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Abstract

Quantum simulation on emerging quantum hardware is a topic of intense interest. While many

studies focus on computing ground state properties or simulating unitary dynamics of closed sys-

tems, open quantum systems are an interesting target of study owing to their ubiquity and rich

physical behavior. However, their non-unitary dynamics are also not natural to simulate on digital

quantum devices. Here, we report algorithms for the digital quantum simulation of the dynam-

ics of open quantum systems governed by a Lindblad equation using adaptations of the quantum

imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantum’s

hardware with simulations of the spontaneous emission of a two level system and the dissipative

transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum

systems on quantum hardware.

∗ aminnich@caltech.edu

1

ar
X

iv
:2

10
4.

07
82

3v
3 

 [q
ua

nt
-p

h]
  1

6 
N

ov
 2

02
1



I. INTRODUCTION

The development of quantum algorithms to simulate the dynamics of quantum many-

body systems is now a topic of interest owing to advances in quantum hardware [1–3]. While

the real-time evolution of closed quantum systems on digital quantum computers has been

extensively studied in the context of spin models [4–10], fermionic systems [11, 12], electron-

phonon interactions [13], and quantum field theories [14–16], fewer studies have considered

the time evolution of open quantum systems, which exhibit rich dynamical behavior due

to coupling of the system to its environment [17, 18]. However, this coupling leads to non-

unitary evolution which is not naturally simulable on quantum hardware.

Early approaches to overcome this challenge included use of the quantum simulators’ in-

trinsic decoherence [19] and direct simulation of the environment [20–22]. Theoretical works

examined the resources required for efficient quantum simulation of Markovian dynamics

[23–25], concluding that arbitrary quantum channels can be efficiently simulated by com-

bining elementary quantum channels. Recently, several algorithms have been proposed for

the digital quantum simulation of open quantum systems on the basis of the Kraus decom-

position of quantum channels [26–31] as well as variational descriptions of general processes

to simulate the stochastic Schrödinger equation [1, 8] and the Lindblad equation [32]. Re-

cently, explicit Trotterization of the Lindblad equation was used to simulate damping and

dephasing of a single qubit using an additional ancilla qubit [33].

Simulation via Kraus decomposition is convenient when the Kraus operators correspond-

ing to the time evolution of the system are known, such as modelling decoherence with

amplitude damping or depolarizing channels. However, determining the Kraus operators of

a general system requires either computing the full unitary evolution of both the system and

environment or casting a master equation into an operator sum representation for the density

operator. The latter procedure can be approximated analogously to Trotterization [29, 31]

but requires either reset of ancillae qubits or a qubit overhead which scales linearly with the

number of time steps in the simulation. Exactly determining the Kraus operators from the

Lindblad equation is a classically hard task which is equivalent to solving the master equa-

tion [34] and so can only be applied to small systems. Explicit Trotterization circumvents

the need to determine the Kraus operators representing the time evolution but has the same

ancilla qubit overhead as in as the Kraus decomposition methods. Variational approaches
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[1, 8, 35] offer an alternative for simulating open system dynamics, but as in the case of closed

systems require an ansatz and a potentially high dimensional classical optimization which

is an NP-hard problem [36]. A quantum simulation of the stochastic Schrödinger equation

was emulated in Ref. [8]. In this case, the quantum jumps, or discontinuous changes in the

quantum state, was implemented via variational matrix-vector multiplication, thus incurring

the disadvantages previously mentioned for variational approaches.

The common feature of the above algorithms is that they reformulate non-unitary open

system dynamics into unitary dynamics which can be simulated on a quantum computer. A

similar approach is used in variational approaches to imaginary time evolution [37] and the

quantum imaginary time evolution (QITE) algorithm, which has recently been introduced

as a way to prepare ground states and compute thermal averages on near-term devices [38].

QITE has since been used to compute finite-temperature correlation functions of many-body

systems [39], scattering in the Ising model [40], and binding energies in quantum chemistry

[41, 42] and nuclear physics [42]. It is therefore natural to consider how QITE might be

adapted for open quantum system evolution.

Here, we report quantum algorithms to simulate open quantum dynamics using adap-

tations of the QITE algorithm and demonstrate them on IBM Quantum hardware. The

first algorithm casts the Lindblad equation for the density operator into a Schrödinger-type

equation with a non-Hermitian Hamiltonian. Time evolution is then achieved by simulating

the unitary evolution via Trotterization, corresponding to the Hermitian component of the

Hamiltonian and using QITE to simulate the anti-Hermitian component of the Hamiltonian.

The second algorithm expresses the density operator in terms of an ansatz which is preserved

during both real and imaginary time evolution. We demonstrate these algorithms on IBM

Quantum hardware for two cases: the spontaneous emission of a two level system (TLS) in

a heat bath at zero temperature, and the dissipative transverse field Ising model (TFIM)

on two sites. We observe good agreement between the exact and hardware results, showing

that the dynamics of open quantum systems are accessible on near-term quantum hardware.

II. THEORY

The dynamics of a Markovian open quantum system can be described by the Lindblad

equation
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|ρ(0)⟩
e−iHτ

eiH⊤τ
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†
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⊤
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e∑k Lk⊗Lkτ
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|0⟩

Bell

X/Y

a)

|x⟩ e−iHτ V(τ)

Repeat  timesn

b)

Repeat for all included x

H

FIG. 1: Circuit diagrams for Trotterized time evolution of the density operator with N

Trotter steps. a) Time evolution for the vectorized density operator |ρ〉 (Algorithm I).

e−iH1τ is a unitary operator and can be directly implemented on the quantum simulator.

The non-unitary terms e−
1
2

∑
k L†

kLkτ and e
∑

k Lk⊗Lkτ are implemented via QITE. The

unitary labelled “Bell” represents a unitary preparing the generalized 2n-qubit Bell state.

b) Time evolution for the purification-based algorithm (Algorithm II). x is a bit-string

included in the index set I. V (τ) represents the non-unitary terms which need to be

applied to the system for a time step τ . In both figures / denotes a bundle of n qubits.

dρ

dt
= −i[H, ρ] +

∑

k

(
LkρL

†
k −

1

2
{L†

kLk, ρ}
)

(1)

where ρ is the density operator of the system, H is the system’s Hamiltonian, and Lk are

operators describing the coupling to the environment. The master equation in Lindblad

form is often derived assuming weak coupling between system and environment and absence

of memory effects (Born-Markov approximation) [18, 43].

