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Abstract. Should quantum computers become available, they will
reduce the effective key length of basic secret-key primitives, such as
blockciphers. To address this we will either need to use blockciphers
with inherently longer keys or develop key-length extension techniques
to amplify the security of a blockcipher to use longer keys.

‘We consider the latter approach and revisit the FX and double encryp-
tion constructions. Classically, FX was proven to be a secure key-length
extension technique, while double encryption fails to be more secure than
single encryption due to a meet-in-the-middle attack. In this work we
provide positive results, with concrete and tight bounds, for the security
of both of these constructions against quantum attackers in ideal models.

For FX, we consider a partially-quantum model, where the attacker
has quantum access to the ideal primitive, but only classical access to
FX. This is a natural model and also the strongest possible, since effec-
tive quantum attacks against FX exist in the fully-quantum model when
quantum access is granted to both oracles. We provide two results for
FX in this model. The first establishes the security of FX against non-
adaptive attackers. The second establishes security against general adap-
tive attackers for a variant of FX using a random oracle in place of an
ideal cipher. This result relies on the techniques of Zhandry (CRYPTO
’19) for lazily sampling a quantum random oracle. An extension to per-
fectly lazily sampling a quantum random permutation, which would help
resolve the adaptive security of standard FX, is an important but chal-
lenging open question. We introduce techniques for partially-quantum
proofs without relying on analyzing the classical and quantum oracles
separately, which is common in existing work. This may be of broader
interest.

For double encryption, we show that it amplifies strong pseudoran-
dom permutation security in the fully-quantum model, strengthening a
known result in the weaker sense of key-recovery security. This is done
by adapting a technique of Tessaro and Thiruvengadam (TCC ’18) to
reduce the security to the difficulty of solving the list disjointness prob-
lem and then showing its hardness via a chain of reductions to the known
quantum difficulty of the element distinctness problem.

© International Association for Cryptologic Research 2021
K. Nissim and B. Waters (Eds.): TCC 2021, LNCS 13042, pp. 209-239, 2021.
https://doi.org/10.1007/978-3-030-90459-3_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-90459-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-90459-3_8

210 J. Jaeger et al.

1 Introduction

The looming threat of quantum computers has inspired significant efforts to
design and analyze post-quantum cryptographic schemes. In the public-key set-
ting, polynomial-time quantum algorithms for factoring and computing discrete
logarithms essentially break all practically deployed primitives [28].

In the secret-key setting, Grover’s quantum search algorithm [12] will reduce
the effective key length of secret-key primitives by half. Thus, a primitive like the
AES-128 blockcipher which may be thought to have 128 bits of security against
classical computers may provide no more than 64 bits of security against a
quantum computer, which would be considered significantly lacking. Even more
worrisome, it was shown relatively recent that quantum computers can break
several secret-key constructions completely such as the Even-Mansour blockci-
pher [23] and CBC-MAC [17] if we grant the attacker fully quantum access to
the cryptosystem.

This would not be the first time that we find ourselves using too short of a
key. A similar issue had to be addressed when the DES blockcipher was widely
used and its 56 bit keylength was considered insufficient. Following approaches
considered at that time, we can either transition to using basic primitives which
have longer keys (e.g. replacing AES-128 with AES-256) or design key-length
extension techniques to address the loss of concrete security due to quantum
computers. In this paper we analyze the latter approach. We consider two key-
length extension techniques, FX [20] and double encryption, and provide prov-
able bounds against quantum attackers in ideal models.

Of broader and independent interest, our study of FX focuses on a hybrid
quantum model which only allows for classical online access to the encrypted
data, whereas offline computation is quantum. This model is sometimes referred
to as the “Q1 model” in the cryptanalysis literature [5,17], in contrast to the
fully-quantum, so-called “Q2 model”, which allows for quantum online access.
This is necessary in view of existing attacks in the Q2 model showing that FX
is no more secure than the underlying cipher [24], but also, Q1 is arguably more
realistic and less controversial than Q2. We observe that (as opposed to the plain
model) ideal-model proofs in the Q1 model can be harder than those in the Q2
model, as we need to explicitly account for measuring the online queries to obtain
improved bounds. In many prior ideal-model Q1 proofs, e.g. [4,14,18,21,22], this
interaction is handled essentially for free because the effects of online and offline
queries on an attacker’s advantage can largely be analyzed separately. Our work
introduces techniques to handle the interaction between classical online queries
and quantum offline ideal-model queries in Q1 proofs that cannot be analyzed
separately. On the other hand, our result on double encryption considers the full
Q2 model — and interestingly, restricting adversaries to the Q1 model does not
improve the bound. To be self-explanatory we will often refer to the Q1 and Q2
models as the partially-quantum and fully-quantum models, respectively.

The remainder of this introduction provides a detailed overview of our results
for these two constructions, and of the underlying challenges and techniques.
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1.1 The FX Construction

The FX construction was originally introduced by Kilian and Rogaway [20]
as a generalization of Rivest’s DESX construction. Consider a blockcipher E
which uses a key K € {0,1}* to encrypt messages M € {0,1}". Then the FX
construction introduces “whitening” key Ks € {0,1}" which is xor-ed into the
input and output of the blockcipher. Formally, this construction is defined by
FX[E](K | K2, M) = Ex(M @ K3) ® K». (Note that the Even-Mansour block-
cipher [11] may be considered to be a special case of this construction where
k = 0, i.e., the blockcipher is a single permutation.) This construction has neg-
ligible efficiency overhead as compared to using E directly.

Kilian and Rogaway proved this scheme secure against classical attacks in
the ideal cipher model. In particular, they established that

AdvEP(A) < pg/2" ",

Here Adv®P"™® measures the advantage of A in breaking the strong pseudorandom
permutation (SPRP) security of FX while making at most p queries to the ideal
cipher and at most g queries to the FX construction. Compared to the p/2*
bound achieved by E alone, this is a clear improvement so FX can be considered
a successful key-length extension technique again classical attackers.

Is this construction equally effective in the face of quantum attackers? The
answer is unfortunately negative. Leander and May [24], inspired by a quantum
attack due to Kuwakado and Morii [23] that completely breaks Even-Mansour
blockcipher, gave a quantum attack against FX, which shows that the whitening
keys provide essentially no additional security over that achieved by E in isola-
tion. Bonnetain, et al. [5] further reduced the number of online quantum queries
in the attack. Roughly speaking, O(n) quantum queries to FX construction and
O(n2k/ 2) local quantum computations of the blockcipher suffice to recover the
secret encryption key. Note that, however, such attacks require full quantum
access to both the ideal primitive and to the instance FX that is under attack,
i.e. they are attacks in the fully-quantum model. The latter is rather strong and
may be considered unrealistic. While we cannot prevent a quantum attacker
from locally evaluating a blockcipher in quantum superposition, honest imple-
mentations of encryption will likely continue to be classical.

PARTIALLY-QUANTUM MODEL. Because of the realistic concern of the fully-
quantum model and the attacks therein that void key extension in FX, we turn
to the partially-quantum model in which the attacker makes quantum queries to
ideal primitives, but only classical queries to the cryptographic constructions.
In this model there has been extensive quantum cryptanalysis on FX and
related constructions [5,13]. The best existing attack [5] recovers the key of FX
using roughly 2(8+7)/3 classical queries to the construction and 2(++™)/3 quantum
queries to the ideal cipher. However, to date, despite the active development

! Some may argue that maintaining purely classical states, e.g., enforcing perfect mea-
surements is also non-trivial physically. However, we deem maintaining coherent
quantum superposition significantly more challenging.
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in provable quantum security, we are not aware of SPRP or just PRF secu-
rity analysis, which gives stronger security guarantees. Namely, it should not
just be infeasible to retrieve a key, but also to merely distinguish the system
from a truly random permutation (or function). We note that in the special
case where the primitives are plain-model instantiations (e.g., non-random-oracle
hash functions), with a bit of care many security reductions carry over to the
quantum setting [25]. This is because the underlying primitives are hidden from
the adversary, and hence the difficulty arising from the interaction of classical
and quantum queries to two correlated oracles becomes irrelevant.

Our main contribution on FX is to prove, for the first time, indistinguisha-
bility security in the partially-quantum model, in two restricted ways. Although
they do not establish the complete security, our security bounds are tight in their
respective settings.?

NON-ADAPTIVE SECURITY. We first consider non-adaptive security where we
restrict the adversary such that its classical queries to the FX construction (but
not to the underlying ideal cipher) must be specified before execution has begun.
We emphasize that non-adaptive security of a blockcipher suffices to prove adap-
tive security for many practical uses of blockciphers such as the various random-
ized or stateful encryption schemes (e.g. those based on counter mode or output
feedback mode) in which an attacker would have no control over the inputs to
the blockcipher.
In this setting the bound we prove is of the form

AdviRP ™ (A) <O (y/qu/Q’“") :

Supposing k = n = 128 (as with AES-128), an attacker able to make p ~ 264
queries to the ideal cipher could break security of E in isolation. But to attack FX,
such an attacker with access to ¢ ~ 254 encryptions would need to make p ~ 2%
queries to the ideal cipher. In fact we can see from our bound that breaking the
security with constant probability would require the order of 9(2(k+")/ 3) queries
in total, matching the bound given in the attacks mentioned above [5]. Hence
our bound is tight.

