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ABSTRACT ARTICLE HISTORY
Without a widely distributed vaccine, controlling human mobility has been identified and Received 2 February 2021
promoted as the primary strategy to mitigate the transmission of COVID-19. Many studies Accepted 7 February 2022
have reported the relationship between human mobility and COVID-19 transmission by KEYWORDS

utilizing the spatial-temporal information of mobility data from various sources. To better Human mobility; COVID-19
understand the role of human mobility in the pandemic, we conducted a systematic review of transmission; systematic
articles that measure the relationship between human mobility and COVID-19 in terms of review; mobility data;
their data sources, mathematical models, and key findings. Following the guidelines of the mathematical modelling
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, we

selected 47 articles from the Web of Science Core Collection up to September 2020.

Restricting human mobility reduced the transmission of COVID-19, although the effectiveness

and stringency of policy implementation vary temporally and spatially across different stages

of the pandemic. We call for prompt and sustainable measures to control the pandemic. We

also recommend researchers 1) to enhance multi-disciplinary collaboration; 2) to adjust the

implementation and stringency of mobility-control policies in corresponding to the rapid

change of the pandemic; 3) to improve mathematical models used in analysing, simulating,

and predicting the transmission of the disease; and 4) to enrich the source of mobility data to

ensure data accuracy and suability.

1. Introduction pandemic, various policies have been implemented
worldwide to restrict human mobility across and within
countries, including international travel bans, national
border closures, restrictions between states and cities,
stay-at-home orders, limited private and public gather-
ings, as well as closing schools, universities, workplaces,
and public transportation (Hale and Webster 2020).
Since the outbreak, academic researchers have put
substantial efforts into studying the association between
human mobility and COVID-19 transmission, applying
various datasets and mathematical models in different

Human mobility plays an important role in the transmis-
sion of infectious diseases. With the increase of human
mobility caused by the development of transportation
networks and globalization, the spread of infectious dis-
eases can be unprecedentedly rapid and difficult to pre-
vent and control, resulting in pandemics. Such pandemics
have been witnessed in history, for example, the 1918
novel influenza A (H1N1) pandemic, the 2009 HIN1 pan-
demic, and the current coronavirus disease 2019 (COVID-
19). Without a widely distributed vaccine, controlling
human mobility has been identified and promoted as ~ countries and regions. While many studies have
the primary strategy to mitigate the transmission of reported the efficacy of mobility restrictions on control-
COVID-19 (Gatto et al. 2020: Kucharski et al. 2020; ling the spread of the novel coronavirus (Kraemer et al.
S. Wang, Liu, & Hu, 2020; Yabe et al. 2020). During this 2020a; Kucharski et al. 2020; Wang et al., 2020; Yabe et al.
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2020), the timeline and stringency of social restriction
policies and lockdown orders have been vociferously
challenged due to significant social and economic
costs (Bonaccorsi et al. 2020; Lecocq et al. 2020).
Additionally, many studies applied simulation and pre-
diction models to forecast the potential spread of the
novel coronavirus based on various policies interven-
tions (Prem et al. 2020; Wu, Leung, and Leung 2020).
Therefore, there is an urgent need to summarize and
compare the findings of these publications to support
stakeholders to adopt the most effective mobility mea-
sures to control the spread of the novel coronavirus
domestically and internationally.

In this systematic review, we summarized the results
of the association between human mobility and COVID-
19 transmission in terms of study purposes, data usage,
modelling approaches, and key findings. Based on the
findings, we suggested research directions in the spatial
and temporal dimensions for future studies. Through
collective efforts from multiple disciplines, we hope to
mitigate the spread of COVID-19 with evidence-based
solutions and support stakeholders to be better pre-
pared for future public health emergencies given the
increased globalization, suburbanization, and interrup-
tion of human beings to eco-systems.

2. Method

We followed the guidelines of the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses
(PRISMA) statement to select articles and to report the
findings. PRISMA statement is a guideline developed to
support researchers to conduct systematic reviews
(Moher et al. 2009). We applied the checklist of PRISMA
with the items to report in a systematic review and
a flow diagram indicating the workflow of selecting
articles in a systemic review (Moher et al. 2009). We
commenced with searching through the Web of
Science (WoS) Core Collection of all the published arti-
cles between January 2020 to September 2020 to cover
the most recent publications with the topic of human
mobility and COVID-19. WoS is the most widely used and
authoritative database of research publications and cita-
tions. WoS Core Collection Coverage includes more than
20,900 journals plus books and conference proceedings
from various disciplines (Birkle et al. 2020). The searching
terms we used are ‘((COVID-19 OR “novel coronaviruses”
OR 2019-nCov OR SARS CoV-2) AND (“human mobility”
OR “human movement” OR “population flow” OR “social
distanc*” OR “physical distanc*” OR “travel restriction”
OR “movement control” OR “stay-at-home” OR “lock-
down” OR “shelter-in-place”))".