We present two algorithms to simulate the master equation in Lindblad form on a digital

quantum computer. The first quantum algorithm, based on a vectorization of the density

operator, is described in Sec. II A; the second algorithm, which combines a QITE adaptation

with an ansatz for the time-dependent density operator, is presented in Sec. II B.

A. Algorithm I

The Lindblad equation can be rewritten as a Schrödinger-type equation with a non-

Hermitian Hamiltonian by transforming the 2n×2n density operator ρ into an 4n component
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vector |ρ〉 by column stacking the density operator [44]. The resulting transformation of the

Lindblad equation is

d|ρ〉
dt

=

[
−iI⊗H + iH> ⊗ I +

∑

k

(Lk ⊗ Lk −
1

2
I⊗ (L†

kLk) − 1

2
(L>

k Lk) ⊗ I)

]
|ρ〉 (2)

where the bar indicates entry-wise complex conjugation and |ρ〉 = |ρ(t)〉 is the vectorized

density operator [44]. Separating Eq. 2 into Hermitian and anti-Hermitian parts, the time

evolution of the initial state can be written as:

|ρ(t)〉 = exp (−i(H1 − iH2)t)|ρ(0)〉 = [exp (−iH1τ) exp (−H2τ)]N |ρ(0)〉 + O
(
τ 2N

)
. (3)

where in the last equality we have Trotterized to first order with time step τ = t/N , and H1

and iH2 are the Hermitian and anit-Hermitian components of the vectorized Hamiltonian,

respectively. The first term exp (−iH1τ) is unitary and can implemented on a quantum

simulator via Trotterization and standard quantum simulation techniques [2, 45, 46]. The

term exp (−H2τ) is non-unitary and so cannot be directly applied to the quantum register.

Instead, we implement it on a digital quantum simulator via analogy to quantum algorithms

for imaginary time evolution [38].

Imaginary time evolution of the Schrödinger equation with Hamiltonian H is carried

out formally by substituting β = it into the real time propagator exp (−itH). This tech-

nique is typically used to find ground states |ψ〉 = limβ→∞ |φ(β)〉/|||φ(β)〉||, where |φ(β)〉 =

exp (−βH)|φ(0)〉 and |φ(0)〉 has non-zero overlap with a ground state. If we interpret H2 as

the Hamiltonian of a system in the extended Hilbert space, exp (−H2τ) is an imaginary time

evolution operator generated by H2. The full time evolution is then applied as sequence of

real and imaginary time evolutions, as shown in Fig. 1a.

We present a brief review of the QITE algorithm reported in Ref. [38] which is used

as a subroutine in this work. The QITE algorithm represents normalized imaginary time

evolution in terms of unitary evolution as:

e−βH |ψ〉
||e−βH |ψ〉|| = e−iA|ψ〉, (4)

where H is the system Hamiltonian, β is the imaginary time, and A is a Hermitian operator.
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The operator A can be represented with real coefficients in a complete basis of Hermitian

operators, typically chosen to be the Pauli strings σi over the qubits of the system:

A =
∑

i

aiσi. (5)

For an imaginary time step β, the coefficients ai are determined (up to order β2) by the

linear system Sa = b, with 


Sij = 〈ψ|σ†

iσj|ψ〉,

bi = −i√
c
〈ψ|σ†

iH|ψ〉
(6)

where c = 〈exp (−2βH)〉 is the norm squared of the un-normalized imaginary time evolved

state.

Once the desired time and state |ρ(t)〉 are reached, measurements of an observable O

are obtained by evaluating the expectation value 〈O〉(t) = Tr (Oρ(t)) as 〈O†|ρ〉. |O〉 is the

vector obtained from column stacking the matrix representation of O and so only the matrix

representation of O in the computational basis is needed for this step . Lindbladian evolution

preserves Tr (ρ) whereas the algorithm preserves Tr (ρ2) = 〈ρ|ρ〉, meaning that the operator

ρ obtained from matricizing |ρ(t)〉 is not strictly a density matrix. However, the final state

can be renormalized to have unit trace as ρ′(t) = ρ(t)/Tr (ρ(t)). In practice, we normalize

the final expectation value of a given observable instead. The final physical observables are

thus given by 〈O〉/Tr (ρ). Therefore, obtaining measurements of observables on the state

requires evaluating both 〈O〉 and Tr (ρ) at each time step.

Both quantities 〈O〉(t) and Tr (ρ(t)) can be obtained using a Hadamard test circuit [47].

In particular, Tr (ρ) can be evaluated up to a prefactor of 2−n/2P−1/2 as 〈0|V †U |0〉, where U

is the circuit that prepares |ρ〉, V prepares the generalized Bell state |β〉 = 2−n/2
∑

x |x〉⊗|x〉,
|x〉 are the computational basis states on n qubits, and P is the purity of the initial state.

Preparing the 2n qubit Bell state requires n Hadamard and n CNOT gates. Assuming

|ρ〉 = U |0〉 for a unitary U with gate decomposition requiring u1 and u2 single-qubit and

CNOT gates, respectively, the measurement of Tr (ρ) requires a circuit with O (n+ u1)

single-qubit gates, O (n+ u1) CNOT gates, and O (n+ u2) CCNOT gates.

Measurement of k−local observables can be carried out similarly. We assume here without

loss of generality that the k−local observable O has support on the first k qubits. The

vectorized state can then be written as |ρ〉 = P−1/2
∑

x1,x2,y1,y2
ρx1x2y1y2 |x1x2y1y2〉 where
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x1, y1 and x2, y2 are length k and (n− k) bit strings, respectively, and P is the purity of the

initial state. Defining the state

|O†〉 =
∑

x1y1z

Ox1y1√
2n−kTr (O†O)

|x1zy1z〉, (7)

where the over-bar indicates complex conjugation, the expectation value of O can be evalu-

ated (up to a pre-factor) as

〈O†|ρ〉 =
∑

x1y1z

Ox1y1√
2n−k

ρx1zy1z√
P

=
Tr (Oρ)√

2n−kTr (O†O)P
. (8)

The state |O†〉 can be prepared as

UO†Vn−k|0k, 0n−k, 0k, 0n−k〉 = UO†

[
1√

2n−k

∑

z

|0k, z, 0k, z〉
]

(9)

where Vn−k prepares the n− k generalized Bell state and UO† prepares the 2k qubit state

|O†〉 =
∑

x1y1

Ox1y1√
Tr (O†O)

|x1y1〉. (10)

We then measure the un-normalized expectation value of O using the Hadamard test.