To prove this bound we apply a one-way to hiding (O2H) theorem of Ambai-
nis, Hamburg, and Unruh [3], an improved version of the original one in [32].
This result provides a clean methodology for bounding the probability that an
attacker can distinguish between two functions drawn from closely related distri-
butions given quantum access. The non-adaptive setting allows us to apply this
result by sampling the outputs of FX ahead of time and then considering the
ideal world in which the ideal cipher is chosen independently of these outputs
and the real world in which we very carefully reprogram this ideal cipher to be
consistent with the outputs chosen for FX. These two ideal ciphers differ only
in the O(q) places where we need to reprogram.

2 Throughout, when mentioning tightness, we mean it with respect to the resources
required to achieve advantage around one. The roots in our bounds make them
weaker for lower resource regimes. Removing these is an interesting future direction.
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ADAPTIVE SECURITY OF FFX. As a second approach towards understanding
fully adaptive security of FX, we consider a variant construction (which we call
FFX for “function FX”) that replaces the random permutation with a random
function. In particular, suppose F is a function family which uses a key K €
{0,1}* on input messages M € {0,1}" to produce outputs C' € {0,1}™. Then
we define FFX[F](K | K2, M) = Fx (M @ K3).? For this construction we prove a

bound of the form
AdvPiy (A) < O (, /p2q/2k+") :

in the partially-quantum random oracle model. Note that this matches the bound
we obtained for the non-adaptive security of FX. Since the same key-recovery
attack [5] also applies here, it follows that our bound is tight as well. Our proof
combines two techniques of analyzing a quantum random oracle, the O2H the-
orem above and a simulation technique by Zhandry [35]. The two techniques
usually serve distinct purposes. O2H is helpful to program a random oracle,
whereas Zhandry’s technique is typically convenient for (compactly) maintain-
ing a random oracle and providing some notion of “recording” the queries. In
essence, in the two function distributions of O2H for which we aim to argue
indistinguishability, we apply Zhandry’s technique to simulate the functions in a
compact representation. As a result, analyzing the guessing game in O2H, which
implies indistinguishability, becomes intuitive and much simplified. This way of
combining them could also be useful elsewhere.

To build intuition for the approach of our proof, let us first consider one
way to prove the security of this construction classically. The core idea is to use
lazy sampling. In the ideal world, we can independently lazily sample a random
function F : {0,1}* x {0,1}™ — {0,1}™ to respond to F queries and a random
function T': {0,1}"™ — {0,1}"™ to respond to FFX queries. These lazily random
functions are stored in tables.

The real world can similarly be modeled by lazily sampling F' and T to
respond to the separate oracles. However, these oracles need to be kept consis-
tent. So if the adversary ever queries M to FFX and (K, M @ K>) to F, then
the game should copy values between the two tables such that the same value is
returned by both oracles. (Here K and Ko are the keys honestly sampled by the
game.) Alternatively, we can think of the return value being stored only in the
T table when such queries occur (rather than being copied into both tables) as
long as we remember that this has happened. When represented in this manner,
the two games only differ if the adversary makes such a pair of queries, where
we think of the latter one as being “bad”. Thus a simple O(pg/2**™) bound on
the probability of making such a query bounds the advantage of the adversary.

In our quantum security proof we wish to proceed analogously. First, we find
a way to represent the responses to oracle queries with two (superpositions over)
tables that are independent in the ideal world and dependent in the real world
(the dependency occurs only for particular “bad” inputs). Then (using the O2H

3 Note we have removed the external xor with K5. In FX this xor is necessary, but in
our analysis it would not provide any benefit for FFX.
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theorem of Ambainis, Hamburg, and Unruh) we can bound the distinguishing
advantage by the probability of an attacker finding a “bad” input. In applying
this theorem we will jointly think of the security game and its adversary A as a
combined adversary A’ making queries to an oracle which takes in both the input
of A and the tables being stored by the game — processing them appropriately.

The required representation of the oracles via two tables is a highly non-trivial
step in the quantum setting. For starters, the no-cloning theorem prevents us
from simply recording queries made by the adversary. This has been a recur-
ring source of difficulty for numerous prior papers such as [9,30,33]. We make
use of the recent elegant techniques of Zhandry [35] which established that, by
changing the perspective (e.g., to the Fourier domain), a random function can
be represented by a table which is initialized to all zeros and then xor-ed into
with each oracle query made by the adversary. This makes it straightforward
to represent the ideal world as two separate tables. To represent the real world
similarly, we exploit the fact that the queries to FFX are classical. To check if
an input to FFX is “bad” we simply check if the corresponding entry of the
random oracle’s table is non-zero. To check if an input to the random oracle is
“bad” we check if it overlaps with prior queries to FFX which we were able to
record because they were classical. For a “bad” input we then share the storage
of the two tables and this is the only case where the behavior of the real world
differs from that of the ideal world. These “bad” inputs may of course be part of
a superposition query and it is only for the bad components of the superposition
that the games differ.

DirricurTy OF EXTENDING TO FX. It is possible that this proof could be
extended to work for normal FX given an analogous way to lazily represent a
random permutation. Unfortunately, no such representation is known.

Crajkowski, et al. [8] extended Zhandry’s lazy sampling technique to a
more general class of random functions, but this does not include permutations
because of the correlation between the different outputs of a random permuta-
tion. Chevalier, et al. [6] provided a framework for recording queries to quan-
tum oracles, which enables succinctly recording queries made to an externally
provided function for purposes of later responding to inverse queries. This is
distinct from the lazy sampling of a permutation that we require. Rosmanis [27]
introduced a new technique for analyzing random permutations in a compressed
manner and applied it to the question of inverting a permutation (given only
forward access to it). Additional ideas seem needed to support actions based on
the oracle queries that have been performed so far. This is essential in order to
extend our proof for the function variant of FX to maintain consistency for the
real world in the face of “bad” queries.

Recent work of Czajkowski [7] provided an imperfect lazy sampling technique
for permutations and used it to prove indifferentiability of SHA3. They claim that
their lazy sampling strategy cannot be distinguished from a random permutation
with advantage better than O(q?/2"). Unfortunately, this bound is too weak to
be useful to our FX proof. For example, if k > n we already have O(q¢?/2")
security without key-length extension. Determining if it is possible to perfectly
lazily sample a random permutation remains an interesting future direction.
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1.2 Double Encryption

The other key-extension technique we consider is double encryption. Given
a blockcipher E : {0,1}* x {0,1}" — {0,1}" this is defined by
DE[E](K; || K2, M) = Ek,(Ek, (M)). This construction requires more compu-
tational overhead than FX because it requires two separate application of the
blockcipher with different keys. Classically, this construction is not considered to
be a successful key-length extension technique because the meet-in-the-middle
attack [10,26] shows that it can be broken in essentially the same amount of
time as E alone.

However, this does not rule out that double encryption is an effective key-
length extension method in the quantum setting, as it is not clear that the Grover
search algorithm [12] used to halve the effective keylength of blockciphers can
be composed with the meet-in-the middle attack to unify their savings. The
security of double encryption in the quantum setting was previously considered
by Kaplan [16]. They related the key-recovery problem in double encryption to
the claw-finding problem, and gave the tight quantum query bound ©(N?/3) for
solving key recovery (here N = 2% is the length of the lists in the claw-finding
problem). This indicates that in the quantum setting double encryption is in
fact useful (compare to N'/2), although key-recovery security is fairly weak.

We strengthen their security result by proving the SPRP security, further
confirming double encryption as an effective key-extension scheme against quan-
tum attacks. This is proven in the fully-quantum model, and the bound we obtain
matches the attack in [16] which works in the partially-quantum model. Namely
restricting to the weaker partially-quantum model would not improve the bound.
Our result is obtained by a reduction to list disjointness. This is a worst-case
decision problem measuring how well an algorithm can distinguish between a
pair of lists with zero or ezactly one element in common, which can be viewed
as a decision version of the claw-finding problem. This reduction technique was
originally used by Tessaro and Thiruvengadam [31] to establish a classical time-
memory trade-off for double encryption. We observe that their technique works
for a quantum adversary.

We then construct a chain of reductions to show that the known quantum
hardness of element distinctness [1,34] (deciding if a list of N elements are all
distinct) can be used to establish the quantum hardness of solving list disjoint-
ness. Our result (ignoring log factors) implies that a highly successful attacker
must make 2(22%/3) oracle queries which is more than the £2(2¥/2) queries needed
to attack E used in isolation.

