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Abstract

In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spa-
tial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new
refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipita-
tion, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the
traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation
demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is pro-
viding a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived
from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to
fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather condi-
tions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from
passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and
made the flash drought analysis and monitoring become possible.

Keywords: Soil Moisture; High Spatial Resolution; Regional Drought; Microwave and Optical Satellite Remote Sensing

ARTICLE INFO 1. Introduction

Article history:

Received 15 February 2021
Accepted 29 March 2021
Available online 10 April 2021

COPYRIGHT

Copyright © 2021 Donglian Sun et al.

doi: 10.24294/jgc.v4i1.1313

EnPress Publisher LLC. This work is li-
censed under the Creative Commons Attribu-
tion-NonCommercial 4.0 International Li-
cense (CC BY-NC 4.0).
https://creativecommons.org/licenses/by-
nc/4.0/

Drought is considered to be the most severe natural hazard in
terms of impact, duration, and spatial extent'. The sparse spatial dis-
tribution of weather stations makes it daunting for drought monitoring
and predicting. Satellite remote sensing capabilities have been greatly
improved for decades and served as the main method for drought mon-
itoring. Drought may occur unnoticeably and varyingly. Lack of infor-
mation to drought may lead to severe disaster. The damage was exten-
sive and the impact to livestock and farm production is uncountable”’.

Government agencies within National Oceanic and Atmospheric
Administration (NOAA) and United States Department of Agriculture
(USDA) have teamed up with the National Drought Mitigation Center
(NDMC) to produce a weekly drought monitor (DM) map that incor-
porates climate data and professional input from all levels and is well
known as the U.S. Drought Monitor (USDM). The USDM maps are
consensus product based on several indicators and key variables, and
the final maps are adjusted manually by numerous experts through-
out the country to reflect the real-world conditions as reported”. The
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USDM drought conditions are classified into five
classes based on a ranking percentile approach: (1)
DO - abnormally, (2) D1 - moderate, (3) D2 - severe,
(4) D3 - extreme, and (5) D4 - exceptional dry con-
ditions. They are utilized as (1) D0-D4 (percentile
<30%), (2) D1-D4 (percentile <20%), (3) D2-D4
(percentile <10%), (4) D3-D4 (percentile <5%), and
(5) D4 (percentile <2%)" .

The USDM maps are currently distributed on-
line (http://droughtmonitor.unl.edu/) with relatively
coarse resolution. They served as one of the criteria
to determine the eligibility for relief of aggravation
due to drought condition.

Agricultural interest in drought is important in
much of the U.S. In fact, there is considerable inter-
est in indices that can monitor agricultural drought.
The hydrological condition of agricultural drought
is closely linked to soil moisture', which is depen-
dent on precipitation, water infiltration, and soil
water holding capacity. Since it’s hard to measure
soil moisture over large area directly, Leese et al.
concluded it’s better to monitor soil moisture with
combination of in-situ model and remote sensed
variables respond to soil moisture'”. Satellite remote
sensing data with large area coverage is a promising
and economical tool to estimate soil moisture and
enables drought monitoring based on surface param-
eters, such as NDVI, LST, evaportranspiration, and
soil moisture. The microwave-optical/IR synergis-
tic approach is an efficient method to improve the
current drought-related soil moisture products with
several advantages including higher spatial and tem-
poral resolutions. Zhan ef al. described a synergistic
technique using optical/infrared frequency products
to overcome the coarse spatial resolution of the MW
satellite products™. This method was later enhanced
by Chauhan et al.”’. They built the statistical rela-
tionships between near-surface soil moisture and
optical-derived soil moisture indices. Merlin et al.
applied these relations and transferred this method to

. .. 10
a wider range of conditions'”’

. However, this method
requires many surface parameters and micrometeo-
rological data, which may not be available over large
areas. It’s desirable to find a simple and reasonable

model for drought monitoring comparable to the
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USDM drought classifications, and to explore the
possibility for linking a real-time index with surface
wetness condition in a fine resolution. In this study,
a new approach to build a drought indicator at fine
resolution are implemented with near real time mi-
crowave and optical satellite observations. After in-
troduction of the study area and data used, specifics
of these approaches and their results in analyzing
drought conditions in the continental United States
(CONUS, the latitude and longitude range is about
20 ~ 50 °N, and -125° ~ -75 °W) during the recent
years are presented in the following sections.

