
Edge-RT: OS Support for Controlled Latency in the Multi-Tenant, Real-Time Edge

Wenyuan Shao, Bite Ye, Huachuan Wang, Gabriel Parmer, Yuxin Ren

The George Washington University

Washington, DC

{shaowy,bitye,hcwang,gparmer,ryx}@gwu.edu

Abstract—Embedded and real-time devices in many domains
are increasingly dependent on network connectivity. The ability
to offload computations encourages Cost, Size, Weight and
Power (C-SWaP) optimizations, while coordination over the
network effectively enables systems to sense the environment
beyond their own local sensors, and to collaborate globally. The
promise is significant: Autonomous Vehicles (AVs) coordinating
with each other through infrastructure, factories aggregating
data for global optimization, and power-constrained devices
leveraging offloaded inference tasks. Low-latency wireless (e.g.,
5G) technologies paired with the edge cloud, are further enabling
these trends. Unfortunately, computation at the edge poses
significant challenges due to the challenging combination of
limited resources, required high performance, security due to
multi-tenancy, and real-time latency.

This paper introduces Edge-RT, a set of OS extensions for
the edge designed to meet the end-to-end (packet reception
to transmission) deadlines across chains of computations. It
supports strong security by executing a chain per-client de-
vice, thus isolating tenant and device computations. Despite a
practical focus on deadlines and strong isolation, it maintains
high system efficiency. To do so, Edge-RT focuses on per-packet
deadlines inherited by the computations that operate on it. It
introduces mechanisms to avoid per-packet system overheads,
while trading only bounded impacts on predictable scheduling.
Results show that compared to Linux and EdgeOS, Edge-RT
can both maintain higher throughput and meet significantly
more deadlines both for systems with bimodal workloads with
utilization above 60%, in the presence of malicious tasks, and
as the system scales up in clients.

I. INTRODUCTION

Embedded and real-time systems are increasingly required

to provide features that must interact with the broader en-

vironment beyond their local sensors and actuators. Though

IoT systems are notable for their Internet connectivity, even

systems with strict predictability requirements are now com-

monly network-connected to leverage distributed sensors and

computation. Industry 4.0 focuses on the interlinking of

real-time machinery with network-connected aggregation and

analytics to better manage factories, and vehicle-to-everything

(V2X) communications acknowledge that vehicular decisions

are empowered by communicating with and understanding

the environment. Empowering this, modern millimeter-wave

wireless technologies such as 5G aim for 1ms round-trip times

(RTT) – current latencies are sub-10ms [1] – thus providing

latency levels that can potentially fit into the decision loops of

many real-time systems. In contrast to computation hosted in

the cloud’s datacenters whose access imposes the significant

jitter and high latency of the WAN, the edge cloud has

basestations that are proximate to the embedded systems. For

example, high-frequency 5G basestations have an effective

This material is based upon work supported by the National Science
Foundation under Grants No. CNS 1815690 and CPS 1837382, through
SRC under grants GRC task 2911.001 and SRC JUMP task 2779.030,
and ONR N000142212084. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of these agencies.

range in the 100s of meters, enabling low-latency RTTs.

Embedded systems can benefit from low-latency access to

the edge for (1) offloading [2] of computation from embedded

devices to leverage the more capable hardware of the edge for

higher-performance or memory-hungry computations while

potentially lowering device power requirements, and (2) for

sensor aggregation in which the sensor information from

many devices can be aggregated, thus decisions can consider

a more global state of the physical environment.

Unfortunately, unlike traditional cloud datacenters that con-

tain hundreds of thousands of cores and provide the illusion of

capacity elasticity, edge-clouds have much more constrained

resources [3], [4]. Despite this, the multi-tenant model that

has driven the prominence of the cloud is desirable – and

in some cases, necessary – in the edge-cloud. A multi-tenant

infrastructure enables the execution of untrusted code, pro-

vided by potentially many different tenants that rent capacity

on the server. Multi-tenancy is common on current edge

deployments: (1) network slicing enables multiple cellular

carriers to process packets using Network Functions (NFs)

to share the basestation infrastructure [5], [6], [7], [8], and

(2) edge computation providers, such as Fastly, support tenant

executions in isolated Webassembly sandboxes. For embed-

ded systems to leverage the edge in general deployments (e.g.,

5G basestations), there is a strong need for multi-tenancy.

Unfortunately, this is difficult due to the relatively constrained

resources of the edge cloud.

To effectively leverage edge-cloud systems, system soft-

ware must meet the following requirements:

• End-to-end deadlines – at its core, the real-time edge

must accommodate computations with the deadline re-

quirements on the order of a few milliseconds – given

the lower-bound of 1ms RTT for 5G. The edge must

manage the end-to-end latency of requests between when

they arrive, and when the reply is transmitted.

• Performance – the edge-cloud requires an efficiency capa-

ble of driving many 10s of Gbs network throughput. High

performance makes worst-case provisioning unappealing,

motivating a system that seeks to provide predictable

latencies with unpredictable workloads.

• Density – unlike the traditional cloud that uses VMs and

containers to isolate tenants, the smaller computational

resource availability at the edge requires abstractions and

mechanisms that efficiently enable higher-density.

• Multi-tenancy – similar to data-center-based clouds, the

edge must support multi-tenancy. For example, content de-

livery network (CDNs) already find such support necessary

(Fastly and Cloudflare). This requires untrusted code to

execute in the edge, with unknown execution times, and

potentially faulty or malicious logic.

• Dynamic workloads – the client workload changes with the

environment. As autonomous vehicles (AVs), drones, and

Edge Configurations Deadline-aware Preemptivity Client Isolation Computation Chain Dynamic Workloads Scalability

CFS (§II-B) # not deadline-aware preemptive process-based per-client chain supported > 2000

DPDK+OVS/SR-IOV (§II-A) # not deadline-aware # non-preemptive process-based # no chain supported ∼ 256

SCHED DEADLINE (§II-B) per-thread preemptive # process-based # no chain # not supported < 1000

eBPF+XDP (§II-A) # not deadline-aware # non-preemptive G# no isolation G# no chain G# not supported -

EdgeOS (§II-C) # not deadline-aware preemptive FWP-based per-client chain supported > 2000

Edge-RT (§III) per-packet preemptive FWP-based per-client chain supported > 2000

TABLE I: A summary of edge-cloud configurations in §II. Entries labelled with bullets from fully supported (), complicated (please
refer to the text for details) (G#), and not supported (#).

pedestrians are mobile, the client number and frequency

of service requests vary over time.

• Network processing – basestations traditionally focus on

network processing including properly accounting for

bandwidth, and slicing the network [5], [6], [7], [8] across

carriers. This network processing is done by network

functions (NFs) that transform and filter packets, and are

often composed into chains that process packets, and pass

them on to the next NF. Chains of isolated NFs enable

multiple applications to process on packets, and enable

NFs to provide limitations on each other. For example, the

first and last NFs can provide firewall-like functionality to

limit which packets can be processed and transmitted by

NFs in the middle of the chain.

The core question this paper seeks to answer is: is it possi-

ble to practically meet end-to-end deadlines of packets while

still maintaining high-throughput and strong isolation in a

multi-tenant, edge-cloud for dynamic and dense workloads?