Our proof starts by observing that Zhandry’s [34] proof of the hardness of the
search version of element distinctness (finding a collision in a list) in fact implies
that a promise version of element distinctness (promising that there is exactly
one collision) is also hard. Then a simple reduction (randomly splitting the
element distinctness list into two lists) shows the hardness of the search version
of list disjointness. Next we provide a binary-search inspired algorithm showing
that the decision version of list disjointness can be used to solve the search
version, implying that the decision version must be hard. During our binary
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search we pad the lists we are considering with random elements to ensure that
our lists maintain a fixed size which is necessary for our proof to go through.
The final bound we obtain for double encryption is of the form

A2 <0 (tfla- kg,

The sixth root arises in this bound from the final step in our chain of results
analyzing list disjointness. The binary search algorithm requires its underlying
decision list disjointness algorithm to have relatively high advantage. To obtain
this from a given algorithm with advantage § we need to amplify its advantage
by running in on the order of 1/§2 times. The number of queries depending on
the square of § causes the root to arise in the proof.

1.3 Overview

In Sect. 2, we introduce preliminaries such as notation, basic cryptographic defi-
nitions, and some background on quantum computation that we will use through-
out the paper. Following this, in Sect. 3 we consider the security of FX in the par-
tially quantum setting. Non-adaptive SPRP security of FX is proven in Sect. 3.1
and adaptive PRF security of FFX is proven in Sect.3.2. We conclude with
Sect. 4 in which we prove the SPRP security of double encryption against fully
quantum adaptive attacks.

2 Preliminaries

For n,m e N, we let [n] = {1,...,n} and [n..m] = {n,n +1,...,m}. The set of
length n bit strings is denoted {0,1}". We use || to denote string concatenation.
We let Inj(n, m) denote the set of injections f : [n] — [m].

We let y <s A[O1,...](z1,...) denote the (randomized) execution of algo-
rithm A with input z1,... and oracle access to Oq,... which produces output
y. For different A we will specify whether it can access its oracles in quantum
superposition or only classically. If S is a set, then y «<sS denotes randomly
sampling y from S.

We express security notions via pseudocode games. See Fig. 1 for some exam-
ple games. In the definition of games, oracles will sometimes be specified by
pseudocode with the following form.

Oracle O(Xy,---: Z1,...)
//Code defining X1,... and Z,...
Return (X71,---: Z1,...)

This notation indicates that X;,... are variables controlled by the adversary
prior to the oracle query and Z7,... are variables controlled by the game itself
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which the adversary cannot access. At the end of the execution of the oracle,
these variables are overwritten with the values indicated in the return statement.
Looking ahead, we will be focusing on quantum computation so this notation
will be useful to make it explicit that O can be interpreted as a unitary acting on
the registers Xi,... and Z1,... (because O will be an efficiently computable and
invertible permutation over these values). If H is a function stored by the game,
then oracle access to H represents access to the oracle that on input (X,Y : H)
returns (X, H(X)®Y : H).

We define games as outputting boolean values and let Pr[G] denote the prob-
ability that game G returns true. When not otherwise indicated, variables are
implicitly initialized to store all 0’s.

If A is an adversary expecting access to multiple oracles we say that it is order
consistent if the order it will alternate between queries to these different oracles is
a priori fixed before execution. Note that order consistency is immediate if, e.g.,
A is represented by a circuit where each oracle is modeled by a separate oracle
gate, but is not immediate for other possible representations of an adversary.

IDEAL MODELS. In this work we will work in ideal models — specifically, the
random oracle model or the ideal cipher model. Fix k,n,m € N (throughout
this paper we will treat these parameters as having been fixed already). We
let Fcs(k,n,m) be the set of all functions H : {0,1}* x {0,1}" — {0,1}™ and
les(k,n) = Fes(k,n,n) be the set of all functions E : {0,1}* x {0,1}" — {0,1}"
such that E(K,-) is a permutation on {0,1}". When convenient, we will write
Hx () in place of H(K, x) for H € Fes(k,n,m). Similarly, we will write Ex (x)
for E(K, ) and E!(-) for the inverse of Ex(-) when E € Ics(k,n). When K = ¢
we omit the subscript to H or E.

In the random oracle model, honest algorithms and the adversary are given
oracle access to a randomly chosen H € Fcs(k, n, m). In the ideal cipher model,
they are given oracle access to E and E~! for E chosen at random from Ics(k, n).
We refer to queries to these oracles as primitive queries and queries to all other
oracles as construction queries.

FuncTiON FAMILY AND PSEUDORANDOMNESS. A function family F is an
efficiently computable element of Fcs(F.kl, F.il,F.ol). If, furthermore, F €
lcs(F kI, F.il) and F~! is efficiently computable then we say F is a blockcipher
and let F.bl = F.il.

If F is a function family (constructed using oracle access to a function H €
Fecs(k,n,m)), then its security (in the random oracle model) as a pseudorandom
function (PRF) is measured by the game GP" shown in Fig. 1. In it, the adversary
A attempts to distinguish between a real world (b = 1) where it is given oracle
access to F with a random key K and an ideal world (b = 0) where it is given

access to a random function. We define the advantage function Adv'Erf(A) =

Pr[GE", (A)] — Pr[GEG(A)].

If E is a blockcipher (constructed using oracle access to a function E €
lcs(k,n) and its inverse), then its security (in the ideal cipher model) as a
strong pseudorandom permutation (SPRP) is measured by the game G*'P shown
in Fig.1. In it, the adversary A attempts to distinguish between a real world
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Game G (A) EV(X,Y :H, K, F)
H <s Fes(k, n, m) Y1 < F[H](K, X)
K s {071}F.k| Yo <—F(X)
F s Fes(0, F.il, F.ol) Return (X, Y, @Y : H, K, ')
b s A[Ev,H]
Return b’ =1
Game GPP(A) EV(X,Y : E, K, P)
E «slcs(k,n) Y1 — E[E](K, X)
K «s {0, 1}EX Yo «— P(X)
P s lcs(0, E.bl) Return (X,Y, @Y : E, K, P)
b —s A[EV,INV,E,E"'] Inv(X,Y : E, K, P)
Return ¥’ =1 Yy «— E_I[E](K,X)
Yy — P7HX)
Return (X,Y,®Y : E, K, P)

Fig. 1. Security games measuring PRF security of a family of functions F and SPRP
security of a blockcipher E.

(b = 1) where it is given oracle access to E, E™! with a random key K and an
ideal world (b = 0) where it is given access to a random permutation. We define
the advantage function Advy™"(A) = Pr[GFP(A)] — Pr[GEF (A)].

In some examples, we will restrict attention to non-adaptive SPRP security.
In such cases our attention is restricted to attackers whose queries to Ev and INV
when relevant are a priori fixed before execution. That is, A is a non-adaptive
attacker which makes at most ¢ classical, non-adaptive queries to Ev,INV if
there exists My,..., My, Yyi1,...,Y, € {0,1}"™ such that A only ever queries
Evon M forl <i< ¢ and INVvonY, for ¢ +1 < i < q. Then we write
AdvPP ™ (4) in place of AdvFP(A).

2.1 Quantum Background

We assume the reader has basic familiarity with quantum computation. Quan-
tum computation proceeds by performing unitary operations on registers which
each contain a fixed number of qubits. We sometimes use o to denote compo-
sition of unitaries. Additionally, qubits may be measured in the computational
basis. We will typically use the principle of deferred measurements to without
loss of generality think of such measurements as being deferred until the end of
computation.

The Hadamard transform H acts on a bitstring « € {0,1}" (for some n € N)
via H |z) = 1/v/27- 3, (=1)** |2/). Here - denotes inner product modulo 2 and
the summation is over 2’ € {0,1}". The Hadamard transform is its own inverse.
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Game G35, (A) Game GH**(A)
(8,8, Po, Py, P1, Pl,z) < D (8,8, Py, Py, P1, P{,2) <D

b —s A[Py, Pi](2) i<s{l,...,q}

Return b’ =1 Run A[Po, Pj] until its i-th query

Measure the input x to this query
If the query is to Py then

Return z € S
Else (the query is to P;)

Return x € S’

Fig. 2. Games used for O2H Theorem 1.

We sometimes use the notation HX*%X2: to denote the Hadamard transform
applied to registers X, Xo,....

We make use of the fact that if P is a permutation for which both P and P!
can be efficiently implemented classically, then there is a comparable efficient
quantumly computable unitary Up which maps according to Up |z) = |P(x))
for « € {0,1}"™. For simplicity, we often write P in place of Up. If f: {0,1}" —
{0,1}™ is a function, we define the permutation f[®](z,y) = (z, f(z) D y).

ONE-WAY TO HIDING. We will make use of (a slight variant of) a one-way
to hiding (O2H) theorem of Ambainis, Hamburg, and Unruh [3]. The theorem
will consider an adversary given oracle access either to permutations (Py, P}) or
permutations (Py, P/). It relates the advantage of the adversary in distinguishing
between these two cases to the probability that the adversary can be used to
find one of those points on which Py differs from P, or P} differs from Pj.
The result considers a distribution D over (S,S’, Py, P}, P1, P, z) where S,5’
are sets, Py, P; are permutations on the same domain, Pj, P{ are permutations
on the same domain, and z € {0,1}* is some auxiliary information. Such a D
is walid if Py(x) = Pi(x) for all x ¢ S and Py(x) = Pj(x) for all z ¢ S’
Now consider the game G%ftl, shown in Fig.2. In it, an adversary A is given
z and tries to determine which of the oracle pairs it has access to. We define
AV (A) = PrIGEY (A)] — Pr[GE(A)].