2. Materials and methods

2.1 Data used

A comprehensive data set is collected and pro-
cessed for deriving soil moisture at optical sensor
resolution (5 km in this study) from satellite obser-
vations and evaluating drought conditions in the CO-
NUS. These data include:

- MODIS LST and emissivity daily L3 global
climate modeling grid (CMG) product (short name:
MYDI11C1) with a resolution of 0.05°""",

- MODIS LST/emissivity 8-Day .3 CMG prod-
uct (short name: MYD11C2) with a resolution of
0.05°",

- NDVI data is extracted from the MODIS
16-day composite NDVI product (short name:
MYDI13C1) with a resolution of 0.05°!".

- Precipitation data are obtained from the
TRMM (Tropical Rainfall Measuring Mission)
Multi-satellite Precipitation Analysis (TMPA) with
0.25° spatial resolution and 3-hourly temporal reso-
lution'".

- Elevation data are derived from the National
Elevation Dataset (NED) data at a resolution of 100
meters' ",

- MODIS land cover Climate Modeling Grid
(CMG) product (Short Name: MCD12C1) provides
the dominant land cover types at a spatial resolution
of 0.05°.

- Soil texture data, including sand and porosity,
are obtained from the Food and Agriculture Orga-
nization/United Nations Educational, Scientific and



Cultural Organization (FAO/UNESCO) soil map,
with a resolution of about 0.0833°!">'%,

- Soil moisture data used for calibration is ob-
tained from the Soil Moisture Operational Product
System (SMOPS) at 0.25° resolution developed by
NOAA-NESDIS. This SMOPS product merges soil
moisture retrievals from microwave satellite sensors
such as the Advanced Scatterometers (ASCAT) on
MetOp-A and B, Soil Moisture and Ocean Salinity of
European Space Agency, WindSat of Naval Research
Lab based on the Single Channel Algorithm""'*,

- Soil moisture outputs at 0.125° resolution from
the three land-surface models (LSMs): the commu-
nity Noah!"”, the Mosaic®”, and the Variable Infil-
tration Capacity (VIC) model™"
the North American Land Data Assimilation System
(NLDAS)™,

, are obtained from

2.2 Temporal compositing and spatial resam-
pling

The datasets used in this study were obtained
at different temporal and spatial resolutions. All the
datasets were needed to be resampled to the same
resolution.

- For calibration using the SMOPS soil moisture
(SM) data, all the datasets were aggregated to 25 km,
the same resolution as the SMOPS SM data. The SM
models were firstly built at 25 km resolution, then
were applied to optical sensor data to estimate SM at
the optical sensor resolution (5 km here).

- In order to compare with the USDM drought
condition maps, all the datasets have been resampled
or interpolated to uniform weekly (7 days) temporal
and 0.0833° (about 12 km) spatial resolutions.

- For “flash” drought study, all the datasets were
resampled or downscaled to the same 5 km spatial
resolution as the MODIS LST product and estimate
SM at 5 km spatial resolution on daily basis.

Land cover data has been resampled via the
nearest neighbor assignment due to its discrete value.
The bicubic interpolation assignment™ was used to
re-scale the other datasets, assuming that each point
value changes consistently during observations.

2.3 Methods
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2.3.1 A new model for high resolution soil
moisture estimate

A close relationship exists between vegetation
vigor and soil moisture availability, especially in
arid and semiarid areas, thus in many cases satellite
derived NDVI and LST products have been used
to evaluate drought condition. Carlson et al. found
the relationship between measured surface tempera-
ture, vegetation fraction, and soil moisture, known
as the “Universal Triangle Model”". Chauhan et
al. argued that the second or third order polynomial
gives a better representation of the data since a sin-
gle polynomial represents a wide range of surface
climate conditions and land surface types”. Thus a
Universal Triangle Model was developed and can be
described as:

SM =ay, +a,NDVI" +a,,NDVI"’
+ay, LST" +ay, LST"
+a, NDVI'LST" +a, NDVI ' LST"*
+a, NDVI'LST"* + a, NDVI*LST"

(1)

oyr = NDVI=NDVL, o

NDVI, ~NDVI,,

_ LST-LST,

in

where _LSZ;ax_LSZ;nn’ sub-

scripts max and min refer to the maximum and
minimum values. Parameters a, @y, ..., a4y, are the
regression coefficients.

