
Adaptive Noise Injection against Side-Channel
Attacks on ARM Platform
Naiwei Liu1,*, Wanyu Zang2, Songqing Chen3, Meng Yu2, Ravi Sandhu1

1Institute for Cyber Security, University of Texas at San Antonio (UTSA), U.S.A
2Department of Computer Science, Information Technology, and Data Science, Roosevelt University, U.S.A
3George Mason University, U.S.A

Abstract

In recent years, research efforts have been made to develop safe and secure environments for ARM platform.
The new ARMv8 architecture brought in security features by design. However, there are still some security
problems with ARMv8. For example, on Cortex-A series, there are risks that the system is vulnerable to side-
channel attacks. One major category of side-channel attacks utilizes cache memory to obtain a victim’s secret
information. In the cache based side-channel attacks, an attacker measures a sequence of cache operations
to obtain a victim’s memory access information, deriving more sensitive information. The success of such
attacks highly depends on accurate information about the victim’s cache accesses. In this paper, we describe
an innovative approach to defend against side-channel attack on Cortex-A series chips. We also considered
the side-channel attacks in the context of using TrustZone protection on ARM. Our adaptive noise injection
can significantly reduce the bandwidth of side-channel while maintaining an affordable system overhead. The
proposed defense mechanisms can be used on ARM Cortex-A architecture. Our experimental evaluation and
theoretical analysis show the effectiveness and efficiency of our proposed defense.

Keywords: system security, side-channel attacks, noise injection
Received on 11 December 2018, accepted on 12 January 2019, published on 29 January 2019
Copyright © 2019 Naiwei Liu et al., licensed to EAI. This is an open access article distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and
reproduction in any medium so long as the original work is properly cited.
doi: 10.4108/eai.25-1-2019.159346

1. Introduction

In recent years, there is a rising trend on types of
threats targeting to Internet of Things(IoT) devices.
Some mobile devices based on ARM chips are also
vulnerable to those threats. In the first step, some
research studied the last-level cache(LLC) threats
on both single device and in cloud with multiple
devices [1] [2] [3] [4]. These attacks are very
effective to extract users’ private information without
administrator’s privileges. When setting up side
channel attacks, an attacker collects the information
of the victim’s performance, power consumption,
timing, etc. The collected information can be used to
further derive more information about the victim, e.g.,
cryptographic keys, data being accessed, and so on.

For example, memory access time can be very
different depending on if the accessed data is in the
cache. Thus, the data being accessed by the victim can
be partially derived based on the data access time if the
attacker and the victim are sharing data in the cache.

∗Corresponding author. Email: naiwei.liu@utsa.edu

On ARM platform, a lot of research efforts have
been focusing on security design and implementations.
Some of security implementations [5] [6] [7] are
designed and implemented using TrustZone [8], a
secure enclave provided by ARM on both Cortex-A and
Cortex-M series. These defense frameworks target to
memory protection, process protection and even cache
protection. For example [9], some of the malicious
users can utilize the entry/exit of the TrustZone on
ARM Cortex-A, launching a cache-based attack, and
compromising the message channel between victim
and host OS. As a result, some research work target
at this problem using access control of entry/exit
operations [6], and some reserach use isolated cache
protection design [9]. The research papers and their
implementations can cut down the bandwidth of cache-
based attack, with various level of overhead on the
whole system.

Defense mechanisms using hardware designs [10–14]
or software modifications [15–19] have been developed
to mitigate the LLC based side channel attacks on x86
environments. Though very powerful, the hardware
solutions require special features that are not available

1

EAI Endorsed Transactions
on Security and Safety Research Article

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

N. Liu et al.

on commodity computer systems. Software solutions
include software diversity transform [17], adding noise
into the application [18, 20, 21], isolation through
better scheduling [22], and others. However, most of the
solutions are application specific and incur substantial
performance overhead.
However, these solutions are not perfectly set up

for ARM platform. For example, when exiting from
TrustZone, cache is not flushed, causing possible
threats targeting to cache. On the other hand,
if we plan to FLUSH cache for those TrustZone-
related instructions, we must consider the balance
among performance overhead, security concerns and
quality of the connection through cache. However,
we cannot simply port (or apply) x86 defense
techniques [23] [24] [25] on ARM platform directly.
As mentioned above, LLC based side-channel attacks

and defenses are mainly implemented and evaluated
on the x86 architecture. While more and more mobile
devices, smart phones, and IoT devices mainly use ARM
architecture rather than x86. Whether the side-channel
attacks and defense mechanism are the same on the
ARM based devices are not fully investigated.
On the ARM architecture, it is very different to con-

struct side-channel attacks and defense mechanisms.
For example, on an ARM platform, a cache flush oper-
ation is a privileged operation. It is a more secure
design than x86 since a regular user has no access
to cache FLUSH operations. Furthermore, when flush
instructions are requested, the system can invalidate the
cache contents and FLUSH all the TLB entries, making
LLC based side-channel attacks impossible, while con-
siderable performance loss is introduced at the same
time.
In this paper, we describe an innovative approach

to LLC based side-channel attacks on the ARM
architecture and propose a defense mechanism for
ARM Cortex-A architecture. We use adaptive FLUSH
operations on some system operations, as well as
the feedback of performance monitor. We carefully
add cache operations to the system such that the
measurement of the victim’s memory access time
becomes very difficult or even impossible. As a result,
the bandwidth of the side channel is significantly
reduced, making the attacker unable to compromise
the device with an acceptable cost. We implement
and evaluate the proposed defense on Cortex-A series
chips. The experimental results show that our proposed
defense is effective in both mitigating the cache-based
side-channel attacks and supporting efficient execution
of normal applications.
The design and implementation of defense have to

overcome several challenges. First, on ARM architec-
ture, there are different banked registers and modes.
Flush+Reload operations are designed as privileged
operations but they are supported by TrustZone in

different ways. We will look at both the threat and
defense in such context. Second, we target at protection
of the whole system instead of a specific application
while providing affordable overheads. Most existing
software solutions are either specific to an application
or have substantial overhead. Third, it is challenging
to adaptively inject FLUSH operations with affordable
overhead to the system and normal applications.
In summary, our paper has the following contribu-

tions:

• We investigate the cache-based side-channel
attacks on ARM architecture, with or without
TrustZone protection.

• We design and implement a defense mechanism
against several types of side-channel attacks
on ARM platforms. The proposed defense is
adaptive, effective, and efficient. The protection
can work for a whole system rather than a specific
application.

• We have done experimental evaluation for our
protection mechanisms. The evaluation results
show effectiveness and efficiency of our design.

• Our protection can be implemented in either an
operation system on ARM or as a tool in more on-
the-go environments.

The paper is organized in following orders. In
Related Work section, we introduce recent research
efforts on ARM cache security and TrustZone. In
Overview section, we have a introduction to our
defense model and working mechanism. In Design and
Implementation section, we introduce some technical
details about our defensemodel. After that, we have sets
of experiments to test the efficiency and performance
of the defense. We discuss in both theoretically and
experimentally in Evaluation and Discussion sections.
Then we have our conclusions and briefly plan the
future work.

