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ABSTRACT:

Processing Earth observation data modelled in a time-series of raster format is critical to solving some of the most complex problems
in geospatial science ranging from climate change to public health. Researchers are increasingly working with these large raster datasets
that are often terabytes in size. At this scale, traditional GIS methods may fail to handle the processing, and new approaches are needed
to analyse these datasets. The objective of this work is to develop methods to interactively analyse big raster datasets with the goal of
most efficiently extracting vector data over specific time periods from any set of raster data. In this paper, we describe RINX (Raster
INformation eXtraction) which is an end-to-end solution for automatic extraction of information from large raster datasets. RINX
heavily utilises open source geospatial techniques for information extraction. It also complements traditional approaches with state-of-
the-art high-performance computing techniques. This paper discusses details of achieving big temporal data extraction with RINX,
implemented on the use case of air quality and climate data extraction for long term health studies, which includes methods used, code
developed, processing time statistics, project conclusions, and next steps.

1. INTRODUCTION Project Viva is 1 of 71 cohorts across the US, as shown in the

Figure 1 below, that together form the ECHO Program.
RINX (Raster INformation eXtraction) is an end-to-end solution

developed by the authors for automatic extraction of information
from large rasters datasets. RINX heavily utilises open source
geospatial techniques for information extraction. It also
complements the traditional approaches with state-of-the-art
high-performance computing techniques. The input for RINX is .
a set of rasters from which the information has to be extracted T

and a set of data point locations for which the information needs . Rt
to be extracted. The output for RINX is a structured L s
representation of extracted information from the raster datasets . .
for each data point in CSV text format. The loading and pre- " - .
processing of the input datasets to RINX is accomplished using ~

a combination of Bash and SQL scripting techniques for "
automation. This pre-processed input is then fed into the open . N
source spatial database PostGIS to extract the required
information by using multiple spatial techniques. Finally, the
extracted output is post-processed for deduplication and
standardisation of extracted information for research use. RINX
is designed in a way that makes it easy to deploy and scale on
any local, cloud, or cluster computing platform. RINX was
created to aid the study of environmental conditions and how
they affect the health of people over their lifespans for Project

Figure 1. Map showing 71 cohorts across US that together
form the ECHO Program (Harvard Medical School. n.d.)

One of the ECHO cohorts in the Boston area is Project Viva

Viva which is described in detail in the following sections.

2. THE USE CASE OF PROJECT VIVA

The Environmental influences on Child Health Outcomes
(ECHO) (National Institute of Health. n.d.) is a nation-wide
program in the United States funded by the National Institutes of
Health. ECHO includes over 60 cohorts of children and their
mothers, and is aimed to help better understand effects of
environmental exposures on child health and development.
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(Harvard Medical School. n.d.), a Boston-based longitudinal
study including a cohort of some 2,000 mothers and children.
The goal of Project Viva is to find ways to improve the health of
mothers and their children by looking at the effects of mother's
diet as well as other factors during pregnancy and after birth. A
key part of the analysis is calculating various social and
environmental exposures at the Viva cohort member address
locations over their life spans. Daily meteorological and long-
term climate conditions have been shown to have an adverse
effect on health (Bell et al., 2018, Greenough et al., 2001, Rice
et al., 2019, Sprangler et al., 2019, Zscheischler et al., 2014) and

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLVIlI-4-W1-2022-245-2022 | © Author(s) 2022. CC BY 4.0 License. 245



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVIII-4/W1-2022
Free and Open Source Software for Geospatial (FOSS4G) 2022 — Academic Track, 22—28 August 2022, Florence, Italy

are thus one of the environmental exposures of interest to the
investigators of the Viva cohort and the ECHO program overall.

The Parameter-elevation Regressions on Independent Slopes
Model (PRISM) climate group gathers a vast amount of daily
weather and climate observations, and produces various models
of short-term and long-term climate patterns across the
contiguous 48 United States (Spangler et al., 2019). Figure 2
below shows a mean temperature map for January 1, 1981 using
PRISM 800m climate data.

Mean temperature on January 1, 1981

Data source: PRISM 800m resolution daily climate estimates.

degrees Celsius
22.49
10
0
-10

-

Figure 2. Mean temperature map for January 1, 1981 using
800m PRISM climate data

For this project, the 800-metre resolution daily PRISM dataset
was chosen to assign climate exposures. This dataset contains
daily observations from 1981 - 2021 for seven climate variables:
minimum, maximum, mean, and dewpoint temperature;
precipitation; and minimum and maximum vapour pressure
deficit. By using the mean and dew point temperatures, relative
and absolute humidity were also calculated. Birth years range
from 1999 - 2001 for the Viva cohort, and daily climate exposure
information was desired for all of childhood, up to age 18. This
resulted in a total time period of 1999 - 2019 for the climate
exposure calculations. Address histories were compiled for the
cohort, producing a total of 4,796 unique cohort address
locations during this time period. These addresses were
geocoded, producing spatially resolved address histories for all
cohort members.