The game G§**(A) in the same figure measures the ability of A to query its
oracles on inputs at which Py and P; (or P} and Pj) differ. It assumes that the
adversary makes at most q oracle queries. The adversary is halted in its execution
on making a random one of these queries and the input to this query is measured.
If the input falls in the appropriate set S or S’, then the game returns true.
Thus we can roughly think of this as a game in which A is trying to guess a
point on which the two oracles differ. We define AdvE**(A) = Pr[GH**(A)],
which leads to a bound on Adviyt(A).

Theorem 1 ([3], Thm.3). Let D be a valid distribution and A be an adversary
making at most q oracle queries. Then Adviy (A) < 2¢/AdvE™(A).
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Our statement of the theorem differs from the result as given in [3] in that we
consider arbitrary permutations, rather than permutations of the form f[@®] for
some function f, and we provide the attacker with access to two oracles rather
than one.* These are simply notational conveniences to match how we will be
applying the theorem. The proof given in [3] suffices to establish this variant
without requiring any meaningful modifications.

The most natural applications of this theorem would apply it to distributions
D for which the guessing advantage Adv§)**(.A) is small for any efficient adver-
sary A. This will indeed be the case for our use of it in our Theorem 2. However,
note that it can also be applied more broadly with a distribution D where it is
not necessarily difficult to guess inputs on which the oracles differ. We will do so
at the end of our proof of Theorem 3. Here we will use a deterministic D so, in
particular, the sets S and S’ are a priori fixed and not hard to query. The trick
we will use to profitably apply the O2H result is to exploit knowledge of the
particular form that A will take (it will be a reduction adversary internally sim-
ulating the view of another adversary) to provide a useful bound on its guessing
advantage Advg)*(A).

3 The FX Construction

The FX construction (originally introduced by Kilian and Rogaway [20] as
a generalization of Rivest’s DESX construction) is a keylength extension for
blockciphers. In this construction, an additional key is used which is xor-ed
with input and the output of the blockcipher.” Formally, given a blockcipher
E € lcs(E.kl, E.bl), the blockcipher FX[E] is defined by FX[E](K; || K2,2) =
Ex, (z®K3)® K,. Here |K;| = E.kl and |K3| = E.bl so FX[E].kl = E.kl+ E.bl and
FX[E].bl = E.bl. Its inverse can similarly be computed as FX[E] 1 (K | K2, z) =
Exl (z® K3) ® K. Let k = E.kl and n = E.bl.

Kilian and Rogaway [19] analyzed the PRP security of FX against classical
attacks, showing that AdviyP(A) < 2pg/28*™ where ¢ is the number of Ev, INV
queries and p is the number of E,E~! queries made by A (with E modeled as
an ideal cipher). In [24], Leander and May showed a quantum attack against the
FX construction — establishing that the added whitening keys did not provide
additionally security. This attack uses a clever combination of the quantum algo-
rithms of Grover [12] and Simon [29]. It was inspired by an attack by Kuwakado
and Morii [23] showing that the Even-Mansour blockcipher [11] provides no
quantum security. Thus, it seems that FX[E] does not provide meaningfully more
security than E against quantum attackers.

4 Their result additionally allows the adversary to make oracle queries in parallel and
bounds its advantage in terms of the “depth” of its oracle queries rather than the
total number of queries. We omit this for simplicity.

5 Technically, the original definition of FX [20] uses distinct keys for xor-ing with the
input and the output, but this would not provide any benefit in our concrete security
analysis so we focus on the simplified construction.
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However, the attack of Leander and May requires quantum access to both
the FX construction and the underlying blockcipher E. This raises the question
of whether the FX is actually an effective key-length extension technique in the
partially-quantum setting where the adversary performs only classical queries
to the construction oracles. In this section, we approach this question from two
directions. First, in Sect. 3.1 we apply Theorem 1 with a careful representation of
the real and ideal worlds to show that FX does indeed achieve improved security
against non-adaptive attacks.

Analyzing the full adaptive security of FX against classical construction
queries seems beyond the capabilities of current proof techniques. Accordingly,
in Sect. 3.2, we consider a variant of FX in which a random oracle is used in
place of the ideal cipher and prove its quantum PRF security. Here we apply
a new reduction technique (built on the “sparse” quantum representation of a
random function introduced by Zhandry [35] and Theorem 1, the O2H theorem
from Ambainis, Hamburg, and Unruh [3]) to prove that this serves as an effective
key-length extension technique in our setting. It seems likely that our technique
could be extended to the normal FX construction, should an appropriate sparse
quantum representation of random permutations be discovered.

3.1 Security of FX Against Non-adaptive Attacks

The following theorem bounds the security of the FX construction against non-
adaptive attacks (in which the non-adaptive queries are all classical). This result
is proven via a careful use of Theorem 1 in which the distribution D is defined in
terms of the non-adaptive queries that the adversary will make and defined so as
to perfectly match the two worlds that A is attempting to distinguish between.

Theorem 2. Let A be a quantum adversary which makes at most q classical,
non-adaptive queries to Ev,INV and consider FX[-] with the underlying blockci-
pher modeled by an ideal cipher drawn from lcs(k,n). Then

AdviRP M (A) < \/8p2q/2k+n,

where p is the number of quantum oracle queries that A makes to the ideal cipher.

Proof. We will use Theorem 1 to prove this result, so first we define a distribution
D. Suppose that My,..., My € {0,1}" are the distinct queries A will make to
Ev and Yy41,...,Y, € {0,1}™ are the distinct queries that A will make to INV.
The order in which these queries will be made does not matter. Then we define D
as shown in Fig. 3. This distribution is valid (as required for Theorem 1) because
(G is reprogrammed to differ from Gy by making inputs in S map to different
values in S'.

We will show that the oracles output by this distribution (described in
words momentarily) can be used to perfectly simulate the views expected by
A. In particular, let A’ be an adversary (for GI*) which runs A, responding
to EV(M;) queries with T[M;], responding to INV(Y;) queries with T ![Y;],
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Distribution D
// Step 1: Sample responses to construction queries
Fori=1,...,q¢ do

Y s {01 l}n\{Yh LR Yifl}

T[ML] —Yi; Tﬁl[Yi] — M;
Fori=q¢ +1,...,qdo

If T7'[Y;] # L then M; «— T7'[Y;]

Else Mi «—3 {07 l}n\{Mh ey Mifl}

T[M;] < Yi; T7H[Yi] — M;
2 (T,T71)
// Step 2: Sample fo as independent ideal cipher
fo <sles(k,n)
// Step 3: Reprogram f; for consistency with construction queries
Ky «s {0, l}k; Ko «s {07 1}”
IT—{M;®Ksy:1<i<qh O {YV;®K>:1<i<gq}
T {fy (Kiy) iy € 0} O {fo(Ky,2): 2 e T)
S={(Ki,z):zeZuI'}; S ={(Ki,y):ye Ou O’}
For (K,z) ¢ S do

[i(K x) < fo(K,x)
Fori=1,...,q do

Ji(Ki,M; ® K2) < Y; ® K2
For z € Z'\Z do

f1(K171‘) «—$ O/\{f1(K1,1‘) cx €T U I/, f1(K171‘) # L}
Return (Sv Sl,fO[@], f(;l[®]vf1[®]v ffl[@)]vz)

Fig. 3. Distribution of oracles used in proof of Theorem 2.

and simulating E,E~! with its own oracles f,[®], f,'[®]. When A halts
with output b, this adversary halts with the same output. We claim that (i)
Pr[GPP(A)] = Pr[GLY (A')] and (ii) Pr[GEF(A)] = Pr[Giy,(A")]. This gives
AdvP " (A) = Adviy(A).

Claim (ii) follows by noting that the view of A is identical when run by G¢™"
or by A" in GdD's,tO. In G, its construction queries are answered with the random
permutation F. When it is run by A’ in G%ft(), these queries are answered with
the tables T and T~' which can be viewed as having just lazily sampled enough
of a random permutation to respond to the given queries. In both cases, its
primitive oracle is an independently chosen ideal cipher.

Claim (i), follows by noting that the view of A is identical when run by
GP? or by A" in G%',Sj. In GPP, construction queries are answered by the FX
construction using the ideal cipher and keys K;, Ks. In the distribution, we
first sample the responses to the construction queries and then construct the
ideal cipher f; by picking K; and K5 and setting fi; to equal fy except for
places where we reprogram it to be consistent with these construction queries.
The construction will map M; to Y; for each ¢, which means that the condition
f1(K71, M; @ K2) = Y; ® K5 should hold. These inputs and outputs are stored in
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the sets Z and O. The sets Z' and O’ store the inputs mapping to O and outputs
mapped to Z by fo(K1,-), respectively. Thus while making the above condition
hold, we additionally reprogram f; so that elements of Z'\Z map to (random,
non-repeating) elements of O"\O.

