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Abstract
In this study, optical and microwave satellite observations are integrated to estimate soil moisture at the same spa-

tial resolution as the optical sensors (5km here) and applied for drought analysis in the continental United States. A new 

refined model is proposed to include auxiliary data like soil texture, topography, surface types, accumulated precipita-

tion, in addition to Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) used in the 
traditional universal triangle method. It is found the new proposed soil moisture model using accumulated precipitation 

demonstrated close agreements with the U.S. Drought Monitor (USDM) spatial patterns. Currently, the USDM is pro-

viding a weekly map. Recently, “flash” drought concept appears. To obtain drought map on daily basis, LST is derived 
from microwave observations and downscaled to the same resolution as the thermal infrared LST product and used to 

fill the gaps due to clouds in optical LST data. With the integrated daily LST available under nearly all weather condi-
tions, daily soil moisture can be estimated at relatively higher spatial resolution than those traditionally derived from 

passive microwave sensors, thus drought maps based on soil moisture anomalies can be obtained on daily basis and 

made the flash drought analysis and monitoring become possible.
Keywords: Soil Moisture; High Spatial Resolution; Regional Drought; Microwave and Optical Satellite Remote Sensing

1. Introduction 
Drought is considered to be the most severe natural hazard in 

terms of impact, duration, and spatial extent[1]
. The sparse spatial dis-

tribution of weather stations makes it daunting for drought monitoring 

and predicting. Satellite remote sensing capabilities have been greatly 

improved for decades and served as the main method for drought mon-

itoring. Drought may occur unnoticeably and varyingly. Lack of infor-

mation to drought may lead to severe disaster. The damage was exten-

sive and the impact to livestock and farm production is uncountable
[2]

. 

Government agencies within National Oceanic and Atmospheric 

Administration (NOAA) and United States Department of Agriculture 

(USDA) have teamed up with the National Drought Mitigation Center 

(NDMC) to produce a weekly drought monitor (DM) map that incor-

porates climate data and professional input from all levels and is well 

known as the U.S. Drought Monitor (USDM). The USDM maps are 

consensus product based on several indicators and key variables, and 

the final maps are adjusted manually by numerous experts through-

out the country to reflect the real-world conditions as reported[3]
. The 

ARTICLE INFO

                                                                               

Article history:

Received 15 February 2021

Accepted 29 March 2021

Available online 10 April 2021

COPYRIGHT

                                                                               

Copyright © 2021 Donglian Sun et al.

doi: 10.24294/jgc.v4i1.1313

EnPress Publisher LLC. This work is li-

censed under the Creative Commons Attribu-

tion-NonCommercial 4.0 International Li-

cense (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-

nc/4.0/



94

USDM drought conditions are classified into five 

classes based on a ranking percentile approach: (1) 

D0 - abnormally, (2) D1 - moderate, (3) D2 - severe, 

(4) D3 - extreme, and (5) D4 - exceptional dry con-

ditions. They are utilized as (1) D0-D4 (percentile 

≤30%), (2) D1-D4 (percentile ≤20%), (3) D2-D4 
(percentile ≤10%), (4) D3-D4 (percentile ≤5%), and 
(5) D4 (percentile ≤2%)[3–5]

. 

The USDM maps are currently distributed on-

line (http://droughtmonitor.unl.edu/) with relatively 

coarse resolution. They served as one of the criteria 

to determine the eligibility for relief of aggravation 

due to drought condition.

Agricultural interest in drought is important in 

much of the U.S. In fact, there is considerable inter-

est in indices that can monitor agricultural drought. 

The hydrological condition of agricultural drought 

is closely linked to soil moisture
[6]

, which is depen-

dent on precipitation, water infiltration, and soil 

water holding capacity. Since it’s hard to measure 

soil moisture over large area directly, Leese et al. 

concluded it’s better to monitor soil moisture with 

combination of in-situ model and remote sensed 

variables respond to soil moisture
[7]

. Satellite remote 

sensing data with large area coverage is a promising 

and economical tool to estimate soil moisture and 

enables drought monitoring based on surface param-

eters, such as NDVI, LST, evaportranspiration, and 

soil moisture. The microwave-optical/IR synergis-

tic approach is an efficient method to improve the 

current drought-related soil moisture products with 

several advantages including higher spatial and tem-

poral resolutions. Zhan et al. described a synergistic 

technique using optical/infrared frequency products 

to overcome the coarse spatial resolution of the MW 

satellite products
[8]