2. Related Work

2.1. Cache-based Covert Channels

A covert channel can be created through sharing
resources. The higher bandwidth is in the cover
channel, the faster the information leakage can achieve.
Ristenpart et al. [26] experimented with L2 covert
channels in a cloud environment. Their bandwidth is
around 0.2 bps. Xu et al. [27] extended this attack.
The capacity of L2 cover channel is 233 bps. Percival
demonstrated that shared access to memory caches
provides a high bandwidth covert channel between
threads in [28]. The capacity of L2 covert channel is
approximately 100 kbps. Wu et al. [29] presented a
new covert channel attack with high-bandwidth (over

2
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

190.4 kbps) and reliable data transmission in the cloud.
Liu et al. presented a Prime+Probe side-channel attack,
achieving a bandwidth of 1.2 mbps [19].
By accurately mapping the cache sets, our attack

achieves a much higher bandwidth than prior work.

2.2. Last-level Cache(LLC) Side-Channel Attacks

Due to the low channel capacity, an LLC-based side-
channel typically only leaks course-grain information.
For example, the attacks of Ristenpart et al. [26]
leak information about co-residency, traffic rates and
keystroke timing. Zhang et al. [30] use an L2 side-
channel to detect non-cooperating co-resident VMs.
Our attack improves on this work by achieving a
high granularity that enables leaking of cryptographic
keys. Yarom and Falkner (FLUSH+RELOAD) [1] show
that when attacker and victim share memory, e.g.
shared libraries, the technique of Gullasch et al. [31]
can achieve an efficient crossVM, cross-core, LLC
attack. Side-channel attack removes the requirement
for sharing memory, and is powerful enough to recover
the key from the latest GnuPG crypto software which
uses the more advanced 618 sliding window technique
for modular exponentiation, which is impossible using
FLUSH+RELOAD attacks. In concurrent work Irazoqui
et al. [32] describe the use of large pages for mounting
a synchronous LLC PRIME+PROBE attack against the
last round of AES.
Recently, many research work on side-channel

attacks in a Trusted Execution Environment (TEE),
such as Intel SGX and ARM Trustzone [33, 34]. There
are some other types of side-channel attacks based on
different shared data or data structures in the system.
For example, Xu et al. [35] introduced controlled-
channel attacks, a new type of side-channel attack. The
attack allows an untrusted operating system to extract
large amounts of sensitive information from protected
applications on systems, such as Overshadow [36],
InkTag [37], or Haven [38]. This attack is not based on
LLC, but based on the page accessed by the VMs. Our
techniques do not apply directly to these attacks but the
idea of noise injection can still be used theoretically.
Basically, the difference between a covert channel and

a side-channel is the role of the attacker side. In a
covert channel, the attacker trying to get the encrypted
message can be either side of the channel, possibly
the sender or the receiver. However, in a side-channel,
the attacker is on a third side, trying to listen to the
message channel to steal information. Both the sender
and the receiver can be unaware of the existence of the
malicious user.

2.3. Manipulating Cache Contents

Two types of LLC-based side-channels have
been extensively studied recently. One is the

Flush+Reload [1–4], and the other is Prime+Probe

[4, 19, 32]. In Flush+Reload, the attacker and victim
share a physical memory page, such as sharing
libraries. In [30], the adversary was able to conduct
a cache-based attack to track the execution path of a
victim and extract a secret of interest from the victim.
Yarom and Falkner [1] applied the attack to recover a
RSA encryption key across VMware VMs, and Irazoqui
et al. [2] recovered AES keys. Prime+Probe can be
conducted when the attacker and victim share the
same CPU cache sets. Liu et al. presented an effective
and practical implementation of the Prime+Probe

side-channel attack against the last-level cache in [19]
. Work [32] implemented Prime+Probe to recover AES
keys in a cross-VM setting on Xen 4.1.
It is proven that the Flush+Reload technique

is particularly effective when memory duplication
features are enabled by the VMM [2, 4]. Gülmezoğlu
et al. applied flush+reload attack on OpenSSL
implementation of AES, and recovered the key in just 15
seconds working across cores in a cross-VM setting [4].
In this paper, we mainly focus on Flush+Reload

technique and our proposed techniques can also be
applied to Prime+Probe using the same principle.
The FLUSH and RELOAD technique is a variant of

PRIME+PROBE that relies on sharing pages between
the attacker and the victim processes. With shared
pages, the malicious user can ensure that a specific
memory line is evicted from the whole cache hierarchy.
The attacker uses this to monitor access to the memory
line. The attack is a variation of the technique suggested
by Gullasch et al. [31], which include adaptations to
multi-core and virtualized environments.
A round of attack consists of three phases. During the

first phase, the monitored memory line is flushed from
the cache hierarchy. The attacker, then, waits to allow
the victim time to access the memory line before the
third phase. In the third phase, the attacker reloads the
memory line, measuring the time to load it. If during
the wait phase the victim accesses the memory line,
the line will be available in the cache and the reload
operation will take a short time. If, on the other hand,
the victim has not accessed the memory line, the line
will need to be brought from memory and the reload
will take significantly longer.
The victim access can overlap the reload phase of the

attacker. In such a case, the victim access will not trigger
a cache fill. Instead, the victim will use the cached data
from the reload phase. Consequently, the attacker will
miss the access.

2.4. Noise Injection based Defense

Page [20] suggested manually adding noise, such
as garbage instructions, and random loads, into the
encryption routine to make cache side-channel attacks

3
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

more difficult. The proposed approach is specific
to encryption application and incurs substantial
performance overhead. Tromer et al. [18] suggested
several countermeasures for the side channel attack,
including injecting noise to the memory access pattern
by adding spurious accesses, e.g., by performing a
dummy encryption in parallel to the real one. This
would decrease the signal visible to the attacker.
However, they do not give any detailed design or
implementation.
Zhang and Reiter [21] designed and implemented

a defense system called Düppel that enables a tenant
virtual machine to defend itself from cache-based
side-channel attacks in public clouds. A tenant can
automatically inject additional noise into the timings
that an attacker might observe from caches. Since these
timings are commonly used by an attacker to infer the
sensitive information about a victim VM, injecting noise
into themwill generally make the attacks more difficult.
The solution requires users to identify the particular
processes that should be protected [39]. Our approach
generally protects the system and does not need user to
identify any specific process.

2.5. Other Types of Defense

Zhou et al. [39] proposed a memory copy approach
to dynamically manage physical memory pages shared
between security domains to disable sharing of LLC
lines, preventing Flush+Reload side channels via
LLCs. In their proposed work, a victim’s access to its
copy will be invisible to an attacker’s Reload in a
Flush+Reload attack. Varadarajan et al. [22] inves-
tigated a soft isolation, reducing the risk of sharing
through better scheduling design. It is also possible to
limit the frequency of potentially dangerous interac-
tions between mutually untrustworthy programs [40].
Compared with the above work, our approach is easy

to deploy and effective, and provides protection to an
entire system rather than a specific application. More-
over, all the above defense systems are implemented on
x86 platform. Our work is focusing on the LLC-based
attack and defense on both ARM architecture.

