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ABSTRACT

Without a widely distributed vaccine, controlling human mobility has been identified and 
promoted as the primary strategy to mitigate the transmission of COVID-19. Many studies 
have reported the relationship between human mobility and COVID-19 transmission by 
utilizing the spatial-temporal information of mobility data from various sources. To better 
understand the role of human mobility in the pandemic, we conducted a systematic review of 
articles that measure the relationship between human mobility and COVID-19 in terms of 
their data sources, mathematical models, and key findings. Following the guidelines of the 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement, we 
selected 47 articles from the Web of Science Core Collection up to September 2020. 
Restricting human mobility reduced the transmission of COVID-19, although the effectiveness 
and stringency of policy implementation vary temporally and spatially across different stages 
of the pandemic. We call for prompt and sustainable measures to control the pandemic. We 
also recommend researchers 1) to enhance multi-disciplinary collaboration; 2) to adjust the 
implementation and stringency of mobility-control policies in corresponding to the rapid 
change of the pandemic; 3) to improve mathematical models used in analysing, simulating, 
and predicting the transmission of the disease; and 4) to enrich the source of mobility data to 
ensure data accuracy and suability.
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1. Introduction

Human mobility plays an important role in the transmis-

sion of infectious diseases. With the increase of human 

mobility caused by the development of transportation 

networks and globalization, the spread of infectious dis-

eases can be unprecedentedly rapid and difficult to pre-

vent and control, resulting in pandemics. Such pandemics 

have been witnessed in history, for example, the 1918 

novel influenza A (H1N1) pandemic, the 2009 H1N1 pan-

demic, and the current coronavirus disease 2019 (COVID- 

19). Without a widely distributed vaccine, controlling 

human mobility has been identified and promoted as 

the primary strategy to mitigate the transmission of 

COVID-19 (Gatto et al. 2020; Kucharski et al. 2020; 

S. Wang, Liu, & Hu, 2020; Yabe et al. 2020). During this 

pandemic, various policies have been implemented 

worldwide to restrict human mobility across and within 

countries, including international travel bans, national 

border closures, restrictions between states and cities, 

stay-at-home orders, limited private and public gather-

ings, as well as closing schools, universities, workplaces, 

and public transportation (Hale and Webster 2020).

Since the outbreak, academic researchers have put 

substantial efforts into studying the association between 

human mobility and COVID-19 transmission, applying 

various datasets and mathematical models in different 

countries and regions. While many studies have 

reported the efficacy of mobility restrictions on control-

ling the spread of the novel coronavirus (Kraemer et al. 

2020a; Kucharski et al. 2020; Wang et al., 2020; Yabe et al. 
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2020), the timeline and stringency of social restriction 

policies and lockdown orders have been vociferously 

challenged due to significant social and economic 

costs (Bonaccorsi et al. 2020; Lecocq et al. 2020). 

Additionally, many studies applied simulation and pre-

diction models to forecast the potential spread of the 

novel coronavirus based on various policies interven-

tions (Prem et al. 2020; Wu, Leung, and Leung 2020). 

Therefore, there is an urgent need to summarize and 

compare the findings of these publications to support 

stakeholders to adopt the most effective mobility mea-

sures to control the spread of the novel coronavirus 

domestically and internationally.

In this systematic review, we summarized the results 

of the association between human mobility and COVID- 

19 transmission in terms of study purposes, data usage, 

modelling approaches, and key findings. Based on the 

findings, we suggested research directions in the spatial 

and temporal dimensions for future studies. Through 

collective efforts from multiple disciplines, we hope to 

mitigate the spread of COVID-19 with evidence-based 

solutions and support stakeholders to be better pre-

pared for future public health emergencies given the 

increased globalization, suburbanization, and interrup-

tion of human beings to eco-systems.

2. Method

We followed the guidelines of the Preferred Reporting 

Items for Systematic Reviews and Meta-Analyses 

(PRISMA) statement to select articles and to report the 

findings. PRISMA statement is a guideline developed to 

support researchers to conduct systematic reviews 

(Moher et al. 2009). We applied the checklist of PRISMA 

with the items to report in a systematic review and 

a flow diagram indicating the workflow of selecting 

articles in a systemic review (Moher et al. 2009). We 

commenced with searching through the Web of 

Science (WoS) Core Collection of all the published arti-

cles between January 2020 to September 2020 to cover 

the most recent publications with the topic of human 

mobility and COVID-19. WoS is the most widely used and 

authoritative database of research publications and cita-

tions. WoS Core Collection Coverage includes more than 

20,900 journals plus books and conference proceedings 

from various disciplines (Birkle et al. 2020). The searching 

terms we used are ‘((COVID-19 OR “novel coronaviruses” 

OR 2019-nCov OR SARS CoV-2) AND (“human mobility” 

OR “human movement” OR “population flow” OR “social 

distanc*” OR “physical distanc*” OR “travel restriction” 

OR “movement control” OR “stay-at-home” OR “lock-

down” OR “shelter-in-place”))’.