One tempting answer is to directly adapt existing deadline-

driven scheduling systems (e.g., EDF) to edge-clouds. We

argue that this is not sufficient because (1) many edge cloud

infrastructures do not support preemptive scheduling (§II-A),

(2) to optimize for meeting end-to-end deadlines across chains

of computations, normal per-thread prioritization is not a good

fit for dynamic workloads (§III), and (3) high-throughput

network systems seek to avoid per-message overheads, which

is a bad match for OS abstractions that require locks and

Inter-Processor Interrupts (IPIs) for coordination (§III).
This paper presents Edge-RT, an OS infrastructure built on

the public EdgeOS [9], that focuses on packet- or message-

based deadline scheduling across chains of computations,

while maintaining high performance, density, and isolation

between client computations. Edge-RT focuses on practical

mechanisms to meet deadlines while minimising per-message

system overheads: (1) it associates deadlines with pack-

ets, and threads inherit these message deadlines as packets

flow through the computation chains to provide end-to-end,

deadline-based scheduling, and (2) creates mechanisms for

coordination and execution that avoid per-message overheads

for scheduling, batching, and inter-FWP, inter-core coordina-

tion while bounding interference.

Contributions. Edge-RT’s contributions center on providing

deadline-focused computation in a high-throughput, high-

density environment. The contributions include:

• a system design that (1) focuses on per-packet end-to-end

deadline scheduling with dynamic, dense workloads, and

(2) minimizes per-message system overheads.

• the mechanisms and abstractions for predictable buffering,

inter-core coordination, and scheduling that enable effi-

cient packet processing.

• The implementation of Edge-RT and the parameter stud-

ies to understand system overhead trade-offs to guide the

system’s configuration.

• The evaluation of Edge-RT for various workloads com-

pared with Linux and EdgeOS.

II. BACKGROUND

A. Linux Kernel Bypass and In-kernel Sandbox

Kernel-bypass networking. Kernel-bypass networking (e.g.,

Data Plane Development Kit (DPDK) [10]) enables user-level

to directly interact with networking devices. DPDK avoids

both system call and interrupt overheads by polling. Using

interrupt-driven execution increases the round-trip time to

110µs, which is close to the overheads of Linux sockets.

Despite DPDK’s efficiency, it has limitations in the edge

cloud: low scalability and non-preemptive packet processing.

Tenant isolation requires the use of a separate DPDK

instance per tenant. This is accomplished using virtual NICs

through SR-IOV, or using Open vSwitch (OVS) [11]. SR-

IOV only supports up to 256 virtual NICs, thus cannot scale

up to many tenants. OVS can scale as it acts as a virtual

switch to route packets among multiple DPDK applications.

Unfortunately, OVS limits scalability and density. For appli-

cations using DPDK and virtio [12], OVS with 256 DPDK

applications requires one polling thread per 160K PPS, and

each (minimal) application requires 110 MiB of memory.

Each tenant’s DPDK application processes their client’s

requests sequentially, thus non-preemptively. To understand

this effect, we run two types of computations in each

DPDK application, a “Light” computation which is quick

to process (40µs), and a “Heavy” computation (varying be-

tween 10-25ms). This sequential execution model is common

in throughput-centric network processing systems such as

E2 [13] and Netbricks [14]. Figure 1 compares the tail latency

of bypass techniques to native Linux sockets. In contrast,

Linux execution of clients in separate processes is preemptive,

in contrast to the sequential execution of client requests

in bypass systems. Note that adding preemptive execution

into the bypass requires multiple threads or processes, which

incurs kernel overheads that bypass systems are designed

to avoid. The workload maintains 50% utilization across 48

cores. Four cores are devoted to OVS, and four DPDK tenants

execute per core. Each receives four concurrent client requests

at 200 packets per second for light computation, and the

heavy computation rate is adjusted with its changing weight

(x-axis). Linux socket applications use a process per client.

The hardware is detailed in §VI.

This example demonstrates that maintaining kernel bypass

for each tenant imposes non-preemptive execution in which

the most latency-sensitive tasks suffer from convoy effects

 0

 20000

 40000

 60000

 80000

 100000

 10000 15000 20000 25000

9
9

th
 p

e
rc

e
n
ti

le
 L

a
te

n
c
y
 (

u
s
)

Execution time of heavy computations (us)

Bypass light
Bypass heavy

Socket light
Socket heavy

Fig. 1: 99th percentile latency of bimodal workloads when
using kernel bypass techniques.

 0

 50000

 100000

 150000

 200000

 240 480 720 960 1200 1440 1680 1920

9
9

th
 p

e
rc

e
n
ti

le
 L

a
te

n
c
y
 (

u
s
)

Total number of tasks

sched_deadline
CFS

Fig. 2: 99th percentile latency of light task with an increasing
number of total tasks and constant number of heavy tasks.

from heavy computations. Bypass properties are summarized

in Table I. The edge cloud must re-imagine such high-

throughput networking techniques to intelligently, preemp-

tively schedule clients.

Extended Berkeley Packet Filter (eBPF). eBPF [15] is an

in-kernel virtual machine which allows injecting application

logic into the kernel at run time. XDP [16] executes an eBPF

program to process packets as part of the in-kernel packet

reception path. eBPF has a few limitations [15], [17]. (1) An

eBPF program is restricted to an execution budget of 1 million

instructions. (2) eBPF programs execute non-preemptively

(unless their budget runs out), even if executing in a high-

priority NIC interrupt. (3) Loading eBPF programs is a

privileged operation (e.g., root user) as they have sensitive

access to kernel abstractions. These factors (summarized in

Table I) make eBPF a challenging choice for a multi-tenant

execution environment – especially one that requires chains

of computations and deadline-aware scheduling.

B. Thread-base Prioritization Deadline Scheduling.

Given our focus on deadline-based scheduling, it is impor-

tant to understand SCHED DEADLINE in Linux and its applica-

bility to the edge cloud. SCHED DEADLINE adds EDF support

to Linux, along with constant bandwidth server (CBS) [18]

logic to rate-limit computation. We use a process-per-client

so that they can each be preemptively scheduled with separate

deadlines, and use budget reclaiming to handle budget under-

utilization. Heavy tasks have 5ms executions, 10ms budgets,

100ms deadlines, and receive 10 requests per second. Light

tasks reply immediately, have a sufficient budget of 8µs, a

deadline of 5ms, and receive 100 requests per second.

The utilization of the system is low (from 6% up to

50%), yet Figure 2 demonstrates that with an increasing

number of light tasks, tail latency increases significantly. The

request workload is not perfectly periodic which mimics the

dynamic workload on the edge. SCHED DEADLINE relies on

per-thread prioritization. Thus, aperiodic workloads will cause

significant deviation in desired executions. In contrast, the

CFS Linux scheduler is designed for accommodating dynamic

workloads and requires no periodicity, budget, nor deadline

parameters. Correspondingly, this figure demonstrates its abil-

ity to maintain tight latency properties for the light tasks.