The flow diagram of the article selection through
different phases of the review was presented in
Figure 1. We limited our search to published and early
access articles, resulting in a total number of 1,649 arti-
cles. We then excluded the articles in irrelevant areas
(e.g. psychology, neuroscience, neurology, and surgery),
narrowing down 868 articles. We further excluded 755
articles that do not meet our inclusion criteria (Table 1)
by screening their titles and abstracts. Through reading
and assessing full texts, 47 articles highly relevant to our
review's interest were finally selected. We summarized
and analysed the information of the study countries/
regions, study purposes, data resources, modelling
approaches, and key findings. This information was
also presented in Supplementary Table 1. Based on
what we found, we proposed future research directions
of mobility-transmission studies.

3. Results
3.1 Data sources and features

The selected papers mainly rely on two types of data:
COVID-19 data at different scales and human mobility
data. COVID-19 data in terms of the number of con-
firmed and susceptible cases, deaths, and recovered
cases are usually easy to retrieve from research insti-
tutes, public health authorities, or government reports,
while human mobility data are multi-sourced with spe-
cific applications. This review mainly focuses on human
mobility data regarding its sources, public accessibility,
spatial and time coverage, update frequency, advan-
tages, and disadvantages (Table 2).

The first type of mobility data is big data gathered by
technology companies, including Baidu, SafeGraph,
Google, and Tencent. For example, Google mobility
data is created by aggregated and anonymized data
sets from users who have turned on the Location
History setting in the products such as Google Maps
(Aktay et al. 2020). It is encoded as a percentage change
in the mobility metric compared to the baseline of
human mobility from January 3 to 6 February 2020
(Aktay et al. 2020). Unlike Google mobility data,
SafeGraph mobility data adds unique and valuable
insights into the mobility change by estimating the
aggregated and anonymized summary of foot traffic to
6 million points-of-interest in North America (Safegraph
2021). Safegraph aggregates the data by category (e.g.
Airports or Supermarkets) or brands (e.g. Costco or
McDonald’s) (Safegraph 2021). In addition, Baidu,
a Chinese leading information technology (IT) company,
offers location-based services to mobile devices for
online searching and mapping based on the Global
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Figure 1. PRISMA flow chart on the identification and screening of studies on human mobility and COVID19 transmission.

Table 1. Inclusion and exclusion criteria of article selection.
Definition

Criteria

Inclusion 1) measure the association between human mobility and
COVID-19 transmission, 2) measure the association between
human mobility-related policies and COVID-19
transmission, and 3) apply quantitative methods.

Exclusion 1) measure the association between human mobility and other
COVID-19 pandemic related issues, e.g. economic
development, mental health, family relationship, 2) apply
qualitative methods.

Positioning System, Internet Protocol addresses, locations
of signalling towers, and wireless networks. Baidu
Mobility Index contains daily inbound (i.e. percentage of
people travelling to the city from all the cities in China)
and outbound (i.e. percentage of people travelling from
the city to all the cities in China) mobility data for all cities
in China (except for Hong Kong, Macau and Taiwan) on
each day from 1 January 2020 to 7 May 2020(Liu et al.
2020). Baidu mobility data has been widely used to study
population migration at the early stage of the COVID-19
outbreak in China. Similarly, Tencent is another Chinese
leading IT company providing inter-city human mobility
information by integrating air flight, train, and vehicle
data. However, Tencent only released the inflow and out-
flow data from10 Chinese cities with the highest mobility
index. Advantages of big data in human mobility include
timeliness, cost-effectiveness, and large spatial coverage,

while its disadvantages vary across different data sources.
For example, Google mobility data covers most countries
worldwide, while Baidu and Tencent mobility data only
covers Mainland China. Compared with Google mobility
data, Baidu mobility data is relatively difficult to retrieve,
requesting users to develop programs to access data, and
the available data is restricted for a certain period.
However, Google mobility data cannot indicate the inter-
regional mobility flow that Baidu and Tencent mobility
can do.

The second type of mobility data that has been
widely used is the public transit data, collected through
air flights. For example, Peirlinck et al. used the number
of air passengers published by the Bureau of
Transportation Statistics to model the spreading of
COVID-19 across the U.S. (Peirlinck et al. 2020a; United
States Department of Transportation n.d.). Public transit
data has the advantage of compensating for the inter-
national or inter-regional mobility estimates, which can-
not be revealed by Google mobility data. However, its
key disadvantage is the roughness and availability at
a relatively coarse scale, which cannot accurately simu-
late the spreading of COVID-19 at a fine scale.

The third category is census data, which records the
number of people moving between or within adminis-
trative regions. For example, the United States Census
Bureau publishes yearly geographic mobility dataset by
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region and category, including race, sex, age, relation-
ship to householder, educational attainment, marital
status, nativity, tenure, and poverty status at the
national, inter-state, intra-state, inter-county, and intra-
county level (United States Census Bureau n.d.). When
building epidemic models to estimate the effect of
human mobility on COVID-19 transmission, Gatto et al.
identified mobility fluxes at the municipal and provincial
levels based on the 2011 commuting data from the
Italian Census Bureau (Gatto et al. 2020). Census data is
representative, easy to access, and usually available at
various spatial scales (e.g. county, state, and nationwide).
However, census data is usually updated infrequently,
and its data could be out-of-date and unable to reflect
instant changes in human mobility with the rapid
response to the implementation of mobility restrictions
during the pandemic.