2.6. Recent Research on ARM-based Defenses

On the year 2017, Sandro Pinto and some other
researchers proposed LTZVisor [41], which is based on
TrustZone to protect and assist ARM virtualization.
They implement and test on ARM platform and have an
overhead of around 22% at the highest user switching
frequency. Guan el al. proposed TrustShadow [42],
using TrustZone to protect user’s applications, with
little or no change on the application itself. The
overhead here is around 10% at worst case and 2%
on average. However, the framework is not tested
on ARMv8-M, which has different structure and

instruction sets from ARM Cortex-A series. Similar
as LTZVisor, Hua et al. designed and implemented
vTZ [43], a virtualization based defense framework on
ARM. The overhead of vTZ is on average case around
5%.
According to their work, the most popular solution

on ARM is virtualization, using TrustZone to protect
the application, data and user’s private keys. This can
only be implemented on ARM Cortex-A series, which
has different level of cache, multiple privilege levels and
powerful CPU. On ARMv8-M series, however, similar
implementation is not applicable. On ARMv8-M series
chips, there is no cache on the structure, and normally
the protection cannot be complicated due to the limited
resource on the devices. Compared with their work,
we have a more directly protection, with acceptable
overhead and good performance.

3. Overview

3.1. Background

Environment Overview As multi-core processors
become pervasive and the number of on-die cores
increases, a key design issue facing processor architects
is the hierarchy and policies for the on-die LLC. With
LLC techniques, a CPU might only need to get around
5% data from main memory, which can improve the
efficiency of CPU largely. On ARM, we are using Juno
r1 Development Platform which has one A57 and one
A53 processors on the board. A57 has a 2M LLC on the
processor.
With the increasing complexity of computing sys-

tems, as well as multiple level of memory access, some
registers are designed to store some specific hardware
events. These registers are usually called hardware per-
formance counters. We have many tools getting infor-
mation from those performance counters, thus getting
the performance information.
In our implementation, we cannot use perf for

collecting timing information of memory access on
ARM, since it cannot be accurate enough, and not
applicable on ARM. On this paper we use inline
assemblies to measure time associated information with
our side-channels.

Process Structures On implementations at ARM
platform, the model contains with a sender, a receiver
and an OS module to randomly inject cache flushes to
generate noises into the channel. If the sender and the
receiver are both from the attacker, it is a typical covert
channel. If the sender program is a legitimate program,
it is a typical side-channel configuration.
In this paper, a channel is constructed and evaluated.

The sender here sends a message in the stream. The
receiver, on the other hand, analyzes the access time

4

N. Liu et al.

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

to the memory shared with the sender to figure
out what is being sent. After receiver receiving the
message, we study the quality of such channel in terms
of bandwidth, accuracy with noises injections to the
message channel.

We also have the error correction in the message
channel. On this paper, we use CRC for this purpose.
The message passed through the message channel are
checked using CRC, and when noises injected, the
receiver uses CRC to try fixing the message, working to
recover the message that the sender is sending.

Attack Based on ARMPlatform Attacks using shared
resource based side-channels need to monitor the
victim’s activities on the shared resource. Using cache
as an example, in a Flush+Reload attack, the attacker
firstly Flushes specific cache lines, and waits for
a predetermined time to Reload the contents. By
measuring the reload time, the attacker can learn if the
shared contents with the victim have been used or not,
thus deriving sensitive information about the victim.

Similarly, in a Prime+Probe attack, the attacker first
measures the data reading time, and loads memory
contents (Prime) to a number of cache sets. The attacker
then measures the access time to see if the data is
accessed by the others (Probe). The success of such side-
channel attacks is highly depending on the following
three necessary conditions: (1) the ability to precisely
measure the memory access time; (2) the ability to
selectively manipulate cache contents; and (3) sharing
memory contents with the victim.

On both x86 and ARM architecture, there are
performance counter registers and related machine
instructions to obtain accurate time measurement to
satisfy condition (1). Condition (3) can be easily
satisfied since a modern operating system has a lot
of shared memory pages through the shared libraries,
code segments, etc. The challenge is to satisfy condition
(2) on ARM architecture because the instructions to
manipulate cache contents are privileged instructions
that are not available to the regular users. If a user is at
a privileged level, side-channel attacks are unnecessary.
Thus, ARM architecture is secure by design if a single
operating system is running on the processor. However,
these support on ARM may open the door to side-
channel attacks due to handling of cache operations.

Background on Different Structures of ARM As
mentioned above, on this paper, we focus on ARM
Cortex-A structure. However, devices and users using
ARM Cortex-M structure are in a rising trend of
numbers. On ARMv8-M, it does not have cache and
memory mapping. Instead, it uses direct allocation on
memory to ensure high performance. The memory on

ARMv8-M is separated into different parts for different
purposes.

As a result, the TrustZone entry and exit operations
are with high efficiency, costing less than 10% of
clock cycles comparing with Cortex-A series. On the
other hand, the design of ARMv8-M made it difficult
for design of defense. As devices using this structure
usually with a simple or almost no OS, traditional
defense framework are not applicable on those devices.

Based on our experiments and discussions, we can
only focus on Cortex-A defense. For Cortex-M based
defending framework, we focus on that topic on some
other paper.

3.2. Threat Model and Assumptions

Side-channel attackers and other cache-based attack-
ers are not based on compromised OS. They perform
as ’man in the middle’ and collecting time stamps of
cache read/write operations. As discussed above, for
side-channel attack, the processes do not need shared
memory, so the model here has no assumption that they
have to share memory in whole or in part. Because of
the difference in the definition between side-channel
and covert channel, on covert channel, it is possible that
the attacker and victim share some resources, making
a slight difference on the assumption. In our design
of defense, we can efficiently decrease the bandwidth
of both side-channel and covert channel, but we are
testing the defense using side-channel attack model,
so we assume that the memory is not shared between
victim process and the attacker.

On system side, we assume that the operating system
components in TrustZone is not compromised so that
the attackers are forced to use covert channels or
side channels without explicitly violating access control
policies enforced by the operating system or other
protection mechanisms. Besides that, we also assume
the system is having a control part, i.e. handler to
inject interference into possible side-channel. Some
instructions using assembly code is privileged to higher
level to launch, so we assume they have the privilege
level to inject noise. On the other hand, we assume that
the noise injection process is not compromised, so the
injection of noise is just for the defense, not for other
malicious using like probing the cache.

We also assume that the attacker has sufficient
privilege to access the memory access time. This is also
needed for the covert channel, and for the performance
analysis of the covert channel. Time measurement is
the key to launch most popular cache attacks, like
Flush+Reload attack, Prime+Probe attack, etc. The
attackers collect the time stamps and process them
locally to retrieve information. To ensure accuracy,
the attacker have the access to consult with several

5
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

registers. It is possible because TrustZone is not
trapping those instructions.