The flow diagram of the article selection through 

different phases of the review was presented in 

Figure 1. We limited our search to published and early 

access articles, resulting in a total number of 1,649 arti-

cles. We then excluded the articles in irrelevant areas 

(e.g. psychology, neuroscience, neurology, and surgery), 

narrowing down 868 articles. We further excluded 755 

articles that do not meet our inclusion criteria (Table 1) 

by screening their titles and abstracts. Through reading 

and assessing full texts, 47 articles highly relevant to our 

review’s interest were finally selected. We summarized 

and analysed the information of the study countries/ 

regions, study purposes, data resources, modelling 

approaches, and key findings. This information was 

also presented in Supplementary Table 1. Based on 

what we found, we proposed future research directions 

of mobility-transmission studies.

3. Results

3.1 Data sources and features

The selected papers mainly rely on two types of data: 

COVID-19 data at different scales and human mobility 

data. COVID-19 data in terms of the number of con-

firmed and susceptible cases, deaths, and recovered 

cases are usually easy to retrieve from research insti-

tutes, public health authorities, or government reports, 

while human mobility data are multi-sourced with spe-

cific applications. This review mainly focuses on human 

mobility data regarding its sources, public accessibility, 

spatial and time coverage, update frequency, advan-

tages, and disadvantages (Table 2).

The first type of mobility data is big data gathered by 

technology companies, including Baidu, SafeGraph, 

Google, and Tencent. For example, Google mobility 

data is created by aggregated and anonymized data 

sets from users who have turned on the Location 

History setting in the products such as Google Maps 

(Aktay et al. 2020). It is encoded as a percentage change 

in the mobility metric compared to the baseline of 

human mobility from January 3 to 6 February 2020 

(Aktay et al. 2020). Unlike Google mobility data, 

SafeGraph mobility data adds unique and valuable 

insights into the mobility change by estimating the 

aggregated and anonymized summary of foot traffic to 

6 million points-of-interest in North America (Safegraph 

2021). Safegraph aggregates the data by category (e.g. 

Airports or Supermarkets) or brands (e.g. Costco or 

McDonald’s) (Safegraph 2021). In addition, Baidu, 

a Chinese leading information technology (IT) company, 

offers location-based services to mobile devices for 

online searching and mapping based on the Global 
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Positioning System, Internet Protocol addresses, locations 

of signalling towers, and wireless networks. Baidu 

Mobility Index contains daily inbound (i.e. percentage of 

people travelling to the city from all the cities in China) 

and outbound (i.e. percentage of people travelling from 

the city to all the cities in China) mobility data for all cities 

in China (except for Hong Kong, Macau and Taiwan) on 

each day from 1 January 2020 to 7 May 2020(Liu et al. 

2020). Baidu mobility data has been widely used to study 

population migration at the early stage of the COVID-19 

outbreak in China. Similarly, Tencent is another Chinese 

leading IT company providing inter-city human mobility 

information by integrating air flight, train, and vehicle 

data. However, Tencent only released the inflow and out-

flow data from10 Chinese cities with the highest mobility 

index. Advantages of big data in human mobility include 

timeliness, cost-effectiveness, and large spatial coverage, 

while its disadvantages vary across different data sources. 

For example, Google mobility data covers most countries 

worldwide, while Baidu and Tencent mobility data only 

covers Mainland China. Compared with Google mobility 

data, Baidu mobility data is relatively difficult to retrieve, 

requesting users to develop programs to access data, and 

the available data is restricted for a certain period. 

However, Google mobility data cannot indicate the inter- 

regional mobility flow that Baidu and Tencent mobility 

can do.

The second type of mobility data that has been 

widely used is the public transit data, collected through 

air flights. For example, Peirlinck et al. used the number 

of air passengers published by the Bureau of 

Transportation Statistics to model the spreading of 

COVID-19 across the U.S. (Peirlinck et al. 2020a; United 

States Department of Transportation n.d.). Public transit 

data has the advantage of compensating for the inter-

national or inter-regional mobility estimates, which can-

not be revealed by Google mobility data. However, its 

key disadvantage is the roughness and availability at 

a relatively coarse scale, which cannot accurately simu-

late the spreading of COVID-19 at a fine scale.

The third category is census data, which records the 

number of people moving between or within adminis-

trative regions. For example, the United States Census 

Bureau publishes yearly geographic mobility dataset by 

Table 1. Inclusion and exclusion criteria of article selection.

Criteria Definition

Inclusion 1) measure the association between human mobility and 
COVID-19 transmission, 2) measure the association between 
human mobility-related policies and COVID-19 
transmission, and 3) apply quantitative methods.

Exclusion 1) measure the association between human mobility and other 
COVID-19 pandemic related issues, e.g. economic 
development, mental health, family relationship, 2) apply 
qualitative methods.

Figure 1. PRISMA flow chart on the identification and screening of studies on human mobility and COVID19 transmission.
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region and category, including race, sex, age, relation-

ship to householder, educational attainment, marital 

status, nativity, tenure, and poverty status at the 

national, inter-state, intra-state, inter-county, and intra- 

county level (United States Census Bureau n.d.). When 

building epidemic models to estimate the effect of 

human mobility on COVID-19 transmission, Gatto et al. 

identified mobility fluxes at the municipal and provincial 

levels based on the 2011 commuting data from the 

Italian Census Bureau (Gatto et al. 2020). Census data is 

representative, easy to access, and usually available at 

various spatial scales (e.g. county, state, and nationwide). 

