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Abstract

Quantum simulation on emerging quantum hardware is a topic of intense interest. While many
studies focus on computing ground state properties or simulating unitary dynamics of closed sys-
tems, open quantum systems are an interesting target of study owing to their ubiquity and rich
physical behavior. However, their non-unitary dynamics are also not natural to simulate on digital
quantum devices. Here, we report algorithms for the digital quantum simulation of the dynam-
ics of open quantum systems governed by a Lindblad equation using adaptations of the quantum
imaginary time evolution (QITE) algorithm. We demonstrate the algorithms on IBM Quantum’s
hardware with simulations of the spontaneous emission of a two level system and the dissipative
transverse field Ising model. Our work advances efforts to simulate the dynamics of open quantum

systems on quantum hardware.
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I. INTRODUCTION

The development of quantum algorithms to simulate the dynamics of quantum many-
body systems is now a topic of interest owing to advances in quantum hardware [1-3]. While
the real-time evolution of closed quantum systems on digital quantum computers has been
extensively studied in the context of spin models [4-10], fermionic systems [11, 12], electron-
phonon interactions [13], and quantum field theories [14-16], fewer studies have considered
the time evolution of open quantum systems, which exhibit rich dynamical behavior due
to coupling of the system to its environment [17, 18]. However, this coupling leads to non-

unitary evolution which is not naturally simulable on quantum hardware.

Early approaches to overcome this challenge included use of the quantum simulators’ in-
trinsic decoherence [19] and direct simulation of the environment [20-22]. Theoretical works
examined the resources required for efficient quantum simulation of Markovian dynamics
[23-25], concluding that arbitrary quantum channels can be efficiently simulated by com-
bining elementary quantum channels. Recently, several algorithms have been proposed for
the digital quantum simulation of open quantum systems on the basis of the Kraus decom-
position of quantum channels [26-31] as well as variational descriptions of general processes
to simulate the stochastic Schrodinger equation [1, 8] and the Lindblad equation [32]. Re-
cently, explicit Trotterization of the Lindblad equation was used to simulate damping and

dephasing of a single qubit using an additional ancilla qubit [33].

Simulation via Kraus decomposition is convenient when the Kraus operators correspond-
ing to the time evolution of the system are known, such as modelling decoherence with
amplitude damping or depolarizing channels. However, determining the Kraus operators of
a general system requires either computing the full unitary evolution of both the system and
environment or casting a master equation into an operator sum representation for the density
operator. The latter procedure can be approximated analogously to Trotterization [29, 31]
but requires either reset of ancillae qubits or a qubit overhead which scales linearly with the
number of time steps in the simulation. Exactly determining the Kraus operators from the
Lindblad equation is a classically hard task which is equivalent to solving the master equa-
tion [34] and so can only be applied to small systems. Explicit Trotterization circumvents
the need to determine the Kraus operators representing the time evolution but has the same

ancilla qubit overhead as in as the Kraus decomposition methods. Variational approaches



[1, 8, 35] offer an alternative for simulating open system dynamics, but as in the case of closed
systems require an ansatz and a potentially high dimensional classical optimization which
is an NP-hard problem [36]. A quantum simulation of the stochastic Schrédinger equation
was emulated in Ref. [8]. In this case, the quantum jumps, or discontinuous changes in the
quantum state, was implemented via variational matrix-vector multiplication, thus incurring
the disadvantages previously mentioned for variational approaches.

The common feature of the above algorithms is that they reformulate non-unitary open
system dynamics into unitary dynamics which can be simulated on a quantum computer. A
similar approach is used in variational approaches to imaginary time evolution [37] and the
quantum imaginary time evolution (QITE) algorithm, which has recently been introduced
as a way to prepare ground states and compute thermal averages on near-term devices [38].
QITE has since been used to compute finite-temperature correlation functions of many-body
systems [39], scattering in the Ising model [40], and binding energies in quantum chemistry
[41, 42] and nuclear physics [42]. It is therefore natural to consider how QITE might be
adapted for open quantum system evolution.

Here, we report quantum algorithms to simulate open quantum dynamics using adap-
tations of the QITE algorithm and demonstrate them on IBM Quantum hardware. The
first algorithm casts the Lindblad equation for the density operator into a Schrodinger-type
equation with a non-Hermitian Hamiltonian. Time evolution is then achieved by simulating
the unitary evolution via Trotterization, corresponding to the Hermitian component of the
Hamiltonian and using QITE to simulate the anti-Hermitian component of the Hamiltonian.
The second algorithm expresses the density operator in terms of an ansatz which is preserved
during both real and imaginary time evolution. We demonstrate these algorithms on IBM
Quantum hardware for two cases: the spontaneous emission of a two level system (TLS) in
a heat bath at zero temperature, and the dissipative transverse field Ising model (TFIM)
on two sites. We observe good agreement between the exact and hardware results, showing

that the dynamics of open quantum systems are accessible on near-term quantum hardware.

II. THEORY

The dynamics of a Markovian open quantum system can be described by the Lindblad

equation
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FIG. 1: Circuit diagrams for Trotterized time evolution of the density operator with N
Trotter steps. a) Time evolution for the vectorized density operator |p) (Algorithm TI).
e~ "7 is a unitary operator and can be directly implemented on the quantum simulator.
The non-unitary terms e~ s FhEe™ and eXx T@L47 are implemented via QITE. The
unitary labelled “Bell” represents a unitary preparing the generalized 2n-qubit Bell state.
b) Time evolution for the purification-based algorithm (Algorithm II). z is a bit-string

included in the index set I. V(7) represents the non-unitary terms which need to be

applied to the system for a time step 7. In both figures / denotes a bundle of n qubits.
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where p is the density operator of the system, H is the system’s Hamiltonian, and L, are
operators describing the coupling to the environment. The master equation in Lindblad
form is often derived assuming weak coupling between system and environment and absence
of memory effects (Born-Markov approximation) [18, 43].