Since the purity is conserved by the algorithm, all observables can be renormalized after the

measurement. Assuming a decomposition of U into u1 and u2 single-qubit and CNOT gates,

respectively, and V into v1 and v2 single-qubit and CNOT gates, the total overhead for

measurement of observables (including the trace evaluation) is O (n+ u1 + v1) single-qubit

gates, O (n+ u1 + v1) CNOT gates, and O (n+ u2 + v2) CCNOT gates.

B. Algorithm II

Algorithm I allows for efficient simulation of the full density operator for many physical

systems characterized by local interactions; however, it requires a doubling of the number of

qubits and an overhead of an ancilla and controlled operations for evaluating observables.

In particular, the circuit required for measurements is too deep for near-term hardware. We

therefore introduce a second algorithm based on the variational ansatz used to obtain the

non-equilibrium steady states of Markovian systems [35, 48] that overcomes these limitations.

The isomorphism maps a density operator as
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ρ =
∑

x∈I
pxU |x〉〈x|U † → |ρ〉 =

∑

x∈I
pxU |x〉 ⊗ U |x〉. (11)

where the |x〉’s label the n-qubit computational basis states and I is a subset of all 2n possi-

ble bit-strings. In the rest of the paper the index set I is implied. We note that although we

are using an ansatz for this algorithm, any density operator can be represented in this form

provided the index set I is large enough. However, it should be noted that assuming poly-

nomial resources to store the bit-string weights implies that the present algorithm employs

a sparse approximation to represent the density matrix.

The Lindblad master equation is mapped identically to the vectorization mapping, re-

sulting in Eq. (2). The propagator is again Trotterized and each term can be applied term

by term. The unitary part of the propagator preserves the ansatz, as

exp
((
−iI⊗H + iH> ⊗ I

)
τ
)∑

x

pxU |x〉 ⊗ U |x〉 =
∑

x

pxe
iH>

U |x〉 ⊗ e−iHU |x〉 (12)

and e−iH = eiH
>

for Hermitian H. The remaining terms in the Trotterized propagator are of

the form exp (−L>
k Lkτ/2) ⊗ exp (−L†

kLkτ/2) and exp (Lk ⊗ Lkτ). The first term preserves

the ansatz but is non-unitary, while the second term does not preserve the ansatz and is

non-unitary. Considering the first of non-unitary terms, as in the original QITE algorithm

we seek a set of numbers qx and a Hermitian operator A such that

Vk
∑

x

pxU |x〉 ⊗ U |x〉 =
∑

x

(px + qx) exp (iA)U |x〉 ⊗ exp (−iA)U |x〉 + O
(
τ 2
)
, (13)

where Vk = exp (−τL>
k Lk/2) ⊗ exp (−τL†

kLk/2). As shown in Section I the Supplementary

Materials, we find that

qx = −τpxRe
[
〈x|U †L>

k LkU |x〉
]
. (14)

Decomposing A into a weighted sum of Pauli strings, A =
∑

j ajσj, we find that the

coefficients aj satisfy the linear system Sa = b, with
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Sij =
∑

x

p2xRe
[
〈x|U †(σiσj + σjσi)U |x〉

]
− 2

∑

xy

pxpyRe
[
〈x|U †σiU |y〉〈x|U †σjU |y〉

]
, (15)

bi = −τ
(∑

x

p2xIm
[
〈x|U †σiL

>
k LkU |x〉

]
+
∑

xy

pxpyIm
[
〈x|U †σiU |y〉〈y|U †L>

k LkU |x〉
]
)
.

(16)

The elements qx, S, and b for the second non-unitary term, exp (Lk ⊗ Lkτ), take a similar

form. The derivation for both terms is given in Section I of the Supplementary Materials.

We note that the total probability
∑

x px = 1 is conserved by the algorithm since
∑

x qx = 0

at each time step as shown in Eq. (S19).

With this ansatz, observables are computed as 〈O〉 =
∑

x px〈x|U †OU |x〉, requiring the

propagation of each |x〉 in parallel while storing the px’s. The final observable is computed

as a classical average over all the propagated states and px. It is important to note that

although the ansatz lies in a dilated Hilbert space, all measurements take place on the

original system and no entangling operations between the system and ancilla are needed,

and so no ancillae qubits are needed. In particular, for each time step measurements on the

original Hilbert space are used to determine the Hermitian matrix A. Expectation values of

observables on this state are computed using the standard methods [1, 2].

The benefits of Algorithm II are that it requires no ancilla qubits, and no Hadamard

test is required for measurements of observables. These characteristics, trading quantum for

classical resources and simulating large quantum circuits using smaller quantum computers

are important for near-term hardware [49–53]. In particular, Algorithm II allows for halving

the number of required qubits as in Ref. [53], allowing simulation of larger physical systems

by increasing the classical and quantum computational time while decreasing the required

number of qubits. Its drawbacks are the sparse representation of the density matrix and

the number of measurements required to evolve the system. We discuss this overhead in the

following section.

III. RUN TIME BOUNDS, COMPUTATIONAL OVERHEADS, AND ERRORS

In this section, we discuss the run times, quantum and classical computational overheads,

and errors associated with each algorithm. Other sources of errors, such as those associated
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with noisy hardware, are not addressed here as they are non-algorithmic errors.