However, census data is usually updated infrequently, 

and its data could be out-of-date and unable to reflect 

instant changes in human mobility with the rapid 

response to the implementation of mobility restrictions 

during the pandemic.

The fourth category is primary data, containing the 

participants’ personal and location information collected 

through survey questionnaires. For example, DeFries 

et al. identified migration patterns over the last five 

years using a collected household survey covering 

5,000 villages in 32 districts in central India (DeFries 

et al. 2020). Zhang et al. analysed 1,245 contacts 

reported by 636 survey participants in Wuhan and 1, 

296 contacts reported by 557 survey participants in 

Shanghai to study the impact of social distancing and 

school closure on COVID-19 transmission. As 

a traditional source to track human mobility, survey 

data is relevant to the study objective. It covers those 

who are eliminated in the above secondary data 

resources, for example, those who do not use internet, 

mobile phone, or air transportation. However, it is time- 

consuming and expensive to collect data, especially with 

a large sample size from various regions. Thus, it is an 

appropriate approach to measure human mobility in 

specific communities.

Our team published a literature review summarizing 

human mobility data that has been used in the COVID- 

19 pandemic which provides a more detailed and border 

discussion of various types of these datasets (Hu et al. 

2021).

3.2 Modelling approaches

The selected articles apply various mathematical model-

ling to analyse, simulate, and predict the association 

between human mobility and COVID-19. According to 

Siettos et al.’s categories of mathematical modelling of 

infectious disease dynamics, we categorized the mathe-

matical models used in the selected articles into three 

categories: statistical method, mathematical/mechanis-

tic state-space model, and simplified arithmetic model 

(Siettos and Russo 2013). The category of these analyti-

cal models was presented in Figure 2.

A total of 26 selected articles apply statistical meth-

ods, including correlation and exploratory analyses, as 

well as simple linear and advanced regression models. 

These models are mainly used in evaluating the effec-

tiveness of social restriction policies and modelling the 

relationship between human mobility and COVID- 

transmission. The correlation and exploratory analyses 

conducted in these articles consist of Pearson correlation 

analysis (Chen et al., 2020; Zhang et al. 2020a), rank-sum 

Figure 2. Summary of mathematical models applied in the selected articles.
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test (two groups) (McGrail et al. 2020), and Kruskal-Wallis 

test with Dunn’s post hoc analysis (McGrail et al. 2020). 

Other studies employ simple linear regressions models, 

including feasible generalized least squares fixed effect 

model (Yang et al. 2020b; Zhang et al., 2020c), general-

ized linear estimating model (Kraemer et al. 2020b), 

hierarchical linear model (Alfano and Ercolano 2020), 

multivariate regression model (Sirkeci and Yüceşahin 

2020), quasi-Poisson regression model (Tobías 2020), 

and binary regression model (Yuan et al. 2020). These 

models are required to meet certain assumptions; for 

example, four assumptions are required to meet for 

linear regression models: the linear relationship between 

independent variables and dependent variables, resi-

duals are independent, normally distributed, and have 

constant variance at every level of independent vari-

ables. If any of the assumptions is violated, the results 

maybe misleading. To address these issues from our 

selected articles, researchers applied non-linear regres-

sion models, including exponential growth models 

(Courtemanche et al. 2020; Djurović 2020) and logistic 

growth models (Aviv-Sharon and Aharoni 2020; Zou 

et al. 2020). Another stream of studies uses more 

advanced models to predict the future trend of COVID- 

19, including Bayesian probability models (Bherwani 

et al. 2020; Kaur et al. 2020), time-series models (Jia 

et al. 2020; Jiang and Luo 2020; Moosa 2020; Salje et al. 

2020), spatial-temporal models (Dickson et al. 2020; Jia 

et al. 2020; Tian et al. 2020), nested logit-based multi-

modal traffic flow distribution model (Zheng 2020), dif-

ference-in-difference model (Banerjee and Nayak 2020), 

and granger causality test model (Zhao et al. 2020).

Mathematical/mechanistic state-space models 

(dynamic system models) are used in 21 selected articles. 

These models are commonly used in epidemiological 

studies to stimulate or predict the future trend of 

COVID-19 transmission with the inclusion of human mobi-

lity data as model parameters to optimize the modelling 

performance. Among those, Susceptible-Infectious- 

Recovered (SIR) and Susceptible-Exposed-Infectious- 

Recovered (SEIR) models (Balmford et al. 2020; DeFries 

et al. 2020; Neufeld, Khataee, and Czirok 2020; Rainisch, 

Undurraga, and Chowell 2020; Roda et al. 2020) are the 

most widely used models. Both SIR and SEIR models are 

used to predict the number of confirmed, susceptible, 

recovered cases, and deaths with the involvement of 

human mobility measures as independent variables or 

modelling parameters. Other studies employ the 

extended or modified SIR or SEIR models to improve the 

model performance (Ding and Gao 2020; Ngonghala et al. 