We argue that SCHED DEADLINE under-performs CFS be-

cause (1) thread-based prioritization is not a good fit for the

edge cloud which aims to meet deadlines for packets/requests;

(2) SCHED DEADLINE is a bad fit for dynamic workloads on

the multi-tenant edge in which execution time and request

distributions are unknown; (3) the red-black tree based imple-

mentation of SCHED DEADLINE imposes overheads (§VI-A)

with many computations (over 1200). Generally, we have

observed CFS to have better properties on scheduling high-

throughput, dynamic workloads. Table I includes a summary

of some of the properties of Linux scheduling options.

C. EdgeOS Background

Edge-RT adds real-time capabilities to the publicly avail-

able EdgeOS system [9]. EdgeOS is implemented as a set of

user-level components above the Composite [19] µ-kernel. In

EdgeOS, each tenant provides chains of computations that

process client requests. EdgeOS isolates the computations

into Feather Weight Processes (FWPs). Each FWP is single-

threaded, and has memory accesses restricted by hardware

page-tables. EdgeOS uses DPDK for efficient networking.

Two cores in EdgeOS are dedicated to poll/send packets

directly from/to the NIC. Two additional cores provide FWP

creation and fast message1 movement in an FWP chain, a

service called the Memory Movement Accelerator (MMA).

All other cores run preemptively-scheduled FWPs. Table I

summarizes key features of EdgeOS, and also how Edge-
RT expands on them.

III. SYSTEM MODEL

Edge-RT aims to provide predictable services to clients

with dynamic workloads [20], [21] provided by tenant com-

putations. As such, we make three workload assumptions:

• Tenant-provided deadlines. Each tenant provides deadlines

for its services. For example, an AV manufacturer provides

deadlines for chains focusing on planning or control.

• Unknown execution profiles. In contrast, it isn’t practical

for a tenant to understand its computation’s execution time

due to inaccessible edge hardware. Given this, we assume

no knowledge on the edge system about average or worst-

case execution time.

• Controlled utilization. This research focuses on predictable

scheduling, and not on admission control. We assume load

balancers sitting before computation nodes control utiliza-

tion to not exceed capacity in nominal conditions. We do

study the impact of malicious or erroneous clients that

cause certain computation to over-consume CPU in §VI-D.

Edge-RT can be extended in the future to provide work-

load shaping (e.g., by incorportating reservations [22]).

1We’ll use the terms messages and packets synonymously.

 0

 20

 40

 60

 80

 100

0 3.2 6.4 8 9.6 12.8%
 d

e
a
d
li
n
e
s
 m

e
t/

m
is

s
e
d
/d

ro
p
p
e
d

Deadline spread batch size (ms)

dropped missed met

(a) Max. batch deadline spread, ∆batch, in milliseconds.

 0

 20

 40

 60

 80

 100

50 250 500 750 1000%
 d

e
a
d
li
n
e
s
 m

e
t/

m
is

s
e
d
/d

ro
p
p
e
d

Quantum size (us)

dropped missed met

(b) Quantum, ∆timer, in µ-seconds

Fig. 6: The impact of maximum spread between batched messages (∆batch) and the quantum size (∆timer) on system deadlines. Each bar
is stacked with lightest shade being packets dropped, then deadlines missed, then the darkest shade is deadlines met, all for the lightest
workload.

the edge whose limited hardware resources require high

density, multi-tenant workloads. Thus we design it to handle

1000s of stage computations. At this level of load, with fast

per-message computation, even the logarithmic overheads of

EDF’s deadline sorting are significant. Given this, Edge-
RT investigates a Constant-Time EDF (CT-EDF) design that

achieves constant ∆impl by trading a bounded coarsening of

deadline resolution.

Instead of using a typical O(log(N)) balanced tree data

structure sorted by the deadline, CT-EDF’s core data structure

is implemented using three core techniques:

1) quantize time into a set of fixed-sized quanta, ∆window,

2) track a relative timeline of quanta as an array, and

3) each quanta index holds a linked list of stage computations

with deadlines within that quanta into the future.

To find the stage with the nearest deadline, requires a scan of

the array. Though this is constant (given a fixed-size array), it

is expensive. Thus, inspired by fixed priority implementations,

we use a trie of bitmaps to index the timeline and provide

both constant and efficient lookup of the stage with earliest

deadline. A side-effect of CT-EDF’s quantization is that all

computations with deadlines that fall into the same quantum

are identically prioritized. This effectively means that mes-

sages inherit a deadline at most ∆window higher than its normal

deadline (with reasoning similar to that for ∆batch).

As overflow conditions aren’t a focus of this research, we

choose a simple policy for when a stage’s thread misses its

deadline. Threads that miss their deadline are run at a lower

priority than EDF threads, and are arbitrated using round-

robin (to prevent starvation among such threads) with a quan-

tum ∆timer. Once a stage’s thread finishes its computation,

its next activation will place it back into the normal EDF

scheduling logic.

Figure 5 demonstrates a timeline of processing over three

stages with the deadline being bounded by ∆window, and

constant EDF contributing a small delay of ∆impl.

D. Analysis of Timing Properties

Reflecting on the model in §III, Edge-RT aims to reduce

per-message system overheads around ∆evt and ∆impl, while

increasing ∆interference by a bounded amount. ∆evt is limited

to the overhead of dequeuing from a wait-free ring buffer

which is on the order of 200 cycles (depending on cache-

coherency overheads from access patterns). ∆impl is domi-

nated by CT-EDF which is constant and low (see §VI-A).

The message passing overheads, ∆msg, are due to the

MMA, and constitute a straightforward delay in the activation

of a receiving stage. To pass messages between stages, the

MMA iterates through all inter-stage connections, processes

the delayed batching logic, and sends/receives notifications

from each core’s scheduler logic. This adds a latency into

message delivery, thus the activation of computations. Though

we assessed adding intelligence to the MMA to separately

prioritize different computation chains to control their latency,

the performance of the MMA is sensitive, and such attempts

negatively impacted system throughput by complicating the

tight loop. We find that in a 48-core system (details in §VI)

with almost two thousand computations, the latency for the

MMA to cycle through all connections is around 1ms for a

system at around 80% load.

There are two types of priority inversions in Edge-RT that

contribute to ∆interference.

1) Bounded priority inversion. Event notification is per-

formed periodically using polling (§IV-B), thus avoiding

per-message overheads. However, this a message trans-

mitted to a stage might be delayed by ∆timer, causing a

bounded inversion. Figure 5 depicts this overhead as sim-

ply contributing to the delay of the next stage’s activation.

2) Deadline coarsening. Edge-RT’s deadline-bounded batch-

ing (§IV-A) results in a message’s computation poten-

tially inheriting an earlier deadline only if the deadlines

are within a sliding window of ∆batch. Similarly, the

quantization of deadlines to enable O(1) EDF (§IV-C)

“bins” stages together with deadlines within a fixed win-

dow of ∆window. Figure 5 depicts this as the deadline

for the end-to-end processing of a message being d ∈

[di,m − max(∆batch,∆window), di,m]. Were the workload

predictable, this deadline inaccuracy could be compensated

by practically lowering the system’s effective utilization

by a factor related to di−d
di

. Recall that both ∆batch and

∆window are on the order of 0.5ms, which limits their

impact.