The fourth category is primary data, containing the
participants’ personal and location information collected
through survey questionnaires. For example, DeFries
et al. identified migration patterns over the last five
years using a collected household survey covering
5,000 villages in 32 districts in central India (DeFries
et al. 2020). Zhang et al. analysed 1,245 contacts
reported by 636 survey participants in Wuhan and 1,
296 contacts reported by 557 survey participants in
Shanghai to study the impact of social distancing and
school closure on COVID-19 transmission. As
a traditional source to track human mobility, survey
data is relevant to the study objective. It covers those
who are eliminated in the above secondary data
resources, for example, those who do not use internet,

Correlation and Exploratory

Statistical
Methods

Non-Linear Regression Models

< Mathematical Models -

N

WWathematical/Mechanistic State-
y Space Models

Simplified
Arithmetic Models
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mobile phone, or air transportation. However, it is time-
consuming and expensive to collect data, especially with
a large sample size from various regions. Thus, it is an
appropriate approach to measure human mobility in
specific communities.

Our team published a literature review summarizing
human mobility data that has been used in the COVID-
19 pandemic which provides a more detailed and border
discussion of various types of these datasets (Hu et al.
2021).

3.2 Modelling approaches

The selected articles apply various mathematical model-
ling to analyse, simulate, and predict the association
between human mobility and COVID-19. According to
Siettos et al.’s categories of mathematical modelling of
infectious disease dynamics, we categorized the mathe-
matical models used in the selected articles into three
categories: statistical method, mathematical/mechanis-
tic state-space model, and simplified arithmetic model
(Siettos and Russo 2013). The category of these analyti-
cal models was presented in Figure 2.

A total of 26 selected articles apply statistical meth-
ods, including correlation and exploratory analyses, as
well as simple linear and advanced regression models.
These models are mainly used in evaluating the effec-
tiveness of social restriction policies and modelling the
relationship between human mobility and COVID-
transmission. The correlation and exploratory analyses
conducted in these articles consist of Pearson correlation
analysis (Chen et al., 2020; Zhang et al. 2020a), rank-sum

Pearson Correlation Analysis

Amalyses Rank-Sum Test (Two

Groups)
Kruskal-Wallis with Dunn'S Posthoc Test
Feasible Generalized Least Squares Fixed Effect
Model

Generalized Linear Estimating

Model

simple Linear and More
Advanced Regression Models

Hierarchical Linear Model
Multivariate Regression Model

Quasi-Poisson Regression Model
Binary Regression Model

Bayesian Probability
Exponential Growth Models
Models
Logistic Growth
Models

Other More Advanced Models

Time-Series Models

Spatio-Temporal Models
Nested Logit-Based Multimodal Traffic
Flow Distribution Model

Difference-In-Difference

Granger Causality Test
SIR and SEIR Model
= SR

= SEIR

 SEIR with Quarantined, Dead, and Diagnosed
(SEIR_QDD) Model

The Extended or

Modified SIR or SEIR:

Models

SIR Branching Process Model
SEIR-social Distancing

Model

™ 14-compartment Dynamic Model
# SEIR and Network Model

» SEIR Model Combining a Mobility Model

Modified SEAIR Model with An Optimization-based
Decision-making Framework

. SEPIA
Model

Combined Models Integrating
the Classic SIR or SEIR
Models with Other Statistical
Models

> SEIR Model Based On Travel Networks

m Generalized Linear Mixed Regression Model
Combining A SIR model

Figure 2. Summary of mathematical models applied in the selected articles.



506 M. ZHANG ET AL.

test (two groups) (McGrail et al. 2020), and Kruskal-Wallis
test with Dunn’s post hoc analysis (McGrail et al. 2020).
Other studies employ simple linear regressions models,
including feasible generalized least squares fixed effect
model (Yang et al. 2020b; Zhang et al., 2020c), general-
ized linear estimating model (Kraemer et al. 2020b),
hierarchical linear model (Alfano and Ercolano 2020),
multivariate regression model (Sirkeci and Yiicesahin
2020), quasi-Poisson regression model (Tobias 2020),
and binary regression model (Yuan et al. 2020). These
models are required to meet certain assumptions; for
example, four assumptions are required to meet for
linear regression models: the linear relationship between
independent variables and dependent variables, resi-
duals are independent, normally distributed, and have
constant variance at every level of independent vari-
ables. If any of the assumptions is violated, the results
maybe misleading. To address these issues from our
selected articles, researchers applied non-linear regres-
sion models, including exponential growth models
(Courtemanche et al. 2020; Djurovi¢ 2020) and logistic
growth models (Aviv-Sharon and Aharoni 2020; Zou
et al. 2020). Another stream of studies uses more
advanced models to predict the future trend of COVID-
19, including Bayesian probability models (Bherwani
et al. 2020; Kaur et al. 2020), time-series models (Jia
et al. 2020; Jiang and Luo 2020; Moosa 2020; Salje et al.
2020), spatial-temporal models (Dickson et al. 2020; Jia
et al. 2020; Tian et al. 2020), nested logit-based multi-
modal traffic flow distribution model (Zheng 2020), dif-
ference-in-difference model (Banerjee and Nayak 2020),
and granger causality test model (Zhao et al. 2020).
Mathematical/mechanistic ~ state-space  models
(dynamic system models) are used in 21 selected articles.
These models are commonly used in epidemiological
studies to stimulate or predict the future trend of
COVID-19 transmission with the inclusion of human mobi-
lity data as model parameters to optimize the modelling
performance. Among those, Susceptible-Infectious-
Recovered (SIR) and Susceptible-Exposed-Infectious-
Recovered (SEIR) models (Balmford et al. 2020; DefFries
et al. 2020; Neufeld, Khataee, and Czirok 2020; Rainisch,
Undurraga, and Chowell 2020; Roda et al. 2020) are the
most widely used models. Both SIR and SEIR models are
used to predict the number of confirmed, susceptible,
recovered cases, and deaths with the involvement of
human mobility measures as independent variables or
modelling parameters. Other studies employ the
extended or modified SIR or SEIR models to improve the
model performance (Ding and Gao 2020; Ngonghala et al.
2020; Sun et al. 2020; Yang et al. 2020a, 2020c), including
SEIR with Quarantined, Dead, and Diagnosed (SEIR-QDD)
model (H. Wang et al. 2020), SIR branching process model