2020; Sun et al. 2020; Yang et al. 2020a, 2020c), including 

SEIR with Quarantined, Dead, and Diagnosed (SEIR-QDD) 

model (H. Wang et al. 2020), SIR branching process model 

(O’Sullivan et al. 2020), SEIR-social distancing model 

(Gupta, Jain, and Bhatnagar 2020), and a 14- 

compartment dynamic model (Westerhoff and Kolodkin 

2020). The remaining articles utilize combined models 

integrating the classic SIR or SEIR models with other 

statistical models, including SEIR and network model 

(Peirlinck et al. 2020b), SEIR model combining mobility 

model (Linka et al. 2020), modified SEAIR model with 

optimization-based decision-making framework (Tsay 

et al. 2020a), SEPIA model (Gatto et al. 2020), SEIR model 

based on travel networks (Lai et al. 2020), and generalized 

linear mixed regression model combining SIR model 

(Zhang et al. 2020c).

Among the selected articles, one study uses 

a simplified arithmetic model (Killeen and Kiware 2020) 

with basic calculations (e.g. addition, subtraction, multi-

plication, division, rounding off, conditional statements, 

and unavoidable power terms) to ease the interpretabil-

ity of the model. This model enables non-specialist read-

ers to understand the process of modelling and in-depth 

inspect numerical predictions.

3.3 Study purposes and key findings

Though all the selected articles measure the association 

between human mobility and COVID-19 transmission, 

their specific aims can be categorized into 1) examining 

the effectiveness of policy-induced mobility control on 

COVID-19 (hereinafter referred to ‘policy implementa-

tion and evaluation’), 2) predicting the COVID-19 

dynamic through modelling or simulating human mobi-

lity (hereinafter referred to ‘simulation and prediction’), 

and 3) comparing studies presenting the association 

between human mobility and COVID-19 across countries 

or regions (hereinafter referred to as ‘cross-country 

/region comparison’). The key findings of each aim 

were presented below. Some articles may fall into 

more than one category if they contribute to each cate-

gory equivalently.

3.3.1 Policy implementation and evaluation

The primary purpose of the selected articles focuses on 

estimating the influence of policy-induced human mobi-

lity on the transmission of COVID-19, particularly 

through assessing changes of mobility caused by social 

distancing, lockdown, and travel restrictions.

Findings from the policy-oriented papers show that 

policy interventions including lockdown, travel restric-

tions, social distancing, and border control have effec-

tively reduced the transmission of COVID-19 (Chen et al. 

2020; Djurović 2020; Jiang and Luo 2020; Tian et al. 2020; 

Yang et al. 2020b, 2020c). Articles focusing on the experi-

ence in Wuhan in China, where the first COVID-19 case 
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was reported, found that the lockdown order implemen-

ted in Wuhan substantially mitigated the spread of 

COVID-19 and delayed the growth of the COVID-19 epi-

demic in other cities in Hubei and other provinces in 

China (Chen et al. 2020; Jiang and Luo 2020; Kraemer 

et al. 2020a; Tian et al. 2020; Yang et al. 2020b; Zhang 

et al. 2020a). Moreover, many studies recognized China’s 

response to COVID-19 that Wuhan’s lockdown strategy 

has prompt, timely, and positive effects on controlling 

the spread of COVID-19 (Chen et al. 2020; Jiang and Luo 

2020; Sun et al. 2020; Yang et al. 2020b). Similarly, in 

Europe, the effectiveness of lockdown policies on con-

trol the spread of COVID-19 has also been witnessed in 

Italy, Spain, and France (Dickson et al. 2020; Salje et al. 

2020; Tobías 2020). Mobility restriction measures imple-

mented in the U.S. also effectively decreased the spread 

of COVID-19, while an ongoing debate on the cost- 

effectiveness of mobility restrictions on mitigating the 

transmission of COVID-19 has been discussed consider-

ing its negative effects on economic activities (Tsay et al. 

2020b). Many researchers expressed their concern about 

the potential danger of the rapid spread of the virus in 

the absence of these interventions (Banerjee and Nayak 

2020; Courtemanche et al. 2020; Thunström et al. 2020).

The relationship between human mobility and the 

virus spread is temporal and spatial heterogeneity, along 

with observing a time-lag effect of mobility on the virus 

spread. Policy interventions, despite being globally effec-

tive in reducing both the spread of infection and its self- 

sustaining dynamics, have had heterogeneous impacts 

locally (Dickson et al. 2020; O’Sullivan et al. 2020; Zhang 

et al. 2020a). For example, large metropolitan areas 

encounter more disruptions and larger challenges to con-

trol infection because they cannot easily be broken down 

into separately managed regions (O’Sullivan et al. 2020). 

Labour-intensive cities in China need to take stronger 

measures to prevent a potential rebound in COVID-19 

cases after releasing the restriction policies (Zhang et al. 