4. Design and Implementation

4.1. Design Features

On devices with ARM chips, security design can
be quite different from the same case on Desktop or
even mobile phones. We even have to think about the
difference with traditional design on ARM utilizing
TrustZone. In this part, we analyze our design features,
challenges and show how our design fit for the new
ARM devices.
According to our design goal, we need to make

sure the security framework we design is flexible. It
should be easy to port from device to device, despite
the function or the use of each device. For example,
if the secure handler we design and implement is
porting from a smart home monitor to a series of
smart vehicles, we have to ensure the manufacturer is
doing as little as they wish to make the system fit in
to the new environment. On Desktop and other PCs,
it is relatively easier because of the standard OS and
capsuled interfaces. However, on ARM devices, we get
very little from the OS, so we have to implement the
flexibility within our framework.
The next critical issue for the ARM devices is power

consumption. With the consideration of that, we have
to discuss the need of the presentence of TrustZone
once again. Although doing every implementation in
TrustZone is simple and easy, it is not the best energy-
efficient solution sometimes. To this target, we try to use
the privilege level of ARM to work like TrustZone and
thus cut down the energy cost. Energy is not a serious
problem in the devices like smart home devices and
smart cars, as they can easily recharge. However, it is
a problem in some other devices like outdoor devices
and wear-on devices. This makes it another challenging
part of our design and implementation. The paging
difference is also a challenge to our work.
Given the design of the project, we do not depend on

the Hypervisor mode of ARM structure, and not rely on
TrustZone protections.
Overview of our design is shown at Figure 1. In this

figure, we use 1 to 5 to indicate different steps of a
side-channel attack and the defense we design against
to it. An attacker can utilize the cache to launch side-
channel attack, i.e. Flush+Reload attack, shown as step
1. To effectively defend against the side-channel threat,
we use Flush injection to cut down the bandwidth of the
side-channel. On step 2, the noise injector sends cache
FLUSH request, and connect with system components
on step 3. Then, the cache is FLUSHed as step 5, and
send some performance parameters to the monitor in
noise injector as step 4. After the whole loop, the
monitor can decide whether the injector should send

System Components

Cache

FLUSH

Instructions

Attacker

Process

Victim

Process

Noise

Injector

Process

①

②

③ ④

Monitors

⑤

Figure 1. Defense Model Overview

Operating

System
Noise

Injector

Overhead monitor

Cache miss-rate monitor

Side channel/covert

chanel bandwidth monitor

System Monitors

Figure 2. Adaptive Control Design with Monitor.

some other requests, based on some data collected. On
the next section, we introduce the design of the monitor,
which is shown at Figure 2.

4.2. Adaptive Control Model

Based on the design of defense model using
FLUSH operations introduced above, we must find
some balance between bandwidth elimination and
performance overhead. As sometimes we need better
performance and ignore minor bandwidth effects, we
need to have some adaptive and flexible controlling
methods to keep the balance of performance and
security. As a result, we design a monitor between the
noise injector and the OS. The designed architecture is
shown on Figure 2.
For the monitor, we can set up different parameters

of each category, and decide the FLUSH requests to the
injector.

4.3. Implementations

In this section, we introduce some implementation
details in the defense. On ARMv8 with TrustZone, the
noise injector can send cache operation requests to the
system, and system components can handle them and
FLUSH cache for their needs. We control the frequency
of FLUSH operations, and thus keeping a balance of
security and performance.

6

N. Liu et al.

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

For the structure we implement, the most critical
parts are accurate time stamp collection, and cache
FLUSH operation. For the non-secure world, as the
users do not need to change their non-secure code, we
do not need special care of them. For accurate time
recording, it is needed for the analysis of bandwidth,
and performance overhead. For cache FLUSH operation,
it is the key to ensure the cache not going to be utilized
by attackers.

Cache FLUSH Operations on ARM Platform. In order
to add noises into the message channel, we consider
having additional cache FLUSH operations. We use the
third process to randomly add cache FLUSH operations,
which do not target at some specific programs. As
a result, these noise injections can be considered to
protect the whole system. Implementing the FLUSH
operation on x86 platform is straightforward using
clf lush instruction, but more complicated operations
are on ARM platform for that.
As discussed above, on ARM, users have no access

permission to cache FLUSH operations, as these
operations are at privileged level. To better researching
on the defense strategy on ARM, we build a message
channel across the processes. However, on ARM
platform, we do not have the instructions like clflush on
x86 that are straightforward to deal with cache FLUSH
operations. As a result, we have to take a look at the
cache allocation on ARM, and use inline assembly codes
to implement cache FLUSH operations.
There are two types of cache allocation on ARM: 1)

read-allocate cache, and 2) write-allocate cache. When
operating on cache with WRITE, if the cache is missed,
CPU will simply put the data into main memory. Pre-
fetching happens only with READ operations. However,
when writing data with cache misses, pre-fetching will
happen and CPU will read the corresponding places in
cache and start to WRITE. On ARMv8 architecture, the
processor uses C7 register of CP15 to implement cache
and write buffer operations.
It is usual to clean the cache before flushing it, so the

external memory is updated with any dirty data. The
following code segment shows how to clean and flush
the entire cache.

MOV r0 , #0 ; C l ear R0 ;
MCR p15 , 0 , r15 , c7 , c10 , 3 ;
// Flush DCache ;

On ARMv7 or higher, the cache FLUSH operations
that are privileged and can be handled by ARM. In
the code above, we can see the assembling code of
flushing the cache uses MCR (Move to Coprocessor
from Registers). The privileged operation using this
can be trapped by the system, and system handles the
operation referring to it. The reason is that, when an
instruction uses MCR or MRC, the registers CP14 and

CP15 are taken access. These registers are designed by
ARM with special purpose, and used only for cache
maintenance. For ARM, it has a system call which
takes an array of those operations each specified by
the struct called mmuext_op. This call allows access
to various operations which must be performed with
privileged level, like TLB operations, cache operations,
and loading descriptor table base addresses.

Time Measurement on ARMv8. Unlike performance
counters on x86, on ARMv8 platform, there are
no instructions like perf to collect time-related
performance counters from the system layer. Another
challenge is that we cannot use rdtsc instruction to get
time stamps as we often do on x86. Additionally, some
other coarse-grained way like gettimeof day() certainly
does not work.

Given these limitations, we have to be back to
hardware, and look at ARM structure itself. We look
up ARM whitebook and find some registers that we
can retrieve time stamp information. However, when
consulting with these registers, we have to enable them
from kernel mode. By default, the access to these
registers are disabled.

The following code segment shows the instructions
for calculating time:

ISB ; MRS %0, c n t v c t _ e l 0 ;
// process execut ion ;

ISB ; MRS %0, c n t v c t _ e l 0 ;
ISB ; MRS %0, c n t f r q _ e l 0 ;

We store the timestamps in two arrays and calculate
the time based on these raw data. The instructions
are privileged, and we can use timestamps for many
monitor jobs. cntf rq_el0 is used for reading current
running frequency, which is not always the CPU
frequency or clock frequency.

4.4. Monitors Setup

On Overview section, we introduce the structure of
adaptive defense design. It is critical for the defense
to have proper monitors in order to provide accurate
performance and overhead information feedback data.
The challenge of the work is the difference between
platforms of ARM and x86. On x86 chips, some system
tools like perf can directly present what is going
on to the system. On ARMv8-A, however, we have
to look up for right registers and use MRS or MSR
instructions to read out system performance data. After
that, we use some calculations to show the conditions of
performance overhead, cache miss rate and bandwidth.