In particular, the uniformity of fy ensures that the map induced by f1(K7y,-)
between {0,1}™\(Z u Z’) and {0,1}™\(O U O’) is a random bijection. The last
for loop samples a random bijection between Z\Z and O"\O. Because there are
no biases in which values fall into these two cases among those of {0,1}"\Z and
{0,1}™\O, this means the map between these two sets is a uniform bijection
as desired. A more detailed probability analysis of Claim (i) is given in the full
version [15]. '

Applying the bound on Adv{rt(A’) from Theorem 1 gives us

AdvPP ™ (A) < 2py/Pr[GE**(A")]

so we complete the proof by bounding this probability. Let fw denote the event
that the i-th query of A’ in H(])3 is to fo and let (K, z) denote the measured value
of this query so that

Pr[HE*(A")] = Pr[fw] - Pr[(K,z) € S | fw] + Pr[—fw] - Pr[(K,z) € " | —fw].
A union bound over the different elements of S gives

q
Pr(K,z) e S | fw] < Z MK =Ky, A 2@ M; = Ky | fw]

q
+ Y PrK = K1 A Go(Ky1,2) @Y = Ky | fw].
j=1

However, note that the view of A in H(])D is independent of K7 and K5 so we get
that
Pr[(K,z) € S| fw] < 2¢q/2"™.

Applying analogous analysis to the —fw case gives

Pr[(K,z) e S' | =fw] < 2¢/2F*"
and hence Pr[Hg (A")] < 2¢/2%*". Plugging this into our earlier inequality gives
the stated bound. O
3.2 Adaptive Security of FFX

In this section we will prove the security of FFX (a variant of FX using a random
oracle in place of the ideal cipher) against quantum adversaries making strictly
classical queries to the construction.
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Formally, given a function family F € Fes(F.kl, F.il, F.ol), we define the func-
tion family FFX[F] by FFX[F](K || K2, ) = Fg, (z@® K3).° Here |K;| = F.kl and
|K2| = F.il so FFX[F].kl = F.kl + F.il, FFX[F].il = F.il, and FFX[F].ol = F.ol. Let
k = F.kl, n = F.il, and m = F.ol.

Theorem 3. Let A be an order consistent quantum adversary which makes clas-
sical queries to EV and consider FFX[-] with the underlying function family mod-
eled by a random oracle drawn from Fcs(k,n,m). Then

8(p + q)pq

rf
Advpex (A) < ok+n

where p is the number of quantum oracle queries that A makes to the random
oracle and q is the number of queries it makes to EV.

We can reasonably assume that p > ¢ so the dominant behavior of the above

expression is O (\/qu/Q’”").

The proof of this result proceeds via a sequence of hybrids which gradually
transition from the real world of GFF"FfX to the ideal world. Crucial to this sequence
of hybrids are the technique of Zhandry [35] which, by viewing a space under
dual bases, allows one to simulate a random function using a sparse represen-
tation table and to “record” the queries to the function. For the ideal world,
we can represent the random oracle and the random function underlying Ev
independently using such sparse representation tables. With some careful mod-
ification, we are also able to represent the real world’s random oracle using a
similar pair of sparse representation tables as if it were two separate functions.
However, in this case, the tables will be slightly non-independent in that if the
adversary queries Ev on an input z and the random oracle on (K7, 2@ K3) then
the results of the latter query is stored in the Ev table, rather than the random
oracle table. Beyond this minor consistency check (which we are only able to
implement because the queries to Ev are classical and so can be stored by sim-
ulation), the corresponding games are identical. Having done this rewriting, we
can carefully apply Theorem 1 to bound the ability of an adversary to distinguish
between the two worlds by its ability to trigger this consistency check.

As mentioned in Sect. 2.1, our application of Theorem 1 here is somewhat
atypical. Our distribution over functions D will be deterministic, but we are
able to still extract a meaningful bound from this by taking advantage of our
knowledge of the particular behavior of the adversary we apply Theorem 1 with.

Proof. In this proof we will consider a sequence of hybrid games Hy through Hg.
Of these games we will establish the following claims.

1. Pr[GPLy o(A)] = Pr[Ho] = Pr[H] = Pr[Hz] = Pr[Hs]
2. Pr[GFF’rfojl(.A)] = Pr[Hg] = Pr[Hg] = Pr[H7] = Pr[Hg] = Pr[H5] = Pr[H4]
3. Pr[Ha] — Pr[Hs] < /8(p + q)pq/2F- 17T

5 The outer xor by K> used in FX is omitted because it is unnecessary for our analysis.
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Combining these claims gives the desired result.
In formally defining our hybrids we write the computation to be performed
using the following quantum registers.

— W: The workspace of A. The adversary’s final output is written into W{1].

— K: The k-qubit register (representing the function key/index) A uses when
making oracle queries to the random oracle.

— X: The n-qubit register (representing function inputs) used when making
oracle queries to the random oracle or Ev.

— Y: The m-qubit register (representing function outputs) into which the results
of oracle queries are written.

— H: The 25" . m-qubit register which stores the function defining the random
oracle (initially via its truth table).

— F: The 2™ - m-qubit register which stores the function defining Ev.

— Ki: The k-qubit register which stores the first key of the construction.

— Ks5: The n-qubit register which stores the second key of the construction.

— I: The [log p]-qubit register which tracks how many Ev queries A has made.

- X = ()?1, ...,f(},): The p n-qubit registers used to store the classical queries
that A makes to Ev.

We start by changing our perspective. A quantum algorithm that makes
classical queries to Ev can be modeled by thinking of a quantum algorithm that
measures its X register immediately before the query. (Because the behavior of
Ev is completely classical at this point, we do not need to measure the Y register
as well.) Measuring the register X is indistinguishable from using a CNOT oper-
ation to copy it into a separate register (i.e. xor-ing X into the previously empty
register X, that will never again be modified). By incorporating this CNOT
operation into the behavior of our hybrid game, we treat A as an attacker that
makes fully quantum queries to its oracles in the hybrid game. We think of A as
deferring all of measurements until the end of its computation. Because all that
matters is its final output W[1] we can have the game measure just that register
and assume that A does not internally make any measurements. The principle
of deferred measurement ensures that the various changes discussed here do not
change the behavior of A. This perspective change lets us use purely quantum
analysis, rather than mixing quantum and classical.

CrLAM 1. We start by considering the hybrids Hg through Hs, defined in Fig. 4
which are all identical to the ideal world of GErFfX. In these transitions we are
applying the ideas of Zhandry [35] to transition to representing the random
functions stored in H and F' by an all zeros table which is updated whenever
the adversary makes a query.

The hybrid Hg is mostly just GErFfX rewritten to use the registers indicated

above. So Pr[GFF’rFfX@(A)] = Pr[Ho] holds.

Next consider H; which differs from Hg only in the grey highlighted code
which initializes H and F' in the uniform superposition and then measures them
at the end of execution. (Recall that the Hadamard transform applied to the
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Games Ho, Hi EV(X,Y : I,X,F)
H s Fes(k,n, m) I—1T+1 mod 2
F «sFcs(0,n,m) X — X; DX
|, F) — [H,F) Y « F(X)®Y
|H, F> — |02 +"‘m,02"'m> Return (X,Y : I, X, F)
Run A[Ev, Ro] Ro(K,X,Y : H)
Measure W[1], H, F Y~ Hxk(X)®Y
Return W[1] =1 Return (K, X,Y : H)
Games | Ha | Hs FEV(X,Y : I,X,F)
o oo I T+1 mod 2
|H,F) < H|0? 0% > X~ Xr@X
F(X)— FX)®Y
Y. F Y,F 4,Y,H Y, H H
Run A[H oFEVoH ,H oFROoH ] Return (X, Y - 17 X, F)
k+n . T m
|H,F) — )02 .0? > FRo(K, X,Y : H)
Run A[HY o FEVoHY ,HY o FRoo H"] Hg(X) < He(X)®Y
|H,F) — H|H,F) Return (K, X,Y : H)
Measure W[1], H, F
Return W[1] =1

Fig.4. Hybrid games Hp through Hs for the proof of Theorem 3 which are equiv-
alent to the ideal world of G,@r,:fx. Highlighted or boxed code is only included in the
correspondingly highlighted or boxed game.

all zeros state gives the uniform superposition.) Note that these register control,
but are unaffected by the oracles Ev and Ro. Because they are never modified
while A is executing, the principle of deferred measurement tells us that this
modification is undetectable by A, giving Pr[Hg] = Pr[H;]

Next consider Hy which contains the boxed, but not the highlighted, code.
This game uses the oracles FEvV and FRO, the Fourier versions of Ev and RO,
which xor the Y value of A’s query into the register F' or H. Note that A’s
access to these oracles is mitigated by HY*" on each query. The superscript here
indicate that the Hadamard transform is being applied to the registers Y and
F. We have that HY"F o FEV o HY' = Ev and HY"# o FRo o HY"¥ = Ro both
hold.” So Pr[H;] = Pr[Hs] because the adversary’s oracles are identical.