A. Run time bounds

We first bound the run time of Algorithm I. For each time step in the Trotterization, the

algorithm requires applying the imaginary time propagator exp (−H2τ), where τ = t/N and

N is the number of Trotter steps for the time evolution. Assuming a local Lindblad equation,

H2 is a sum of m2 local terms hl such that H2 =
∑m2

l=1 hl, where m2 scales polynomially

with system size. The imaginary time evolution operator exp (−H2τ) is implemented by

additional Trotterization. For a given desired error ε2, we Trotterize the imaginary time

evolution into p2 steps. From Eq. (3.8) of Ref. [54], we find that for p2 > 1/ε2 the error in

the p2-step approximation is bounded by ε2, assuming the number of Trotterization steps

for time evolution N is sufficiently large that 3m2tv2/N < 1, where v2 = maxl{‖hl‖}.

Each term in the Trotterization is an imaginary time increment and so corresponds to

a rotation by a unitary operator supported on D qubits where D is the domain size. An

arbitrary D qubit unitary can be decomposed exactly into O
(
D24D

)
single-qubit and CNOT

gates [45]. The total contribution to running time from all the imaginary time evolutions is

O
(
Nm2D

24D/ε2
)
.

Algorithm I also has additional unitaries exp (−iH1τ) interleaved between each QITE

step, leading to an additional overhead. Because H1 is a sum of local terms, H1 =
∑m1

l=1 hl,

exp (−iH1τ) needs to be Trotterized as well. Performing a similar analysis for the real time

evolution, we find the total running time to be

T = O
(
Nm1k

24k/ε1 +Nm2D
24D/ε2

)
, (17)

where ε1 is the allowable Trotter error for the real-time evolution and k is the maximum

number of qubits acted on by each term in the Hamiltonian. In the first term on the right

hand side, we have assumed that each k−local unitary can be exactly decomposed into

O
(
k24k

)
single qubit and CNOT gates [45].

A similar analysis can be carried out for Algorithm II, resulting in the same run-time up to

constant factors with the following difference. The errors appearing in the run-time bound

for Algorithm II do not include errors incurred from approximating the density operator

with a strict subset of all bit-strings. Although in principle any density operator can be
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represented by the sum
∑

x pxU |x〉 ⊗ U |x〉, this sum contains exponentially many terms

and so only a subset of all possible bit strings can be included efficiently. Exclusion of bit-

strings leads to an error in representing the state given by
∑

x∈Ic px, where I is an index set

containing all bit strings to be included, and Ic is its complement. In practice, this error

would have to be assessed by stochastically sampling the bit-strings until the simulation

converges.

B. Measurement and classical computational overheads

Provided that the finite domain approximation holds, the largest computational overhead

(apart from running time) of both algorithms is the measurement overhead. For Algorithm I,

this measurement overhead is the same as in the original QITE algorithm. State tomography

over each domain consisting of D qubits needs to be carried out to construct the unitaries

over that domain, requiring O
(
4D
)

measurements. Assuming a 1-dimensional lattice, there

are O (n/D) domains, and so the total measurement overhead is O
(
(n/D)4D

)
per time step.

Similar bounds can be obtained for lattices in higher dimensions.

Algorithm II requires measurement of the matrix elements 〈x|U †σiU |y〉 for all Pauli

strings σi supported on a domain D (measured in qubits) and all bit strings in x, y ∈ I

for some subset I of the 2n n-bit strings. Measuring all matrix elements necessitates run-

ning O
(
L4D|I|2

)
circuits per time step, where L is the number of Lindblad operators on the

domain and |I| is the number of bit-strings included in the computation. For the algorithm

to be efficient, the number of bit strings included in I must scale polynomially or slower

with system size.

The finite-domain approximation required from QITE is accurate in many cases because

the domain size D can generally be taken to be smaller for dissipative systems compared to

the same system with no dissipation, as dissipation generally reduces a system’s correlation

length [55]. It should be noted that a reduced correlation length that decreases the cost

for quantum algorithms might also permit an efficient classical description of the quantum

evolution. This imprecise boundary is a consideration for quantum simulation algorithms

generally and remains a topic of active investigation.

Table I summarizes the asymptotic scaling of the number of circuits required per time

step of both algorithms for open quantum system dynamical simulation on n sites.
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TABLE I: Asymptotic number of circuits required per time step per Lindblad operator for

both algorithms for an open system on n sites. Here, D is the domain size, and I is is a

subset of all n-bit strings for which the corresponding matrix elements are measured.

Algorithm # of qubits Circuits per Lindblad operator

I 2n+ 1 (n/D)4D

II n (n/D)4D|I|2

IV. RESULTS

We demonstrate both algorithms on IBM Quantum hardware for two cases: the spon-

taneous emission of a two level system (TLS) in a heat bath at zero temperature, and the

dissipative transverse field Ising model (TFIM) on two sites. The TLS (n = 1 from Table

I) requires three physical qubits and one physical qubit to simulate with Algorithm I and

II, respectively. The TFIM (n = 2 from Table I) requires five and two physical qubits,

respectively.

Considering Algorithm I, neither the TLS nor the two-site dissipative TFIM on 5 qubits

have constant depth circuit decompositions; Trotterizing both the real and imaginary time

propagators results in a circuit with depth linear in the number of time steps. The resulting

circuits are too deep for near-term devices. To overcome this limitation, we recompile the

circuits as in Ref. [39]. In all simulations, we correct for readout error using the built-in noise

models in Qiskit [56–59]. All measurements reported represent the average of 8192 shots

and were repeated three times. Sampling noise in the measurement of the expectation value

of the Pauli strings can lead to numerical instabilities in the QITE linear system. Therefore,

when constructing the QITE matrix for Algorithm I, regularizers 1 × 10−6 and 0.01, for the

TLS and TFIM, respectively, were added to the diagonal terms of the S matrix to increase

the condition number of the matrix S following the procedure in Ref. [38]. No regularizers

were used for Algorithm II.

We first present results for the TLS model with the Hamiltonian

H = −δ
2
σz − Ω

2
σx (18)

and the Lindblad operator
√
γσ−, where σ− is the lowering operator, δ is the detuning,

12
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FIG. 2: (a) Population of the excited state from numerical simulations obtained in QuTiP

[60, 61] (black line), hardware using Algorithm I on ibmq mumbai [62] (blue crosses) and

Algorithm II (green circles) on ibmq casablanca [62]. The deviation between the

theoretical and experimental curves is largely due to gate error. The system approaches a

non-equilibrium steady state for γt & 5. (b) Purity, Tr (ρ2) (grey line) and off-diagonal

term, Re [ρ10] (black line), corresponding to non-diagonal observables obtained in in

QuTiP [60, 61]. Hardware results are shown for Algorithm I (purity, red crosses; Re [ρ10],

blue crosses) and for Algorithm II (purity, orange circles; Re [ρ10], green circles). Hardware

results for the observable Im [ρ10] agree with the exact solution similarly to Re [ρ10] but are

omitted for clarity. For all hardware results for Algorithm I, the error bars are the

standard deviation from three runs. The error bars for Algorithm II are smaller than the

symbol size.