Daily meteorological conditions for each cohort member allow
for the finest possible analysis of climate effects on health. To
describe this level of spatio-temporal data granularity, we use the
term “patient/days”. This describes the total days of observations
required to calculate climate exposures for all of the 4,796 patient
locations during every day of childhood. For this project, the
total number of patients/days ended up being 10,022,945. The
PRISM dataset is published in BIL raster format, with one raster
representing one climate variable per day. As there are 7 climate
variables and 10,022,945 patient days, this produced a total
number of 70,160,615 singular extractions needed from the
PRISM rasters.

Calculating this amount of observations in a timely fashion
required computing resources beyond the standard desktop
computer. The problem calls for a system such as the RINX
system to extract the data. For this use case, RINX was
implemented on a high-performance computing cluster running

a PostgreSQL database with the PostGIS extension. It
accomplished the data extraction objective, saving 2-3 weeks of
processing time as compared with existing traditional methods.

3. OVERVIEW OF EXISTING METHODS

Remote sensing big data is growing fast and presents with unique
handling and processing challenges that are difficult to address
using traditional techniques (Liu et al., 2015, Wu et al., 2009,
Talwalkar et al., 2013, Bloschl et al., 1995, Brunsell et al., 2003).
Extracting values from multiple rasters using vector point
location input is a common operation that can be performed in a
multitude of Geographic Information System software
applications (Spangler et al., 2019, Jung, 2013, Lee et al. 2021,
Wang et al., 1954, Reddy, 2018, Goodchild et al., 1997, Laney,
2001). These include ArcGIS Pro (ESRI. n.d.), QGIS (QGIS.
n.d.), the R Project for Statistical Computing (R. n.d.), and the
PostGIS spatial database extender for PostgreSQL (PostGIS.
n.d.). The ability to perform extractions from thousands (or
more) rasters is dependent on the amount of computing resources
to load and process the rasters. Techniques described in the
existing literature describe extracting information from all
rasters at all point locations (Spangler et al., 2019, Jung, 2013,
Tobias et al., 2014, Wylie et al., 2018, Wang et al., 2014).
Applying this all to all extraction of our 4,796 locations across
the entire 21-year time period (7,670 days) for all 7 climate
variables would have resulted in 257,497,240 individual
extractions (observations). As several cohort members only lived
at certain addresses for a few years of the 21-year period,
extractions were not needed at all locations for every day. As
described above based on the varying time periods spent at each
location, we only needed 70,160,615 individual observations.
Performing only 70M instead of 257M extractions saves
computing time and resources, but requires scripting to only feed
in locations for extraction at the pertinent dates. For this specific
use case we did not find any similar published research. To help
determine the best solution for this big raster processing
challenge, we gathered anecdotal descriptions of similar data
extractions from colleagues at the T.H. Chan Harvard School of
Public Health (HSPH) and Massachusetts Institute for
Technology (MIT). One such case reported using the
“extractextractr” and “exact_extract()” commands within R to
process one climate variable for 14 years. The raster data
extracted from was the PRISM 4km x 4km resolution rasters,
with roughly 1,000 input vector polygons. This process was
reported to take 2 - 3 weeks. Another project used the ArcGIS
Pro “Extract multi-values to points" tool with Python scripting to
process the PRISM monthly climate rasters. This project was
estimated to take roughly one week to process 34 years of
monthly data for the month of July for 2.4 million input address
locations.

Our own tests of the QGIS (version 3.10) “SAGA Add Raster
Values to Points” and PostGIS (version 3) ST Value and
ST Point tools were conducted and found to produce correct
results for extracting values from the PRISM rasters to our set of
4,796 input point locations. With this review of existing methods
and our initial testing, we estimate our extraction would take 3 —
4 weeks using traditional methods.
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4. SYSTEM DESIGN

With proof of concept that all 4 software packages described
above were capable of performing the extraction, we
thenevaluated the computing system needs for our project to
determine the best methods to use. Our unique big data challenge
involving extraction of 70 million observations over a 21-year
period required processing all or part of 53,690 PRISM rasters
that are of 800m x 800m resolution. Each raster is roughly 85SMB
in size, requiring a total of 4.5TB of available disk space. For
optimal processing we realised that having computing
processing and RAM resources available beyond what a typical
workstation or server offers would be necessary. This led us to
investigate using the Harvard Faculty of Arts and Sciences
research computing cluster FASRC (FASRC. n.d.).