. This method was later enhanced 

by Chauhan et al.
[9]

. They built the statistical rela-

tionships between near-surface soil moisture and 

optical-derived soil moisture indices. Merlin et al. 

applied these relations and transferred this method to 

a wider range of conditions
[10]

. However, this method 

requires many surface parameters and micrometeo-

rological data, which may not be available over large 

areas. It’s desirable to find a simple and reasonable 
model for drought monitoring comparable to the 

USDM drought classifications, and to explore the 
possibility for linking a real-time index with surface 
wetness condition in a fine resolution. In this study, 
a new approach to build a drought indicator at fine 
resolution are implemented with near real time mi-

crowave and optical satellite observations. After in-

troduction of the study area and data used, specifics 
of these approaches and their results in analyzing 

drought conditions in the continental United States 

(CONUS, the latitude and longitude range is about 

20 ~ 50 °N, and -125° ~ -75 °W) during the recent 

years are presented in the following sections.

2. Materials and methods
2.1 Data used

A comprehensive data set is collected and pro-

cessed for deriving soil moisture at optical sensor 

resolution (5 km in this study) from satellite obser-

vations and evaluating drought conditions in the CO-

NUS. These data include:

- MODIS LST and emissivity daily L3 global 

climate modeling grid (CMG) product (short name: 

MYD11C1) with a resolution of 0.05°
[11]

. 

- MODIS LST/emissivity 8-Day L3 CMG prod-

uct (short name: MYD11C2) with a resolution of 

0.05°
[11]

. 

- NDVI data is extracted from the MODIS 
16-day composite NDVI product (short name: 

MYD13C1) with a resolution of 0.05°
[12]

. 

- Precipitation data are obtained from the 

TRMM (Tropical Rainfall Measuring Mission) 

Multi-satellite Precipitation Analysis (TMPA) with 

0.25° spatial resolution and 3-hourly temporal reso-

lution
[13]

. 

- Elevation data are derived from the National 

Elevation Dataset (NED) data at a resolution of 100 

meters
[14]

.

- MODIS land cover Climate Modeling Grid 

(CMG) product (Short Name: MCD12C1) provides 

the dominant land cover types at a spatial resolution 

of 0.05°. 

- Soil texture data, including sand and porosity, 
are obtained from the Food and Agriculture Orga-

nization/United Nations Educational, Scientific and 
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Cultural Organization (FAO/UNESCO) soil map, 

with a resolution of about 0.0833°
[15,16]

. 

- Soil moisture data used for calibration is ob-

tained from the Soil Moisture Operational Product 

System (SMOPS) at 0.25° resolution developed by 

NOAA-NESDIS. This SMOPS product merges soil 

moisture retrievals from microwave satellite sensors 

such as the Advanced Scatterometers (ASCAT) on 

MetOp-A and B, Soil Moisture and Ocean Salinity of 

European Space Agency, WindSat of Naval Research 

Lab based on the Single Channel Algorithm
[17,18]

. 

- Soil moisture outputs at 0.125° resolution from 

the three land-surface models (LSMs): the commu-

nity Noah
[19]

, the Mosaic
[20]

, and the Variable Infil-

tration Capacity (VIC) model
[21]

, are obtained from 

the North American Land Data Assimilation System 

(NLDAS)
[22]

.

2.2 Temporal compositing and spatial resam-

pling
The datasets used in this study were obtained 

at different temporal and spatial resolutions. All the 
datasets were needed to be resampled to the same 

resolution. 

- For calibration using the SMOPS soil moisture 

(SM) data, all the datasets were aggregated to 25 km, 

the same resolution as the SMOPS SM data. The SM 

models were firstly built at 25 km resolution, then 

were applied to optical sensor data to estimate SM at 

the optical sensor resolution (5 km here).     

- In order to compare with the USDM drought 

condition maps, all the datasets have been resampled 

or interpolated to uniform weekly (7 days) temporal 

and 0.0833° (about 12 km) spatial resolutions. 