Performance Monitor Units ARMv8-A structure pro-
vides various Performance Monitor Units (PMUs) to

7
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

store system running condition data. In our implemen-
tations, we basically use instructions MRS and MSR to
collect data from register PMEVCNTR0_EL0, which
is a 32-bit performance monitor counter register, and
register PMEVTYPER0_EL0 register, which is used for
setting up events to be counted. With events shown as
Table 1, we can calculate current cache miss rate.

Performance Benchmark For ARMv8-A series, ARM
has a set of benchmark tools called CoreMark [44].
This benchmark is open-source and fit for features on
ARM platform. During the defense, we can modify
CoreMark to report performance overhead, in order to
work as a monitor that supports adaptive feedback to
noise injections. In particular, we modify core_matrix.c,
core_state.c and other source files to report current
overhead of the system with running defense.

Bandwidth Monitor Similar to cache miss rate
calculation, we cannot directly find data from registers
to have bandwidth feedback. However, when we are
executing victim and attacker processes, system read
and write rates are also showing in different values. As
a point of work, we utilize the system read and write
rates to calculate bandwidth. Other references for the
calculation are the frequencies of the core Cortex-A53
and Cortex-A57.
With the help of PMUs, benchmark tools and related

instructions, we can setup adaptive monitors to watch
the performance, bandwidth and cache miss rate
information of the system. In fact, with more PMUs
being utilized, we can setup more monitors to have
better control over the noise injections. These can be
some additional tasks to work on in the future.

Other Implementations. Besides these, we also have other
implementation features on this defense framework.
We use Error Correction Code (ECC) to try recovering

the contents missed due to quality loss. In this paper
we use CRC code to work as a checking and correcting
process to try recovering the message that the sender
just puts into the message channel. That is possible
because the attacker may use some ECC to recover the
data.
CRC is widely used in digital networks, and storage

devices to detect abnormal data due to accidental
changes to original data. At CRC, data are packed into
blocks with a short check value attached, based on the
remainder of a polynomial division of the contents of
each block. CRC is popular in network applications
because it is simple to implement, easy to analyze
the data package from the check value, and good at
detecting noise in message transmission channels.
However, CRC and other error correction codes have

limitations. When we inject noise beyond a threshold,
error correction may not work well, with some cases

even performing worse and cannot correct the message
according to the checksums. In our experiments, we
add much noise into the message channel to defend
against the attacker. As a result, CRC performs not well
when the noise is injected for too much. It supports the
noise injection mechanism for effective defense, as the
attacker cannot even use ECC to recover original data.

We also implement a loop to control the frequency of
FLUSH operations. The frequency is decided based on
the performance monitor. Therefore, the total amount
and frequency of noise injection are controlled in the
protection side.

5. Evaluation

5.1. Experimental Setup and Metrics

In this paper, we have different sets of experiments,
testing the effectiveness of Flush-based adaptive
defense. According to the experimental results, we have
discussions on ARM Cortex-A series.

For Experiments, we target on two core problems:
TrustZone and cache threats. For TrustZone experi-
ments, we have experiments on following aspects:

• Percentage of TrustZone-related instructions;

• Cost of entering/exiting TrustZone;

• Effectiveness of TrustZone by bandwidth.

For cache threats, the major threat we focus on this
paper is side-channel attack. We have experiments on
the following aspects:

• We FLUSH cache while exiting TrustZone and test
the effectiveness;

• Cost of FLUSH operations;

• Effectiveness of FLUSH operations by bandwidth.

We also have theoretical discussions based on
the experimental results. We have three aspects of
theoretical analysis:

• We discuss bandwidth effect of FLUSH operations
by theory;

• We discuss overhead effect of FLUSH operations
by theory;

• We discuss defense performance by entropy.

For the first two aspects of discussion, we use
curve regression to match the experimental results and
theoretical discussions.

8

N. Liu et al.

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

Table 1. PMU Events on ARMv8 Cortex-A

Event Number Event mnemonic Description
0x0001 L1I_CACHE_REFILLa Level 1 instruction cache refill
0x0003 L1D_CACHE_REFILLa Level 1 data cache refill
0x0004 L1D_CACHE Level 1 DCache Access
0x0032 LL_CACHE Last Level data cache access
0x0033 LL_CACHE_MISSa Last level data or unified cache miss

5.2. Experimental Results

We evaluate our proposed defense mechanisms
using a proof-of-concept implementation on ARMv8
Platform. On ARM, we use a Juno r1 Development
Platform, with one A57, one A53, the cache of L1 48KB
for instruction, 32KB for data, and L2 for 2MB.

Cost of Interaction with ARM TrustZone. OnARMCortex-A
Platform, an instruction smc is used for connecting the
secure world and non-secure world. While in normal
non-secure world, some code could call privileged
smc instruction. Then, secure world monitor will be
triggered after validation. After execution of secure
code, the return of the execution also calls smc to
get back to the normal world. There are many open-
source test platform to measure the world switch
latency, and in this experiment, we use the well-
known QEMU to test. It had been developed since
the first patch published in 2011, and been patched
by many manufacturers including Samsung, utilizing
ARM TrustZone for security design.

QEMU with ARM TrustZone provides us a variety
of tests. The tests behave as we users initiating secure
operations from user mode. The test functions validate
the TrustZone features of QEMU, and utilizing the
features of the functions themselves. We have tests on
read/write from non-secure world to secure world and
vice versa. The results are shown as Table 2 shows.

We also write a script based on the above write/read
code. In the script, there is a loop called in and
runs several times as a workload. We use Ubuntu
16.10 as the normal world OS, with 26 processes
running on background, including the workload we
use for testing. We count the smc-related instructions
that belongs to TrustZone-related operations, and
analyze the attributions of them. According to our
test, the instructions takes up less than 6% of the
total instructions running, with these three different
categories as shown on Table 3.

In normal using conditions, however, the manufac-
turers are not using TrustZone that often. Thus, the test
here can be the upper bound or ’worst case’ of the uti-
lization of TrustZone-Related instructions. Normally,
the non-secure world does not have to call in the secure
world too often.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Bandwidth

Speedup

Figure 3. Bandwidth of a Flush+Reload based side-channel and

performance improvement by allowing a specific ratio of cache

operations passing through ARM handling.

Noise Injection to Flush+Reload based Side-Channels

on ARMv8. As we described in Overview, on ARM
platform with TrustZone protection, ARM can provide
some protection for the cache against side-channel
attack on the cache, using cache invalidation. However,
it introduces significant performance loss. We revised
implementation such that the amount of cache
invalidation is under our control. Figure 3 shows the
experimental results for a Flush+Reload based side-
channel.