Ω is the Rabi frequency, and γ is the spontaneous emission rate. We consider here the

overdamped case where γ is on the order of the other energies in in the system. It was found

via numerical simulations that to accurately capture the dynamics only the Pauli strings in

the set {σx ⊗ σz, σy ⊗ σx, σy ⊗ σz, σz ⊗ σx} needed to be included in the QITE unitary.

We set δ = Ω = γ = 1, and the initial state was chosen to be the excited state. In Fig. 2a,

we show the populations of the ground and excited states, with the experimental data

averaged from three runs on IBM’s ibmq mumbai [62] for Algorithm I and ibmq casablanca

[62] for Algorithm II. Good qualitative agreement is obtained for all observables, with the

13



deviation between the theoretical and experimental curves largely due to gate errors as

confirmed by numerical simulations and noisy hardware emulations.

We observe an initial exponential decay in the population of the excited state due to

spontaneous emission into the bath followed by an approach to the non-equilibrium steady

steady state (NESS) for γt � 1. Damped Rabi oscillations are visible between these two

regimes. The populations in the NESS can be interpreted as a balance between the spon-

taneous emission due to coupling to the bath and the absorption and stimulated emission

due to the Hamiltonian driving term σx [63]. In the NESS, the combined spontaneous and

stimulated emission rates are equal to the absorption rate.

In the absence of driving by an external electric field (Ω = 0) the Hamiltonian is di-

agonal in the computational basis, resulting in the off-diagonal matrix elements ρ01 = ρ10

approaching zero as the system thermalizes. Figure 2b shows that these matrix elements

remain non-zero as the NESS is approached, indicating that the hardware correctly obtains

the expected quantum coherence as measured in the canonical basis. Also shown in Fig. 2b

is the purity Tr (ρ2), which does not correspond to a time-independent Hermitian observable

on the system but can nonetheless be obtained from the density operator representation on

the hardware. Time evolution preserves the inner product Tr (ρ2) = 〈ρ|ρ〉 on the quantum

simulator, but the physical quantity, the normalized purity, Tr (ρ2) /Tr (ρ), is not constant.

The larger deviation between the hardware results and the exact results for Algorithm I

is attributed to the fact that Algorithm I is a three-qubit circuit requiring two-qubit gates,

which are generally of lower fidelity than single qubit gates. Since Algorithm I for the

TLS is a single qubit circuit, there are no infidelity contributions from two-qubit gates. In

addition, the circuits required for Algorithm I are deeper than for Algorithm II, resulting in

more gate errors. An additional breakdown of the error contributions due to hardware error

and algorithmic error is provided in Fig. S1, in which we compare the hardware results to

noiseless numerical emulations.

We next present experimental and numerical results on the 2-site TFIM. The TFIM has

the Hamiltonian

H = −J
∑

k

σ(k)
z σ(k+1)

z − h
∑

k

σ(k)
x (19)

and Lindblad operators
√
γσ

(k)
− , with nearest neighbor coupling J , transverse magnetic field
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FIG. 3: Average magnetization N−1
∑

i〈Zi〉 for the dissipative transverse field Ising model

on 2 sites (5 physical qubits for Algorithm I, 2 physical qubits for Algorithm II) using IBM

Quantum’s ibmq guadalupe [62] for Algorithm I (blue symbols), and ibmq casablanca [62]

for Algorithm II (green symbols). Numerical solutions obtained in QuTiP are shown with

black lines. The error bars for both algorithms are the standard deviation from 3 hardware

runs. Both algorithms qualitatively agree with the exact dynamics for all simulated times.

The deviation between the hardware results and the exact result for Algorithm II is due

mainly to Trotter gate error.

h, and decay rate γ. For this model, the number of required Pauli strings could not be

reduced by symmetry in Algorithm I. To reduce circuit depth, 16 Pauli strings were randomly

selected out of the 256 possible Pauli strings on 4 qubits to implement the QITE unitary.

We chose 16 Pauli strings as a balance between too few Pauli strings, which results in a poor

approximation to normalized imaginary time evolution, and too many Pauli strings, which

results in a large computational overhead and an ill-conditioned QITE matrix. Increasing

the number of Pauli strings does not qualitatively increase the accuracy, as shown in Fig.

S2 of the Supplementary Materials.

Figure 3 shows the average magnetization of the dissipative TFIM with the initial state

given by both spins in the spin up state and J = h = 1 and γ = 0.1. Oscillations in
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magnetization are evident due to the relatively large transverse field. We observe qualitative

agreement between the theoretical and experimental curves from Algorithm I with a Trotter

step γt/N ∼ 0.5. For the small system size of 2 sites, all 4 bit-strings on 2 qubit were

included in Algorithm II. Experimental results for Algorithm II are also in good qualitative

agreement with the exact curve for all times.

In Section III, we discussed the runtime and resources required by both algorithms in a

general setting. We now discuss the relative computational cost required by each algorithm

for the specific case of the 2-site TFIM hardware simulations. For the simulations considered

here, Algorithm I is able to accurately describe the dissipative dynamics when using 16 out of

the total of 256 Pauli strings. Simulations of Algorithm I using up to 48 Pauli strings, shown

in Fig. S2, show no significant increase in accuracy when using more than 16 Pauli strings.

In general, the number of required Pauli strings will be problem dependent. Algorithm

II requires measuring the matrix elements of all two-qubit Pauli strings at each time step,

requiring 836 circuits per time step, versus only measuring expectation values of 16 operators

in the case of Algorithm I, which requires 16 circuits. These measurements are only needed

on a domain of fixed size.

For larger dissipation rates γ ∼ J, h, separate numerical simulations , presented in Fig

S3, show that both algorithms are able to accurately capture the magnetization dynamics.