- For “flash” drought study, all the datasets were 
resampled or downscaled to the same 5 km spatial 

resolution as the MODIS LST product and estimate 

SM at 5 km spatial resolution on daily basis.

Land cover data has been resampled via the 

nearest neighbor assignment due to its discrete value. 

The bicubic interpolation assignment
[23]

 was used to 

re-scale the other datasets, assuming that each point 

value changes consistently during observations.

2.3 Methods

2.3.1 A new model for high resolution soil 
moisture estimate

A close relationship exists between vegetation 
vigor and soil moisture availability, especially in 

arid and semiarid areas, thus in many cases satellite 

derived NDVI and LST products have been used 

to evaluate drought condition. Carlson et al. found 

the relationship between measured surface tempera-

ture, vegetation fraction, and soil moisture, known 

as the “Universal Triangle Model”[24]
. Chauhan et 

al. argued that the second or third order polynomial 

gives a better representation of the data since a sin-

gle polynomial represents a wide range of surface 

climate conditions and land surface types
[9]

. Thus a 

Universal Triangle Model was developed and can be 

described as:

              (1)

where  ,  sub -

scripts max and min refer to the maximum and 
minimum values. Parameters a00, a10, …, a22 are the 

regression coefficients. 
Sun and Kafatos

[25]
 indicated the negative or re-

verse relation between NDVI and LST can only hold 

during warm or growing seasons, therefore, NDVI 

and LST related drought indices may only be used 

during warm seasons, but not winter. Chauhan et 

al. added surface albedo into the Universal Triangle 

Model to strengthen the relationship between soil 

moisture and measurable land surface parameters
[9]

. 

Nevertheless, surface types vary significantly, and 

therefore, even a combination of NDVI, LST or al-

bedo is not enough to fully describe the surface con-

ditions. Soil moisture is also highly related to pre-

cipitation (the land water balance equation indicates 

the change of soil moisture is highly related to pre-

cipitation), soil texture (physical properties such as 
dielectric constant can affect water content in soil), 
topography (runoff is highly related to the topo-

graphic position, slope aspect, and steepness), and 
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land cover (different land cover will influence the 

hydrological processes differently). LC data are nu-

merical values. According to the product user guide 

(https://lpdaac.usgs.gov/sites/default/files/public/

product_documentation/mcd12_user_guide_v6.pdf), 

the LC value range is from 1–17 and is assigned as: 

Evergreen Need leaf Forest as 1, Evergreen Broad-

leaf Forests as 2, Deciduous Needleleaf Forests as 

3, Deciduous Broadleaf Forests as 4, Mixed Forests 
as 5, Closed Shrublands as 6, Open Shrublands as 

7, Woody Savannas as 8, Savannas as 9, Grasslands 

as 10, Permanent Wetlands as 11, Croplands as 12, 

Urban and Built-up Lands, Cropland/Natural Vege-

tation Mosaics as 14, Permanent Snow and Ice as 15, 

and Barren as 16, and Water Bodies as 17. Thus it is 

desirable to combine and integrate all these datasets 

to build a soil moisture model as: 

(2)

where “Pr” represents precipitation, “DEM” is for 
Digital Elevation Model (DEM) data, “Sand” is the 
individual grains or particles which can be seen with 

the naked eyes, “Poro” refers to porosity about how 
many pores/holes a soil has, and “LC” is for land 
cover data. b0, b1, …, b8 are regression coefficients. 

As shown in Figure 1, the black line in Figure 

1b is the corresponding normalized monthly accu-

mulated precipitation, and the LOWESS (Locally 

Weighted Scatterplot Smoothing)
[26]

 is applied to 

describe the nonlinear trends of precipitation (the 

blue line in Figure 1b). The drought condition may 

not be directly reflected by temporal variation in pre-

cipitation because drought is caused by precipitation 

deficit during some period of time, usually more than 
a season. It is found that precipitation has an accu-

mulating and lagging effect on drought condition. 