MMA

core core

Constant-Time EDF Scheduler

FWPs

NIC rx

ow tbl
NIC tx

time-bounded
noti cations

deadline-aware batching

Fig. 7: Edge-RT components. Many FWPs execute for each client
and tenant. The grey FWPs are a chain computing on a sequence
of messages for a client. Received from the NIC, a packet’s chain
and deadline is identified through a flow-table. This deadline drives
all resource management policy as the message processing flows
through the system. The MMA copies messages (black squares)
between the driver and FWPs, and between isolated FWPs. To
wake FWPs, the MMA notifies the scheduler, passing the message’s
deadline. Notifications are handled with high-frequency time-triggers
to avoid IPI overhead. The scheduler is a constant-time EDF that
has FWPs inherit the deadline of messages. The MMA batches
messages only up until message deadlines diverge by a limit to
avoid interference. The scheduler notifies the MMA when additional
messages can be transmitted. Finally, the MMA transfers messages
to the NIC driver which transits them onto the network.

V. IMPLEMENTATION

Edge-RT extends EdgeOS (§II-C) which is built as a set

of user-level components on the Composite µ-kernel [19].

Edge-RT changes the core policies for message movement,

event notification, and scheduling to focus on timely per-

client execution on edge clouds. We make no modifications

to Composite kernel.

A. Edge-RT Core Services

To reduce per-message overheads, and provide end-to-

end packet deadline scheduling, §IV introduces per-packet

deadlines, deadline-aware batching, periodic inter-core coor-

dination and constant-time EDF scheduling. Figure 7 gives

an overview of Edge-RT. Edge-RT uses a number of mech-

anisms and policies to support the implementation of end-

to-end packet deadline scheduling. (1) The client chain to

process a packet that arrives from the NIC is identified using

a flow-table. The flow-table maps IP/port values to the chain,

and the relative deadline to use for the packet. Both the

chain of computations, and this deadline are provided by the

tenant. (2) The MMA is significantly enhanced to track FWP

deadlines (described in §IV-A) and perform deadline-aware

batching. (3) The MMA interacts with per-core scheduling

logic by sending FWP activation events and receiving FWP

blocking notifications. (4) the scheduler is replaced with a par-

titioned, preemptive, EDF implementation that uses constant-

time logic, and frequent timer activations and polling for event

handling and inter-core coordination.

B. Deadline-aware, MMA-based Message Processing

Figure 7 depicts the flow of messages through the system.

Packets received by DPDK are queued into a per-chain queue

with the deadline retrieved from the flow-table. The MMA
transfers this packet to the first FWP’s input queue, and

sends an activation notification with the deadline of the FWP

to the scheduler. As such, all deadline tracking and policy,

FWPt FWPr

sched

1
2

3

1 2

3 4

FWPt

msg

timer
FWPr

time impl

MMA

4

Fig. 8: Flow of data (dashed lines) and control (solid lines). Top:
Message transfer from a transmitting FWP to a receiver, annotated
with steps. Bottom: A timeline annotated with the various software
and steps.

from flow-table to transmission, are coordinated by system

components.

The MMA is central to providing end-to-end packet

scheduling, and Figure 8 depicts the coordination between

MMA and scheduler to transmit a message between stages.

The MMA’s core role is to transfer messages between trans-

mission and reception rings. When an FWP enqueues a

message for transfer (1), Edge-RT’s MMA does the fol-

lowing: (1) track the deadline of each message in shadow

message rings that are inaccessible to FWPs; (2) transfer

a message, mi,m, from a transmission ring to a reception

ring only if the deadline of each message already in the

reception ring are in [di,m − ∆batch, di,m] (2); (3) when

message data is transferred between FWPs, also transfer their

deadlines between shadow message rings; (4) when a transfer

to an FWP is made, if there were no messages already in

its ring, send an FWP thread activation notification to its

core’s scheduler logic (3); and (5) receive notifications

from each core’s scheduler logic for when an FWP blocks

awaiting messages, which enables the MMA to transfer the

next deadline-limited batch messages.

The scheduler will execute an activated FWP according to

its EDF policy (4). Note that if a receiving FWP is already

active, messages transferred to it are batched, and avoid event

notifications.

A side-effect of the MMA’s limitations on batching is that

back-pressure is provided naturally. If an FWP is not exe-

cuted, any messages awaiting transfer into it (with deadlines

higher than ∆batch + di,m) are not transferred out of the

upstream FWP. This logic repeats until the receive ring of

NIC driver cannot receive any more packets for the flow, thus

dropping packets. Though this outcome isn’t ideal, deadline-

aware work shedding is necessary in an over-committed

system.

C. Inter-core Coordination

FWPs on separate cores interact through the MMA and

its coordination with core scheduling logic. Conventional im-

plementations of inter-process coordination use shared data-

structures and IPIs with the accompanying costs [35]. In

contrast, Edge-RT’s design minimizes these potentially per-

message overheads by remaking OS coordination primitives

based on message passing and frequent periodic polling for

events. Edge-RT implements a new user-level scheduler [36],

[37] that integrates with the MMA to enable this coordination.

110 000 00

000 100 00 010 000 01

C

Fig. 9: CT-EDF data-structures. The current time is marked “cur-
rent”, and the two-level bitmap index tracks times into the future
with runnable threads.

This scheduler’s key functionalities include the following.

(1) When switching to a thread (i.e. FWP), it passes a timeout

in cycles which is used to program the LAPIC timer, at

which point a timer interrupt will reactivate the scheduler. We

reprogram the timer to happen periodically at ∆timer to bound

notification latency. (2) The scheduler currently uses simple

partitioned scheduling. Each core’s scheduler code shares two

wait-free ring buffers with the MMA used to pass notifications

in both directions. When the timer activates the scheduler, it

polls for FWP activation notifications from the MMA and

handles them. Each notification includes a deadline with

which to execute the FWP. As such, this tight coordination

between MMA and scheduler enables the thread’s inheritance

of message deadline. (3) When an FWP blocks after finishing

message processing, the scheduler uses the other ring to send

a corresponding notification to the MMA. This enables the

MMA to resume transferring messages to the FWP if more

were pending, but not sent due to the deadline-aware batching.

D. Constant-Time Earliest Deadline First Scheduling

A traditional implementation of EDF sorts threads by

deadline often using a balanced binary tree (e.g., a min-heap

or red-black tree). Most real-time systems contain a small

number of tasks (on the order of 10s or low 100s), so any data-

structure overheads are sufficiently small. However, Edge-
RT is focused on dense, multi-tenant execution of chains of

concurrent computations, thus must be able to run on the order

of 1000s of threads (>6000 in §VI). This has two negative

effects: (1) with such high density, the frequency of FWP

activation/blocking – bounded only by packets per-second

– forces frequent scheduling decisions, and (2) the number

of active threads makes the per-scheduling decision sorting

overheads have a non-trivial impact.