However, these simulations do not include the error incurred by including a subset of bit-

strings in Algorithm II. The actual algorithmic error of Algorithm II will thus depend on the

accuracy of the representation of the density matrix with a subset of bit-strings for the given

problem. Stochastic sampling of bit-strings may be a viable approach for larger systems.

V. SUMMARY

We have introduced digital quantum algorithms for the time evolution of open quantum

systems described by a Lindblad equation based on quantum imaginary time evolution.

Algorithm I uses QITE to implement the non-unitary evolution introduced when the density

operator is vectorized, whereas Algorithm II uses an adaptation of QITE to maintain a

purification-based ansatz throughout the computation. Calculations for the spontaneous

emission of a two level system and the dissipative transverse field Ising model, respectively,

were carried out on IBM Quantum’s quantum processors. Good qualitative agreement with
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the exact result was observed in all cases. These algorithms decrease the quantum resources

required to simulate open quantum systems governed by Lindblad master equations on

quantum hardware.
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I. DERIVATION OF THE QITE LINEAR SYSTEM FOR ALGORITHM II

Here we derive the QITE linear systems which need to be solved to obtain the time

evolution of the density operator ansatz. Consider |ρ〉 =
∑

x pxT |x〉 ⊗ T |x〉, with T unitary.

The complex time propagator is the same as in the vectorization method,

X(t) = exp

([
−iI⊗H + iH> ⊗ I +

∑

k

(Lk ⊗ Lk −
1

2
I⊗ (L†kLk)− 1

2
(L>k Lk)⊗ I)

]
t

)
.

(S1)

Trotterizing results in

X(t) =
{
[
exp

(
iH>τ

)
⊗ exp (−iHτ)

]∏

k

[
exp

(
−L

>
k Lkτ

2

)
⊗ exp

(
−L

†
kLkτ

2

)]
exp (Lk ⊗ Lkτ)

}n

+O
(
τ 2n
)

(S2)

with τ = t/n. Using the identity exp (−iA) = exp (iA>) for A Hermitian and exp (B) =

exp (B) for arbitrary B, the propagator can be rewritten as

X(t) =

{
[U ⊗ U ]

∏

k

[Vk ⊗ Vk]Wk

}n

+O
(
τ 2n
)

(S3)

with U := exp (iH>τ), Vk := exp (−L>k Lkτ/2), and Wk := exp (Lk ⊗ Lkτ). It is imme-

diate that evolution with U ⊗ U preserves the ansatz, as (U ⊗ U)
∑

x pxT |x〉 ⊗ T |x〉 =

∗ aminnich@caltech.edu
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∑
x px(UT )|x〉 ⊗ (UT )|x〉. The term V ⊗ V also preserves the ansatz, but is an imaginary

time evolution with Hamiltonian L>k Lk/2, and so requires a modified QITE algorithm, de-

scribed below, for implementing exp (−L>k Lkτ/2)T |x〉. Due to the non-unitarity of Vk, we

expect that in addition to a unitary evolution of the state, the weights px will also evolve

in time. The final term, Wk = exp (Lk ⊗ Lkτ), does not preserve the ansatz, and we use

a modified version of QITE, described below, to effectively apply Wk while preserving the

form of ansatz.

A. Implementing Vk ⊗ Vk via a QITE adaptation

Under real time evolution by the non-unitary operator Vk ⊗ Vk, the evolution of |ρ〉 can

be expressed as

Vk ⊗ Vk
∑

x

pxT |x〉 ⊗ T |x〉 =
∑

x

(px + qx) exp (iA)T |x〉 ⊗ exp (−iA)T |x〉+O(τ 2), (S4)

with qx ∈ R and A a Hermitian operator with ‖A‖2 = O (τ). Defining B := (1/2)L>k Lk, we

then have, to first order in τ ,

exp (−τB)⊗ exp (−τB)
∑

x

pxT |x〉 ⊗ T |x〉 =
∑

x

(px + qx) exp (iA)T |x〉 ⊗ exp (−iA)T |x〉.

(S5)

Expanding both sides to first order in τ and discarding higher order terms results in

−τ
∑

x

px(BT |x〉 ⊗ T |x〉+ T |x〉 ⊗BT |x〉) =

∑

x

qxT |x〉 ⊗ T |x〉+ i
∑

x

px(AT |x〉 ⊗ T |x〉 − T |x〉 ⊗ AT |x〉).
(S6)

Taking the inner product of Eq. (S6) with 〈y|T † ⊗ 〈y|T> results in

−τ
∑

x

px(〈y|T †BT |x〉〈y|T>T |x〉+ 〈y|T †T |x〉〈y|T>BT |x〉) =

∑

x

qx〈y|T †T |x〉〈y|T>T |x〉+ i
∑

x

px(〈y|T †AT |x〉〈y|T>T |x〉 − 〈y|T †T |x〉〈y|T>AT |x〉).

(S7)

Using the identities 〈y|T †T |x〉 = 〈y|T>T |x〉 = δxy for T unitary results in

− τpy(〈y|T †BT |y〉+ 〈y|T>BT |y〉) = qy + ipy(〈y|T †AT |y〉 − 〈y|T>AT |y〉). (S8)

2



Because A is Hermitian, we additionally have 〈y|T †AT |y〉 = 〈y|T>AT |y〉 so that the last

two terms on the right-hand side cancel, resulting in

qy = −2τpyRe
[
〈y|T †BT |y〉

]
(S9)

With the qx’s determined, we can now determine the operator A. Rearranging Eq. (S6),

we first isolate the terms containing A:

i
∑

x

px(AT |x〉 ⊗ T |x〉 − T |x〉 ⊗ AU |x〉) =

−τ
∑

x

px(BT |x〉 ⊗ T |x〉+ T |x〉 ⊗BT |x〉)−
∑

x

qxT |x〉 ⊗ T |x〉.
(S10)

We define the right hand side as

|Φ〉 = −τ
∑

x

px(BT |x〉 ⊗ T |x〉+ T |x〉 ⊗BT |x〉)−
∑

x

qxT |x〉 ⊗ T |x〉. (S11)

We then decompose A into a sum over Pauli strings with domain size D, A =
∑

j ajσj,

where the σj are Pauli strings acting on at most D qubits, aj ∈ R and aj = O (τ) for all j.