In the figure, x-axis is the percentage of cache
operations passing through the system handling. In
other words, it is the percentage of cache operations
that run on the processor hardware directly rather than
being ignored. y-axis on the left is the performance
speedup and y-axis on the right is the bandwidth
of the side channel. If 0 percent cache operations
passes through ARM handing, the bandwidth of the
side channel will be 0 and we set the corresponding
execution time as the base value for the speedup
measurement. When we have more cache operations
passing through the ARM handling, we can get better
performance on the execution. However, the bandwidth
of the side channel goes up as well. According to the
experimental results, when we increase the percentage
of cache operations passing through ARM handing,
the bandwidth of potential side-channels in the whole
platform will increase quickly up to 650 bits/second
which is very practical and useful for side-channel
attacks. At the same time, we can have performance

9
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Table 2. TrustZone-related Instructions Cost on ARMv8 Cortex-A

Tests Direction Average Cost (Clock Cycles) Time Cost on 800Mhz
P0_nonsecure_check_register_access Non-secure to Secure 1950 2.43us
P0_secure_check_register_access Secure to Non-secure 2200 2.75us

Table 3. TrustZone-Related Instruction Count

Type Percentage
Non-secure to Secure Test R/W 2.87%
Secure to Non-secure Test R/W 2.91%
Others (Access from Background) 0.01%

0

100

200

300

400

500

600

700

800

900

1000

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 20 40 60 80 100

Speedup

Bandwidth

Figure 4. Bandwidth of a Prime+Probe based side-channel and

performance improvement by allowing a specific ratio of cache

operations passing through ARM handling.

improvement up to 43%. However, we do not want such
kind of performance improvement due to the security
risks of side-channel attacks. The trade-off must be
chosen between a non-practical bandwidth of side-
channel and acceptable performance improvement.

Noise Injection to Prime+Probe based Side-Channels on

ARMv8. Similarly, when we inject flush operations to a
system, it can also affect the bandwidth of Prime+Probe
based side-channels. In our experiments, when we
inject flush operations to incur about 20% overhead,
the bandwidth of a side-channel can be decreased from
about 600 bps to only several bps. The flush operations
can effectively interfere with the time measurement in
Prime+Probe based side-channels, thus making it non-
practical.

Figure 4 shows the experimental results of noise
injection into a Prime+Probe based side-channel. In
the figure, x-axis is the percentage of cache operations
passing through ARM handling. y-axis on the left is
the performance speedup and y-axis on the right is
the bandwidth of the side channel. The configuration
of the experiment is the same as the Flush+Reload

based side-channel except the type of side-channel is
Prime+Probe. In the figure, we can see the different
impact on speedup of the running of the program

and bandwidth of side-channels caused by different
percentage of passing-through cache operations from
the injector process. When we pass-through more cache
operations of a process (not trapped by the ARM
platform and invalidate cache lines) we can see the
speedup of an application increases, but also with
increasing risks of side-channel attacks, as shown by
fast increasing bandwidth of side-channels.

On ARM, as shown in Figure 4, when the ratio of
not trapped cache operations increases to be about
10%, the bandwidth of side-channels quickly rises up
to more than 200 bps, with speedup rising for only
13%. When the ratio increases to 75%, the bandwidth
of side-channels rises up to more than 700 bps, with
the speedup of application only by 35%. As a result,
we can see that enabling ARM to pass-through some
cache operations is not affordable, with very high risks
of leaking information through side-channels. In other
words, the way ARM handles the cache operations
by processes is necessary to ensure security given
the performance overheads. Otherwise, there will be
greatly increased risks to have side-channel attacks on
ARM platform.

6. Discussion

6.1. Theoretical Analysis

In this section, we describe theoretical analysis on the
quality of the side-channels and also the impact of noise
injections.

Information Theory based Analysis. The Shannon
entropy [45] of a random variable X : K → χ is
defined in Equation 1.

H(X) = −
∑

xǫχ

pX (x)log2pX (x) (1)

The entropy is a lower bound of the average
number of bits required for representing the results of
independent repetitions of the experiment associated
with X. In terms of our model, the entropy H(X) is a
lower bound of the effective information provided by
one bit of the message.

Using our experimental results on ARM as an
example, the accuracy at the receiver side with different
level of noise injection is shown in Table 4. Note that we
are using noise ratio as a parameter, which is a ratio of
flush operations compared with all cache operations.

10

N. Liu et al.

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

Table 4. Overhead and Accuracy on ARM

Noise Ratio Accuracy Overhead (%)
0 0.918303 0

0.000010 0.790304 1
0.000100 0.685478 3
0.001000 0.596467 7
0.010000 0.526785 15
0.100000 0.513214 25
0.500000 0.495521 30

Table 5. Entropy and Noise Ratio

Noise Ratio Accuracy Entropy(H(x))
0 0.918303 0.4079

0.000010 0.790304 0.7409
0.000100 0.685478 0.8983
0.001000 0.596467 0.9728
0.010000 0.526785 0.9979
0.100000 0.513214 0.9995
0.500000 0.495521 0.9999

We use srand() to generate random numbers, so
the distribution of the flush operations are of normal
distribution. The entropy of the side channel has a
relation with accuracy of the bits received through the
side channel. Thus, we calculate the entropy as follows.

H(X) = −

n
∑

i=1

P(xi)I(xi) = −

n
∑

i=1

P(xi)logbP(xi) (2)

In our analysis, we set the value of b as 2 to calculate the
entropy in bits. Now we consider multiple test cases. In
each test, we use an ε to measure the percentage of noise
injected in the test. Then, we calculate H(X) and H(Y),
which are the entropy of the sender and the receiver
respectively. As discussed before, the probability for the
sender to send a 0 equals to the probability of sending
an 1 for a random message. Thus, we could use the
following equations to calculate the quality of message
channel with noise injected.

H(X) = −

n
∑

i=1

P(xi)I(xi) = −

n
∑

i=1

P(xi)log2P(xi) (3)

H(Y |X) = −εlog2ε − (1 − ε)log2(1 − ε) (4)

H(Y) = −

n
∑

i=1

(P(xi)log2(xi) + ε − 2εP(xi)log2(xi)) (5)

And we have the results with different noise
injections ε, as shown in Table 5.
In the table, with a relatively high amount noise

added into the side-channels, the entropy rises up
quickly. It is close to the max value of 1 with around
50% operations added. When we add more noise, it

Table 6. Overhead of Noise Injections

Noise Ratio Overhead (%) Entropy Bandwidth (bps)
0 0 0.4079 675

0.000010 1 0.7409 552
0.000100 3 0.8983 449
0.001000 7 0.9728 251
0.010000 15 0.9979 137
0.100000 25 0.9995 95
0.500000 30 0.9999 6

makes the receiver harder to guess a bit from the sender.
Therefore, when we have a probability close to 0.5 to
fail, the entropy will have the highest value of 1.

Channel Quality. With different level of noise injection,
a side-channel constructed by an attacker can be from
highly risky to almost non-threatening. As discussed
above, with the random injection of flush operations,
the values of message entropy, the bandwidth and
overhead are changed accordingly, as shown in Table 6.
In the table, with the noise injected, both message
entropy and overhead increase, while the bandwidth
of side-channels decreases quickly. With more noise
injected into the channel, it makes the channel filled in
with additional noise, the entropy value increases.

As shown by Shannon entropy definition, when the
entropy is close to 1, the message channel can be
considered as very poor quality. For each bit with two
possible values, the expected time of guesses for getting
the correct bit is close to 2, which is nearly a situation
with random guessing. If we have such kind of message
channel, it cannot send meaningful message because of
the difficulty for the receiver to get the corresponding
bits.