We present two algorithms to simulate the master equation in Lindblad form on a digital
quantum computer. The first quantum algorithm, based on a vectorization of the density
operator, is described in Sec. IT A; the second algorithm, which combines a QITE adaptation

with an ansatz for the time-dependent density operator, is presented in Sec. II B.

A. Algorithm I

The Lindblad equation can be rewritten as a Schrodinger-type equation with a non-

Hermitian Hamiltonian by transforming the 2™ x 2™ density operator p into an 4™ component
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vector |p) by column stacking the density operator [44]. The resulting transformation of the

Lindblad equation is

d|p) : : _— 1 J A —
= | H+ iH' @1+ ;(Lk ® Ly~ 51® (LiLy) — 5(L{Lk) 2D p) (2
where the bar indicates entry-wise complex conjugation and |p) = [p(t)) is the vectorized

density operator [44]. Separating Eq. 2 into Hermitian and anti-Hermitian parts, the time

evolution of the initial state can be written as:

p(t)) = exp (—i(Hy — iHy)t)|p(0)) = [exp (—iH;7) exp (—Ho)]™ [p(0)) + O (72N) . (3)

where in the last equality we have Trotterized to first order with time step 7 = t/N, and H;
and 1Hy are the Hermitian and anit-Hermitian components of the vectorized Hamiltonian,
respectively. The first term exp (—iH;7) is unitary and can implemented on a quantum
simulator via Trotterization and standard quantum simulation techniques [2, 45, 46]. The
term exp (— Hy7) is non-unitary and so cannot be directly applied to the quantum register.
Instead, we implement it on a digital quantum simulator via analogy to quantum algorithms
for imaginary time evolution [38].

Imaginary time evolution of the Schrodinger equation with Hamiltonian H is carried
out formally by substituting § = it into the real time propagator exp (—itH). This tech-
nique is typically used to find ground states ) = limg_, |@(5))/|||0(8))|], where |p(5)) =
exp (—fH)|¢(0)) and |¢(0)) has non-zero overlap with a ground state. If we interpret Hj as
the Hamiltonian of a system in the extended Hilbert space, exp (— Hy7) is an imaginary time
evolution operator generated by Hs. The full time evolution is then applied as sequence of
real and imaginary time evolutions, as shown in Fig. 1a.

We present a brief review of the QITE algorithm reported in Ref. [38] which is used
as a subroutine in this work. The QITE algorithm represents normalized imaginary time
evolution in terms of unitary evolution as:

e y)

e PR ~ e ), (4)

where H is the system Hamiltonian, (8 is the imaginary time, and A is a Hermitian operator.



The operator A can be represented with real coefficients in a complete basis of Hermitian

operators, typically chosen to be the Pauli strings o; over the qubits of the system:

A= Zaiai. (5)

For an imaginary time step 3, the coefficients a; are determined (up to order 5%) by the

linear system Sa = b, with

Si; = (Wlola;|w),

bi = ZE(Wlol H|¥)

where ¢ = (exp (—28H)) is the norm squared of the un-normalized imaginary time evolved

(6)

state.

Once the desired time and state |p(t)) are reached, measurements of an observable O
are obtained by evaluating the expectation value (O)(t) = Tr (Op(t)) as (Of|p). |O) is the
vector obtained from column stacking the matrix representation of O and so only the matrix
representation of O in the computational basis is needed for this step . Lindbladian evolution
preserves Tr (p) whereas the algorithm preserves Tr (p?) = (p|p), meaning that the operator
p obtained from matricizing |p(t)) is not strictly a density matrix. However, the final state
can be renormalized to have unit trace as p'(t) = p(t)/Tr (p(t)). In practice, we normalize
the final expectation value of a given observable instead. The final physical observables are
thus given by (O)/Tr (p). Therefore, obtaining measurements of observables on the state
requires evaluating both (O) and Tr (p) at each time step.

Both quantities (O)(t) and Tr (p(t)) can be obtained using a Hadamard test circuit [47].
In particular, Tr (p) can be evaluated up to a prefactor of 2-2P~1/2 as (0|VTU|0), where U
is the circuit that prepares |p), V prepares the generalized Bell state |3) = 272" |z)®|z),
|x) are the computational basis states on n qubits, and P is the purity of the initial state.
Preparing the 2n qubit Bell state requires n Hadamard and n CNOT gates. Assuming
lp) = U|0) for a unitary U with gate decomposition requiring u; and uy single-qubit and
CNOT gates, respectively, the measurement of Tr(p) requires a circuit with O (n + u;)
single-qubit gates, O (n + u;) CNOT gates, and O (n + uz) CCNOT gates.