2020a). Lockdown on public transport (e.g. auto, railway, 

coach, and flight) in China has the most prominent impact 

on virus control compared to lockdown on other public 

spaces (Zheng 2020). Researchers found in India that 

a prudent post-lockdown strategy might focus on easing 

physical distancing restrictions within high-risk places 

while maintaining restrictions between high-risk places 

(DeFries et al. 2020)

Moreover, policy measures need to be adjusted at 

different phases of the pandemic. In the initial stage of 

the outbreak, human mobility from Wuhan to other 

places in China was highly relevant to the growth rate 

of the COVID-19 cases in other cities and provinces. Still, 

this association became negative after the implementa-

tion of Wuhan lockdown and other national travel 

restrictions (Kraemer et al. 2020a; Zhang et al. 2020a). 

Additionally, the reduction of infection caused by mobi-

lity control is observed to be relatively weaker in places 

where the outbreak occurred later (Zhang et al. 2020a). 

Furthermore, mobility control is observed to have 

a time-lag effect on the virus transmission and such 

effect varies across the geographic contexts and the 

timeline of the pandemic. In the U.S., researchers found 

that social distancing reduced the daily growth rate of 

confirmed COVID-19 cases by 5.4 percentage after one 

to five days but 9.1 percentage points after sixteen to 

twenty days (Courtemanche et al. 2020). Studies across 

various countries reported that the efficacy of lockdown 

continues to hold over two weeks or even up to 20 days 

after a lockdown was implemented (Alfano and Ercolano 

2020; McGrail et al. 2020).

Scholars find that the timing, effectiveness, and strin-

gency of policy implementation are crucial for the suc-

cess of COVID-19 control efforts in different countries 

(Gupta, Jain, and Bhatnagar 2020; Ngonghala et al. 2020; 

Sun et al. 2020). The early implementation of social 

distancing and mobility restrictions is especially effective 

in lowering the spread of the coronavirus (Bherwani 

et al. 2020; Kaur et al. 2020; Sun et al. 2020; Yuan et al. 

2020; Zhang et al. 2020a). Ngonghala et al. asserted that 

ensuring the high adherence/coverage of policy inter-

vention and enhancing the effectiveness of such inter-

ventions is particularly important in control infection in 

the local community(Ngonghala et al. 2020). However, 

policymakers are more concerned about the public pres-

sure towards lockdown mitigation as well as the down-

side of restrictive lockdown, for example, the tradeoff of 

social and economic upheaval (Westerhoff and Kolodkin 

2020). For example, Tsay et al. suggested the ‘on-off’ 

policies alternating between strict social restriction and 

relaxing such restrictions can be effective at flattening 

the infection curve while likely minimizing social and 

economic cost, especially for the places where persistent 

small outbreaks oscillate between high-risk regions for 

many months (Tsay et al. 2020b).

3.3.2 Simulation and prediction

Another stream of the selected articles also measures 

the association between human mobility and COVID-19 

transmission. Instead of analysing real policies and 

interventions, the authors simulate and predict the 

dynamics of COVID-19 applying various assumed 

human mobility-related measures (Gupta, Jain, and 

Bhatnagar 2020; Jia et al. 2020; Linka et al. 2020)). 

Specifically, the authors quantified the COVID-19 pan-

demic by various mathematical/mechanistic state- 

space models as summarized in the modelling section 

(section 3.2), including epidemic models (Aviv-Sharon 

ANNALS OF GIS 507



and Aharoni 2020; Ding and Gao 2020; Djurović 2020; 

Gatto et al. 2020; Lai et al. 2020; Peirlinck et al. 2020b; 

Roda et al. 2020; Sirkeci and Yüceşahin 2020; Yang et al. 

2020b; Zhao et al. 2020), spatial-temporal models 

(Bherwani et al. 2020; Jia et al. 2020; O’Sullivan et al. 

2020), biological models (Westerhoff and Kolodkin 

2020), and other advanced mathematical models 

(Killeen and Kiware 2020; Tsay et al. 2020a; Yang et al. 

2020c). The common characteristic of these modelling 

approaches involves the measures of human mobility 

and social restriction policies as parameters in the mod-

elling configuration.

Findings from the simulation models suggest that 

delay in start, less effective, or missing human mobility 

restrictions would increase the number of COVID-19 

cases and deaths substantially (DeFries et al. 2020; 

Djurović 2020; Gupta, Jain, and Bhatnagar 2020; Jia 

et al. 2020; Peirlinck et al. 2020a; Sun et al. 2020; Zhang 

et al., 2020b). After comparing results based on various 

simulated interventions, the selected articles also indi-

cate that early release of human mobility interventions 

could potentially increase the risk of the secondary out-

break (Neufeld, Khataee, and Czirok 2020; Yang et al. 

2020b, 2020c). This prediction has already been proved 

in many countries. Considering socially and economic-

ally acceptability, selected studies also suggest imple-

menting intermittent lockdown strategies (Westerhoff 

and Kolodkin 2020). Similar suggestions were reported 

by O’Sullivan et al that they proposed regionally varying 

series of lockdown policies that offer advantages of less 

restrictive rules for part of the population (O’Sullivan 

et al. 2020).