Next consider Hz which contains the highlighted, but not the boxed, code.
For this transition, recall that H o H is the identity operator. So to transition
to this game we can cancel the H operator used to initialize H with the R
operator applied before A’s first FRO oracle query. Similarly, we can cancel
the H* operation performed after any (non-final) FRO query with the HH

" This follows as a consequence of the following. Let Uy and Ug be the unitaries which
for y,z € {0,1} are defined by Ug |y,2) = |y ® 2, z) and Ug |y, 2) = |y, y @ 2). Then
HoUgoH = Us.
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Games Ho, Hs EV(X,Y : H,1, X, K1, Ka)

H s ch(k,vkl, m) I~ T+1 mod 2"
K1H${071}’ Xr<—XreX

K2<—${071}n Y(—HKI(X@KQ)@Y

|H, K1, K2y < IH,KI; Ks) Return (X,Y : H,I, X, K1, K3)
|H, K1, K2) — H ’02 .m,0k70"> RO(K, X,Y : H)

Run A[Ev, RO] Y —Hk(X)®Y

Measure W([1], H, K1, Ko Return (K, X,Y : H)

Return W[1] =1

Games [Hr |, He FEV(X,Y : H,1,X, K1, K»)
—_— I« T+1 mod 2/
Etn.m Ak An — =
|H7K1,K2>‘—H)02 7070> Xr—XreoX
Hi, (X®K2) — Hre,(X®K2) DY
Y,H Y,H 1 E
O<H oFEvoH ‘ Return (X,Y : H,I, X, K1, K>)
0 — H"H o FRoo H" | FRo(K,X,Y : H)
Run A[0, 0] Hy(X) « Hr(X) @Y

|K1’K2>(7H|0k70n> Return (K, X,Y : H)
|H) ’02k+n'm>

Run A[HY o FEVoHY , HY c FRO o H"]

|H) — H|H)

Measure W[1], H, K1, K>

Return W[1] =1

Fig. 5. Hybrid games Hg through Hg for the proof of Theorem 3 which are equivalent to
the real world of GE’;X. Highlighted or boxed code is only included in the correspondingly
highlighted or boxed game.

operation performed before the next FRO query. Finally, the H* operation that
would be performed after the final FRO query is instead delayed to be performed
immediately before H is measured. (We could have omitted this operation and
measurement entirely because all that matters at that point is the measurement
of W1].) The H operators on F are similarly changed. Because A does not have
access to the H and F registers, we can indeed commute the H operators with
A in this manner without changing behavior. Hence Pr[Hs] = Pr[Hs], as desired.
Note that H and F independently store tables which are initialized to all zeros
and then written into by the adversary’s queries.

CramM 2. We now consider the hybrids Hy through Hg (starting from Hg), which
are defined in Fig.5 and Fig. 6 using similar ideas as in the transition from Hg
throug;h Hs. As we will justify, these games are all equivalent to the real world
of GPey.
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Games | Hs |, Ha FEV(X,Y : H,I,X, K1, K>)
|K1, K2) < H|0%,0") I—T+1 mod 2

o 2" X~ XioXx
H. P — 02k+ m702 m I T
L ’ > Hr, (X®K2) « Hi, (X®K2)®Y
O H oToFEvoToH | Return (X,Y : H,I, X, K1, K>)
0 « H oToFRooT oMY | FRO(K, X,Y : H)

Hig(X)«— Hx(X)®Y
Return (K, X,Y : H)

Run A[O, O']
Run A[HY o FEV o HY ,HY 0 FRO' o H" |
)H,F,I7)Z,K1,K2> . T‘H,F, I7X,K1,K2>

\H — H |H) FEV/(X,Y : H F,1,X, K1, K»)
Measure W[1], H, K1, K> I —TI+1 mod 2"
Return W[1] =1 XXX

, = bool; « (X ¢ {X1,...,X1-1})
FRO(K, X, Y :H, F. I, X, K, K ’
( s <Xy 4,4, R, 2) bools (HKl(X @ P(2) % Om)

If K = Ky and X @ Kz € {X1,..., Xr} then o0 (F(X) £ 0™)
// Input is bad

If bool; and (bools or bools) then

FIX®K:) « FIX®K:) @Y // Input is bad
Else FI(X) « F(X)

Hg(X) « Hx(X)®Y F(X) «— Hg, (X ® K>)
Return (K, X,Y : H,F, I, X, K1, K5) Hi, (X ® K>) — F'(X)

F(X) = F(X)®Y _
Return (X,Y : H,I, X, K1, K2)

Fig. 6. Hybrid games Hs and H4 for the proof of Theorem 3 which are equivalent to the
real world of GE'FfX. Highlighted or boxed code is only included in the correspondingly
highlighted or boxed game. Unitary 7 is define in the text.

First Hg rewrote the real world of G’,irfo to use our specified registers and to

record queries into X in Ev. Then in Hs, rather than sampling H, K;, and K,
uniformly at the beginning of the game we put them in the uniform superposition
and measure them at the end of the game. For H; we replace our oracles that xor
into the adversary’s Y register with oracles that xor into the H register using
Hadamard operations, some of which we then cancel out to transition to Hg.
The same arguments from Claim 1 of why these sorts of modifications do not
change the behavior of the game apply here and so Pr[GErFfX 1(A)] = Pr[Ho] =
Pr[Hs] = Pr[H7] = Pr[Hg]. ’

Our next transitions are designed to make the current game’s oracles identical
with those of Hj, except on some “bad” inputs. In Hg we have a single all zeros
table H which gets written into by queries that A makes to either of its oracles,
while in Hsz the oracles separately wrote into either H or F. For Hs we will
similarly separate the single table H into separate tables H and F'. However,
we cannot keep them completely independent, because if the adversary queries
FEv with X = 2 and FRo with (K, X) = (K1,2 @ K») then both of these
operations would be writing into the same table location in Hg. Consider the
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following unitary 7" which acts on registers H and F' and is controlled by the
registers I, )_(', K;, and Ky. We will think of this unitary as transitioning us
between a representation of H as a single table (with an all-zero F table) and a
representation of it divided between H and F'.

T(H,F,I,X, K, K>)
For z € {X1,...,X;} do
F'(z) «— F(x)
F(z) « Hg, (2 ® K>)
Hg, (2@ K3) < F'(z)
Return (H, F,1,X, K, K>)

In words, 7 swaps F'(z) and Hg, (z @ K3) for each = that has been previous
queried to FEV (as stored by X and I). Note that 7 is its own inverse. In Hs we
(i) initialize the table F' as all zeros, (ii) perform 7 before and after each oracle
query, and (iii) perform 7 after .4 has executed. We verify that H has the same
value in Hs that it would have had in Hg during each oracle query and at the
end before measurement. The application of 7 before the first oracle query does
nothing (because I = 0) so H is all zeros for this query as required. As we’ve seen
previously with H, we can commute 7 with the operations of 4 because 7 only
acts on registers outside of the adversary’s control. We can similarly commute
7T with HY. Hence the T operation after every non-final oracle query can be
seen to cancel with the 7 operation before the following oracle query. The 7
operation after the final oracle query cancels with the 7 operation performed
after A halts execution. Hence, Pr[Hg] = Pr[H5] as claimed.

For the transition to Hy let us dig into how our two-table representation in
H5 works so that we can incorporate the behavior of 7" directly into the oracles.
For simplicity of notation in discussion, let H(z) denote Hg, (z@® K>). First note
that in between oracle queries the two tables representation of Hs will satisfy
the property that for each z € {X;,...,X;} we will have H(z) = 0F° and for
all other 2 we will have that F(z) = 07°".% This is the case because after each
query we have applied 7 to an H which contains the same values it would have
in Hg and an F' which is all zeros.

Now consider when a 7oFEvVoT query is executed with some X and Y. If X €
{X1,..., X}, then F(X) and H(X) are swapped, Y is xored into H(X), then
finally F'(X) and H (X) are swapped back. Equivalently, we could have xored Y
directly into F(X) and skipped the swapping around. If X ¢ {X’l, e ,)Z'I}, then
Y is xored into H(X) before F(X) and H(X) are swapped. If H(X) = 0
beforehand, then we could equivalently have xored Y directly into F(X) and
skipped the swapping around (because F(X) = 07°" must have held from our
assumption on X). If H(X) # 07° beforehand, then we could equivalently could
have swapped H(X) and F(X) first, then xored Y into F(X). The equivalent
behavior we described is exactly the behavior captured by the oracle FEV’ which

8 More precisely, the corresponding registers hold superpositions over tables satisfying
the properties we discuss.
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Games , Hy FEV(X,Y : H F,I,X, K, K>)
|K17K2><—H}Ok,0"> I 1I+1 mod 21

o+, n, Xr—XreoX
H,F) — ’02“ m g2 . .
| > > bOO|1<—(X¢{X1,A..,X]_1})
Run A[HY o FEVoHY ,HY c FROoH] booly « (Hx, (X @ K2) # 0™)
Measure W 1] bools «— (F(X) # 0™)
Return W[1] =1 If bool; and (bools or bools)
FRO(K,X,Y : H,F,1,X K, K>) // Input is bad

F'(X) « F(X)

If K= K, and X ®Ks € {X1,..., X} then

// Input is bad ;
_ Hi (X @ K») — F'(X)
FIX®K:) — FIXOK)®Y PO FUO®Y
| Hx(X) — He(X) @Y | Return (X,Y : H,1, X, K1, K>)
Else
Hi(X) « Hk(X) @Y
Return (K, X,Y : H, F,I, X, K1, K>)

F(X) < Hg, (X ® K>)

Fig. 7. Hybrid games Hs and Hy for the proof of Theorem 3 which are rewritten versions
of Hz and Hs to emphasize that their oracles are identical-until-bad. Highlighted or
boxed code is only included in the correspondingly highlighted or boxed game.

is used in Hy in place of 7 o FEV o 7. It checks if X ¢ {X1,..., X} (bool;)
and H(X) # 0™ (booly), performing a swap if so. Then Y is xored into F(X).
A swap is also performed if X ¢ {X1,...,X;_1} and F(X) # 0™, however this
case is impossible from our earlier observation that F(z) = 0" when X is not
in X. This second case was added only to ensure that FEV’ is a permutation.