Measurement of k—local observables can be carried out similarly. We assume here without
loss of generality that the k—local observable O has support on the first & qubits. The

vectorized state can then be written as [p) = P7Y2% 1 Prizaynys | T1T2Y1Y2) where
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x1,y1 and o, Yo are length k and (n — k) bit strings, respectively, and P is the purity of the
initial state. Defining the state

07 =2 m‘ 12412), ™
T1Yi1z

where the over-bar indicates complex conjugation, the expectation value of O can be evalu-

ated (up to a pre-factor) as

xT T12Y1z Tr (Op>
OT 1wy1 Pzizy _ 8
o) = Zm—k VP Jr T (010) P ®)

The state |OT) can be prepared as

UOT ank‘olm Onfka Ok) Onfk> = U’OJr

\/_Z |0k, 2, O, 2) (9)

where V,,_, prepares the n — k generalized Bell state and Uyt prepares the 2k qubit state

|OJr Z r1y1 |T191). (10)
o VL r(010)

We then measure the un-normalized expectation value of O using the Hadamard test.
Since the purity is conserved by the algorithm, all observables can be renormalized after the
measurement. Assuming a decomposition of U into u; and us single-qubit and CNOT gates,
respectively, and V into v; and vy single-qubit and CNOT gates, the total overhead for
measurement of observables (including the trace evaluation) is O (n + u; + v1) single-qubit

gates, O (n + u; +v1) CNOT gates, and O (n + us + v2) CCNOT gates.

B. Algorithm II

Algorithm I allows for efficient simulation of the full density operator for many physical
systems characterized by local interactions; however, it requires a doubling of the number of
qubits and an overhead of an ancilla and controlled operations for evaluating observables.
In particular, the circuit required for measurements is too deep for near-term hardware. We
therefore introduce a second algorithm based on the variational ansatz used to obtain the
non-equilibrium steady states of Markovian systems [35, 48] that overcomes these limitations.

The isomorphism maps a density operator as

7



p= S Ul alU! — |p) = 3 p.Ule) @ Ul (1)

zel zel

where the |z)’s label the n-qubit computational basis states and [ is a subset of all 2" possi-
ble bit-strings. In the rest of the paper the index set [ is implied. We note that although we
are using an ansatz for this algorithm, any density operator can be represented in this form
provided the index set [ is large enough. However, it should be noted that assuming poly-
nomial resources to store the bit-string weights implies that the present algorithm employs
a sparse approximation to represent the density matrix.

The Lindblad master equation is mapped identically to the vectorization mapping, re-
sulting in Eq. (2). The propagator is again Trotterized and each term can be applied term

by term. The unitary part of the propagator preserves the ansatz, as

exp ((—il® H+iH' ®1)7) prUm Q@ Ulz) = preiHTU|x> ®e MUy  (12)

and e = ¢ for Hermitian H. The remaining terms in the Trotterized propagator are of
the form exp (— L] Ly7/2) ® exp (=L} Ly7/2) and exp (L ® Ly7). The first term preserves
the ansatz but is non-unitary, while the second term does not preserve the ansatz and is
non-unitary. Considering the first of non-unitary terms, as in the original QITE algorithm

we seek a set of numbers ¢, and a Hermitian operator A such that

Vi Y poUle) @ Ulz) =) " (ps + ) exp (iA)U]x) @ exp (—iA)TU|z) + O (77),  (13)

T

where Vi, = exp (=1L} L1,/2) ® exp (—7L! Li/2). As shown in Section I the Supplementary
Materials, we find that

¢ = —7p,Re [(z|UTL; L U|z)] . (14)

Decomposing A into a weighted sum of Pauli strings, A = Zj a;o;, we find that the

coefficients a; satisfy the linear system Sa = b, with
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Sij = Y _piRe [(2|UT(0i0; + 0j0)Ux)| =2 papyRe [(z|UT0:Uly) (x|UTo;Uly)] , (15)

Ty

by =— (Zpilm [(@|UTos L LU )] + ) popyIm [($|UT0iU|y>(y|UTLZL_kU|$>]) :

xy

(16)
The elements ¢,, S, and b for the second non-unitary term, exp (L, ® L;7), take a similar
form. The derivation for both terms is given in Section I of the Supplementary Materials.
We note that the total probability ) p, = 1 is conserved by the algorithm since ) ¢, =0
at each time step as shown in Eq. (S19).

With this ansatz, observables are computed as (O) = > p,(z|UTOU|z), requiring the
propagation of each |z) in parallel while storing the p,’s. The final observable is computed
as a classical average over all the propagated states and p,. It is important to note that
although the ansatz lies in a dilated Hilbert space, all measurements take place on the
original system and no entangling operations between the system and ancilla are needed,
and so no ancillae qubits are needed. In particular, for each time step measurements on the
original Hilbert space are used to determine the Hermitian matrix A. Expectation values of
observables on this state are computed using the standard methods [1, 2].

The benefits of Algorithm II are that it requires no ancilla qubits, and no Hadamard
test is required for measurements of observables. These characteristics, trading quantum for
classical resources and simulating large quantum circuits using smaller quantum computers
are important for near-term hardware [49-53]. In particular, Algorithm II allows for halving
the number of required qubits as in Ref. [53], allowing simulation of larger physical systems
by increasing the classical and quantum computational time while decreasing the required
number of qubits. Its drawbacks are the sparse representation of the density matrix and
the number of measurements required to evolve the system. We discuss this overhead in the

following section.

III. RUN TIME BOUNDS, COMPUTATIONAL OVERHEADS, AND ERRORS

In this section, we discuss the run times, quantum and classical computational overheads,

and errors associated with each algorithm. Other sources of errors, such as those associated



with noisy hardware, are not addressed here as they are non-algorithmic errors.