During an ongoing pandemic, it is crucial but challen-

ging for policymakers to make rapid and accurate risk 

assessments and implement suitable policies. The math-

ematical models applied in the selected articles bring 

various benefits to help policymakers and stakeholders 

to make decisions. First, policy interventions simulated 

in the models are adjustable which helps to evaluate 

various measures more cost-effectively compared with 

the traditional analytical approach. Second, the simula-

tion and prediction models’ predictive performance 

could be improved with updated data which increases 

the accuracy of prediction with the rapid changes of the 

pandemic. Third, the mathematical models can be 

updated by changing few parameters, which not only 

helps with the current pandemic, it could help policy-

makers to plan for futures outbreaks.

3.3.3 Cross-country/region comparison

Another important purpose of the selected articles is to 

compare policy implementation responding to the pan-

demic, economic and financial consequences of 

lockdown orders, and price of life comparisons across 

countries, regions, and cities. Such studies provide 

empirical evidence on the influence of human mobility 

on the COVID-19 in 8 countries (Balmford et al. 2020), 10 

countries (Moosa 2020), across European countries 

(Linka et al. 2020), across Asian countries (Aviv-Sharon 

and Aharoni 2020), and between Wuhan in China and 

London in the UK (Yang et al. 2020c).

Several comparison studies reveal findings specific to 

different geographic contexts that have not been cov-

ered in the previous summary. In general, policy inter-

ventions may well explain the majority of cross-country 

variation in virus control in the initial stage of the pan-

demic (Balmford et al. 2020). However, these are less 

definitive conclusions if extended to a full spectrum of 

the pandemic. Mobility restriction policies implemented 

during the pandemic differ widely around the world. 

Policies that work well in one country may not be effec-

tive in other places. For instance, Kaur et al. indicated that 

countries that acted late in bringing in the policy inter-

vention suffered from a higher infection rate than coun-

tries that reacted faster (Kaur et al. 2020). It is partially in 

line with the findings from a 10-country comparison that 

countries that have not imposed lockdown or have 

imposed lockdown either late or without stringency 

have performed poorly in infection control, except for 

Korea (Moosa 2020). The outbreak in Korea has been 

controlled rather well without a full lockdown, as Korea 

conducted a combination of interventions including bor-

der control, testing, tracing, the quality of the healthcare 

system, preparedness for epidemics and pandemics, and 

population density (Moosa 2020). Thus, when it comes to 

implementing different policy approaches to the pan-

demic, careful consideration of cross-country differences 

is required in terms of countries’ nature as well as their 

demographic and socioeconomic variations. Yang et al. 

observed that China has efficient government initiatives 

and effective collaborative governance for mobilizing 

corporate resources to provide essential goods; however, 

this mode may be not suitable to the UK where it is more 

possible to take a hybrid intervention of suppression and 

mitigation to balance the total infections and economic 

loss (Yang et al. 2020c).

4. Discussion

This review summarizes findings from published papers 

measuring the association between human mobility and 

COVID-19 transmission at the early stage of the pan-

demic worldwide. The results indicate that early, timely, 

and consistent policy-induced mobility controls signifi-

cantly reduced COVID-19 transmission. The application 

of simulation and predictions models increase the 
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flexibility and efficiency of policy analysis compared with 

traditional approaches, which could help researchers 

and stakeholders to make rapid and accurate risk assess-

ment for the current and future outbreaks. Various types 

of mobility data have been used in selected articles. In 

addition to the traditional data sources including survey 

and census data, the majority of the studies applied 

publicly available data collected through public transit 

systems, mobile network operators, and mobile phone 

applications. More than half of these datasets were 

made available after the pandemic and many of these 

are free of access and use (Hu et al. 2021). The pandemic 

initiates an evolution of academic collaboration and data 

sharing that we encourage researchers and stakeholders 

to explore novel analytical approaches and datasets to 

combat the pandemic and prepare for future public 

health emergencies.

We summarized the suggestions for future studies 

from the included articles and recommended the follow-

ing directions for COVID-19 studies: 1) to encourage 

multi-disciplinary collaboration with joint efforts from 

researchers with different backgrounds; 2) to adjust the 

implementation and stringency of mobility-control poli-

cies flexibly in correspond to the rapidly changing trend 

of COVID-19; 3) to improve the methods used in analys-

ing, simulating, and predicting COVID-19 to be more 

realistic, context-specific, and temporal-specific; and 4) 

to enrich mobility data sources as well as improve data 

accuracy and suability for applications.

4.1 Multidisciplinary collaboration

Many topics of COVID-19 are connected through various 

disciplines, thus the scientific exploration of the pan-

demic needs collaboration from many areas including 

medical science, public health, geography, political 

science, economics, psychology, and environmental 

science. For example, many studies applied spatial ana-

lysis to understand COVID-19 distribution, which helps 

enable early assessments of the effectiveness of human 

mobility-related restrictions. This approach could further 

contribute to the exploration of health disparities, eco-

nomic consequences, and recovery of the pandemic, if 

epidemiologists and geographers are coordinated effec-

tively and efficiently. In addition, the scope of COVID-19 

studies can be enriched by environmental scientists and 

climatologists to reveal the human-environment inter-

action which may affect virus transmission. For example, 

some studies have indicated that the transmission 

dynamics of COVID-19 was affected by weather, climatic 

conditions (Merow et al. 2020; Metalmann et al. 2021; Sil 

et al. 2020), and seasonality. Experts from physical 

geography, meteorology, climatology, and environmen-

tal management would extend this avenue to broaden 

research dimensions and directions.