(O'Sullivan et al. 2020), SEIR-social distancing model
(Gupta, Jain, and Bhatnagar 2020), and a 14-
compartment dynamic model (Westerhoff and Kolodkin
2020). The remaining articles utilize combined models
integrating the classic SIR or SEIR models with other
statistical models, including SEIR and network model
(Peirlinck et al. 2020b), SEIR model combining mobility
model (Linka et al. 2020), modified SEAIR model with
optimization-based decision-making framework (Tsay
et al. 2020a), SEPIA model (Gatto et al. 2020), SEIR model
based on travel networks (Lai et al. 2020), and generalized
linear mixed regression model combining SIR model
(Zhang et al. 2020c).

Among the selected articles, one study uses
a simplified arithmetic model (Killeen and Kiware 2020)
with basic calculations (e.g. addition, subtraction, multi-
plication, division, rounding off, conditional statements,
and unavoidable power terms) to ease the interpretabil-
ity of the model. This model enables non-specialist read-
ers to understand the process of modelling and in-depth
inspect numerical predictions.

3.3 Study purposes and key findings

Though all the selected articles measure the association
between human mobility and COVID-19 transmission,
their specific aims can be categorized into 1) examining
the effectiveness of policy-induced mobility control on
COVID-19 (hereinafter referred to ‘policy implementa-
tion and evaluation’), 2) predicting the COVID-19
dynamic through modelling or simulating human mobi-
lity (hereinafter referred to ‘simulation and prediction’),
and 3) comparing studies presenting the association
between human mobility and COVID-19 across countries
or regions (hereinafter referred to as ‘cross-country
/region comparison’). The key findings of each aim
were presented below. Some articles may fall into
more than one category if they contribute to each cate-
gory equivalently.

3.3.1 Policy implementation and evaluation

The primary purpose of the selected articles focuses on
estimating the influence of policy-induced human mobi-
lity on the transmission of COVID-19, particularly
through assessing changes of mobility caused by social
distancing, lockdown, and travel restrictions.

Findings from the policy-oriented papers show that
policy interventions including lockdown, travel restric-
tions, social distancing, and border control have effec-
tively reduced the transmission of COVID-19 (Chen et al.
2020; Djurovi¢ 2020; Jiang and Luo 2020; Tian et al. 2020;
Yang et al. 2020b, 2020c¢). Articles focusing on the experi-
ence in Wuhan in China, where the first COVID-19 case



was reported, found that the lockdown order implemen-
ted in Wuhan substantially mitigated the spread of
COVID-19 and delayed the growth of the COVID-19 epi-
demic in other cities in Hubei and other provinces in
China (Chen et al. 2020; Jiang and Luo 2020; Kraemer
et al. 2020a; Tian et al. 2020; Yang et al. 2020b; Zhang
et al. 2020a). Moreover, many studies recognized China’s
response to COVID-19 that Wuhan's lockdown strategy
has prompt, timely, and positive effects on controlling
the spread of COVID-19 (Chen et al. 2020; Jiang and Luo
2020; Sun et al. 2020; Yang et al. 2020b). Similarly, in
Europe, the effectiveness of lockdown policies on con-
trol the spread of COVID-19 has also been witnessed in
Italy, Spain, and France (Dickson et al. 2020; Salje et al.
2020; Tobias 2020). Mobility restriction measures imple-
mented in the U.S. also effectively decreased the spread
of COVID-19, while an ongoing debate on the cost-
effectiveness of mobility restrictions on mitigating the
transmission of COVID-19 has been discussed consider-
ing its negative effects on economic activities (Tsay et al.
2020b). Many researchers expressed their concern about
the potential danger of the rapid spread of the virus in
the absence of these interventions (Banerjee and Nayak
2020; Courtemanche et al. 2020; Thunstrom et al. 2020).