For example, the trend of precipitation is reduced in 
2006 and 2011 (Figure 1b), yet the USDM drought 

maps marked these years as normal conditions (Fig-

ure 1a) due to sufficient accumulated rainfall in 

previous period. While in 2014, the precipitation had 

increasing trend, but short of accumulated rainfall 

from the previous period in 2013 and early 2014, 

thus the USDM classified year 2014 as drought con-

dition. This result demonstrated that the accumulated 

precipitation from the last year’s warm season to the 

current time can describe the drought conditions bet-

ter than the daily precipitation. Therefore, a refined 
soil moisture model is proposed by using the accu-

mulated precipitation starting from the last year’s 

warm season. The refined soil moisture model can be 
described as:

(3)

where Ac_Pr is for the accumulated precipitation 

starting from April of the previous year until the re-

quested day, all other variables are the same as Equa-

tion (2). c0, …. c8 are the regression coefficients.  

Figure 1. (a) The USDM weekly drought condition map; (b) 

normalized monthly accumulated precipitation over California 

(32 - 42 °N, 114 - 125 °W) retrieved from the TRMM, and nor-

malized monthly accumulated precipitation seasonal decomposi-

tion by the LOWESS (blue line), from Jan. 2003 to Dec. 2014.

The SMOPS soil moisture products were used 

for calibration to derive the regression coefficients in 
Equations (1), (2), and (3). The least square regres-

sion was applied to estimate the regression coeffi-

cients and 50% data were used for training.  

2.3.2 Anomaly calculation
Soil moisture changes slowly, therefore cannot 

catch the fast change of drought conditions. Soil 

moisture anomaly is more appropriate to describe 
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drought conditions than the absolute soil moisture
[27]

. 

In this study, we averaged daily soil moisture into 

weekly to match with the UM drought maps tempo-

rally. Soil moisture anomaly maps are obtained by 

the difference between weekly soil moisture and the 
long-term average soil moisture based on the equa-

tion:

                                            (4)

where the average soil moisture  for each pixel is 
calculated for the same weeks over the 11 years from 

January 1 2003 to December 31 2014. Negative soil 

moisture anomalies stand for the observed data are 

lower than the averaged data, and indicate dry condi-

tions.

2.3.3 Comparison with some other drought 
indices

- Evaporative Stress Index (ESI)
The ESI is defined as the anomalies in the ratio 

of actual-to-potential ET (AET/PET), derived from 

the thermal remote sensing based on the Atmo-

sphere-Land Exchange Inverse (ALEXI) surface en-

ergy balance model
[28–31]

. The ALEXI uses measure-

ments of morning land-surface temperature retrieved 

from geostationary satellite thermal band imagery to 

solve the Two-Source Energy Balance (TSEB) algo-

rithm
[32] in time-differential model. Actual ET (AET) 

output from the ALEXI is estimated as the potential 

ET (PET) expected under non-moisture limiting 
conditions, yielding a non-dimensional ET variable, 

ESI, ranging from 0 (dry) to approximately 1 (wet).
- Vegetation Health Index (VHI)
Kogan et al. proposed to combine the Vegetation 

Condition Index (VCI) and the Temperature Condi-
tion Index (TCI) to Vegetation Health Index (VHI)[33]

: 

                                              (5)

where the coefficient a and b are usually taken as 0.5. 

The VCI is defined as:

                                           (6)

where NDVImax and NDVImin are the multi years max-

imum and minimum NDVI in a given area for grow-

ing season. The TCI is defined by Kogan[34]
 as:

               (7)

where BT, BTmax, and BTmin are smoothed brightness 

temperature, its maximum and minimum, respective-

ly calculated for each pixel and week from multiyear 
data, and i is the year.  

The Center for Satellite Applications and Re-

search (STAR) of NOAA Satellite and Information 

Service (NESDIS) is providing global VCI, TCI, 

and VHI map every week at: http://www.star.nesdis.

noaa.gov/smcd/emb/vci/VH/vh_browse.php.

- Vegetation Temperature Condition Index 
(VTCI)

Wang et al. developed Vegetation Temperature 

Condition Index (VTCI) based on the triangular 
space of LST and NDVI for monitoring drought 

stress
[35]. It’s defined as following:

                                       (8)

where LSTNDVIi.max and LSTNDVIi.min are the maxi-
mum and minimum land surface temperature of pix-

els which have the same NDVIi value, respectively, 

LSTNDVIi denotes land surface temperature of one 

pixel whose NDVI value is NDVIi. If VTCI(i) < 0.4, 

then the area (i) is under severe drought condition.