CT-EDF enables constant time and fast EDF decisions. The

key idea is that the timeline is quantized into fixed quanta of a

specific length, ∆window, and is represented as a circular array

(i.e. with wrap-around logic) with an entry-per-quantum. If

the array has S entries, it tracks up to ∆window × S time

units into the future. The current time, C, defines an index

into the array, and all times into the future are indexed from

there (treating the array as a circular array). Calculating times

relative to the current time means that at each quanta, only C
needs to be incremented rather than shifting all entries down.

Finding the FWP with the lowest deadline means finding the

first quantum that contains an FWP starting the search at the

index C. At each quanta, any tasks that miss their deadlines

are placed into the lower-priority, round-robin queue. Future

enhancements can include more intelligent failure logic. In

this paper, we restrict our focus on meeting end-to-end packet

deadlines.
The data-structures for CT-EDF are depicted in Figure 9.

Finding the first quantum into the future involves iterating

through potentially the entire array, which is unacceptably

expensive. As such we use a set of bitmaps to index the

quanta that have runnable FWPs. If a quantum in the timeline

has runnable FWPs, the bit corresponding to that quanta is

1. We use the clz instruction to efficiently count the leading

zeros within the bitmap. Additionally, to avoid needing to

iterate through the words of the bitmap – using clz on

each – we define multiple levels (2 in our case) of bitmaps

that each index the next level. At each level, a bit is 1 if

the corresponding next level bitmap indexes a quantum with

runnable FWPs. This multi-level bitmap index forms a radix-

trie, and enables constant-time, efficient identification of the

earliest-deadline FWPs (with accuracy within ∆window).
Edge-RT uses a 32-bit level-1 index, that index 32, 32

bit level-2 indices (for a total of 1024 tracked quanta). This

enables using only two clz to determine the earliest deadline.

Each CT-EDF quantum is 0.5ms for a maximum deadline of

0.5s. The timeline can be extended by adding another index

level (to support 16s), or increasing the quantum.

VI. EVALUATION

This section evaluates Edge-RT relative to EdgeOS and

Linux. All experiments use a PowerEdge R740 servers

with two socket Intel(R) Xeon(R) Platinum 8160 CPUs @

2.10GHz each with 24 cores. We use an Intel X710 for 10GbE

SFP+ for networking and a similarly equipped client drives

workload generation. DPDK and OVS versions for the results

in §II-A are 19.11 LTS and 2.13, respectively. Linux results

use kernel version 5.4. We don’t use the PREEMPT RT patches

as tight interrupt response times (on the order of a µs) are

not the focus. Client machines use a modified memblaster to

generate workloads and measure round-trip latencies. Edge-
RT uses DPDK version 17.11.

A. CT-EDF Overheads

CT-EDF uses a constant-time data-structure to find the

task with the earliest deadline (§IV-C). Figure 10 investigates

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100

C
P
U

 c
lo

c
k
 c

y
c
le

s

(a) Insert

 0 20 40 60 80 100

Thread number

(b) Removal

O(1) xed priority
CT-EDF

Binary tree EDF

Fig. 10: The overheads for key data-structure operations with an
increasing runqueue size. The y-axis plots the average overhead.

 0

 20

 40

 60

 80

 100

60% 70% 80% 90% 100%%
 d

e
a
d
li
n
e
s
 m

e
t/

m
is

s
e
d
/d

ro
p
p
e
d

Linux
dropped

EdgeOS
missed

Edge-RT
met

(a) The behavior of light tasks with increasing utilization.

 0

 20

 40

 60

 80

 100

60% 70% 80% 90% 100%%
 d

e
a
d
li
n
e
s
 m

e
t/

m
is

s
e
d
/d

ro
p
p
e
d

Linux
dropped

EdgeOS
missed

Edge-RT
met

(b) The behavior of heavy tasks with increasing utilization.

Fig. 11: Comparison between Edge-RT and Linux for a bimodal workload. y axis is the fraction of deadlines met, missed and fraction
of packets dropped.

the overhead of insertion and removal for scheduling data-

structures. We compare the following. (1) A traditional O(1)

fixed priority, round-robin (O(1) fixed priority) struc-

ture which includes an array of linked lists that track threads

within a priority. It uses a two-level bitmap index – queried

with the clz instruction – that tracks priorities with active

threads. (2) CT-EDF is detailed in §V-D. (3) A traditional

EDF implementation (Binary tree EDF) using a red-black

tree to sort threads by deadline. Not shown here, we used an

in-place heap and found it to have more overhead.

Threads with uniformly random deadlines are added to the

queue (i.e. they are woken), and the thread with the highest

priority (earliest deadline) is removed from the queue (i.e.

blocks).

Discussion. With an increasing number of threads, the tradi-

tional EDF with O(log(N)) complexity imposes increasing

overheads, while the other two approaches demonstrate near-

constant overheads. The CT-EDF policy demonstrates higher

overhead than fixed priority when inserting, despite using a

similar index. This is due to wrap-around logic in CT-EDF:

1) if the current time is half-way into the timeline, the clz

operations must be performed only on indices after a circular

shift has been performed; and 2) at the second level index

node, it is possible not all bits should be queried (if the current

time is indexed by this node).

B. Linux and Edge-RT Utilization Sensitivity

§II argues that system organizations and policies that

target high throughput such as kernel-bypass and eBPF, or

predictable execution such as SCHED DEADLINE, have trouble

scaling to multi-tenant, deadline-driven environments. Table I

summarizes these arguments. Figures 2 and 1 demonstrate that

Linux’s CFS scheduling, and normal sockets perform the best

with increasing tenants and uncertain workloads. Therefore,

we configure Linux using sockets for networking and CFS for

scheduling. To provide the same level of isolation as Edge-
RT, we use separate processes for each stage in Linux. For

chain processing on Linux, pipes slightly outperform socket

variants for event notification latency. Thus, we use pipes for

IPC between processes in chains. To avoid data copying costs,

we pass only 8 byte messages to provide event notification

while larger messages use shared memory.

In this evaluation, we configure both Linux and Edge-
RT to use 48 cores, with Edge-RT specializing four cores

(§II-C). Thus Edge-RT has a practical maximum utilization

of around 91.6%. Figure 11 depicts a bimodal workload

with a varying system utilization. Utilization is reported as

a fraction of application computation of the 48 cores. Edge-
RT is configured with ∆batch = 8ms and ∆timer = 250µs
guided by Figure 6a and Figure 6b. On the client side, we

use the same bimodal workload from Figure 6a with light

tasks that execute 40µs, and heavy that execute 5ms with

deadlines 10ms and 500ms, respectively. As a result, light

tasks comprise 80% of the total execution of the workload.

We control the utilization of the workload by adjusting the

sending rate (proportionately for light and heavy) on the client

side. We use 480 clients/chains with 1920 FWPs.

We also compare against Linux using SCHED DEADLINE.

To admit enough tasks onto the system to be able to use

100% utilization, we set the CFS budgets equal to the average

execution time for heavy and light. We omit these results

as light tasks meet only 0.25% of their deadlines at 60%

utilization while even heavy tasks only meet 57% of deadlines

at 60% utilization, decreasing to 32% at 100% utilization.

This provides further evidence for the claims in §II-A that

SCHED DEADLINE is not a good fit for systems with dynamic

workloads that are not periodic.