Sun and Kafatos™”!

indicated the negative or re-
verse relation between NDVI and LST can only hold
during warm or growing seasons, therefore, NDVI
and LST related drought indices may only be used
during warm seasons, but not winter. Chauhan et
al. added surface albedo into the Universal Triangle
Model to strengthen the relationship between soil
moisture and measurable land surface parameters'”.
Nevertheless, surface types vary significantly, and
therefore, even a combination of NDVI, LST or al-
bedo is not enough to fully describe the surface con-
ditions. Soil moisture is also highly related to pre-
cipitation (the land water balance equation indicates
the change of soil moisture is highly related to pre-
cipitation), soil texture (physical properties such as
dielectric constant can affect water content in soil),
topography (runoff is highly related to the topo-

graphic position, slope aspect, and steepness), and



land cover (different land cover will influence the
hydrological processes differently). LC data are nu-
merical values. According to the product user guide
(https://Ipdaac.usgs.gov/sites/default/files/public/
product documentation/med12 user guide v6.pdf),
the LC value range is from 1-17 and is assigned as:
Evergreen Need leaf Forest as 1, Evergreen Broad-
leaf Forests as 2, Deciduous Needleleaf Forests as
3, Deciduous Broadleaf Forests as 4, Mixed Forests
as 5, Closed Shrublands as 6, Open Shrublands as
7, Woody Savannas as 8, Savannas as 9, Grasslands
as 10, Permanent Wetlands as 11, Croplands as 12,
Urban and Built-up Lands, Cropland/Natural Vege-
tation Mosaics as 14, Permanent Snow and Ice as 15,
and Barren as 16, and Water Bodies as 17. Thus it is
desirable to combine and integrate all these datasets
to build a soil moisture model as:
SM = b, + bNDVI" +b,NDVI"* + b,LST" + b, Pr+ b,DEM
+ b,Sand+ b,Poro + b, LC
2
where “Pr” represents precipitation, “DEM” is for
Digital Elevation Model (DEM) data, “Sand” is the
individual grains or particles which can be seen with
the naked eyes, “Poro” refers to porosity about how
many pores/holes a soil has, and “LC” is for land
cover data. b, b,, ..., bg are regression coefficients.
As shown in Figure 1, the black line in Figure
1b is the corresponding normalized monthly accu-
mulated precipitation, and the LOWESS (Locally
Weighted Scatterplot Smoothing)®® is applied to
describe the nonlinear trends of precipitation (the
blue line in Figure 1b). The drought condition may
not be directly reflected by temporal variation in pre-
cipitation because drought is caused by precipitation
deficit during some period of time, usually more than
a season. It is found that precipitation has an accu-
mulating and lagging effect on drought condition.
For example, the trend of precipitation is reduced in
2006 and 2011 (Figure 1b), yet the USDM drought
maps marked these years as normal conditions (Fig-
ure la) due to sufficient accumulated rainfall in
previous period. While in 2014, the precipitation had
increasing trend, but short of accumulated rainfall
from the previous period in 2013 and early 2014,
thus the USDM classified year 2014 as drought con-
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dition. This result demonstrated that the accumulated
precipitation from the last year’s warm season to the
current time can describe the drought conditions bet-
ter than the daily precipitation. Therefore, a refined
soil moisture model is proposed by using the accu-
mulated precipitation starting from the last year’s
warm season. The refined soil moisture model can be
described as:
SM =c, +¢,NDVI +¢,NDVI " +¢,IST +¢, Ac_Pr+c,DEM
+c,Sand+c,Poro + ¢, LC

3)
where Ac_Pr is for the accumulated precipitation
starting from April of the previous year until the re-
quested day, all other variables are the same as Equa-

tion (2). ¢, .... ¢g are the regression coefficients.
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Figure 1. (a) The USDM weekly drought condition map; (b)

normalized monthly accumulated precipitation over California
(32 - 42 °N, 114 - 125 °W) retrieved from the TRMM, and nor-
malized monthly accumulated precipitation seasonal decomposi-
tion by the LOWESS (blue line), from Jan. 2003 to Dec. 2014.