The FASRC computing environment contains 100,000 compute
nodes running at 8 to 64 cores per node. The core software is
CentOS 7, running the slurm job manager and Singularity. The
system runs over 1,000 scientific tools and programs, including
the PostgreSQL database with the PostGIS extension. As this
was an HSPH sponsored project we had access to 8 TB of
dedicated lab storage, with 2.4PB available as a global scratch
space. With the available computing power, storage space, and
the ability to use an open-source object-relational database
system (PostGIS) with over 500 spatial data processing tools and
advanced raster processing capabilities to process our data drive
our decision was to develop RINX using the FASRC/PostGIS
environment.

Major processing steps taken to execute our solution, as shown
in Figure 3 of the RINX architecture diagram, included:

o  Creation of the database,

e Data loading of climate rasters and patient address
locations,

e Data extraction of 7 climate variables for all

person/days,
e  (Calculation of additional humidity variables,
Automation of the processes, and
e Scaling of solution on the cluster computing
environment

(rsesnd

eeeeeeeee
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Figure 3. Architecture Diagram for RINX (Harvard CGA.
2022)

Database Creation: This involved launching the PostGIS
database on FASRC. The database was enabled with the raster
extension of PostGIS to support raster handling. The database
schema was defined for both climate data and patient addresses.

Data Loading: After the creation of the database, the climate
rasters are uploaded to the PostGIS database. The upload bash
script reads the climate rasters from the disk and then using
raster2pgsql functionality of PostGIS uploads it to the database.
The raster2pgsql is a raster loader executable that loads GDAL
supported raster formats into sql suitable for loading into a
PostGIS raster table. It is capable of loading folders of raster files
as well as creating overviews of rasters. The climate rasters are
merged to one table using the UNION function of PostGIS. The
input patient addresses are then uploaded to the database using
another bash script. This automation script reads the input
address list in .CSV format as shown in Table 1 below:

address | Longitud | Latitude | Start_date | End_date
_id e

001_1 88.8896 | 30.8862 | 19991128 | 20021226
001_2 | -89.5246 | 34.6690 | 20021227 | 20110104
002_1 -72.2499 | 424215 | 19991227 | 20030221
002_2 | -70.7325 | -41.9593 | 20030222 | 20100103
002_3 -69.6060 | 46.1955 | 20100104 | 20160105

Table 1: Sample (made up) values for input address dataset

Longitude, Latitude locations in Table 1 are randomly
determined, they are not actual patient locations. The address_id
is a de-identified sequential number (001), with each address
location appended with “ 17, “ 2”, and so on for each patient
address location through childhood. This data is uploaded to
PostGIS, and is formatted as a table. This involves creation of an
address table and copying of input data to that table. The table is
then formatted in correct format to enable extraction of values
from Raster data.

Data Extraction: After the upload of climate rasters and input
addresses the next step was the extraction of values. For this a
script was developed to achieve the extraction of values for every
address point from climate raster using multiple PostGIS
functions: ST Value, ST Transform, ST SRID, ST Intersect,
ST Envelope, ST Point. The script performs these spatial
operations in predefined order and automates the extraction
process. The script was used for extraction of 7 climate variables
for all patient locations.

Additional Calculations: Thereafter, two additional variables of
absolute and relative humidity were calculated using the
equations (1) and (2) respectively:

17.625 X tdmean
e243.04 + tdmean

lOOX( 17.625x tmean) (1)

e243.04 + tmean

rh =
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17.67 X tmean
6.112x e243.5+tmeanXrh X 2.1674

273.15+ tmean
(2),

rh = relative humidity (%)

ah =

where
ah = absolute humidity (grams/m?)

tdmean = Daily mean dew point (°C)
tmean = Daily mean dew point (°C)

A SQL script was written to read the pre-calculated values of
tmean and tdmean from the database and use it for calculation on
humidity variables. Thus, a total of 9 climate variables are
calculated using the system.

Process Automation: Due to the big data involved, the entire
process was automated using a combination of various scripting
techniques. BASH scripts were used to automate the data upload,
pre-processing and formatting. SQL scripts were used to
automate the extraction process from PostGIS.