4.2 Policy adjustment

With an increasing number of countries experiencing 

the second/third wave of the pandemic, further work is 

needed to determine how to optimally balance the 

trade-off between economic loss and health outcomes 

of COVID-19 (Kraemer et al. 2020a). Policy interventions 

have been gradually upgraded with the rapid changes of 

the pandemic, which greatly promotes the arrival of the 

turning point of the epidemic (Jiang and Luo 2020). As 

such, rapid evaluations about the effectiveness of inter-

mediate measures become important to control the 

social and economic cost, such as lifting a shelter-in- 

place order but requiring masks in public or opening 

restaurants at reduced capacity (Ngonghala et al. 2020).

Additionally, many studies did not control nor discuss 

the other covariates while measuring the association 

between human mobility and COVID-19 mitigation, 

including healthcare system, population density, and 

economic status, population, and housing density 

(Gupta, Jain, and Bhatnagar 2020; Moosa 2020), which 

need to be addressed in future studies. The resurge of 

infection has also been observed to be associated with 

the release of national border controls (Moosa 2020); 

therefore, widespread decisive national action and inter-

national co-operation are required to conditionally 

reopen trade and travel between countries. Great cau-

tion is needed as gradual, exploratory steps towards 

reopening (Courtemanche et al. 2020), as even a slight 

relaxation of lockdown or importation controls may 

cause containment failure (Killeen and Kiware 2020). 

A combination of multiple interventions may achieve 

the strongest and most rapid effect on containing the 

spread of the virus (Aleta et al. 2020; Huang et al. 2021; 

Lai et al. 2020; Yin et al. 2021). Additionally, health 

education about the risk and severity of COVID-19 infec-

tion is needed to increase public’s awareness (Ding and 

Gao 2020).

4.3 Methodological improvement

Mathematical modelling from the selected articles can 

be improved to identify and predict disease transmis-

sion. For example, the Epidemiological models (e.g. 

dominantly SEIR models) applied in the current articles 

can be improved by involving the measures of the effec-

tiveness of policy implementation (Gupta, Jain, and 

Bhatnagar 2020), pharmaceutical factors (e.g. improved 

medical treatments, active immunity from vaccines, viral 
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mutation, increased likelihood of testing for subjects 

with more severe symptoms, the probability of changing 

antigenicity and virulence) (Tsay et al. 2020a), as well as 

the quantification of other non-pharmaceutical factors 

that are likely to contribute to control virus work, espe-

cially the isolation of suspected and confirmed patients 

and their contact (Tian et al. 2020; Yang et al. 2020a).

Another approach is to develop hybrid models across 

disciplines at multiple levels, integrating data in both 

spatial and temporal dimensions. Individual-level mod-

els need to include many patient-specific factors, includ-

ing demographic and socioeconomic status (e.g. age-sex 

structure, ethnicity, and income) (Yang et al. 2020a; 

Zhang et al. 2020a). Aggregated-level models can 

extend to consider area-specific factors to distinguish 

heterogeneity within the regions (Alfano and Ercolano 

2020; Dickson et al. 2020), including geographical and 

spatial characteristics (e.g. location, population, and 

housing density in a suburb) (Moosa 2020; Yang et al. 

2020a) given the built environment in neighbourhoods 

where confirmed or suspected cases reside would affect 

the likelihood of infection (Gupta, Jain, and Bhatnagar 

2020; O’Sullivan et al. 2020). Collectively, further research 

can be carried out in unifying temporary and spatial 

dimensions by distinguishing the different stages of 

pandemic and involving time-dependent parameters 

for a holistic understanding of the infection risk at 

hand (Bherwani et al. 2020; Peirlinck et al. 2020b; Sun 

et al. 2020).

In addition, there is a need to further improve the GIS- 

based framework and techniques of spatiotemporal ana-

lyses that have been used in the current mobility studies 

to integrate with the rapid development and recent 

advances of artificial intelligence (AI) techniques, includ-

ing high-performance computing, storage, and data 

modelling (e.g. machine learning and deep learning 

methods (S. Wang et al. 2021). For example, the establish-

ment of geospatial AI (GeoAI) is a promising direction to 

create new databases (e.g. smart moving objects data-

base) and to analyse complex human behaviours with 

unobserved confounders. Such a smart moving objects 

database has the capability to establish a more complex 

data structure and provide intelligent data extraction. In 

this way, mining and analysing mobility data can be 

extended from spatiotemporal attributes to sentiment 

and descriptive attributes to find the relationship 

between human mobility and subjective matters (e.g. 

personality and emotion) (Xu, Lu, and Güting 2019). 