The SMOPS soil moisture products were used
for calibration to derive the regression coefficients in
Equations (1), (2), and (3). The least square regres-
sion was applied to estimate the regression coeffi-
cients and 50% data were used for training.

2.3.2 Anomaly calculation

Soil moisture changes slowly, therefore cannot
catch the fast change of drought conditions. Soil
moisture anomaly is more appropriate to describe



drought conditions than the absolute soil moisture"”

In this study, we averaged daily soil moisture into
weekly to match with the UM drought maps tempo-
rally. Soil moisture anomaly maps are obtained by
the difference between weekly soil moisture and the
long-term average soil moisture based on the equa-
tion:

SM _ Anomaly = SM — SM (4)
where the average soil moisture SAs for each pixel is
calculated for the same weeks over the 11 years from
January 1 2003 to December 31 2014. Negative soil
moisture anomalies stand for the observed data are
lower than the averaged data, and indicate dry condi-
tions.

2.3.3 Comparison with some other drought
indices

- Evaporative Stress Index (ESI)

The ESI is defined as the anomalies in the ratio
of actual-to-potential ET (AET/PET), derived from
the thermal remote sensing based on the Atmo-
sphere-Land Exchange Inverse (ALEXI) surface en-
ergy balance model™ ", The ALEXI uses measure-
ments of morning land-surface temperature retrieved
from geostationary satellite thermal band imagery to
solve the Two-Source Energy Balance (TSEB) algo-
rithm"? in time-differential model. Actual ET (AET)
output from the ALEXI is estimated as the potential
ET (PET) expected under non-moisture limiting
conditions, yielding a non-dimensional ET variable,
ESI, ranging from 0 (dry) to approximately 1 (wet).

- Vegetation Health Index (VHI)

Kogan et al. proposed to combine the Vegetation
Condition Index (VCI) and the Temperature Condi-
tion Index (TCI) to Vegetation Health Index (VHI)"™:
VHI =a*VClI+ b +TCI Q)
where the coefficient ¢ and b are usually taken as 0.5.
The VClI is defined as:

Vel = —NDVIZNDVimin
NDVImax—NDVImin

where NDVI, and NDVI

max min

(6)
are the multi years max-
imum and minimum NDVI in a given area for grow-
ing season. The TCI is defined by Kogan®™ as:

TCI = 100 X (BT,,u — BT})/(BT 0. — BTomin) (7)
where BT, BT,,., and BT, are smoothed brightness

max» min
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temperature, its maximum and minimum, respective-
ly calculated for each pixel and week from multiyear
data, and i is the year.

The Center for Satellite Applications and Re-
search (STAR) of NOAA Satellite and Information
Service (NESDIS) is providing global VCI, TCI,
and VHI map every week at: http://www.star.nesdis.
noaa.gov/smcd/emb/vci/VH/vh_browse.php.

- Vegetation Temperature Condition Index
(VTCI)

Wang et al. developed Vegetation Temperature
Condition Index (VTCI) based on the triangular
space of LST and NDVI for monitoring drought

stress™”. It’s defined as following:

LST, i —LST i
VTCI = NDVIimax NDVIi
LSTNDVIimax—LSTNDVIimin

where LSTNDVI,,,,. and LSTNDVI,

i.max imin

®)

are the maxi-
mum and minimum land surface temperature of pix-
els which have the same NDVI, value, respectively,
LSTNDVI, denotes land surface temperature of one
pixel whose NDVI value is NDVI.. If VTCI(i) < 0.4,
then the area (i) is under severe drought condition.

2.3.4 Correlation analyses

The temporal correlation coefficients are com-
puted between the outputs from the refined soil mois-
ture model and the USDM drought classifications at
weekly scales during the growing season from April
to October of each year.