Similarly, consider when a 7 o FRO o 7 query is executed with some K, X
Y. Any swapping done by 7 uses Hg,, so when K # K; this just xors Y into
Hg(X). If X ® K> is not in {fl,...,fl}, then Hp (X) is unaffected by the
swapping so again this just xors Y into Hg (X). When K = Ky and X @ Ks €
{X1,..., X}, first Hg(X) would have been swapped with F(X @ K5), then Y
would be xored into Hg (X), then Hi(X) and F(X @ K3) would be swapped
back. Equivalently, we could just have xored Y into F(X @ K>) and skipped the
swapping. This behavior we described is exactly the behavior captured by the
oracle FRO' which is used in Hy in place of 7 o FRO o 7.

We have just described that on the inputs we care about FEV' behaves
identically to 7 o FEv o7 and FR0O’ behaves identically to 7 o FRO o 7. Hence
Pr[Hs] = Pr[H4], completing this claim.

CrAM 3. To compare hybrids Hsg and Hy we will note their oracles only differ on
a small number of inputs (in particular those labelled as bad by comments in our
code) and then apply Theorem 1 to bound the difference between them. To aid
in this we have rewritten them as ﬁg and ﬁ4 in Fig. 7. For both we have removed
some operations performed after A halted its execution for cleanliness because
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these operations on registers other than W[1] cannot affect the probability that
it is measured to equal 1. So we have Pr[Hs3] = Pr[Hs] and Pr[Hs] = Pr[Hy4].

Let FEv3 and FRO3 be the permutations defining the corresponding oracle
in Hs. Define FEv,4 and FRO4 analogously. These permutations differ only on the
inputs we referred to as bad. So let S denote the set of bad X, H, F', I, X, Ki, Ko
for FEV (i.e. those for which bool; and either booly or bools hold). Let S” denote
the set of bad K, X, H, F,I,X,KI’KQ for FRO (i.e. those for which K = K;
and X ® K € {X1,...,X}). Let D denote the distribution which always out-
puts (5,5, FEvs, FRO3, FEV4, FROy, €). Clearly this is a valid distribution for
Theorem 1 by our choice of S and 5’. _

Now we can define an adversary A’ for ij"ftb which simulates the view of

A in ﬁ3+b by locally running the code of that hybrid except for during oracle
queries when it uses its fj, oracle to simulate FEvV and f] oracle to simulate
FRoO. Because the simulation of these views are perfect we have that

Pr{Hs] — PriH] = AdviS(4') < 2(p + 0)y/AdvS ™ (A')

where the inequality follows from Theorem 1, noting that A’ makes p + ¢ oracle
queries.

To complete the proof we bound AdvE**(A’). In the following probability
calculation we use x and ¢ to denote random variables taking on the values
the corresponding variables have at the end of an execution of GH*°(A). Let
S denote a random variable which equals S if the measured query is to fy and
equals S’ otherwise. Then conditioning over each possible value of i gives

ptq
AdVE*(A) = Prlz e S| = > Prlze S |i= j]Pr[i = j]
j=1
ptq
= (p—l—q)*lZPr[meS |i= 7]
j=1

Because A is order consistent we can pick disjoint sets £ and R with EUR =
{1,...,p + q} such that i € F means the i-th query is to A’s FEv oracle and
i € R means that the i-th query is to its FRO oracle. Note that |F| = ¢ and
|R| = p. The view of A (when run by A’) in G&** matches its view in Hg so,
in particular, it is independent of K; and K5. Hence we can think of these keys
being chosen at random at the end of execution when analyzing the probability
of z € S.

For a FRO query, the check for bad inputs is if K1 = K and Ky € {X @
)Z'l, L X® X}} The variable I is counting the number of FEV queries made
so far, so I < ¢. By a union bound,

PI’[LC c S/ ‘ i = _7] < q/2F.k|+F.i|

when j € R.
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For a FEV query, the check for bad inputs is if X ¢ {)Z'l, o ,)?1_1} and
Hg, (X ® K3) is non-zero.” In ﬁg, each query to FRO can make a single entry
of H non-zero so it will never have more than p non-zero entries. By a union
bound,

Pr[x eSS | i = ]] < p/QF.kIJrF.iI

when j € E.
The proof is then completed by noting
ptq
d PrzeS|i=jl=> Prlzes |[i=j]+> PrlzeS|i=j]
j=1 JER jeE
< plg/2F K 4 g(p/2F KR = gpg joF-K+F.il
and plugging in to our earlier expression. a

4 Double Encryption

In this section we prove the security of the double encryption key-length exten-
sion technique against fully quantum attacks. Our proof first reduces this to the
ability of a quantum algorithm to solve the list disjointness problem and then
extends known query lower bounds for element distinctness to list disjointness
(with some modifications).

The double encryption blockcipher is constructed via two sequential
application of an wunderlying blockcipher. Formally, given a blockcipher
E € lcs(E.kl,E.bl), we define the double encryption blockcipher DE[E] by
DE[E|(K} | K3, x) = Ek, (Ek, (z)). Here |K;| = |K3| = E.kl so DE[E].kl = 2E.kI
and DE[E].bl = E.bl. Its inverse can be computed as DE[E] ! (K || Ko,7) =
£ (Exd(a))

Classically, the meet-in-the-middle attack [10,26] shows that this construc-
tion achieves essentially the same security a single encryption. In the quantum
setting, this construction was recently considered by Kaplan [16]. They gave
an attack and matching security bound for the key-recovery security of dou-
ble encryption. This leaves the question of whether their security result can be
extended to cover full SPRP security, which we resolve by the main theorem
of this section. This theorem is proven via a reduction technique of Tessaro
and Thiruvengadam [31] which they used to establish a (classical) time-memory
tradeoff for the security of double encryption, by reducing its security to the list
disjointness problem and conjecturing a time-memory tradeoff for that problem.

PROBLEMS AND LANGUAGES. In addition to the list disjointness problem (1LD),
we will also consider two versions of the element distinctness problem (ED, 1ED).
In general, a problem PB specifies a relation R on set on instances Z (i.e. R is
function which maps an instance L € Z and witness w to a decision R(L,w) €

9 Note that the other bad inputs, for which X ¢ {)217 e ,21,1} and F(X) is non-zero,
will never occur.
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|Problem| Witness | Promise |
ED |z # ys.t. L(z) = L(y) -
1ED |z #ys.t. L(z) = L(y) At most one witness.

1LD |z,y s.t. Lo(z) = L1(y)|At most one witness. Injective Lg, L1.

Fig. 8. Summary of the element distinctness and list disjointness problems we consider.

{0,1}). This relation induces a language £ = {L € Z : Jw, R(L,w) = 1}. Rather
than think of instances as bit strings, we will think of them as functions (to which
decision and search algorithms are given oracle access). To restrict attention to
functions of specific sizes we let £L(D, R) = L nZ(D, R) where Z(D, R) denotes
the restriction of Z to functions L : [D] — [R], where D < R. To discuss
instances not in the language we let £’ = Z\L and £'(D, R) = Z(D, R)\L.

Problems have decision and search versions. The goal of a decision algorithm
is to output 1 (representing “acceptance”) on instances in the language and 0
(representing “rejection”) otherwise. Relevant quantities are the minimum prob-
ability P! of accepting an instance in the language, the maximum probability
PO of accepting an instance not in the language, and the error rater F which
are formally defined by

1 _ : _ 0 — =
PhalA) = min PrA[L] = 1], Phe(A) =  max PrlA[L] = 1]

Ep,r(A) = max{1 — Pp, 5(A), Pp (A)}-

We define the decision PB advantage of .4 by Advjpr (A) = Pp p(A) = Pp r(A).
In non-cryptographic contexts, instead of looking at the difference in probability
that inputs that are in or out of the language are accepted, one often looks at
how far these are each from 1/2. This motivates the definition /—\dv%‘?}g(A) =
min{2P}, (A) — 1,1 —-2Pp, n(A)} =1 —2Ep r(A).