However, the injected noises also have some negative
impact on the system, which is shown as overhead
in our experiments. There is a tradeoff between
performance sacrifice and increasing of security. On
ARM platform, we can achieve effective defense using
flush operations injected into the system, with the
performance overhead of about 20%, to effectively
defend against the side-channel.

Statistical Discussion. Now we consider the bandwidth
of side-channels in Figure 3 again. In the experiments
where we randomly insert flush operations to interfere
with the side-channels, the time of injecting noise
is randomly distributed. Also, the interval of each
pair of operations is randomly distributed. Exponential
distribution is usually used to describe the distribution
of intervals of a set of statistically independent
events. In our experiment, we use it to describe
the distribution of injected flush operations intervals.
Every time the system flushes the cache, it affects
the time measurement of the side-channel attacks.

11
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

y =975-(975*e-0.075x+0.024)

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Figure 5. A function for side-channel bandwidth prediction based

on statistical model.

Thus, the bandwidth of possible side-channels is cut
down. As a result, the flush operations can affect
the bandwidth of side-channels, in the way of an
exponential distribution.
When we look at the side-channel bandwidth,

another factor we have to consider is the background
noise from other running processes in the system. We
model the system background noise using a uniform
distribution. Therefore, the cumulative distribution
function is as follows:

F (x, λ) =

{

1 − e−λx x > 0
0 x < 0

(6)

Where λ is the rate parameter of exponential
distribution. As we focus on the bandwidth with given
ratio of passing-through cache FLUSH operations, there
cannot be the situation where x is less than 0. As
mentioned above, we have to take the background noise
into consideration. Thus, we have the function with
more parameters as follows:

F (x, λ) = a(1 − e−λx) + b (7)

Where a is the maximum possible bandwidth under our
experimental environments and b is the parameters of
background noise.
Based on our experimental results and the above

statistical analysis, we have a curve fitting function
shown in Figure 5.
The function with parameters determined by experi-

mental results is as follows.

F(x) = 975 − (975 ∗ e−0.075x + 0.024) (8)

The function is used as a reference for adaptive noise
injection and side-channel bandwidth prediction in the
defense.

6.2. Adaptive Noise Injection

In the defense against the side-channels, we con-
sider three critical system parameters: performance

0

10

20

30

40

50

60

70

80

90

100

Bandwidth Avg. Bandwidth High Bandwidth Low

Cache Miss Rate <= 50%, Performance Overhead <=20%

Random FLUSH Distribution

Figure 6. Side-channel bandwidth (bps) with and without

adaptive mechanism.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%

Cache Miss Rate <=50%, Bandwidth >=20

bps

Random FLUSH Distribution

Figure 7. Performance overhead with and without adaptive

mechanism.

overhead, bandwidth of the possible side-channel, and
the cache miss-rate. In our design, when the perfor-
mance overhead is over a given threshold, or the cache
miss rate is over a pre-determined threshold, noise
injection will be stopped to maintain an acceptable
performance. However, when the bandwidth of possible
side-channels is high enough at a risky level, noise
injection will be enabled to protect the system against
side-channels.

We have conducted two sets of experiments to
compare adaptive noise injection with simple random
noise injection. In each set of the experiments, we
compare the overhead of the system or the bandwidth
of the side-channels. In the first set of experiments, we
control the cache miss rate and performance overhead,
and see the bandwidth differences between defense
with and without the adaptive mechanism. In the
second sets of experiments, we control the bandwidth
and cache miss rate, and compare the performance
overhead between defense with and without adaptive
mechanism. The experimental results are shown in
Figure 6 and Figure 7.

In Figure 6, the column on the left shows the
experimental results for the adaptive defense. We set
up the threshold of cache miss rate to 50%, the
performance overhead to 20% and bandwidth to 20

12

N. Liu et al.

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

bps. When the cache miss rate is less than 50%,
and the performance overhead is less than 20%, we
add cache flush operations to interfere with the side-
channels. According to the experimental results, when
adaptive noise injection is used, the average bandwidth
of the side-channels can be similar. However, we can
obtain better performance while dealing with high
bandwidth situations. When the cache miss-rate is
relatively low and performance overhead is low, the
risk of leaking information through shared resources is
relatively higher. When we target at this situation and
inject more noises to the system, the interference can
be effective. On the other hand, when the performance
overhead is high and the cache miss rate is also high,
frequent cache flush operations provide a very tough
situation for cache based side-channel attacks. Under
such circumstance, there is little need to inject more
cache operations as noises. The experiments here show
the effect of our adaptive defending.

Figure 7, on the other hand, shows the results of the
second set of experiments. In this set of experiments,
we mainly consider the performance overhead of the
defending strategy. Without adaptive noise injection,
the overhead is always as high as 20%-30%. However,
as some of the cache flush operations are not necessary,
our adaptive noise injection can avoid a great amount of
flush operations when they are not needed. As a result,
when we set the noise injection threshold to the cache
miss-rate of 50% and bandwidth of over 20 bps, the
overhead average can be optimized to less than 20%,
to be about 18.5%. As we mention the importance of
efficiency in defending, this set of experiments prove
that we can implement adaptive defending with good
efficiency.

We use registers and a loop to work as monitors,
which can be more adaptive than trapping ’sensitive’
activities. We can change the parameters of the
monitors according to our need, with almost no changes
on other parts of the defense. It is especially feasible
for ARM platform, as mobile devices have different
concerns on keeping their own needs to the defense.

According to experiments above, when we set up
a monitor and control the parameters according to
our need, we can have better performance without too
much loss on the system’s cache miss rate, overhead or
security concerns. For further defense design, we can
have different parameters fitting into the monitor, and
the user can decide which parameters they care most.
As a result, the monitor can make the defense adaptive,
while keeping FLUSH injections effective.

7. Acknowledgments

The work in this paper is supported by National
Science Foundations. The grant numbers are NSF CNS-
1422355. and CNS-1634441.

8. Conclusion

It has been proved that in the side-channel attacks,
the attacker can steal users’ private information even if
the operating system is not compromised. To counter
this growing threat, we present a new software-
only defense mechanism to mitigate the LLC based
side-channel attack. Our defense randomly flushes
the cache to inject noise in FLUSH+RELOAD. We
qualify our defense mechanism using Shannon entropy
analysis. We implement the proposed defense on ARM
V8 architecture. The experimental results show that
with less than 5% system performance overhead, our
approach effectively lowers the accuracy of the side-
channel to around 70%. We also introduce an adaptive
monitor to balance the efficiency, security concerns and
performance overhead. The results show that cache
flushing with adaptive strategy can effectively reduce
the threats of side-channel attack, and the user can still
control the defense based on their own needs.
In future work, we will investigate the ARM

instructions to further reduce the overhead of current
defense. We also plan to port the monitor to ARMv8-
M platform. We will design and implement a defense
framework for ARMv8 platform, both for ARMv8-A
and ARMv8-M series. If we can implement the defense
framework, we will provide a better environment for
the users and developers. It will be a good protection
for IoT network.