Substituting into the left hand side of Eq. (S10) yields

i
∑

x,j

pxaj(σjT |x〉 ⊗ T |x〉 − T |x〉 ⊗ σjT |x〉) =
∑

j

aj|vj〉 = |Φ〉, (S12)

where we have defined the vectors |vj〉 :=
∑

x px(σjT |x〉⊗T ∗|x〉−T |x〉⊗σ∗jT ∗|x〉). Denoting

by f the function

f(a) =

∥∥∥∥∥|Φ〉 − i
∑

j

aj|vj〉
∥∥∥∥∥

2

= 〈Φ|Φ〉+ i
∑

j

(a∗j〈vj|Φ〉 − aj〈Φ|vj〉) +
∑

jk

a∗jak〈vj|vk〉), (S13)

the optimal coefficients aj are determined by minimizing f . This results in the set of

equations

0 =
∂f

∂ak
= −Im [〈vk|Φ〉] +

∑

j

ajRe [〈vk|vj〉] . (S14)

Defining the matrix Sjk := Re [〈vj|vk〉] and the vector bj := Im [〈vj|Φ〉], the optimal coeffi-

cients a are the solution to the linear system Sa = b.

Using the definition’s of |vj〉 and |Φ〉, we calculate calculate the matrix elements of S as

Sjk = Re [〈vj|vk〉] =
∑

x

p2xRe
[
〈x|T †(σjσk + σkσj)T |x〉

]
−2
∑

xy

pxpyRe
[
〈x|T †σjT |y〉〈x|T †σkT |y〉

]
,

(S15)

and the elements of b as

bj = −2τ

(∑

x

p2xIm
[
〈x|T †σjBT |x〉

]
+
∑

xy

pxpyIm
[
〈x|T †σjT |y〉〈y|T †B†T |x〉

]
)
. (S16)
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B. Implementing Wk via a QITE adaptation

The real time evolution corresponding to Wk = exp (τLk ⊗ Lk) can be determined com-

pletely analogously to that of Vk ⊗ Vk above. The resulting equations are




qy = τ
∑

x px
∣∣〈y|T †LkT |x〉

∣∣2

Sjk = Re [〈vj|vk〉]

bj = Im [〈vj|Φ〉]

(S17)

where Sa = b gives the optimal Pauli strings. The matrix elements for S are the same, as

the vectors |vj〉 are identical in both cases. Since |Φ〉 has a different form, the elements of b

are modified and given by

bj = Im [〈vj|Φ〉] = 2τ
∑

xy

pxpyIm
[
〈x|T †σjLkT |y〉〈y|T †L†kT |x〉

]
. (S18)

C. Conservation of Probability

The trace of the density operator, given by Tr (ρ) =
∑

x px = 1, is preserved by time evo-

lution generated by the Lindblad equation. Here we show that time evolution via Algorithm

II also maintains the trace. The trace is preserved if the sum of all qx’s is zero at each time

step. This requires summing the contributions to the qx’s from both the Vk and Wk terms

as follows:

∑

y

qy =
∑

y

(
−τpyRe

[
〈y|T †L†kLkT |y〉

]
+ τ

∑

x

px
∣∣〈y|T †LkT |x〉

∣∣2
)

= −τ
∑

y

py〈y|T †L†kLkT |y〉+ τ
∑

x

px
∑

y

〈x|T †L†kT |y〉〈y|T †LkT |x〉

= −τTr
(
ρL†kLk

)
+ τ

∑

x

px〈x|T †L†kLkT |x〉

= −τTr
(
ρL†kLk

)
+ τTr

(
ρL†kLk

)

= 0

(S19)

D. Measuring Observables

The result of the above real and imaginary time evolution, the weights px(t) and the

Hermitian operator A(t) can be used to calculate the expectation value of any observ-
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able. Inverting the Choi-Jamio lkowski isomorphism gives us the density operator ρ(t) =
∑

x px(t)T (t)|x〉〈x|T †(t). Observables O are then calculated as

〈O(t)〉 = Tr (Oρ(t)) =
∑

xy

px(t)〈y|OT (t)|x〉〈x|T †(t)|y〉

=
∑

xy

px〈x|T †|y〉〈y|OT |x〉

=
∑

x

px〈x|T †
(∑

y

|y〉〈y|
)
OT |x〉

=
∑

x

px(t)〈x|T †(t)OT (t)|x〉.

(S20)

Beyond a certain number of qubits, storing all the px(t)’s is not possible, and a stochastic

sampling approach is needed. Locality conditions suggest one possible approach to efficient

sampling, described at the end of section (I E), which converges faster than uniform random

sampling.

E. Measuring Matrix Elements

To obtain the coefficients qx and ai, we need to measure various matrix elements. In

general, we can decompose any operator into a sum over Pauli strings, X =
∑

j xiσi. Since

〈x|X|y〉 =
∑

j xi〈x|σi|y〉, we then need to measure 〈x|σi|y〉 for all Pauli strings σi. This can

be done using the following identities:

2Re [〈x|X|y〉] =
〈x|+ 〈y|√

2
X
|x〉+ |y〉√

2
− 〈x| − 〈y|√

2
X
|x〉 − |y〉√

2
, (S21)

2Im [〈x|X|y〉] =
〈x|+ i〈y|√

2
X
|x〉 − i|y〉√

2
− 〈x| − i〈y|√

2
X
|x〉+ i|y〉√

2
. (S22)

In general, the state (|x〉 + ip|y〉)/
√

2, with p ∈ {0, 1, 2, 3}, requires a quantum circuit

comprising m CNOT gates and having depth m + 1, where m is the Hamming distance

between the binary strings x, y [? ]. Indeed, one can find an index k such that xk 6= yk.

Without loss of generality, one can assume that xk = 1 (otherwise, just invert the roles of

x, y and replace p with −p mod 4). One can then define the sets S = {l : xl = 1, l 6= k},
T = {l : xl 6= yl, l 6= k}. Finally, starting from a register of n qubits prepared in |0〉⊗n,

the desired state is obtained by: (i) applying a product of X gates on qubits in the set

S,
∏

l∈S Xl, (ii) applying to qubit k the gate gp = H,SH,ZH,ZSH, for p = 0, 1, 2, 3,

5



respectively, and (iii) applying a product of CNOT gates to qubits in T controlled by qubit

k,
∏

l∈S ckXl.