The goal of a search algorithm is to output a witness for the instance.
We define its advantage to be the minimum probability it succeeds, i.e.,
AdVi3 (A) = minges(p,r) PrIR(L, A[L]) = 1].

ExAMPLE PROBLEMS. The list disjointness problem asks how well an algorithm
can distinguish between the case that is give (oracle access to) two lists which
are disjoint or have one element in common (Fig.8). In particular, we interpret
an instance L as the two functions Lo, Ly : [|D/2]] — [R] defined by Ly(x) =
L(z + b|D/2]). Let S,, denote the set of L for which Ly and L, are injective
and which have n elements in common, i.e. for which |[{L(1),..., Lo(|D/2])} n
{L1(1),...,L1(|.D/2])}| = n. Then 1LD is defined by the relation R which on
input (L, (x,y)) returns 1 iff Lo(z) = Li(y) and the instance set Z = Sy u Sy
(i.e., the promise that there is at most one element in common and that the lists
are individually injective). The search version of list disjointness is sometimes
referred to as claw-finding.

The element distinctness problem asks how well an algorithm can detect
whether all the elements in a list are distinct. Let S], denote the set of L which
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have n collision pairs, i.e. for which [{{z,y} : © # y,L(z) = L(y)}| = n. Then
ED is defined by the relation R which on input (L, (x,y)) returns 1 iff  # y and
L(z) = L(y) with the instance set Z = J,_, S/, consisting of all functions. We
let 1IED denote restricting ED to Z = S u S (i.e., the promise that there is at
most one repetition in the list).

4.1 Security Result

The following theorem shows that an attacker achieving constant advantage must
make 2(22%/3) oracle queries (ignoring log terms). Our bound is not tight for a
lower parameter regimes, though future work may establish better bounds for
list disjointness in these regimes.

Theorem 4. Consider DE[-] with the underlying blockcipher modeled by an ideal
cipher drawn from lcs(k,n). Let A be a quantum adversary which makes at most
q queries to the ideal cipher. Then

AdvPP(A) < 11{/(q - klgk)3/22k 4 1/2%,

As mentioned earlier, our proof works by first reducing the security of double
encryption against quantum queries to the security of the list disjointness prob-
lem against quantum queries. This is captured in the following theorem which
Wwe prove now.

Theorem 5. Consider DE[-] with the underlying blockcipher modeled by an ideal
cipher drawn from lcs(k,n). Let A be a quantum adversary which makes at most
q queries to the ideal cipher. Then for any R = 2% we can construct A" making
at most q oracle queries such that

AdvEP(A) < AdvaiT (A') + 1/2".
We state and prove a bound on Adv!'®™ in Sect.4.2. Our proof applies the

same reduction technique as Tessaro and Thiruvengadam [31], we are verifying
that it works quantumly as well.

Proof. For b e {0,1}, let Hy be defined to be identical to GJ¢", except that Ko
is chosen uniformly from {0,1}*\{K;} rather than from {0,1}*. This has no
effect when b = 0 because the keys are not used, so Pr[G5g’(A)] = Pr[Ho].
When b = 1 there was only a 1/2* chance that K would have equalled K; so
PriGEE (A)] < Pr[H.] + 1/2".

Now we define a decision algorithm .4’ for 1LD which uses its input lists to
simulate a view for A. When the lists are disjoint A’s view will perfectly match
that of Hy and when the lists have exactly one element in common A’s view will
perfectly match that of H;. Hence we have Pr[H;]| = Min ;s Pr[GY 1 (A)]

(1Lt Pr[GY 1 (A)], so Pr[H1] — Pr[Ho] = Advii . (A)
which gives the claimed bound.

and Pr[Hp] = max
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Adversary A'[L] Ic(K,X,Y : p,m, F) INnV(K, X,Y : p,m, F)

p s lcs(0, k) (i,9) < p(K) (4,7) < p(K)

m<«slcs(0,n) If : = 0 then If 4 = 0 then

F «slcs([lg R], n) Y « Y@ Fr,;)(X) Y Y ®F, ;) (X)

b s A[x, 7' 1c,INv] Else Else

Return ' Y —Y@n(F, (X)) Y <Y®F,qg(r (X))
Return (K, X,Y : p,7, F) Return (K,X,Y : p, 7, F)

Fig. 9. Reduction adversary used in proof of Theorem 5.

The adversary A’ is defined in Fig. 9. It samples a permutation p on {0, 1}*, a
permutation 7 on {0,1}", and a cipher F. The permutation p is used to provide
a random map from the keys K € {0,1}* to the elements of the lists Ly and
Ly. We will interpret p(K) as a tuple (i,5) with i € {0,1} and j € [2¥/2]. Then
K gets mapped to L;(j). Therefore either none of the keys map to the same
element or a single pair of them maps to the same element.

Adversary A’s queries to EV and INV are answered using 7 and 7!, Its
queries to the ideal cipher are more complicated and are handled by the oracles
Ic and INv. We can verify that these oracles define permutations on bitstring
inputs, so A’ is a well defined quantum adversary. Consider a key K and interpret
p(K) as a tuple (i,7) as described above. If i = 0, then ideal cipher queries for
it are answered as if Ex(-) = Fp,(;)(-). If i = 1, then ideal cipher queries for it
are answered as if Ex (-) = 7T(FL_11(j>(~)).10 If the list element K is not mapped to
by any other keys, then the indexing into F' ensures that Ex(+) is independent
of m and Eg for all other K’. If K and K’ map to the same list element (and
i =0 for K), then Eg(-) and E(-) are random permutations conditioned on
E (Ek(-)) = 7(-) and independent of all other Eg (-).

In Hyp, the permutation of Ev and INV is independent of each Eg () which
are themselves independent of each other. So this perfectly matches the view
presented to A by A’ when the lists are disjoint. In Hy, each Eg(-) is pairwise
independent and the permutation of Ev and INV is defined to equal Eg, (Ex, (*)).
This perfectly matches the view presented to A by A’ when the lists have one
element in common because we can think of it as just having changed the order
in which the permutations Eg, (Ek, (*)), Ex, (-), and Ek,(-) were sampled. O

4.2 The Hardness of List Disjointness

If A is an algorithm making at most ¢ classical oracle queries, then it is not hard
to prove that Adv%}%(A) < ¢q/D. If, instead, A makes as most ¢ quantum oracle
queries, the correct bound is less straightforward. In this section, we will prove

the following result.

19 When using output of L as keys for F' we are identifying the elements of [R] with
elements of {0,1}"8 %1 in the standard manner.
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Theorem 6. If A is a quantum algorithm making at most q queries to its oracle
and D > 32 is a power of 2, then

Advi;3p(A) <114/(q-1g D -1glg D)3/D2.

We restrict attention to the case that D is a power of 2 only for notational
simplicity in the proof. Essentially the same bound for more general D follows
from the same techniques.

Ambanis’s O(N?3) query algorithm for element distinctness [2] can be used
to solve list disjointness and hence shows this is tight (up to logarithmic factors)
for attackers achieving constant advantage. The sixth root degrades the quality
of the bound for lower parameter regimes. An interesting question we leave open
is whether this could be proven without the sixth root or the logarithmic factors.
PROOF SKETCH. The starting point for our reduction is that 2(N?/3) lower
bounds are known both the search and decision versions of ED [1,34].1' By
slightly modifying Zhandry’s [34] technique for proving this, we instead get a
bound on the hardness of 1ED-s. Next, a simple reduction (split the list in half
at random) shows that 1LD-s is as hard as 1ED-s.

Then a “binary search” style reduction shows that 1LD-d is as hard as 1LD-s.
In the reduction, the 1LD-s algorithm repeatedly splits its lists in half and uses
the 1LD-d algorithm to determine which pair of lists contains the non-disjoint
entries. However, we need our reduction to work by running the 1LD-d algorithm
on a particular fixed size of list (the particular size we showed 1LD-d is hard for)
rather than running it on numerous shrinking sizes. We achieve this by padding
the lists with random elements. The choice of R = 3D? was made so that with
good probability these random elements do not overlap with the actual list. This
padding adds the lg D term to our bound.

Finally a generic technique allows us to relate the hardness of 1LD and 1LD-d.
Given an algorithm with high 1LD advantage we can run it multiple times to get
a precise estimate of how frequently it is outputting 1 and use that to determine
what we want to output. This last step is the primary cause of the sixth root in
our bound; it required running the 1LD algorithm on the order of 1/6% times to
get a precise enough estimate, where ¢ is the advantage of the 1LD algorithm.
This squaring of ¢ in the query complexity of our 1LD-d algorithm (together
with the fact that the query complexity is cubed in our 1ED-s bound) ultimately
causes the sixth root.

Our formalization of this proof is given in the full version [15]. In particular,
the proof primarily consists of four lemmas which give quantitative statements
capturing the claims:

1. 1ED-s is hard.

2. If 1ED-s is hard, then 1LD-s is hard.
3. If 1LD-s is hard, then 1LD-d is hard.
4. If 1LD-d is hard then 1LD is hard.

The final theorem follows by combining the quantitative claims.

1 In the proof we actually work with the advantage upper bounds, rather than the
corresponding query lower bounds.
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