2.3.4 Correlation analyses
The temporal correlation coefficients are com-

puted between the outputs from the refined soil mois-

ture model and the USDM drought classifications at 
weekly scales during the growing season from April 

to October of each year. 

3. Results
Figure 2 demonstrates drought conditions over 

the contiguous U.S. based on soil moisture anom-

alies (the first 8 rows) and percentiles (bottom) de-

rived from the refined model and compared with the 
USDM drought maps (the first row), the VTCI (the 
second row), the VHI (the third row), the ESI (the 

fourth row), and soil moisture anomalies from the 

Mosaic LSM (the five row), the community Noah 

LSM (the six row), and the VIC LSM (the seven 
row) for drought conditions from 2005 to 2010 (6 

years).
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It is found the percentile of soil moisture cannot 

easily catch the fast changes, so percentile of soil 

moisture anomalies is used instead. The VHI and ESI 

show good agreements with the USDM classifica-

tions, while the NLDAS three LSM outputs demon-

strate similar patterns. The soil moisture derived 

from the proposed soil moisture model provides an 

easy way for monitoring surface drought conditions, 

Figure 2. Drought conditions in the contiguous U.S. from different indicators. From top to bottom: the USDM classification (top), 
VTCI (the 2nd), VHI (the third), ESI (the fourth), the Mosaic LSM (the five), the Noah LSM (the sixth), the VIC LSM (the seventh), 
soil moisture anomalies based on the refined model (the eighth), and the soil moisture percentile (the bottom) based on the refined 
model. The three LSMs (Mosaic, Noah, and VIC) share the same color palette.
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and the surface dry/wetness patterns agree with the 

USDM classifications.
Figure 3 shows the temporal correlation coeffi-

cients between the soil moisture anomalies derived 

from the refined model and the USDM drought 

classes during different years from 2005 to 2010, 

where greener color indicates a better agreement be-

tween the two classifications. In general, the refined 
soil moisture model outputs have high correlations 

with the USDM drought classifications. The sta-

tistical metrics of Averaged Temporal Correlation 

Coefficients are also listed in Table 1. In general, the 

basic model with the introduction of soil texture data 

show improvement to the triangle model, while the 

refined model outputs have higher correlation with 

the USDM drought classifications and show further 
improvement to the basic model.

Recently, “flash” drought concept appears. 
Flash drought frequently occurred in the central and 

eastern United States
[36]

. The 2012 drought over the 

Northern American demonstrated the worst sur-

face condition since the 1930s Dust Bowl
[37]

. The 

drought started in 2011, extended rapidly in 2012 
(especially in June and July according to the USDM 

classifications), and continued in 2013. This event 

was pervasive in the central regions of the United 

Figure 3. The temporal correlation coefficient maps between the refined soil moisture model outputs and the USDM drought classifi-

cations during different years.

Table 1. The statistical metrics of Averaged Temporal Correlation Coefficients between the soil moisture outputs from the three dif-
ferent models and USDM classifications

SM models\years 2005 2006 2007 2008 2009 2010

Triangle model 0.245 0.548 0.105 0.219 0.460 0.298

Basic model 0.672 0.720 0.382 0.557 0.486 0.423

Refined model 0.748 0.773 0.599 0.618 0.766 0.759
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States due to the absence of rainfall in the growing 

season. The rapid soil moisture loss led this event 

as “flash drought”[38]
. Unlike the common drought 

that is caused by external forcing like SST anoma-

lies, the flash drought event was a result of natural 

weather variations, with little warnings found from 

the traditional drought metrics or climate model sim-

ulations
[39]. The flash drought event suggests that the 

current drought monitoring should enhance its tem-

poral resolution.