Discussion. Figure 11a shows high-throughput systems have

difficulty meeting deadlines. As the utilization increases from

60% to 100%, the percent of deadlines met by Linux drops

from 95.9% to 15.9%. Additionally, Linux starts dropping

packets on light flows when utilization grows over 90%. In

case of heavy tasks in Figure 11b, Linux does not drop

packets, and meets deadlines even under 100% utilization.

Linux’s best-effort focus on fairness favors heavy workloads

despite CFS’s heuristic prioritization of I/O-bound workloads.

EdgeOS meets most of the deadlines when the system

is relatively low utilized (less than 80% utilization). Since

EdgeOS is not deadline-aware and uses a fixed-priority

round-robin scheduler, it misses most of the deadlines when

utilization grows over 80% and barely meets any deadline

at 100% utilization. Recall that the four specialized cores

decrease the effective maximum utilization to around 91%.

However, EdgeOS drops fewer packets for heavy tasks

compared to Edge-RT at 100% utilization. This is due to

 0

 5

 10

 15

 20

 1000 2000 3000 4000 50009
9
th

 p
e
rc

e
n
ti

le
 L

a
te

n
c
y
 (

m
s
)

Number of tasks in total

 Linux
 Edge-RT

Fig. 12: The 99% latencies of light tasks
with increasing number of tasks in total

 20

 40

 60

 80

 100

 1000 2000 3000 4000 50009
9
th

 p
e
rc

e
n
ti

le
 L

a
te

n
c
y
 (

m
s
)

Number of tasks in total

 Linux
 Edge-RT

Fig. 13: The 99% latencies of heavy tasks
with increasing number of tasks in total

 0

 20

 40

 60

 80

 100

0 2 4

%
 o

f
d
e
a
d
li
n
e
 m

e
t

Unpredictable ows per core

Linux EdgeOS Edge-RT

Fig. 14: Behavior of well-behaved tasks in
the presence of malicious tasks.

EdgeOS’s focus on throughput.

At 90% utilization, Edge-RT meets over 95% deadlines

on both light and heavy computations. Even at 100% utiliza-

tion, Edge-RT meets 92.13% deadlines on light tasks (com-

pares to Linux’s 15.95% and EdgeOS’s 0%). In contrast,

heavy tasks cause backpressure through chains, and Edge-
RT drops 25.6% with continued progress on other tasks.

This demonstrates Edge-RT’s focus on end-to-end, deadline-

centric scheduling, while still maintaining high throughput.

We don’t compare against the kernel bypass techniques

given challenges with non-preemptive client execution in

§II-A. The round-trip latency for Linux sockets is only 20µs

(15%) slower than DPDK using interrupt mode (which is

necessary with more tenants than cores), so we believe that

Linux is a competitive environment for these comparisons.

C. Scalability

Edge-RT is designed to use constant overhead mechanisms

where possible. CT-EDF and periodic activation processing

both enable schedulers to spend more time running FWPs

regardless the number of FWPs. Thus, we want to evaluate

the performance of Edge-RT when scheduling thousands of

FWPs. Here we evaluate Edge-RT’s and Linux’s ability to

control latency while increasing the number of processes.

We use the same system setup as the previous bimodal

tests, by default. As we scale up the number of tasks, we

proportionately adjust the sending rate for light and heavy

tasks to keep the system utilization equal to 50% to avoid

either system dropping packets. Thus, the 99th percentile

latency depicts the system’s ability to bound latency.

Discussion. As shown in Figure 12, with 1000 computations,

Linux and Edge-RT have similar tail latencies around 5ms.

Edge-RT maintains a flat tail latency between 4 and 5ms

up to 5000 tasks. In contrast, the tail latency of light tasks

on Linux grows as the number of tasks increases. At 5000

tasks, the tail latency of light tasks in Linux is 18ms (recall:

deadline 10ms). The tail latency of heavy tasks for both Linux

and Edge-RT increases when having an increasing number

of tasks in Figure 13, but both remain below their deadline of

500ms. Linux slightly outperforms Edge-RT on heavy tasks,

because CFS’s fairness ensures constant progress for heavy

tasks over light tasks. These results demonstrate that Edge-
RT can maintain its focus on end-to-end deadline scheduling

despite significantly scaling up the number of clients.

D. Unpredictable Workloads

The edge must be able to handle workloads with unpre-

dictable execution. Tenants can provide code that attempts to

monopolize CPU resources, and clients can provide inputs

to cause errant behavior. To evaluate the impact of execu-

tion overruns, we maintain a consistent workload, with an

increasing number of malicious tasks. We use 48 cores and

768 clients with 768 FWPs. System utilization is 80% without

malicious tasks. The well-behaved tasks execute for 5ms and

clients send a request every 100ms with a 500ms deadline.

Chain lengths are set to one (K = 1) to emphasize that ma-

licious tasks can cause significant interference even without

back-pressure from chains of computations. Malicious tasks

are simply infinite loops to monopolize the CPU. Figure 14

shows the behavior of well-behaved tasks in the presence of

CPU-hogging malicious tasks. In these results, we filter out

the deadlines missed due to the malicious tasks themselves.

Discussion. With even a small number of malicious tasks,

EdgeOS’s round-robin scheduling policy – that focuses on

progress and fairness – demonstrates an inability to ade-

quately isolate the deadline-sensitive tasks from those that

are simply CPU-hogs. At only two malicious tasks per core,

on average, nearly all deadlines are missed.
CFS in Linux fairs better with this workload. This is

because it attempts to prioritize newly arrived (I/O-bound)

threads over malicious tasks who are CPU-bound. As such,

it is able to meet 63% of the deadlines with two malicious

tasks present, but quickly degrades to 39% with four.
Once a deadline is missed in Edge-RT, the FWP is depri-

oritized and moved to a best-effort round-robin low priority

queue. This simple policy is relatively effective at constraining

this malicious computation by deprioritizing it. This demon-

strates the unintuitive benefit of a end-to-end, deadline-centric

policy for the edge: deadlines provide semantic information

about expected execution behavior. The edge can use them

to constrain FWP’s negative behaviors when deadlines are

overrun. Though stronger assumptions about FWP execution

times could further constrain their impact – for example, by

enabling rate-limiting – such assumptions are challenging in

the high-throughput, dynamic environments.

VII. RELATED WORK

Edge applications. Offloading computation from devices to

infrastructure has a long history. For example, it has been

shown to prolong batteries [38], [2], and even service mission-

critical tasks [39] with degraded local computation. It enables

global coordination to get benefit beyond a system’s local

sensors [40]. Edge-RT assumes an unreliable network, but

one that is low-latency enough to motivate deadline-sensitive

computation. It attempts to enable these benefits in a high-

throughput, high-density, and real-time infrastructure. This

assumption does not prevent Edge-RT from including fall-

back logic to enable detection and retransmission of dropped

packets in the future.

Shared hardware resources. Edge-RT focuses mainly on

sharing NIC hardware resources. FWPs share no memory as

the MMA arbitrates copying messages between them. We do

not focus on shared resources like caches [41], [42], [43],

[44] and memory buses [45]. Approaches that increase their

sharing and access are complementary to Edge-RT.

