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Abstract— Seismocardiography signals (SCG) are acoustic 
vibrations generated by heart activity and measured non-
invasively on the surface of the chest. SCG may be used to 
diagnose and monitor cardiovascular conditions. The signal 
variability may limit the potentially high SCG clinical 
utility. It is known that breathing can cause variability, yet 
it is not well understood. The objective of this study is to 
quantify SCG and heart rate changes during normal 
breathing and breath holding (BH). Seismocardiography 
(SCG), electrocardiography (ECG), and airflow signals 
were recorded in eight healthy subjects during normal 
breathing and breath holding (at end inspiration and end 
expiration). The SCG events were detected and segmented. 
The heart rate was calculated using the R peak of ECG. 
Unsupervised machine learning (K-medoid clustering) was 
implemented using a dynamic time warping (DTW) 
distance to separate normal breathing SCG waveforms into 
two clusters. The SCG intra-group variability was 
calculated in the time domain. Normalized SCG energy in 
the 0-20 Hz range was also investigated. Results showed that 
the SCG average intra-cluster variability was 32% lower 
during breath holding compared to normal breathing. In 
addition, the average heart rate was 8% lower and 
normalized SCG energy was 9% lower in breath holding 
than normal breathing. Variable airflow and lung volume 
during normal breathing may cause these findings. SCG 
waveforms during breath holding can be more accurate due 
to the decreased variability. Hence, it may be useful to 
collect SCG during breath holding. The results of this study 
need to be verified with further investigation on a larger 
number of subjects. 

I. INTRODUCTION 
Seismocardiographic (SCG) signals are the vibrations of 
the chest wall that are developed because of the 
mechanical activity of the heart [1]. These vibrations are 
known to correlate with the mechanical processes 
surrounding the heart, which include valve closure, 
changes in blood momentum, and cardiac muscle 
contraction [2]–[6]. SCG can be measured non-
invasively by placing an accelerometer on the surface of 
the chest. These signals can provide valuable information 
about heart function and can be potentially utilized 
to diagnose cardiac diseases. Previous studies have 
suggested the usefulness of different cardiac parameters, 
such as systolic time intervals and heart rate [2,4]. 
Currently, ECG is the most widely recognized method to 
measure cardiac activity. However, this signal is limited 
to the measurement of electrical myocardial activity. 
SCG can be used in conjunction with ECG to acquire 

information about both mechanical and electrical heart 
activity. In 2015, the leading global cause of mortality 
was heart disease. On average, someone in the United 
States dies of cardiovascular disease every 36 
seconds [7]. From 2016 to 2017, the average annual 
direct and indirect cost of cardiovascular disease (CVD) 
in the United States was estimated to be 363.4 billion 
dollars [7]. Approximately 130 million adults in the US 
population (45.1%) are projected to have developed some 
form of CVD by 2035. The estimated total cost of CVD 
is expected to reach $1.1 trillion by 2035 [7]. In addition, 
an earlier study predicted that heart failure would 
increase by approximately 46% from 2012 to 2030 in 
adults [7]. SCG signals can be utilized as a noninvasive 
method for monitoring cardiovascular disease. SCG is 
believed to be associated with heart health and, hence, 
may be useful for monitoring cardiac conditions. 

SCG waveform variability may interfere with extracting 
accurate waveforms, which can limit its clinical utility. 
The SCG utility can be increased if its variability is 
decreased and its sources of variability are better 
understood. One known source of variability is breathing. 
During breathing, there are changes in the heart position 
and pressure around the heart. These changes may 
introduce errors in the SCG interpretation yet may 
contain SCG morphological features of diagnostic value. 
Improved understanding of the sources of variability may 
help extract more accurate SCG waveforms and provide 
useful features that increase the diagnostic predictive 
value of SCG. To our knowledge, limited published 
information is available about SCG changes during BH. 
The purpose of this study is to quantify SCG and heart 
rate changes during regular breathing compared to BH. It 
is known that during BH some of the factors leading to 
the variability (such as the heart position) are nearly 
constant. Documenting SCG morphological changes 
under different breathing states may help enhance our 
understanding of SCG sources and suggest optimal 
breathing states and maneuvers for SCG recording. 

II. MATERIALS AND METHODS 
Eight healthy subjects were recruited for our study after 
IRB approval. Subjects were asked to lay supine on a bed 
tilted to 45 degrees head facing forward with their feet 
extended horizontally. Figure 1 shows the methodology 
of our study.  
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10% decrease (p<0.05) during end inspiration BH and 
8% decrease (p<0.05) during end expiration BH 
compared to normal breathing for all subjects. 

B. HEART RATE 
Heart rate during end inspiration BH, end expiration BH, 
and the 30 seconds before and after both BH was 
calculated and compared. Table 3 shows HR changes. 
Results showed that there was an average 9% and 11% 
decrease (p<0.05) in heart rate during end inspiration BH 
compared to before and after BH, respectively. Also, 
there was an average 5% and 7% decrease (p<0.05) in 
heart rate during end expiration BH compared to before 
and after BH, respectively. 

Finally, spectral power in the 0.15–0.4 Hz range of the 
HRV was calculated, which is known as the high-
frequency range (HF). Table 4 shows spectral energy 
changes in the HF range between the different breathing 
states. Results showed an average 58% decrease (p<0.05) 
in this energy during end inspiration BH and a 78% 
decrease (p<0.05) during end expiration BH compared to 
normal breathing. The reason for this decrease is likely 
because breathing frequency lies in this frequency range. 
Since the HRV associated with breathing (a phenomenon 
known as respiratory sinuous arrhythmia) is diminished 
with BH, lower variability is expected in this frequency 
band. 

IV. SUMMARY 
In this paper, the SCG signal variability and heart rate 
during normal breathing and breath holding were 
investigated. Unsupervised machine learning was 
performed to cluster SCG signals acquired during normal 
breathing, which led to waveform variability reduction. 
The decision boundary was determined using a support 
vector machine, and classification accuracy was 

calculated. It was found that SCG waveforms could be 
separated into two groups with high levels of accuracy.    

The changes in intra-cluster variability for un-clustered, 
clustered, and BH cases were analyzed. Results showed 
that there was a reduction in variability by 20% (p<0.05) 
after clustering and 32% (p<0.05) with BH. Heart rate 
and heart rate variability during BH were also compared 
with before and after BH. Results suggested that there 
was an 8% drop (p<0.05) in heart rate and a 68% drop 
(p<0.05) in heart rate energy in the 0.15-0.4 Hz range 
during BH cases. Limitations of the study include a small 
number of subjects and only one machine learning 
method was considered. In future studies, other 
unsupervised machine learning algorithms will be used 
to cluster SCG events during regular breathing, and other 
supervised classifiers will be used to calculate the 
decision boundary. The results will then be compared 
with the findings of this study. Also, future studies in a 
larger number of subjects are warranted to further verify 
these findings in healthy subjects and heart failure 
patients.  
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