundary are known as the support vectors. Here,
w, x, and b are the weight vector, feature vector, and the

bias, respectively. The aim of SVM is to maximize the

decision margin d = L SVM hyperplane and decision

llwll
margin are illustrated in Figure 6.

III. RESULTS AND DISCUSSION

Cluster distribution and decision boundary of SCG
events are shown in the lung volume change vs flow rate
plot for two subjects in Figure 7. The accuracy of the
decision boundary was calculated using the following
equation.

(TP+TN)

Accuracy = (TP+FP+FN+TN) ®)

Figure 7 suggests that SCG clustering correlates with
respiration, and the two clusters were well separated with
high accuracy. Here, SCG events belonging to cluster 1
and cluster 2 are labeled as blue ‘V’ triangles and red ‘o’
circles, respectively. According to these findings,
clusters are not separated based on respiratory flow rate

(a) Subject 1: Accuracy: 0.9750
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Figure 7. Cluster distribution on lung volume vs flow rate
for 2 subjects of 1 minutes each.

IEEE SPMB 2021

Page 4 of 6

Table 1. Intra-cluster variability change. The mean and standard
deviation (SD) for the study subjects are listed. There was a drop
with clustering (p<0.05) and an additional drop with breath hold
(p<0.05).

Change in intra-cluster variability Mean SD
(%) (%)
(After clustering -before 20 9

clustering)/ before clustering

(End inspiration- Normal 29 20
breathing)/Normal breathing

(End Expiration- Normal 35 19
breathing)/Normal breathing

(i.e., inspiration vs expiration phase) or by lung volume
(i.e., high lung volume vs low lung volume). The
clustering pattern was consistent for all study subjects.

A.VARIABILITY AND FREQUENCY DOMAIN FEATURES

The intra-cluster DTW distance was used to quantify how
two waveform sets are not similar. Equation 6 calculates
the intra-cluster variability using DTW distances:

Intra—cluster variability = # [Z?zll dtw(Cy, Xi1)
+ X2, dtw(Cy, X)) (6)

Here, X;; and X;, are the i®® SCG event of cluster 1 and
cluster 2, respectively. C; and C, are the respective
medoids of 2 clusters. n, and n, are cluster 1 and 2 total
number of events, respectively. Relatively low intra-
cluster DTW distance is indicative of well-separated
groups.

Table 1 shows the change in intra-cluster variability
between the un-clustered normal breathing, clustered
normal breathing, BH end inspiration, and BH end
expiration stats. Results showed an average 20%
decrease (p<0.05) in variability for clustered normal
breathing compared to un-clustered normal breathing.
Also, it was found that there was an average 29%
decrease (p<0.05) in variability for end inspiration and a
35% decrease (p<0.05) during end expiration, as
compared to the clustered normal breathing state. The
high SD is indicative of large inter-subject variability.

The energy of the SCG within the 0-20 Hz range was also
analyzed, as previous studies suggested the utility of this
feature. This energy was normalized by the energy in the
0-50 Hz range. Table 2 shows the change in normalized
energy in the 0-20 Hz range. Results showed an average

Table 2. Change in normalized SCG energy in the 0-20 Hz
band. The energy dropped with breath hold (p<0.05).

Change in the energy in the 0-20 Mean SD
Hz for all subjects (%) (%)

(End inspiration BH- Normal -10 1
breathing)/Normal breathing
(End Expiration BH- Normal
breathing)/Normal breathing

-8 11
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10% decrease (p<0.05) during end inspiration BH and
8% decrease (p<0.05) during end expiration BH
compared to normal breathing for all subjects.

B.HEART RATE

Heart rate during end inspiration BH, end expiration BH,
and the 30 seconds before and after both BH was
calculated and compared. Table 3 shows HR changes.
Results showed that there was an average 9% and 11%
decrease (p<0.05) in heart rate during end inspiration BH
compared to before and after BH, respectively. Also,
there was an average 5% and 7% decrease (p<0.05) in
heart rate during end expiration BH compared to before
and after BH, respectively.

Finally, spectral power in the 0.15-0.4 Hz range of the
HRV was calculated, which is known as the high-
frequency range (HF). Table 4 shows spectral energy
changes in the HF range between the different breathing
states. Results showed an average 58% decrease (p<0.05)
in this energy during end inspiration BH and a 78%
decrease (p<0.05) during end expiration BH compared to
normal breathing. The reason for this decrease is likely
because breathing frequency lies in this frequency range.
Since the HRV associated with breathing (a phenomenon
known as respiratory sinuous arrhythmia) is diminished
with BH, lower variability is expected in this frequency
band.

IV. SUMMARY

In this paper, the SCG signal variability and heart rate
during normal breathing and breath holding were
investigated. Unsupervised machine learning was
performed to cluster SCG signals acquired during normal
breathing, which led to waveform variability reduction.
The decision boundary was determined using a support
vector machine, and classification accuracy was
Table 3. Heart rate change. The heart rate decreased with
breath hold (p<0.05).

Change in HR during BH for all Mean SD (%)
subjects (%)
(End inspiration BH- before 9 6
BH)/before BH
(End inspiration BH- after 11 6
BH)/after BH
(End expiration BH- before 5 3
BH)/before BH
(End expiration BH- after 7 3
BH)/after BH

Table 4. Change in HRV energy in high frequency range (HF).
There was a drop with breath holding (p<0.05).

Change in HF for all subjects | Mean (%) SD (%)
(End inspiration BH- )
Normal)/Normal >8 27
(End expiration BH-
Normal)/Normal 78 12
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calculated. It was found that SCG waveforms could be
separated into two groups with high levels of accuracy.

The changes in intra-cluster variability for un-clustered,
clustered, and BH cases were analyzed. Results showed
that there was a reduction in variability by 20% (p<0.05)
after clustering and 32% (p<0.05) with BH. Heart rate
and heart rate variability during BH were also compared
with before and after BH. Results suggested that there
was an 8% drop (p<0.05) in heart rate and a 68% drop
(p<0.05) in heart rate energy in the 0.15-0.4 Hz range
during BH cases. Limitations of the study include a small
number of subjects and only one machine learning
method was considered. In future studies, other
unsupervised machine learning algorithms will be used
to cluster SCG events during regular breathing, and other
supervised classifiers will be used to calculate the
decision boundary. The results will then be compared
with the findings of this study. Also, future studies in a
larger number of subjects are warranted to further verify
these findings in healthy subjects and heart failure
patients.
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