A. Run time bounds

We first bound the run time of Algorithm I. For each time step in the Trotterization, the
algorithm requires applying the imaginary time propagator exp (—H,7), where 7 = t/N and
N is the number of Trotter steps for the time evolution. Assuming a local Lindblad equation,
H, is a sum of ms local terms h; such that Hy = 2?31 h;, where mqy scales polynomially
with system size. The imaginary time evolution operator exp (—Hs7) is implemented by
additional Trotterization. For a given desired error e, we Trotterize the imaginary time
evolution into po steps. From Eq. (3.8) of Ref. [54], we find that for ps > 1/e; the error in
the po-step approximation is bounded by ey, assuming the number of Trotterization steps
for time evolution N is sufficiently large that 3matvy/N < 1, where vy = max;{||h||}.

Each term in the Trotterization is an imaginary time increment and so corresponds to
a rotation by a unitary operator supported on D qubits where D is the domain size. An
arbitrary D qubit unitary can be decomposed exactly into O (D24D ) single-qubit and CNOT
gates [45]. The total contribution to running time from all the imaginary time evolutions is
@ (Nm2D24D/62).

Algorithm I also has additional unitaries exp (—iH;7) interleaved between each QITE
step, leading to an additional overhead. Because H; is a sum of local terms, H; = Y "' hy,
exp (—iH;7) needs to be Trotterized as well. Performing a similar analysis for the real time

evolution, we find the total running time to be

T = O (Nmik*4"Je; + NmyD?4P Je,) (17)

where ¢, is the allowable Trotter error for the real-time evolution and k is the maximum
number of qubits acted on by each term in the Hamiltonian. In the first term on the right
hand side, we have assumed that each k—local unitary can be exactly decomposed into
O (k?4F) single qubit and CNOT gates [45].

A similar analysis can be carried out for Algorithm II, resulting in the same run-time up to
constant factors with the following difference. The errors appearing in the run-time bound
for Algorithm II do not include errors incurred from approximating the density operator

with a strict subset of all bit-strings. Although in principle any density operator can be
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represented by the sum > p,U|z) ® Ul|z), this sum contains exponentially many terms
and so only a subset of all possible bit strings can be included efficiently. Exclusion of bit-
strings leads to an error in representing the state given by > ps, where I is an index set
containing all bit strings to be included, and I¢ is its complement. In practice, this error
would have to be assessed by stochastically sampling the bit-strings until the simulation

converges.

B. Measurement and classical computational overheads

Provided that the finite domain approximation holds, the largest computational overhead
(apart from running time) of both algorithms is the measurement overhead. For Algorithm I,
this measurement overhead is the same as in the original QITE algorithm. State tomography
over each domain consisting of D qubits needs to be carried out to construct the unitaries
over that domain, requiring O (4D ) measurements. Assuming a 1-dimensional lattice, there
are O (n/D) domains, and so the total measurement overhead is O ((n/D)4”) per time step.
Similar bounds can be obtained for lattices in higher dimensions.

Algorithm II requires measurement of the matrix elements (z|Uto;Uly) for all Pauli
strings o; supported on a domain D (measured in qubits) and all bit strings in z,y € I
for some subset I of the 2™ n-bit strings. Measuring all matrix elements necessitates run-
ning O (L4D |1 |2) circuits per time step, where L is the number of Lindblad operators on the
domain and |I| is the number of bit-strings included in the computation. For the algorithm
to be efficient, the number of bit strings included in I must scale polynomially or slower
with system size.

The finite-domain approximation required from QITE is accurate in many cases because
the domain size D can generally be taken to be smaller for dissipative systems compared to
the same system with no dissipation, as dissipation generally reduces a system’s correlation
length [55]. It should be noted that a reduced correlation length that decreases the cost
for quantum algorithms might also permit an efficient classical description of the quantum
evolution. This imprecise boundary is a consideration for quantum simulation algorithms
generally and remains a topic of active investigation.

Table I summarizes the asymptotic scaling of the number of circuits required per time

step of both algorithms for open quantum system dynamical simulation on n sites.
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TABLE I: Asymptotic number of circuits required per time step per Lindblad operator for
both algorithms for an open system on n sites. Here, D is the domain size, and [ is is a

subset of all n-bit strings for which the corresponding matrix elements are measured.

Algorithm # of qubits Circuits per Lindblad operator
I 2n + 1 (n/D)4P
I n (n/D)4P|1)?

IV. RESULTS

We demonstrate both algorithms on IBM Quantum hardware for two cases: the spon-
taneous emission of a two level system (TLS) in a heat bath at zero temperature, and the
dissipative transverse field Ising model (TFIM) on two sites. The TLS (n = 1 from Table
I) requires three physical qubits and one physical qubit to simulate with Algorithm I and
II, respectively. The TFIM (n = 2 from Table I) requires five and two physical qubits,
respectively.

Considering Algorithm I, neither the TLS nor the two-site dissipative TFIM on 5 qubits
have constant depth circuit decompositions; Trotterizing both the real and imaginary time
propagators results in a circuit with depth linear in the number of time steps. The resulting
circuits are too deep for near-term devices. To overcome this limitation, we recompile the
circuits as in Ref. [39]. In all simulations, we correct for readout error using the built-in noise
models in Qiskit [56-59]. All measurements reported represent the average of 8192 shots
and were repeated three times. Sampling noise in the measurement of the expectation value
of the Pauli strings can lead to numerical instabilities in the QITE linear system. Therefore,
when constructing the QITE matrix for Algorithm I, regularizers 1 x 10~% and 0.01, for the
TLS and TFIM, respectively, were added to the diagonal terms of the S matrix to increase
the condition number of the matrix S following the procedure in Ref. [38]. No regularizers
were used for Algorithm II.