The relationship between human mobility and the
virus spread is temporal and spatial heterogeneity, along
with observing a time-lag effect of mobility on the virus
spread. Policy interventions, despite being globally effec-
tive in reducing both the spread of infection and its self-
sustaining dynamics, have had heterogeneous impacts
locally (Dickson et al. 2020; O’Sullivan et al. 2020; Zhang
et al. 2020a). For example, large metropolitan areas
encounter more disruptions and larger challenges to con-
trol infection because they cannot easily be broken down
into separately managed regions (O’Sullivan et al. 2020).
Labour-intensive cities in China need to take stronger
measures to prevent a potential rebound in COVID-19
cases after releasing the restriction policies (Zhang et al.
2020a). Lockdown on public transport (e.g. auto, railway,
coach, and flight) in China has the most prominent impact
on virus control compared to lockdown on other public
spaces (Zheng 2020). Researchers found in India that
a prudent post-lockdown strategy might focus on easing
physical distancing restrictions within high-risk places
while maintaining restrictions between high-risk places
(DeFries et al. 2020)

Moreover, policy measures need to be adjusted at
different phases of the pandemic. In the initial stage of
the outbreak, human mobility from Wuhan to other
places in China was highly relevant to the growth rate
of the COVID-19 cases in other cities and provinces. Still,
this association became negative after the implementa-
tion of Wuhan lockdown and other national travel
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restrictions (Kraemer et al. 2020a; Zhang et al. 2020a).
Additionally, the reduction of infection caused by mobi-
lity control is observed to be relatively weaker in places
where the outbreak occurred later (Zhang et al. 2020a).
Furthermore, mobility control is observed to have
a time-lag effect on the virus transmission and such
effect varies across the geographic contexts and the
timeline of the pandemic. In the U.S,, researchers found
that social distancing reduced the daily growth rate of
confirmed COVID-19 cases by 5.4 percentage after one
to five days but 9.1 percentage points after sixteen to
twenty days (Courtemanche et al. 2020). Studies across
various countries reported that the efficacy of lockdown
continues to hold over two weeks or even up to 20 days
after a lockdown was implemented (Alfano and Ercolano
2020; McGrail et al. 2020).

Scholars find that the timing, effectiveness, and strin-
gency of policy implementation are crucial for the suc-
cess of COVID-19 control efforts in different countries
(Gupta, Jain, and Bhatnagar 2020; Ngonghala et al. 2020;
Sun et al. 2020). The early implementation of social
distancing and mobility restrictions is especially effective
in lowering the spread of the coronavirus (Bherwani
et al. 2020; Kaur et al. 2020; Sun et al. 2020; Yuan et al.
2020; Zhang et al. 2020a). Ngonghala et al. asserted that
ensuring the high adherence/coverage of policy inter-
vention and enhancing the effectiveness of such inter-
ventions is particularly important in control infection in
the local community(Ngonghala et al. 2020). However,
policymakers are more concerned about the public pres-
sure towards lockdown mitigation as well as the down-
side of restrictive lockdown, for example, the tradeoff of
social and economic upheaval (Westerhoff and Kolodkin
2020). For example, Tsay et al. suggested the ‘on-off’
policies alternating between strict social restriction and
relaxing such restrictions can be effective at flattening
the infection curve while likely minimizing social and
economic cost, especially for the places where persistent
small outbreaks oscillate between high-risk regions for
many months (Tsay et al. 2020b).

3.3.2 Simulation and prediction

Another stream of the selected articles also measures
the association between human mobility and COVID-19
transmission. Instead of analysing real policies and
interventions, the authors simulate and predict the
dynamics of COVID-19 applying various assumed
human mobility-related measures (Gupta, Jain, and
Bhatnagar 2020; Jia et al. 2020; Linka et al. 2020)).
Specifically, the authors quantified the COVID-19 pan-
demic by various mathematical/mechanistic state-
space models as summarized in the modelling section
(section 3.2), including epidemic models (Aviv-Sharon
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and Aharoni 2020; Ding and Gao 2020; Djurovi¢ 2020;
Gatto et al. 2020; Lai et al. 2020; Peirlinck et al. 2020b;
Roda et al. 2020; Sirkeci and Yiicesahin 2020; Yang et al.
2020b; Zhao et al. 2020), spatial-temporal models
(Bherwani et al. 2020; Jia et al. 2020; O’Sullivan et al.
2020), biological models (Westerhoff and Kolodkin
2020), and other advanced mathematical models
(Killeen and Kiware 2020; Tsay et al. 2020a; Yang et al.
2020c). The common characteristic of these modelling
approaches involves the measures of human mobility
and social restriction policies as parameters in the mod-
elling configuration.