Scaling: To enable fast and efficient calculation of the big data,
the process was scaled on High Performance Compute Cluster as
shown in Figure 4 below. The processing system for each climate
variable consisted of PostGIS servers of 32 GB RAM and 2
vCPUs each. Two batches of patient addresses and climate
Raster data was input in the processing system. The processing
system was scaled to 7 PostGIS servers running in parallel to
enable extraction of 1 climate variable for 19 years of raster data
for two batches of 4,796 addresses each.

Output/ instance |
1 Climate variable
|, extracted for 19
years for ~ 10,000 |
addresses |

Input/instance F

7 servers: 1

-2 Batches of 4796 —
addresses each

- 19 years of Raster

Data

FASL.1d

Figure 4. Scaling the process on High Performance Compute
Cluster using PostGIS

5.RESULTS

Using RINX allowed us to extract 7 daily climate variables from
the PRISM data for 10,022,945 patient days producing a total
number of 70,160,615 climate observations. Additionally,
relative humidity (rh) and absolute humidity (ah) were calculated
by RINX, for a total of 9 variables. The 9 climate variables
extracted are:

o  ppt: Daily precipitation (mm)

e tmin: Daily minimum temperature in degrees Celsius
O

tmax: Daily maximum temperature (°C)

tmean: Daily mean temperature (°C)

tdmean: Daily mean dew point (°C)

vpdmin: Daily minimum vapour pressure deficit (hPa)
vpdmax: Daily maximum vapour pressure deficit
(hPa)

rh: Relative humidity (%)

e  ah: Absolute humidity (grams/m?)

The entire process took 24 hours to load the rasters, and 4 days
to process all observations. It is estimated that traditional
methods would have taken 3 or more weeks to extract the same
amount of observations, thus saving considerable time and cost,

and enabling medical researchers to use the extracted data in a
timely manner. The format of the output data included the
address ID for the cohort member, the day of the observation in
“yyyymmdd” format, and the 9 climate variables. Figure 5 below
displays the data in its final format.

address_id,day,ppt,tmean,tmin,tmax,tdmean,vpdmin,vpdmax,rh,ah
001_1,19991128,3.125,12.500,11.0,15.5,7.810,0.126,9.864,73.095,8.033
001_1,19991129,4.646,6.300,4.43,10.54,0.710,0.245,6.525,67.436,4.992
001_1,19991130,0.000,9.070,7.2,14.56,-4.740,3.493,12.423,37.357,3.307
001_1,19991201,0.000,12.760,5.34,17.45,-4.090,5.817,15.749,30.701,3.429
001_1,19991201,0.647,13.420,8.65,19.34,2.250,1.930,17.131,46.738,5.438

Figure 5. RINX Output Data Format

Exporting the results in .CSV text format allowed for medical
health professionals to load this data into other databases and link
it with patient health data for statistical analyses. This has
enabled the analysis of climate effects on health outcomes.
Regarding the use of this data, feedback from the medical
researchers is summarised in this quote: “The PRISM climate
data extracted by the CGA allowed us to study associations of
precipitation, relative humidity and temperature with lung
function in children. The climate data will also allow us to study
similar associations in adults. There is a need to determine if
short term exposure to these weather conditions affects the
respiratory health of children and adults, especially in the context
of a changing climate.”

6. CONCLUSIONS AND BROADER APPLICATIONS

The RINX solution for extraction of spatio-temporal big raster
data provides an essential first step to enable the study of climate
effects on health. It is a scalable solution that uses exclusively
open source software on a high-performance computing
environment. RINX can be scaled to analyse much larger
datasets, and can be implemented on any computing cluster,
server, or workstation.

Our work used RINX to extract data from the PRISM 800m
resolution daily climate data series, but we feel one of the
greatest benefits of RINX is the ability to apply it to any spatio-
temporal raster dataset. The high-resolution PRISM dataset is
not free and had to be purchased, however PRISM also produces
a free climate dataset at 4 kilometres resolution that our solution
could be applied to. RINX has the potential to be used for any
geospatial study involving extracting values from temporal raster
data such as NDVI, land cover, night lights, etc.

The Viva cohort is just one of the 60 or so cohorts in the ECHO
program, and for next steps our team will focus on enriching
additional cohort datasets with climate exposure information
using RINX. The Viva cohort analysed is Harvard based,
allowing for processing data in a secure Harvard controlled
environment by Institutional Review Board (IRB) approved
personnel. Other cohorts are spread out among many
Universities, with most restricting cohort data to residing on
local environments, handled by IRB approved personnel for that
University. Therefore, an upcoming challenge for our team will
be to enable the use of RINX on non-Harvard computing
environments. The open source code for RINX is available on
our Github repository (Harvard CGA. 2022).
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