3. Results

Figure 2 demonstrates drought conditions over
the contiguous U.S. based on soil moisture anom-
alies (the first 8 rows) and percentiles (bottom) de-
rived from the refined model and compared with the
USDM drought maps (the first row), the VTCI (the
second row), the VHI (the third row), the ESI (the
fourth row), and soil moisture anomalies from the
Mosaic LSM (the five row), the community Noah
LSM (the six row), and the VIC LSM (the seven
row) for drought conditions from 2005 to 2010 (6
years).
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Figure 2. Drought conditions in the contiguous U.S. from different indicators. From top to bottom: the USDM classification (top),
VTCI (the 2nd), VHI (the third), ESI (the fourth), the Mosaic LSM (the five), the Noah LSM (the sixth), the VIC LSM (the seventh),
soil moisture anomalies based on the refined model (the eighth), and the soil moisture percentile (the bottom) based on the refined
model. The three LSMs (Mosaic, Noah, and VIC) share the same color palette.

It is found the percentile of soil moisture cannot
easily catch the fast changes, so percentile of soil
moisture anomalies is used instead. The VHI and ESI
show good agreements with the USDM classifica-
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tions, while the NLDAS three LSM outputs demon-
strate similar patterns. The soil moisture derived
from the proposed soil moisture model provides an
easy way for monitoring surface drought conditions,



and the surface dry/wetness patterns agree with the
USDM classifications.

Figure 3 shows the temporal correlation coeffi-
cients between the soil moisture anomalies derived
from the refined model and the USDM drought
classes during different years from 2005 to 2010,
where greener color indicates a better agreement be-
tween the two classifications. In general, the refined
soil moisture model outputs have high correlations
with the USDM drought classifications. The sta-
tistical metrics of Averaged Temporal Correlation
Coefficients are also listed in Table 1. In general, the
basic model with the introduction of soil texture data

Correlation 2005

show improvement to the triangle model, while the
refined model outputs have higher correlation with
the USDM drought classifications and show further
improvement to the basic model.

Recently, “flash” drought concept appears.
Flash drought frequently occurred in the central and
eastern United States”®. The 2012 drought over the
Northern American demonstrated the worst sur-
face condition since the 1930s Dust Bowl"””. The
drought started in 2011, extended rapidly in 2012
(especially in June and July according to the USDM
classifications), and continued in 2013. This event
was pervasive in the central regions of the United

Correlation 2006

Correlation 2007

Correlation 2009

Comelation 2008

Comrelation 2010

48 06 -04 02

02 04 0B 08 1

Figure 3. The temporal correlation coefficient maps between the refined soil moisture model outputs and the USDM drought classifi-

cations during different years.

Table 1. The statistical metrics of Averaged Temporal Correlation Coefficients between the soil moisture outputs from the three dif-

ferent models and USDM classifications

Triangle model 0.245 0.548 0.105 0.219 0.460 0.298
Basic model 0.672 0.720 0.382 0.557 0.486 0.423
Refined model 0.748 0.773 0.599 0.618 0.766 0.759
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States due to the absence of rainfall in the growing
season. The rapid soil moisture loss led this event
as “flash drought””*. Unlike the common drought
that is caused by external forcing like SST anoma-
lies, the flash drought event was a result of natural
weather variations, with little warnings found from
the traditional drought metrics or climate model sim-
ulations™’. The flash drought event suggests that the
current drought monitoring should enhance its tem-
poral resolution.

In the above drought analyses as shown in Fig-
ure 2 and Figure 3, the LST input to the soil mois-
ture model is the weekly composite data. Because
thermal infrared (TIR) LST can only be obtained un-
der clear conditions, as shown in Figure 4a, there are
a lot of gaps or missing values due to clouds in the
daily MODIS LST. Only weekly composite can get
a clear LST map. Since microwave sensor can pen-
etrate most non-rainy clouds and observe the Earth
surface, so we think about using microwave observa-
tions to fill the gaps due to clouds in the thermal IR
LST. The microwave observations will be firstly cal-
ibrated to thermal IR (MODIS here) LST, and then

downscaled to the same spatial resolution as the TIR
LST, and then merged with the TIR observations to
fill the gaps due to clouds in the TIR LST. The de-
tailed information and processes are described in an-
other paper™*”
4. As demonstrated in Figure 4, the original daily
MODIS LST exist a lot of gaps due to clouds (Figure
4a), while the LST derived from the AMSR-E with
4 can get a
clear and spatial continuous distribution (Figure 4b).
Figure 4c is the merged MODIS and AMSR-E LST
by using the AMSR-E to fill the gaps in the MODIS
LST, and Figure 4d shows the integrated MODIS
and AMSR-E LST by applying the geographically