Data-age in cause-effect chains. Chains of computation are

a common abstraction in embedded systems (e.g., robotics

systems such as ROS) and represent stages of computation

from sensing to actuation. They are often called cause-effect

chains, and real-time systems are concerned with controlling

and constraining the data-age (the latency of chain computa-

tion from sensing to actuation).

Large bodies of work have focused on creating policies

and analysis to provide predictable, bounded data-age across

chains [46], [47], [48], [49], [50]. Recent work [51] focuses

on end-to-end response time analysis of event chains. This

work is often concerned with strong predictability and meet-

ing all deadlines, and does so by assuming knowledge about

execution properties such as fixed rates and WCETs.

Edge-RT is focused on controlled latency in a high-

throughput environment. Instead of the traditional approach

that often separately prioritizes chain computations, controls

their periodicity, and orchestrates dependencies, Edge-RT
focuses on end-to-end deadline scheduling of messages, rather

than of computations.

Blass et al. [52] take a more dynamic approach by moni-

toring latencies and dependencies in chains, and dynamically

updating priorities, reservations, and affinities to control end-

to-end latency. Edge-RT doesn’t attempt to optimize parame-

ters to control latencies, and instead explicitly maintains end-

to-end deadline scheduling mechanisms and policies.

Network Function Virtualization. The edge must exe-

cute not only multi-tenant, offloaded computation, but also

Network Functions (NFs) for slicing, transformation, and

shaping. Network Function Virtualization (NFV) [53] pro-

vides a software environment for the isolated execution of

NFs. Edge-RT is based on EdgeOS [9], which supports

high-throughput, high density NFV, but additionally aims to

provide strong latency properties. Similarly, systems have

focused on soft-real-time NFV computation [54], [55], but

are not focused on high-throughput systems nor resource

management focused on average computation (not WCET).

Rethinking OS-level batching and scheduling. The trade-off

in batching between throughput and latency is well known and

has enabled efficient core specialization [56], and a successful

decoupling of OS control and datapaths [27]. It has also

been an integral technique in shaping back-pressure [57],

controlling cross-core interference [35] in real-time systems.

It has been paired with fine-grained inter-core coordination

to control µ-second level latencies in the presence of head-

of-line blocking [58]. User defined scheduling [59], [30] is

another approach which aims to reduce latency by deploying a

user-defined scheduling policy. Edge-RT is inspired by these

approaches, and uses batching to achieve high throughput,

but constrains the impact that large batches of processing can

have on the latency of other system computations.

Summary. Edge-RT’s contributions are in a less-investigated

direction for real-time systems: high-throughput, network

systems that aim to meeting deadlines despite high-density,

multi-tenancy. The techniques it must use to achieve all of

these goals aim to practically meet end-to-end deadlines while

making efficient use of limited resources.

VIII. CONCLUSIONS

In this paper we introduce the Edge-RT. It represents a

significant step into the direction of novel real-time policies

and mechanisms for high-throughput, and high-density multi-

tenant systems. Edge-RT introduces a practical policy to

control latency over a chain of isolated computations: dead-

lines are associated with packets/messages, and computations

inherit them, enabling optimization toward controlled end-to-

end latency. We investigate policies that increase throughput,

while having limited impact on latency. Results demonstrate

that the system can effectively handle significantly higher load

while meeting deadlines, as the number of clients scales up,

and in the presence of malicious tasks, thus enabling higher

edge density and decreasing the amount of computational

resources at each basestation. We believe this marks a sig-

nificant advance toward principled latency management for

the multi-tenant edge.

REFERENCES

[1] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, “Understanding operational 5g: A first measurement study
on its coverage, performance and energy consumption,” in Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 2020.

[2] B. Li, W. Dong, and Y. Gao, “Wiprog: A webassembly-based approach
to integrated iot programming,” in IEEE INFOCOM 2021 - IEEE
Conference on Computer Communications, 2021.

[3] “Telecommunications industry association. edge data centers.
https://www.tiaonline.org/wp-content/uploads/2018/10/TIA Position
Paper Edge Data Centers-18Oct18.pdf,” 2018.

[4] “Micro-data centers out in the wild: How dense is the edge?, https:
//www.datacenterknowledge.com/archives/2017/05/02/edge-densities,”
2017.

[5] J. Ordonez-Lucena, P. Ameigeiras, D. Lopez, J. J. Ramos-Munoz,
J. Lorca, and J. Folgueira, “Network slicing for 5g with sdn/nfv: Con-
cepts, architectures, and challenges,” IEEE Communications Magazine,
vol. 55, no. 5, pp. 80–87, 2017.

[6] “5g network slicing in 5gtango, https://www.5gtango.eu/blog/
36-5g-network-slicing-in-5gtango.html,” 2019.

[7] “Ngmn alliance, description of network slicing concept,” 2017.

[8] P. Rost, C. Mannweiler, D. S. Michalopoulos, C. Sartori, V. Sciancale-
pore, N. Sastry, O. Holland, S. Tayade, B. Han, D. Bega, D. Aziz, and
H. Bakker, “Network slicing to enable scalability and flexibility in 5g
mobile networks,” IEEE Communications Magazine, 2017.

[9] Y. Ren, G. Liu, V. Nitu, W. Shao, R. Kennedy, G. Parmer, T. Wood,
and A. Tchana, “Fine-grained isolation for scalable, dynamic, multi-
tenant edge clouds,” in Proceedings of the USENIX Annual Technical
Conference (USENIX ATC), 2020.

[10] “Intel Data Plane Development Kit (DPDK). http://dpdk.org/.”

[11] “Open vSwitch (OVS). https://www.openvswitch.org/.”

[12] “Virtual I/O devices. https://docs.oasis-open.org/virtio/virtio/v1.1/
csprd01/virtio-v1.1-csprd01.html.”

[13] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo,
and S. Shenker, “E2: A framework for nfv applications,” in Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP), 2015.

[14] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of nfv,” in Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation (OSDI),
2016.

[15] “extended Berkeley Packet Filter (eBPF). https://ebpf.io/.”

[16] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend,
T. Herbert, D. Ahern, and D. Miller, “The express data path: Fast
programmable packet processing in the operating system kernel,” in
Proceedings of the 14th international conference on emerging network-
ing experiments and technologies, 2018, pp. 54–66.

[17] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M. V. Bernal,
“Creating complex network services with ebpf: Experience and lessons
learned,” in 2018 IEEE 19th International Conference on High Perfor-
mance Switching and Routing (HPSR). IEEE, 2018, pp. 1–8.

[18] L. Abeni, G. Lipari, and J. Lelli, “Constant bandwidth server revisited,”
SIGBED Review., vol. 11, no. 4, 2015.

[19] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for
scalable predictability,” in Proceedings of the 21st IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2015.

[20] “Ngmn alliance, 5g white paper,” 2017.
[21] “Ngmn alliance, 5g end-to-end architecture framework,” 2017.
[22] L. Abeni, A. Balsini, and T. Cucinotta, “Container-based real-time

scheduling in the linux kernel,” ACM SIGBED Review, vol. 16, no. 3,
pp. 33–38, 2019.