For local observables the state preparation is simpler, as described in the following. Con-

sider a k-qubit observable X(k) ⊗ In−k, with X(k) acting non-trivially on k qubits out of a

total of n qubits. Then

〈x|X(k) ⊗ In−k|y〉 = 〈x1, . . . , xk, xk+1, . . . , xn|X(k) ⊗ In−k|y1, . . . , yk, yk+1, . . . , yn〉 (S23)

= δxk+1,yk+1
· · · δxn,yn〈x1, . . . , xk|X(k)|y1, . . . , yk〉. (S24)

Thus we need only to prepare the states

|x1, . . . , xk, xk+1, . . . , xn〉+ |y1, . . . , yk, xk+1, . . . , xn〉√
2

=

|x1, . . . , xk〉+ |y1, . . . , yk〉√
2

⊗ |xk+1, . . . , xn〉.
(S25)

Since k is typically small, only 1 or 2 qubits in most cases and independent of the system

size, this state can be efficiently prepared. The form of Eq. (S25) suggests a stochastic

sampling method to determine which px’s to store classically. For simplicity we describe the

case of qubits in a line, and the indices 1, . . . , n labelling the sites with the observable acting

on the first k qubits. The general case is similar. Since the matrix elements will depend

more heavily on qubits 1, . . . , k+m for some cutoff m, we can sample with higher frequency

on the first k + m qubits and with lower frequency on the rest. In addition, in many cases

we expect the dissipation channels Lk to reduce long range correlations, further increasing

the convergence rate of local sampling.
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II. HARDWARE ERRORS IN THE TWO LEVEL SYSTEM SIMULATION

We compare the hardware results to noiseless numerical emulations in Fig. S1 so as to

further separate hardware and algorithmic errors. The noiseless numerical emulations were

run with the same circuits as in the hardware trials but using IBM’s qasm simulator. From

Fig. S1, we see that Algorithm I has a larger deviation between the emulation and hardware

data. This difference can be accounted for by the fact that the hardware experiment for

Algorithm II requires only a single qubit, so the density matrix for all time steps can be

obtained from only single qubit rotations. Single qubit simulations can always be compiled

to a constant depth regardless of the number of time steps, resulting in lower depth circuits

and correspondingly lower total gate error. In addition, since 2-qubit gates are generally

lower fidelity than single-qubit gates, there is no infidelity contribution due to 2-qubit gates

in Algorithm II.
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FIG. S1: Excited state population for the two level system (TLS). The solid curve is the

exact solution and the blue and red dots are noiseless numerical emulations of Algorithm I

and II, respectively. The blue and red crosses are the hardware results presented in the

main text for Algorithm I and II, respectively. The deviation between hardware and

simulation results for Algorithm I are larger than for Algorithm II, which we attribute to

hardware error resulting from the larger circuit depth and number of qubits needed for the

Algorithm I.
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III. NUMBER OF PAULI STRINGS IN THE TRANSVERSE FIELD ISING

MODEL

Exactly simulating the 2-site TFIM using Algorithm I requires measuring expectation

values of the 256 Pauli strings on 4 qubits. To reduce the runtime of the Algorithm, we use

a subset of all Pauli strings. We show in Fig. S2 that increasing the number of included

Pauli strings beyond 16 has only a minor effect on the observables.
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FIG. S2: Noiseless numerical simulations for the transverse field Ising model (TFIM) using

Algorithm I with increasing number of Pauli strings included. Here the dissipation rate is

γ = 0.1. The black solid curve is the exact result, and the blue dashed curve is a

simulation of Algorithm I using the same 16 Pauli’s as in the main text. The red, green,

light blue, and yellow dashed curves are noiseless numerical simulations of Algorithm I

obtained from including an increasing number of Pauli strings in the simulation. From

these simulations we see that only marginal increase in accuracy is obtained from including

a larger number of Pauli strings.
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IV. EFFECT OF DISSIPATION RATE ON ALGORITHM PRECISION

Here we study the effects of increasing dissipation rates on the accuracy of both algo-

rithms. In general, we should expect larger algorithmic errors when larger dissipation rates

are simulated since both the Trotter error and QITE error increase with the operator norm

of the Lindblad operators. Larger dissipation rates correspond to Lindblad operators with

larger norms and hence larger algorithmic errors. To understand how increasing dissipation

rates affect both algorithm’s errors, we performed simulations of the 2-site TFIM with dis-

sipation rates ranging from γ = 0 to γ = 1. Figure S3 shows the results of the simulations.

We see that in this specific case, which includes 16 Pauli strings for Algorithm I and all

possible bit-strings for Algorithm II, Algorithm II performs qualitatively better than Algo-

rithm I for all dissipation rates. Although Algorithm II performs better for the simulations

shown in Fig. S3, we have not considered the error due to bit-string selection. For larger

systems where all bit-strings cannot be included, there will be additional errors introduced

by including only a strict-subset of all possible bit-strings.

0 1 2 3 4 5
∞t

°1.00

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

m
ag

ne
tiz
at
io
n
(a
.
u.
)

Exact, ∞ = 0

Algorithm I, ∞ = 0

Exact, ∞ = 0.1

Algorithm I, ∞ = 0.1

Exact, ∞ = 1

Algorithm I, ∞ = 1

0 1 2 3 4 5
∞t

°1.00

°0.75

°0.50

°0.25

0.00

0.25

0.50

0.75

1.00

A
ve

ra
ge

m
ag

ne
tiz
at
io
n
(a
.
u.
)

Exact, ∞ = 0

Algorithm II, ∞ = 0

Exact, ∞ = 0.1

Algorithm II, ∞ = 0.1

Exact, ∞ = 1

Algorithm II, ∞ = 1

a) b)

FIG. S3: The effect of increasing the dissipation rate from γ = 0 to γ = 1. a) Noiseless

simulation of Algorithm I using 16 Pauli strings. The same qualitative error is obtained for

all dissipation rates simulated. b) Noiseless simulation of Algorithm II.
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