Findings from the simulation models suggest that
delay in start, less effective, or missing human mobility
restrictions would increase the number of COVID-19
cases and deaths substantially (DeFries et al. 2020;
Djurovi¢ 2020; Gupta, Jain, and Bhatnagar 2020; Jia
et al. 2020; Peirlinck et al. 2020a; Sun et al. 2020; Zhang
et al.,, 2020b). After comparing results based on various
simulated interventions, the selected articles also indi-
cate that early release of human mobility interventions
could potentially increase the risk of the secondary out-
break (Neufeld, Khataee, and Czirok 2020; Yang et al.
2020b, 2020c). This prediction has already been proved
in many countries. Considering socially and economic-
ally acceptability, selected studies also suggest imple-
menting intermittent lockdown strategies (Westerhoff
and Kolodkin 2020). Similar suggestions were reported
by O'Sullivan et al that they proposed regionally varying
series of lockdown policies that offer advantages of less
restrictive rules for part of the population (O'Sullivan
et al. 2020).

During an ongoing pandemicg, it is crucial but challen-
ging for policymakers to make rapid and accurate risk
assessments and implement suitable policies. The math-
ematical models applied in the selected articles bring
various benefits to help policymakers and stakeholders
to make decisions. First, policy interventions simulated
in the models are adjustable which helps to evaluate
various measures more cost-effectively compared with
the traditional analytical approach. Second, the simula-
tion and prediction models’ predictive performance
could be improved with updated data which increases
the accuracy of prediction with the rapid changes of the
pandemic. Third, the mathematical models can be
updated by changing few parameters, which not only
helps with the current pandemic, it could help policy-
makers to plan for futures outbreaks.

3.3.3 Cross-country/region comparison

Another important purpose of the selected articles is to
compare policy implementation responding to the pan-
demic, economic and financial consequences of

lockdown orders, and price of life comparisons across
countries, regions, and cities. Such studies provide
empirical evidence on the influence of human mobility
on the COVID-19 in 8 countries (Balmford et al. 2020), 10
countries (Moosa 2020), across European countries
(Linka et al. 2020), across Asian countries (Aviv-Sharon
and Aharoni 2020), and between Wuhan in China and
London in the UK (Yang et al. 2020c).

Several comparison studies reveal findings specific to
different geographic contexts that have not been cov-
ered in the previous summary. In general, policy inter-
ventions may well explain the majority of cross-country
variation in virus control in the initial stage of the pan-
demic (Balmford et al. 2020). However, these are less
definitive conclusions if extended to a full spectrum of
the pandemic. Mobility restriction policies implemented
during the pandemic differ widely around the world.
Policies that work well in one country may not be effec-
tive in other places. For instance, Kaur et al. indicated that
countries that acted late in bringing in the policy inter-
vention suffered from a higher infection rate than coun-
tries that reacted faster (Kaur et al. 2020). It is partially in
line with the findings from a 10-country comparison that
countries that have not imposed lockdown or have
imposed lockdown either late or without stringency
have performed poorly in infection control, except for
Korea (Moosa 2020). The outbreak in Korea has been
controlled rather well without a full lockdown, as Korea
conducted a combination of interventions including bor-
der control, testing, tracing, the quality of the healthcare
system, preparedness for epidemics and pandemics, and
population density (Moosa 2020). Thus, when it comes to
implementing different policy approaches to the pan-
demic, careful consideration of cross-country differences
is required in terms of countries’ nature as well as their
demographic and socioeconomic variations. Yang et al.
observed that China has efficient government initiatives
and effective collaborative governance for mobilizing
corporate resources to provide essential goods; however,
this mode may be not suitable to the UK where it is more
possible to take a hybrid intervention of suppression and
mitigation to balance the total infections and economic
loss (Yang et al. 2020c).

4. Discussion

This review summarizes findings from published papers
measuring the association between human mobility and
COVID-19 transmission at the early stage of the pan-
demic worldwide. The results indicate that early, timely,
and consistent policy-induced mobility controls signifi-
cantly reduced COVID-19 transmission. The application
of simulation and predictions models increase the



flexibility and efficiency of policy analysis compared with
traditional approaches, which could help researchers
and stakeholders to make rapid and accurate risk assess-
ment for the current and future outbreaks. Various types
of mobility data have been used in selected articles. In
addition to the traditional data sources including survey
and census data, the majority of the studies applied
publicly available data collected through public transit
systems, mobile network operators, and mobile phone
applications. More than half of these datasets were
made available after the pandemic and many of these
are free of access and use (Hu et al. 2021). The pandemic
initiates an evolution of academic collaboration and data
sharing that we encourage researchers and stakeholders
to explore novel analytical approaches and datasets to
combat the pandemic and prepare for future public
health emergencies.

We summarized the suggestions for future studies
from the included articles and recommended the follow-
ing directions for COVID-19 studies: 1) to encourage
multi-disciplinary collaboration with joint efforts from
researchers with different backgrounds; 2) to adjust the
implementation and stringency of mobility-control poli-
cies flexibly in correspond to the rapidly changing trend
of COVID-19; 3) to improve the methods used in analys-
ing, simulating, and predicting COVID-19 to be more
realistic, context-specific, and temporal-specific; and 4)
to enrich mobility data sources as well as improve data
accuracy and suability for applications.