[23] A. Biondi and B. B. Brandenburg, “Lightweight real-time synchroniza-
tion under p-edf on symmetric and asymmetric multiprocessors,” in
28th Euromicro Conference on Real-Time Systems (ECRTS), 2016.

[24] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance protocols:
An approach to real-time synchronization,” IEEE Trans. Comput., 1990.

[25] L. Soares and M. Stumm, “{FlexSC}: Flexible system call scheduling
with {Exception-Less} system calls,” in 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), 2010.

[26] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the
control plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, Nov. 2015.

[27] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The ix operating system: Combining
low latency, high throughput, and efficiency in a protected dataplane,”
ACM Trans. Comput. Syst., vol. 34, no. 4, 2016.

[28] S. Kuenzer, V.-A. Bădoiu, H. Lefeuvre, S. Santhanam, A. Jung, G. Gain,
C. Soldani, C. Lupu, S. Teodorescu, C. Răducanu et al., “Unikraft: fast,
specialized unikernels the easy way,” in Proceedings of the Sixteenth
European Conference on Computer Systems, 2021, pp. 376–394.

[29] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson, O. S. N. Leija,
A. Martinez, J. Liu, A. K. Simpson, S. Jayakar et al., “The demikernel
datapath os architecture for microsecond-scale datacenter systems,”
in Proceedings of the ACM SIGOPS 28th Symposium on Operating
Systems Principles, 2021, pp. 195–211.

[30] J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don,
L. Rizzo, O. Rombakh, P. Turner, and C. Kozyrakis, “ghost: Fast &
flexible user-space delegation of linux scheduling,” in Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles,
2021, pp. 588–604.

[31] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving high {CPU} efficiency for latency-sensitive
datacenter workloads,” in 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19), 2019, pp. 361–378.

[32] “TinyEKF: Lightweight C/C++ Extended Kalman Filter with Python
for prototyping, https://github.com/simondlevy/TinyEKF.git,” 2019.

[33] “CMSIS NN Software Library, https://arm-
software.github.io/CMSIS 5/NN/html/index.html,” 2019.

[34] “The CIFAR-10 dataset, https://www.cs.toronto.edu/ kriz/cifar.html,”
2009.

[35] P. K. Gadepalli, G. Peach, G. Parmer, J. Espy, and Z. Day, “Chaos:
a system for criticality-aware, multi-core coordination,” in 25th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[36] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in Proceedings of the
IEEE International Real-Time Systems Symposium (RTSS), 2008.

[37] P. K. Gadepalli, R. Pan, and G. Parmer, “Slite: OS support for near zero-
cost, configurable scheduling,” in 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2020, pp.
160–173.

[38] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, 2010.

[39] L. Schönberger, G. von der Brüggen, K.-H. Chen, B. Sliwa, H. Youssef,
A. K. R. Venkatapathy, C. Wietfeld, M. ten Hompel, and J.-J. Chen,
“Offloading Safety- and Mission-Critical Tasks via Unreliable Connec-
tions,” in 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020), 2020.

[40] C. Wang, C. Gill, and C. Lu, “Frame: Fault tolerant and real-time
messaging for edge computing,” in Proceedings of the IEEE 39th

International Conference on Distributed Computing Systems (ICDCS),
2019.

[41] D. Chandra, F. Guo, S. Kim, and Y. Solihin, “Predicting inter-thread
cache contention on a chip multi-processor architecture,” in 11th
International Symposium on High-Performance Computer Architecture.
IEEE, 2005, pp. 340–351.

[42] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and
R. Pellizzoni, “Real-time cache management framework for multi-core
architectures,” in 2013 IEEE 19th Real-Time and Embedded Technology
and Applications Symposium (RTAS). IEEE, 2013, pp. 45–54.

[43] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical page
coloring-based multicore cache management,” in Proceedings of the
4th ACM European conference on Computer systems, 2009, pp. 89–
102.

[44] J. Kim, I. Kim, and Y. I. Eom, “Code-based cache partitioning for
improving hardware cache performance,” in Proceedings of the 6th
International Conference on Ubiquitous Information Management and
Communication, 2012, pp. 1–5.

[45] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memguard:
Memory bandwidth reservation system for efficient performance iso-
lation in multi-core platforms,” in 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE,
2013, pp. 55–64.

[46] M. Günzel, K.-H. Chen, N. Ueter, G. von der Brüggen andMarco
Dürr, and J.-J. Chen, “Timing analysis of asynchronized distributed
cause-effect chains,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[47] T. Klaus, M. Becker, W. Schröder-Preikschat, and P. Ulbrich, “Con-
strained age with job-level dependencies: How to reconcile tight bounds
and overheads,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[48] A. M. Kordon and N. Tang, “Evaluation of the age latency of a real-
time communicating system using the let paradigm,” in 32nd Euromicro
Conference on Real-Time Systems (ECRTS), 2020.

[49] H. Choi, Y. Xiang, and H. Kim, “Picas: New design of priority-driven
chain-aware scheduling for ros2,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2021.

[50] D. Casini, T. Blaß, I. Lütkebohle, and B. Brandenburg, “Response-time
analysis of ros 2 processing chains under reservation-based schedul-
ing,” in 31st Euromicro Conference on Real-Time Systems. Schloss
Dagstuhl, 2019, pp. 1–23.

[51] D. Dasari, M. Becker, D. Casini, and T. Blaß, “End-to-end analysis of
event chains under the qnx adaptive partitioning scheduler,” in 2022
IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2022, pp. 214–227.

[52] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic latency management for ros 2: Benefits, challenges, and
open problems,” in IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2021.

[53] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. Ramakrishnan, and T. Wood, “OpenNetVM: A Platform for
High Performance Network Service Chains,” in Proceedings of the
2016 ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization, 2016. [Online]. Available:
http://faculty.cs.gwu.edu/timwood/papers/16-HotMiddlebox-onvm.pdf

[54] Y. Li, L. T. Xuan Phan, and B. T. Loo, “Network functions virtualization
with soft real-time guarantees,” in IEEE INFOCOM - The 35th Annual
IEEE International Conference on Computer Communications, 2016.

[55] S. Abedi, N. Gandhi, H. M. Demoulin, Y. Li, Y. Wu, and L. T. X. Phan,
“Rtnf: Predictable latency for network function virtualization,” in IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2019.

[56] L. Soares and M. Stumm, “Flexsc: Flexible system call scheduling
with exception-less system calls,” in Proceedings of the conference on
Symposium on Operating Systems Design & Implementation, 2010.

[57] M. Welsh, D. Culler, and E. Brewer, “Seda: an architecture for well-
conditioned, scalable internet services,” in SOSP ’01: Proceedings of
the eighteenth ACM symposium on Operating systems principles. New
York, NY, USA: ACM Press, 2001, pp. 230–243.

[58] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis, “Shinjuku: Preemptive scheduling for µsecond-scale tail
latency,” in Proceedings of the 16th USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2019.

[59] K. Kaffes, J. T. Humphries, D. Mazières, and C. Kozyrakis, “Syrup:
User-defined scheduling across the stack,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles, 2021, pp.
605–620.