GeoAI (e.g. machine/deep learning approaches) has 

brought on immense advancement in forecasting 

human behaviours based on historical mobility data (Hu 

et al. 2021). Future studies can extend along this direction 

to create intelligent geodatabases, and GeoAI-based 

platforms, models, and systems that can be used in the 

diverse field of disease control and prevention, smart city 

planning, environmental management, and ecological 

conservation where human mobility intertwines with 

the surrounding space and social environment.

4.4 Enrichment of spatial-temporal data

Human mobility captured in the selected articles largely 

came from public sources, while these mobility data have 

some limitations which may impact their application. 

Some data are country-specific; for example, the Baidu 

migration data is only available in China (Yuan et al. 

2020). Additionally, mobility data retrieved from mobile 

phones or mobile app users designed by large companies 

encounter data biases in population coverage, which may 

exclude some specific subgroups, particularly children and 

aged populations who may not use mobile phones 

(Banerjee and Nayak 2020; Lai et al. 2020). The index- 

based mobility data (e.g. provided by Google, Baidu, and 

Apple) does not include population inflow to and/or out-

flow from a given place. Alternatively, user-based social 

media big data (e.g. geotagged Twitter data) is able to 

indicate the inter-regional movement to improve the accu-

racy of models (Gupta, Jain, and Bhatnagar 2020; Huang 

et al. 2020; O’Sullivan et al. 2020; Tsay et al. 2020a), 

although such data is not used in the selected studies. 

With the technological advancements and the emergence 

of further refined data, it will be interesting for future 

studies to involve additional data, to use a combination 

of multi-sourced data, and to compare the reliability and 

quality of data (Banerjee and Nayak 2020; Li et al. 2021; 

McGrail et al. 2020). Moreover, data sharing and informa-

tion disclosure are encouraged for future studies. Some 

scholars and institutes have put great efforts into collect-

ing, collating, and sharing data via crowdsourcing and 

cloud platforms to facilitate cross-disciplinary collabora-

tions. For example, Harvard Dataverse provides an open 

online data management and sharing platform for COVID- 

19 studies with daily COVID-19 confirmed cases, global 

news, social media data, population mobility, climate, 

health facilities, socioeconomic data, events chronicle, 

and scholarly articles (Hu et al. 2020).

4.5 Limitation

The study has limitations that should be noted. First, we 

did not include non-peer-reviewed articles (e.g. working 

papers and preprints) in this review. Traditional peer 

review usually takes months from submission to publi-

cation, while timely reporting of research findings is 

a priority during the pandemic, which dramatically 

increased the use of preprint service (Jung, Sun, and 
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Schluger 2020). Though preprints provide direct and 

rapid access to information, criteria used to justify pre-

prints are not available. Thus, we only searched for 

published and early access articles, which inevitably 

exclude the findings from some popular non-peer- 

reviewed articles. Second, this review includes a small 

number of eligible articles focusing on Africa and South 

America which could be due to the late appearance of 

the first case in some regions as well as the limited 

funding and resource to conduct COVID-19 related 

research. Third, our search captured publications at the 

early stage of the pandemic that obtained limited arti-

cles of the second and third waves of the pandemic, 

which has been observed in several countries after lifting 

mobility restriction policies. The findings summarized in 

this review may not well explain the resurged cases or 

the cases via converted transmission over a long time. 

Additionally, our searching was completed through 

a single database (WoS), which does not index all jour-

nals, and many papers from the indexed journals may 

take several months or years to be added to the data-

base. These restrictions may impact our searching 

results. Thus, we encourage future researchers to extend 

our systematic review to cover a longer period and 

include the most updated results from published and 

preprint articles from various regions and databases.

5. Conclusion

Understanding the pattern of human mobility is essen-

tial to prevent and predict the spread of infectious 

diseases. As COVID-19 continues to spread and resurge 

across countries, we summarized data and analytical 

models used in publications related to human mobility 

and COVID-19 transmission. The authors applied var-

ious models, including statistical models, mathemati-

cal/mechanistic state-space models, and simplified 

arithmetic models to examine the relationship 

between human mobility and COVID-19 transmission, 

using multi-sourced spatial-temporal mobility data. The 

findings on policy implications summarized herein pro-

vide important guidance in making, implementing, and 

adjusting current and post-pandemic measures. What 

we have seen in existing studies is the relationship 

between human mobility and the virus spread is tem-

poral and spatial heterogeneity, along with the obser-

vation of a time-lag effect of mobility on the spread of 

the virus. Additionally, this relationship is stronger in 

the initial stage of the pandemic but less conclusive if 

extending to a full spectrum of the pandemic or differ-

ent geographic contexts. What we have not seen from 

the current publications motivates us to propose future 

research directions. Specifically, we suggested that 

governments promote prompt and sustainable mea-

sures to control the spread of COVID-19. We also 

encourage multi-disciplinary collaborators to conduct 

rapid and accurate risk assessments of the pandemic 

by incorporating rich data sources and improving spa-

tial-temporal modelling to prevent and predict future 

outbreaks.
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