We first present results for the TLS model with the Hamiltonian

o (18)
and the Lindblad operator /yo_, where o_ is the lowering operator, ¢ is the detuning,

12
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FIG. 2: (a) Population of the excited state from numerical simulations obtained in QuTiP
[60, 61] (black line), hardware using Algorithm I on ibmg_mumbai [62] (blue crosses) and
Algorithm II (green circles) on ibmgq_casablanca [62]. The deviation between the
theoretical and experimental curves is largely due to gate error. The system approaches a
non-equilibrium steady state for y¢ > 5. (b) Purity, Tr (p?) (grey line) and off-diagonal
term, Re[p1o] (black line), corresponding to non-diagonal observables obtained in in
QuTiP [60, 61]. Hardware results are shown for Algorithm I (purity, red crosses; Re [p10],
blue crosses) and for Algorithm II (purity, orange circles; Re [pio], green circles). Hardware
results for the observable Im [p1o] agree with the exact solution similarly to Re [p1o] but are
omitted for clarity. For all hardware results for Algorithm I, the error bars are the
standard deviation from three runs. The error bars for Algorithm II are smaller than the

symbol size.

Q2 is the Rabi frequency, and ~ is the spontaneous emission rate. We consider here the
overdamped case where v is on the order of the other energies in in the system. It was found
via numerical simulations that to accurately capture the dynamics only the Pauli strings in
the set {0, ® 0,0, ® 0,0, ® 0,0, ® 0, } needed to be included in the QITE unitary.

We set 6 = € = v = 1, and the initial state was chosen to be the excited state. In Fig. 2a,
we show the populations of the ground and excited states, with the experimental data
averaged from three runs on IBM’s ibmg_mumbai [62] for Algorithm I and ibmg_casablanca

[62] for Algorithm II. Good qualitative agreement is obtained for all observables, with the
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deviation between the theoretical and experimental curves largely due to gate errors as
confirmed by numerical simulations and noisy hardware emulations.

We observe an initial exponential decay in the population of the excited state due to
spontaneous emission into the bath followed by an approach to the non-equilibrium steady
steady state (NESS) for v¢ > 1. Damped Rabi oscillations are visible between these two
regimes. The populations in the NESS can be interpreted as a balance between the spon-
taneous emission due to coupling to the bath and the absorption and stimulated emission
due to the Hamiltonian driving term o, [63]. In the NESS, the combined spontaneous and
stimulated emission rates are equal to the absorption rate.

In the absence of driving by an external electric field (€ = 0) the Hamiltonian is di-
agonal in the computational basis, resulting in the off-diagonal matrix elements py; = p1o
approaching zero as the system thermalizes. Figure 2b shows that these matrix elements
remain non-zero as the NESS is approached, indicating that the hardware correctly obtains
the expected quantum coherence as measured in the canonical basis. Also shown in Fig. 2b
is the purity Tr (p?), which does not correspond to a time-independent Hermitian observable
on the system but can nonetheless be obtained from the density operator representation on
the hardware. Time evolution preserves the inner product Tr (p?) = (p|p) on the quantum
simulator, but the physical quantity, the normalized purity, Tr (p*) /Tr (p), is not constant.

The larger deviation between the hardware results and the exact results for Algorithm I
is attributed to the fact that Algorithm I is a three-qubit circuit requiring two-qubit gates,
which are generally of lower fidelity than single qubit gates. Since Algorithm I for the
TLS is a single qubit circuit, there are no infidelity contributions from two-qubit gates. In
addition, the circuits required for Algorithm I are deeper than for Algorithm II, resulting in
more gate errors. An additional breakdown of the error contributions due to hardware error
and algorithmic error is provided in Fig. S1, in which we compare the hardware results to
noiseless numerical emulations.

We next present experimental and numerical results on the 2-site TFIM. The TFIM has

the Hamiltonian

H= —JZ oBg*t) _p Z olk) (19)
k k

and Lindblad operators ﬂa(,k), with nearest neighbor coupling J, transverse magnetic field
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FIG. 3: Average magnetization N1 " .(Z;) for the dissipative transverse field Ising model
on 2 sites (5 physical qubits for Algorithm I, 2 physical qubits for Algorithm II) using IBM
Quantum’s ibmgq_guadalupe [62] for Algorithm I (blue symbols), and ibmg_casablanca [62]

for Algorithm II (green symbols). Numerical solutions obtained in QuTiP are shown with

black lines. The error bars for both algorithms are the standard deviation from 3 hardware
runs. Both algorithms qualitatively agree with the exact dynamics for all simulated times.
The deviation between the hardware results and the exact result for Algorithm II is due

mainly to Trotter gate error.

h, and decay rate . For this model, the number of required Pauli strings could not be
reduced by symmetry in Algorithm I. To reduce circuit depth, 16 Pauli strings were randomly
selected out of the 256 possible Pauli strings on 4 qubits to implement the QITE unitary.
We chose 16 Pauli strings as a balance between too few Pauli strings, which results in a poor
approximation to normalized imaginary time evolution, and too many Pauli strings, which
results in a large computational overhead and an ill-conditioned QITE matrix. Increasing
the number of Pauli strings does not qualitatively increase the accuracy, as shown in Fig.

S2 of the Supplementary Materials.

Figure 3 shows the average magnetization of the dissipative TFIM with the initial state

given by both spins in the spin up state and J = h = 1 and v = 0.1. Oscillations in
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magnetization are evident due to the relatively large transverse field. We observe qualitative
agreement between the theoretical and experimental curves from Algorithm I with a Trotter
step vt/N ~ 0.5. For the small system size of 2 sites, all 4 bit-strings on 2 qubit were
included in Algorithm II. Experimental results for Algorithm II are also in good qualitative
agreement with the exact curve for all times.