4.1 Multidisciplinary collaboration

Many topics of COVID-19 are connected through various
disciplines, thus the scientific exploration of the pan-
demic needs collaboration from many areas including
medical science, public health, geography, political
science, economics, psychology, and environmental
science. For example, many studies applied spatial ana-
lysis to understand COVID-19 distribution, which helps
enable early assessments of the effectiveness of human
mobility-related restrictions. This approach could further
contribute to the exploration of health disparities, eco-
nomic consequences, and recovery of the pandemic, if
epidemiologists and geographers are coordinated effec-
tively and efficiently. In addition, the scope of COVID-19
studies can be enriched by environmental scientists and
climatologists to reveal the human-environment inter-
action which may affect virus transmission. For example,
some studies have indicated that the transmission
dynamics of COVID-19 was affected by weather, climatic
conditions (Merow et al. 2020; Metalmann et al. 2021; Sil
et al. 2020), and seasonality. Experts from physical
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geography, meteorology, climatology, and environmen-
tal management would extend this avenue to broaden
research dimensions and directions.

4.2 Policy adjustment

With an increasing number of countries experiencing
the second/third wave of the pandemic, further work is
needed to determine how to optimally balance the
trade-off between economic loss and health outcomes
of COVID-19 (Kraemer et al. 2020a). Policy interventions
have been gradually upgraded with the rapid changes of
the pandemic, which greatly promotes the arrival of the
turning point of the epidemic (Jiang and Luo 2020). As
such, rapid evaluations about the effectiveness of inter-
mediate measures become important to control the
social and economic cost, such as lifting a shelter-in-
place order but requiring masks in public or opening
restaurants at reduced capacity (Ngonghala et al. 2020).

Additionally, many studies did not control nor discuss
the other covariates while measuring the association
between human mobility and COVID-19 mitigation,
including healthcare system, population density, and
economic status, population, and housing density
(Gupta, Jain, and Bhatnagar 2020; Moosa 2020), which
need to be addressed in future studies. The resurge of
infection has also been observed to be associated with
the release of national border controls (Moosa 2020);
therefore, widespread decisive national action and inter-
national co-operation are required to conditionally
reopen trade and travel between countries. Great cau-
tion is needed as gradual, exploratory steps towards
reopening (Courtemanche et al. 2020), as even a slight
relaxation of lockdown or importation controls may
cause containment failure (Killeen and Kiware 2020).
A combination of multiple interventions may achieve
the strongest and most rapid effect on containing the
spread of the virus (Aleta et al. 2020; Huang et al. 2021;
Lai et al. 2020; Yin et al. 2021). Additionally, health
education about the risk and severity of COVID-19 infec-
tion is needed to increase public’s awareness (Ding and
Gao 2020).

4.3 Methodological improvement

Mathematical modelling from the selected articles can
be improved to identify and predict disease transmis-
sion. For example, the Epidemiological models (e.g.
dominantly SEIR models) applied in the current articles
can be improved by involving the measures of the effec-
tiveness of policy implementation (Gupta, Jain, and
Bhatnagar 2020), pharmaceutical factors (e.g. improved
medical treatments, active immunity from vaccines, viral
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mutation, increased likelihood of testing for subjects
with more severe symptoms, the probability of changing
antigenicity and virulence) (Tsay et al. 2020a), as well as
the quantification of other non-pharmaceutical factors
that are likely to contribute to control virus work, espe-
cially the isolation of suspected and confirmed patients
and their contact (Tian et al. 2020; Yang et al. 2020a).

Another approach is to develop hybrid models across
disciplines at multiple levels, integrating data in both
spatial and temporal dimensions. Individual-level mod-
els need to include many patient-specific factors, includ-
ing demographic and socioeconomic status (e.g. age-sex
structure, ethnicity, and income) (Yang et al. 2020a;
Zhang et al. 2020a). Aggregated-level models can
extend to consider area-specific factors to distinguish
heterogeneity within the regions (Alfano and Ercolano
2020; Dickson et al. 2020), including geographical and
spatial characteristics (e.g. location, population, and
housing density in a suburb) (Moosa 2020; Yang et al.
2020a) given the built environment in neighbourhoods
where confirmed or suspected cases reside would affect
the likelihood of infection (Gupta, Jain, and Bhatnagar
2020; O’'Sullivan et al. 2020). Collectively, further research
can be carried out in unifying temporary and spatial
dimensions by distinguishing the different stages of
pandemic and involving time-dependent parameters
for a holistic understanding of the infection risk at
hand (Bherwani et al. 2020; Peirlinck et al. 2020b; Sun
et al. 2020).