In the above drought analyses as shown in Fig-

ure 2 and Figure 3, the LST input to the soil mois-

ture model is the weekly composite data. Because 

thermal infrared (TIR) LST can only be obtained un-

der clear conditions, as shown in Figure 4a, there are 

a lot of gaps or missing values due to clouds in the 

daily MODIS LST. Only weekly composite can get 

a clear LST map. Since microwave sensor can pen-

etrate most non-rainy clouds and observe the Earth 

surface, so we think about using microwave observa-

tions to fill the gaps due to clouds in the thermal IR 
LST. The microwave observations will be firstly cal-
ibrated to thermal IR (MODIS here) LST, and then 

downscaled to the same spatial resolution as the TIR 

LST, and then merged with the TIR observations to 

fill the gaps due to clouds in the TIR LST. The de-

tailed information and processes are described in an-

other paper
[40]. Here we show an example in Figure 

4. As demonstrated in Figure 4, the original daily 

MODIS LST exist a lot of gaps due to clouds (Figure 
4a), while the LST derived from the AMSR-E with 

a new proposed five-channel algorithm[40]
 can get a 

clear and spatial continuous distribution (Figure 4b). 

Figure 4c is the merged MODIS and AMSR-E LST 

by using the AMSR-E to fill the gaps in the MODIS 
LST, and Figure 4d shows the integrated MODIS 

and AMSR-E LST by applying the geographically 

weighted regression (GWR) method to downscale 

the AMSR-E LST to the same MODIS resolution 

and further fill the pass gaps in the AMSR-E obser-
vations. With the integrated MODIS and AMSR-E 

LST, spatial continuous LST on a daily basis can be 

input into the proposed refined SM model to obtain 
soil moisture anomaly every day. The flow chart of 
the process is shown in Figure 5.

The USDM as well as other drought indicators 

MW LST

Integrated LST

HR LST

SM models Drought 
Monitoring

Validation against
In-site measurements

Validation against
Fine-resolution satellite observations

MW sensed data

Ancillary data

Infrared LST

Machine 
learning

Downscaling

Evaluated against USDM 

Validation against
popular drought indices

Evaluation 

Evaluation 

Figure 5. The flow-chart for soil moisture estimate and application in drought analysis.
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Figure 6. An example of daily SM anomalies compared with the weekly USDM drought map. First column: weekly USDM obser-

vations. Soil moisture anomalies observations in the continuous 8 days (from June 3 to June 10); second column: based on previous 

LST and third column: based on the new derived Example-based LST. ∆ equals to 0.02 (unit: m3m-3).

can provide a weekly drought monitoring, while the 

new algorithm can provide soil moisture anomaly 

observations on a daily basis. The previous LST 

product that input into the soil moisture model is 

lack of observations due to clouds, and made the ob-

servation of soil moisture anomalies with gaps (Fig-

ure 6, the second column, white area is lack of ob-

servation, thus is considered as in the normal surface 

condition). With the TIR and microwave integrated 

LST, daily soil moisture anomalies can be obtained 

continuously without gaps (Figure 6, the third col-

umn). It matches with the USDM drought maps, and 

meanwhile catches the flash changes of dought con-

ditions. 
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4. Discussion and conclusion
In this study, we integrated microwave and op-

tical sensors to estimate soil moisture at high spatial 

resolution and used them to evaluate drought condi-

tions in the continental United States. A new model 

is proposed to estimate soil moisture with the auxil-
iary data such as precipitation, topography, soil tex-

ture, and surface types, in addition to LST and NDVI 

used in traditional universal triangle model. We fur-

ther applied the LOWESS model based on time se-

ries analysis, and found precipitation had some kind 

of accumulated and lagging effects on soil moisture, 
therefore we proposed to use accumulated precipita-

tion starting from last year’s warm season, instead of 

daily precipitation. The drought conditions identified 
by the soil moisture anomalies derived from the pro-

posed model show close agreement with the USDM 

classifications.  
There are still some limitations in this study: 

(1) this application was limited to the warm season, 

while cold season needs further investigation to 

fulfill the requirement of surface monitoring; (2) to 
further improve the applications, more agricultural 

related data should be examined. Since our model 
output can also provide the information of wetness 

level, agricultural related data such as irrigation, 

should be used as an important evaluation for the 

outputs.
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Figure 4. (a) Cloud free MODIS LST at 5 km resolution; (b) the derived AMSR-E LST at 25 km resolution; (c) the merged MODIS 

and AMSR-E LST at 25 km resolution; (d) the integrated LST from MODIS and AMSR-E with the GWR-based method applied to 

fill the gaps and also downscale to the same 5 km resolution as the MODIS LST, during daytime on June 2, 2008.
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