In Section III, we discussed the runtime and resources required by both algorithms in a
general setting. We now discuss the relative computational cost required by each algorithm
for the specific case of the 2-site TFIM hardware simulations. For the simulations considered
here, Algorithm I is able to accurately describe the dissipative dynamics when using 16 out of
the total of 256 Pauli strings. Simulations of Algorithm I using up to 48 Pauli strings, shown
in Fig. S2, show no significant increase in accuracy when using more than 16 Pauli strings.
In general, the number of required Pauli strings will be problem dependent. Algorithm
IT requires measuring the matrix elements of all two-qubit Pauli strings at each time step,
requiring 836 circuits per time step, versus only measuring expectation values of 16 operators
in the case of Algorithm I, which requires 16 circuits. These measurements are only needed
on a domain of fixed size.

For larger dissipation rates v ~ J, h, separate numerical simulations , presented in Fig
S3, show that both algorithms are able to accurately capture the magnetization dynamics.
However, these simulations do not include the error incurred by including a subset of bit-
strings in Algorithm II. The actual algorithmic error of Algorithm II will thus depend on the
accuracy of the representation of the density matrix with a subset of bit-strings for the given

problem. Stochastic sampling of bit-strings may be a viable approach for larger systems.

V. SUMMARY

We have introduced digital quantum algorithms for the time evolution of open quantum
systems described by a Lindblad equation based on quantum imaginary time evolution.
Algorithm T uses QITE to implement the non-unitary evolution introduced when the density
operator is vectorized, whereas Algorithm II uses an adaptation of QITE to maintain a
purification-based ansatz throughout the computation. Calculations for the spontaneous
emission of a two level system and the dissipative transverse field Ising model, respectively,

were carried out on IBM Quantum’s quantum processors. Good qualitative agreement with

16



the exact result was observed in all cases. These algorithms decrease the quantum resources
required to simulate open quantum systems governed by Lindblad master equations on

quantum hardware.
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I. DERIVATION OF THE QITE LINEAR SYSTEM FOR ALGORITHM II

Here we derive the QITE linear systems which need to be solved to obtain the time
evolution of the density operator ansatz. Consider |p) = > p,T|z) ® T|z), with T unitary.

The complex time propagator is the same as in the vectorization method,

S 1 1 —
—iH®H+iHT®H+Z(Lk®Lk—§]I®(L,1Lk) —E(L;Lk)m) t).

k

X(t) =exp (

(S1)

Trotterizing results in

X(t) =

T T LT - "
{[exp (iH'7) ® exp (—iHT)] H [exp (_Lk QLk ) ® exp (_ Lkg )] exp (L ® LkT)}

+ O (7°n)

(S2
with 7 = ¢/n. Using the identity exp (—iA) = exp (iA") for A Hermitian and exp (B) =

~—

exp (B) for arbitrary B, the propagator can be rewritten as
X(t) = {[U®_]H[Vk®7k]wk} +O(7’2n) (83)
k
with U := exp (iH"7), Vp := exp (—L] Ly7/2), and W}, := exp (L ® Ly7). It is imme-
diate that evolution with U ® U preserves the ansatz, as (U ® U)Y., p.T|z) @ T|x) =

* aminnich@caltech.edu



> p(UT)|z) @ (UT)|x). The term V ® V also preserves the ansatz, but is an imaginary
time evolution with Hamiltonian L, L;,/2, and so requires a modified QITE algorithm, de-
scribed below, for implementing exp (—L; L,7/2)T|z). Due to the non-unitarity of Vj,, we
expect that in addition to a unitary evolution of the state, the weights p, will also evolve
in time. The final term, W, = exp (L ® Ly7), does not preserve the ansatz, and we use
a modified version of QITE, described below, to effectively apply W, while preserving the

form of ansatz.

A. Implementing V}, ® V} via a QITE adaptation

Under real time evolution by the non-unitary operator Vi ® Vj, the evolution of |p) can

be expressed as

Vi@ Vi > peTlz) @ Tla) =) (e + ¢o) exp ((A)T|z) @ exp (—iA)T|z) + O(r%),  (S4)

x

with ¢, € R and A a Hermitian operator with || A, = O (7). Defining B := (1/2)L] Ly, we

then have, to first order in 7,

exp (—7B) ® exp (—7B) ZpIT|x) ®T|z) = Z(@U + q,) exp (iA)T|z) ® exp (—iA)T|z).

Expanding both sides to first order in 7 and discarding higher order terms results in

~7 Y po(BT|z) @ Tlx) + T|z) ® BT|z)) =

B B o (S6)
> @Tlx) @T|x) +i Yy p.(AT|z) ® T|z) — T|z) @ AT|x)).