In addition, there is a need to further improve the GIS-
based framework and techniques of spatiotemporal ana-
lyses that have been used in the current mobility studies
to integrate with the rapid development and recent
advances of artificial intelligence (Al) techniques, includ-
ing high-performance computing, storage, and data
modelling (e.g. machine learning and deep learning
methods (S. Wang et al. 2021). For example, the establish-
ment of geospatial Al (GeoAl) is a promising direction to
create new databases (e.g. smart moving objects data-
base) and to analyse complex human behaviours with
unobserved confounders. Such a smart moving objects
database has the capability to establish a more complex
data structure and provide intelligent data extraction. In
this way, mining and analysing mobility data can be
extended from spatiotemporal attributes to sentiment
and descriptive attributes to find the relationship
between human mobility and subjective matters (e.g.
personality and emotion) (Xu, Lu, and Giiting 2019).
GeoAl (e.g. machine/deep learning approaches) has
brought on immense advancement in forecasting
human behaviours based on historical mobility data (Hu
et al. 2021). Future studies can extend along this direction
to create intelligent geodatabases, and GeoAl-based

platforms, models, and systems that can be used in the
diverse field of disease control and prevention, smart city
planning, environmental management, and ecological
conservation where human mobility intertwines with
the surrounding space and social environment.

4.4 Enrichment of spatial-temporal data

Human mobility captured in the selected articles largely
came from public sources, while these mobility data have
some limitations which may impact their application.
Some data are country-specific; for example, the Baidu
migration data is only available in China (Yuan et al.
2020). Additionally, mobility data retrieved from mobile
phones or mobile app users designed by large companies
encounter data biases in population coverage, which may
exclude some specific subgroups, particularly children and
aged populations who may not use mobile phones
(Banerjee and Nayak 2020; Lai et al. 2020). The index-
based mobility data (e.g. provided by Google, Baidu, and
Apple) does not include population inflow to and/or out-
flow from a given place. Alternatively, user-based social
media big data (e.g. geotagged Twitter data) is able to
indicate the inter-regional movement to improve the accu-
racy of models (Gupta, Jain, and Bhatnagar 2020; Huang
et al. 2020; O'Sullivan et al. 2020; Tsay et al. 2020a),
although such data is not used in the selected studies.
With the technological advancements and the emergence
of further refined data, it will be interesting for future
studies to involve additional data, to use a combination
of multi-sourced data, and to compare the reliability and
quality of data (Banerjee and Nayak 2020; Li et al. 2021;
McGrail et al. 2020). Moreover, data sharing and informa-
tion disclosure are encouraged for future studies. Some
scholars and institutes have put great efforts into collect-
ing, collating, and sharing data via crowdsourcing and
cloud platforms to facilitate cross-disciplinary collabora-
tions. For example, Harvard Dataverse provides an open
online data management and sharing platform for COVID-
19 studies with daily COVID-19 confirmed cases, global
news, social media data, population mobility, climate,
health facilities, socioeconomic data, events chronicle,
and scholarly articles (Hu et al. 2020).

4.5 Limitation

The study has limitations that should be noted. First, we
did not include non-peer-reviewed articles (e.g. working
papers and preprints) in this review. Traditional peer
review usually takes months from submission to publi-
cation, while timely reporting of research findings is
a priority during the pandemic, which dramatically
increased the use of preprint service (Jung, Sun, and



Schluger 2020). Though preprints provide direct and
rapid access to information, criteria used to justify pre-
prints are not available. Thus, we only searched for
published and early access articles, which inevitably
exclude the findings from some popular non-peer-
reviewed articles. Second, this review includes a small
number of eligible articles focusing on Africa and South
America which could be due to the late appearance of
the first case in some regions as well as the limited
funding and resource to conduct COVID-19 related
research. Third, our search captured publications at the
early stage of the pandemic that obtained limited arti-
cles of the second and third waves of the pandemic,
which has been observed in several countries after lifting
mobility restriction policies. The findings summarized in
this review may not well explain the resurged cases or
the cases via converted transmission over a long time.
Additionally, our searching was completed through
a single database (WoS), which does not index all jour-
nals, and many papers from the indexed journals may
take several months or years to be added to the data-
base. These restrictions may impact our searching
results. Thus, we encourage future researchers to extend
our systematic review to cover a longer period and
include the most updated results from published and
preprint articles from various regions and databases.

5. Conclusion

Understanding the pattern of human mobility is essen-
tial to prevent and predict the spread of infectious
diseases. As COVID-19 continues to spread and resurge
across countries, we summarized data and analytical
models used in publications related to human mobility
and COVID-19 transmission. The authors applied var-
ious models, including statistical models, mathemati-
cal/mechanistic state-space models, and simplified
arithmetic models to examine the relationship
between human mobility and COVID-19 transmission,
using multi-sourced spatial-temporal mobility data. The
findings on policy implications summarized herein pro-
vide important guidance in making, implementing, and
adjusting current and post-pandemic measures. What
we have seen in existing studies is the relationship
between human mobility and the virus spread is tem-
poral and spatial heterogeneity, along with the obser-
vation of a time-lag effect of mobility on the spread of
the virus. Additionally, this relationship is stronger in
the initial stage of the pandemic but less conclusive if
extending to a full spectrum of the pandemic or differ-
ent geographic contexts. What we have not seen from
the current publications motivates us to propose future
research directions. Specifically, we suggested that

ANNALS OF GIS (&) 511

governments promote prompt and sustainable mea-
sures to control the spread of COVID-19. We also
encourage multi-disciplinary collaborators to conduct
rapid and accurate risk assessments of the pandemic
by incorporating rich data sources and improving spa-
tial-temporal modelling to prevent and predict future
outbreaks.
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