. Here we show an example in Figure

a new proposed five-channel algorithm

weighted regression (GWR) method to downscale
the AMSR-E LST to the same MODIS resolution
and further fill the pass gaps in the AMSR-E obser-
vations. With the integrated MODIS and AMSR-E
LST, spatial continuous LST on a daily basis can be
input into the proposed refined SM model to obtain
soil moisture anomaly every day. The flow chart of
the process is shown in Figure 5.

The USDM as well as other drought indicators

7/ MW sensed data

Infrared LST MWLST «

Machine
learning

v

Integrated LST

A 4

Downscaling

Ancillary data ‘
v

Validation against
In-site measurements

A\ 4

Validation against

| » : »
HR LST > Evaluation "| Fine-resolution satellite observations
» Evaluated against USDM
v
L - Drought | . - Validation against
Gl "| Monitoring Evaluation "| popular drought indices

Figure 5. The flow-chart for soil moisture estimate and application in drought analysis.
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Figure 6. An example of daily SM anomalies compared with the weekly USDM drought map. First column: weekly USDM obser-

vations. Soil moisture anomalies observations in the continuous 8§ days (from June 3 to June 10); second column: based on previous

LST and third column: based on the new derived Example-based LST. A equals to 0.02 (unit: m3m-3).

can provide a weekly drought monitoring, while the
new algorithm can provide soil moisture anomaly
observations on a daily basis. The previous LST
product that input into the soil moisture model is
lack of observations due to clouds, and made the ob-
servation of soil moisture anomalies with gaps (Fig-
ure 6, the second column, white area is lack of ob-
servation, thus is considered as in the normal surface

condition). With the TIR and microwave integrated
LST, daily soil moisture anomalies can be obtained
continuously without gaps (Figure 6, the third col-
umn). It matches with the USDM drought maps, and
meanwhile catches the flash changes of dought con-
ditions.
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(a) 20080602 AQUAMODIS Descending LST

(b) 20080602 AMSR-E Descending LST

260 285 270 2ra 280 280 290 295 300 305
(c) 20080602 AMSR-E and MODIS Combined LST

265 270 275 280 285

(d) 20080602 AMSR-E and MODIS Integrated LST

260 285 270 2ra 280 280 290 295 300 305 260

285 270 2ra 280 285 290 285 300 305

Figure 4. (a) Cloud free MODIS LST at 5 km resolution; (b) the derived AMSR-E LST at 25 km resolution; (c) the merged MODIS
and AMSR-E LST at 25 km resolution; (d) the integrated LST from MODIS and AMSR-E with the GWR-based method applied to
fill the gaps and also downscale to the same 5 km resolution as the MODIS LST, during daytime on June 2, 2008.

4. Discussion and conclusion

In this study, we integrated microwave and op-
tical sensors to estimate soil moisture at high spatial
resolution and used them to evaluate drought condi-
tions in the continental United States. A new model
is proposed to estimate soil moisture with the auxil-
iary data such as precipitation, topography, soil tex-
ture, and surface types, in addition to LST and NDVI
used in traditional universal triangle model. We fur-
ther applied the LOWESS model based on time se-
ries analysis, and found precipitation had some kind
of accumulated and lagging effects on soil moisture,
therefore we proposed to use accumulated precipita-
tion starting from last year’s warm season, instead of
daily precipitation. The drought conditions identified
by the soil moisture anomalies derived from the pro-
posed model show close agreement with the USDM
classifications.

There are still some limitations in this study:
(1) this application was limited to the warm season,

while cold season needs further investigation to
fulfill the requirement of surface monitoring; (2) to
further improve the applications, more agricultural
related data should be examined. Since our model
output can also provide the information of wetness
level, agricultural related data such as irrigation,
should be used as an important evaluation for the
outputs.
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