Taking the inner product of Eq. (S6) with (y|T" ® (y|T" results in
—7 > pa(IT'BT|a) (y| T T|z) + (y|T"T|z)(y|T " BT|x)) =
Y @y T|2) (YT Tlx) +i Y pe(WITTAT |2) (y| T Th) — (Y| TV T|) (y| T AT ).
) "” (S7)
Using the identities (y|TTT|z) = (y|T"T|z) = 6,, for T unitary results in
— 7oy (WIT'BT|y) + (yIT"BTy)) = g, + ip,(y| T AT|y) — (y|TTATly)). ~ (S8)
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Because A is Hermitian, we additionally have (y|TTAT|y) = (y|T T AT|y) so that the last

two terms on the right-hand side cancel, resulting in
gy = —27p,Re [(y|T" BT |y)] (S9)

With the ¢,’s determined, we can now determine the operator A. Rearranging Eq. (S6),

we first isolate the terms containing A:

3" po(ATlx) © Tla) ~ Ta) © ATa)) =

B - B (S10)
—7 Y po(BT|z) @ T|z) + T|z) @ BT|z)) = Y ¢,T|x) ® T|x).
We define the right hand side as
@) = =7 Y pa(BT|x) @ T|z) + T|z) @ BT|2)) = Y ¢uT|x) @ Tla). (S11)

We then decompose A into a sum over Pauli strings with domain size D, A = ) 405,
where the o; are Pauli strings acting on at most D qubits, a; € R and a; = O (1) for all j.
Substituting into the left hand side of Eq. (S10) yields
iy peaj(oT)z) @ Tlz) — Tla) @ 55T |x)) = Y ajlv;) = |®), (S12)
z,] J
where we have defined the vectors |v;) == > p,(0;T|z) @T*|z) —T|r) ® 03 T*|x)). Denoting
by f the function

|P) —z’Zaj|vj>

the optimal coefficients a; are determmed by minimizing f. This results in the set of

(D] D) +z2 (0]®) — a;(Plvy)) + Y alar(vslox)), (S13)

ik

equations

of

0=—"
Gak

= —Im [{vs®)] + D a;Re [(velv;)]. (S14)
J

Defining the matrix Sj; := Re[(vj|vg)] and the vector b; := Im [(v;|®)], the optimal coeffi-
cients a are the solution to the linear system Sa = .

Using the definition’s of |v;) and |®), we calculate calculate the matrix elements of S as

Sk = Re [(vj|ug)] prRe [(z|T" (001 + o40;)T|2)] -2 szpyRe [(z|T o, T|y) (z|T 01, T|y)]

Yy

(S15)

and the elements of b as

b; = —27 (Zplm [(z|T10; BT|2)] + > pepyIm [<g;|TTa]T|y><y|TTBTTyx>]). (S16)

Ty
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B. Implementing W, via a QITE adaptation

The real time evolution corresponding to Wy, = exp (7L ® L) can be determined com-

pletely analogously to that of Vj, ® V;, above. The resulting equations are

4y =7 o pe |(WITTLiT )|
Sjk = Re [(vj|vk)] (517)
bj = Im [{v;]®)]

where Sa = b gives the optimal Pauli strings. The matrix elements for S are the same, as

the vectors |v;) are identical in both cases. Since |®) has a different form, the elements of b

are modified and given by

by = T [{;]®)] = 27 3 pupyIin | ([ TTo; LiT|y) (o T LT ) | (518)

Ty

C. Conservation of Probability

The trace of the density operator, given by Tr (p) = > p, = 1, is preserved by time evo-
lution generated by the Lindblad equation. Here we show that time evolution via Algorithm
IT also maintains the trace. The trace is preserved if the sum of all ¢,’s is zero at each time
step. This requires summing the contributions to the ¢,’s from both the V, and W terms

as follows:

D= (—rpyRe (IT' LT )] + 7Y |<er*LkTrx>\2)

= =7 pWIT'LLL T y) + 7 pe Y (| TTLIT|y) (y|T Ly T|x)

Y T Y

S19
= —7Tr (pLLLk> +7 pr (x\TTL,thT|:1:> (519)

= —rTr (pLLLk> +7Tr <pLLLk>
=0
D. Measuring Observables

The result of the above real and imaginary time evolution, the weights p,(t) and the

Hermitian operator A(t) can be used to calculate the expectation value of any observ-

4



able. Inverting the Choi-Jamiotkowski isomorphism gives us the density operator p(t) =

S pe(t)T(t)|x){(x|TT(t). Observables O are then calculated as
(Ot)) = Tr (Op(t) pr (ylOT (t)]a) (| T (t)]y)

= pr<:rlTT|y><yl0T|Jf>

= pr<x|TT <Z !y><y\> OT|z)
= pr 0| TH(t)OT (¢)|x).

(S20)

Beyond a certain number of qubits, storing all the p,()’s is not possible, and a stochastic
sampling approach is needed. Locality conditions suggest one possible approach to efficient
sampling, described at the end of section (I E), which converges faster than uniform random

sampling.

E. Measuring Matrix Elements

To obtain the coefficients ¢, and a;, we need to measure various matrix elements. In
general, we can decompose any operator into a sum over Pauli strings, X = > ; ;o Since
(x| X]y) = >_; wi{z|oily), we then need to measure (z|o;|y) for all Pauli strings o;. This can

be done using the following identities:

(ol + iyl by —ily) _ ol = iyl 2) + ily)

V2 V2 V2 V2

In general, the state (|z) + ?|y))/v/2, with p € {0,1,2,3}, requires a quantum circuit

2Im [(z|X]y)] =

(S22)

comprising m CNOT gates and having depth m + 1, where m is the Hamming distance
between the binary strings z,y [? ]. Indeed, one can find an index k such that x; # yy.
Without loss of generality, one can assume that x; = 1 (otherwise, just invert the roles of
x, y and replace p with —p mod 4). One can then define the sets S = {l : ; = 1,1 # k},
T ={l:xz # y,l # k}. Finally, starting from a register of n qubits prepared in |0)®"
the desired state is obtained by: (i) applying a product of X gates on qubits in the set
S, Tl,es Xi, (i) applying to qubit k the gate g, = H,SH,ZH,ZSH, for p = 0,1,2,3,

5



respectively, and (iii) applying a product of CNOT gates to qubits in 7" controlled by qubit
k Tlies cx X

For local observables the state preparation is simpler, as described in the following. Con-
sider a k-qubit observable X® @I, ., with X®*) acting non-trivially on k qubits out of a
total of n qubits. Then

<x|X(k) ® ]In—k|y> - <x17 A ’:L‘k" l‘k"l‘l’ A 7xn|X(k) ® ]]:Tl—k|y17 A ’yk’ yk“l‘l’ A 7yn> <823)
= Ounsrnr Oamn (15 R X Plyr, ). (524)

Thus we need only to prepare the states

|l’1, vy Ll Thet1y - - - 7xn> + |y17 vy Yk Thet1y - - - 7In> _
V2 (525)

Tiyeo k) + YLy - -+,
21 k>\/§|y1 yk)@]xkﬂ,...,:cny

Since k is typically small, only 1 or 2 qubits in most cases and independent of the system
size, this state can be efficiently prepared. The form of Eq. (S25) suggests a stochastic
sampling method to determine which p,’s to store classically. For simplicity we describe the
case of qubits in a line, and the indices 1, ..., n labelling the sites with the observable acting
on the first & qubits. The general case is similar. Since the matrix elements will depend
more heavily on qubits 1, ..., k+m for some cutoff m, we can sample with higher frequency
on the first k£ + m qubits and with lower frequency on the rest. In addition, in many cases
we expect the dissipation channels L, to reduce long range correlations, further increasing

the convergence rate of local sampling.



II. HARDWARE ERRORS IN THE TWO LEVEL SYSTEM SIMULATION

We compare the hardware results to noiseless numerical emulations in Fig. S1 so as to
further separate hardware and algorithmic errors. The noiseless numerical emulations were
run with the same circuits as in the hardware trials but using IBM’s gasm_simulator. From
Fig. S1, we see that Algorithm I has a larger deviation between the emulation and hardware
data. This difference can be accounted for by the fact that the hardware experiment for
Algorithm II requires only a single qubit, so the density matrix for all time steps can be
obtained from only single qubit rotations. Single qubit simulations can always be compiled
to a constant depth regardless of the number of time steps, resulting in lower depth circuits
and correspondingly lower total gate error. In addition, since 2-qubit gates are generally
lower fidelity than single-qubit gates, there is no infidelity contribution due to 2-qubit gates
in Algorithm II.

1.0
— Exact
I e Algorithm I, simulation
5 0-81 Algorithm |, hardware
g e Algorithm Il, simulation
0.6 X Algorithm Il, hardware
o
(0]
S i
w
ie 0.4+
lo) .
S 23
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FIG. S1: Excited state population for the two level system (TLS). The solid curve is the
exact solution and the blue and red dots are noiseless numerical emulations of Algorithm I
and II, respectively. The blue and red crosses are the hardware results presented in the
main text for Algorithm I and II, respectively. The deviation between hardware and
simulation results for Algorithm I are larger than for Algorithm II, which we attribute to
hardware error resulting from the larger circuit depth and number of qubits needed for the

Algorithm I.



III. NUMBER OF PAULI STRINGS IN THE TRANSVERSE FIELD ISING
MODEL

Exactly simulating the 2-site TFIM using Algorithm I requires measuring expectation
values of the 256 Pauli strings on 4 qubits. To reduce the runtime of the Algorithm, we use
a subset of all Pauli strings. We show in Fig. S2 that increasing the number of included

Pauli strings beyond 16 has only a minor effect on the observables.
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FIG. S2: Noiseless numerical simulations for the transverse field Ising model (TFIM) using
Algorithm I with increasing number of Pauli strings included. Here the dissipation rate is
v = 0.1. The black solid curve is the exact result, and the blue dashed curve is a
simulation of Algorithm I using the same 16 Pauli’s as in the main text. The red, green,
light blue, and yellow dashed curves are noiseless numerical simulations of Algorithm I
obtained from including an increasing number of Pauli strings in the simulation. From
these simulations we see that only marginal increase in accuracy is obtained from including

a larger number of Pauli strings.



IV. EFFECT OF DISSIPATION RATE ON ALGORITHM PRECISION

Here we study the effects of increasing dissipation rates on the accuracy of both algo-
rithms. In general, we should expect larger algorithmic errors when larger dissipation rates
are simulated since both the Trotter error and QITE error increase with the operator norm
of the Lindblad operators. Larger dissipation rates correspond to Lindblad operators with
larger norms and hence larger algorithmic errors. To understand how increasing dissipation
rates affect both algorithm’s errors, we performed simulations of the 2-site TFIM with dis-
sipation rates ranging from v = 0 to v = 1. Figure S3 shows the results of the simulations.
We see that in this specific case, which includes 16 Pauli strings for Algorithm I and all
possible bit-strings for Algorithm II, Algorithm II performs qualitatively better than Algo-
rithm I for all dissipation rates. Although Algorithm II performs better for the simulations
shown in Fig. S3, we have not considered the error due to bit-string selection. For larger

systems where all bit-strings cannot be included, there will be additional errors introduced
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FIG. S3: The effect of increasing the dissipation rate from v = 0 to v = 1. a) Noiseless
simulation of Algorithm I using 16 Pauli strings. The same qualitative error is obtained for

all dissipation rates simulated. b) Noiseless simulation of Algorithm II.