References

[1] Yarom, Y. and Falkner, K. (2014) FLUSH+RELOAD:
A High Resolution, Low Noise, L3 Cache Side-
Channel Attack. In 23rd USENIX Security
Symposium (USENIX Security 14) (San Diego,
CA: USENIX Association): 719–732. URL https:

//www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/yarom.
[2] Irazoqui, G., Inci, M.S., Eisenbarth, T. and Sunar,

B. (2014) Wait a Minute! A fast, Cross-VM Attack on
AES (Cham: Springer International Publishing), 299–
319. doi:10.1007/978-3-319-11379-1_15, URL http://

dx.doi.org/10.1007/978-3-319-11379-1_15.
[3] Zhang, Y., Juels, A., Reiter, M.K. and Ristenpart,

T. (2014) Cross-tenant side-channel attacks in paas
clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security,
CCS ’14 (New York, NY, USA: ACM): 990–1003.
doi:10.1145/2660267.2660356, URL http://doi.acm.

org/10.1145/2660267.2660356.
[4] Gülmezoğlu, B., İnci, M.S., Irazoqui, G., Eisenbarth,

T. and Sunar, B. (2015) A Faster and More Real-
istic Flush+Reload Attack on AES (Cham: Springer
International Publishing), 111–126. doi:10.1007/978-
3-319-21476-4_8, URL http://dx.doi.org/10.1007/

978-3-319-21476-4_8.
[5] Santos, N., Raj, H., Saroiu, S. and Wolman, A.

(2014) Using arm trustzone to build a trusted language

13
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

runtime for mobile applications. In Proceedings of the
19th International Conference on Architectural Support
for Programming Languages and Operating Systems,
ASPLOS ’14 (New York, NY, USA: ACM): 67–80.
doi:10.1145/2541940.2541949, URL http://doi.acm.

org/10.1145/2541940.2541949.
[6] Azab, A.M., Ning, P., Shah, J., Chen, Q., Bhutkar,

R., Ganesh, G., Ma, J. et al. (2014) Hypervision across
worlds: Real-time kernel protection from the arm
trustzone secure world. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security (ACM): 90–102.

[7] Kwon, D., Oh, K., Park, J., Yang, S., Cho, Y., Kang,

B.B. and Paek, Y. (2018) Hypernel: a hardware-assisted
framework for kernel protection without nested paging.
In Proceedings of the 55th Annual Design Automation
Conference (ACM): 34.

[8] Frenzel, T., Lackorzynski, A., Warg, A. and Härtig, H.

(2010) Arm trustzone as a virtualization technique in
embedded systems. In Proceedings of Twelfth Real-Time
Linux Workshop, Nairobi, Kenya: 29–42.

[9] Lipp, M., Gruss, D., Spreitzer, R., Maurice, C. and
Mangard, S. (2016) Armageddon: Cache attacks on
mobile devices. In USENIX Security Symposium: 549–
564.

[10] Bernstein, D.J. (2005) Cache-timing attacks on AES. Tech.
rep.

[11] Page, D. (2005), Partitioned cache architecture as a
side-channel defence mechanism. URL http://eprint.

iacr.org/2005/280. Page@cs.bris.ac.uk 13017 received
22 Aug 2005.

[12] Wang, Z. and Lee, R.B. (2007) New cache designs for
thwarting software cache-based side channel attacks. In
Proceedings of the 34th Annual International Symposium
on Computer Architecture, ISCA ’07: 494–505.

[13] Wang, Z. and Lee, R.B. (2008) A novel cache architecture
with enhanced performance and security. In 2008 41st
IEEE/ACM International Symposium on Microarchitecture:
83–93. doi:10.1109/MICRO.2008.4771781.

[14] Liu, F. and Lee, R.B. (2014) Random fill cache
architecture. In 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture: 203–
215. doi:10.1109/MICRO.2014.28.

[15] Brickell, E., Graunke, G., Neve, M. and Seifert, J.P.

(2006), Software mitigations to hedge aes against cache-
based software side channel vulnerabilities.

[16] Cleemput, J.V., Coppens, B. and De Sutter, B. (2012)
Compiler mitigations for time attacks on modern
x86 processors. ACM Trans. Archit. Code Optim. 8(4):
23:1–23:20. doi:10.1145/2086696.2086702, URL http:

//doi.acm.org/10.1145/2086696.2086702.
[17] Crane, S., Homescu, A., Brunthaler, S., Larsen, P. and

Franz, M. (2015) Thwarting cache side-channel attacks
through dynamic software diversity. In 22nd Annual
Network and Distributed System Security Symposium,
NDSS 2015, San Diego, California, USA, February 8-11,
2014.

[18] Tromer, E., Osvik, D.A. and Shamir, A. (2010) Efficient
cache attacks on aes, and countermeasures. Journal
of Cryptology 23(1): 37–71. doi:10.1007/s00145-
009-9049-y, URL http://dx.doi.org/10.1007/

s00145-009-9049-y.
[19] Liu, F., Yarom, Y., Ge, Q.,Heiser, G. and Lee, R.B. (2015)

Last-level cache side-channel attacks are practical. In
2015 IEEE Symposium on Security and Privacy: 605–622.
doi:10.1109/SP.2015.43.

[20] Page, D. (2003) Defending against cache based side-
channel attacks. Information Security Technical Report
8(1): 30–44.

[21] Zhang, Y. and Reiter, M.K. (2013) Düppel: retrofitting
commodity operating systems to mitigate cache side
channels in the cloud. In Proceedings of the 2013
ACM SIGSAC conference on Computer & Communications
security, CCS ’13 (New York, NY, USA: ACM): 827–838.
doi:10.1145/2508859.2516741, URL http://doi.acm.

org/10.1145/2508859.2516741.
[22] Varadarajan, V., Ristenpart, T. and Swift, M.

(2014) Scheduler-based defenses against cross-
vm side-channels. In 23rd USENIX Security
Symposium (USENIX Security 14) (San Diego,
CA: USENIX Association): 687–702. URL https:

//www.usenix.org/conference/usenixsecurity14/

technical-sessions/presentation/varadarajan.
[23] Crane, S., Homescu, A., Brunthaler, S., Larsen, P. and

Franz, M. (2015) Thwarting cache side-channel attacks
through dynamic software diversity. In NDSS: 8–11.

[24] Liu, F., Ge, Q., Yarom, Y., Mckeen, F., Rozas, C., Heiser,

G. and Lee, R.B. (2016) Catalyst: Defeating last-level
cache side channel attacks in cloud computing. In High
Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on (IEEE): 406–418.

[25] Chen, S., Zhang, X., Reiter, M.K. and Zhang, Y. (2017)
Detecting privileged side-channel attacks in shielded
execution with déjá vu. In Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications
Security (ACM): 7–18.

[26] Ristenpart, T., Tromer, E., Shacham, H. and Savage,

S. (2009) Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds. In
Proceedings of the 16th ACM conference on Computer
and communications security, CCS ’09 (New York, NY,
USA: ACM): 199–212. doi:10.1145/1653662.1653687,
URL http://doi.acm.org/10.1145/1653662.1653687.

[27] Xu, Y., Bailey, M., Jahanian, F., Joshi, K., Hiltunen,

M. and Schlichting, R. (2011) An exploration of
l2 cache covert channels in virtualized environments.
In Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop, CCSW ’11 (New York, NY,
USA: ACM): 29–40. doi:10.1145/2046660.2046670, URL
http://doi.acm.org/10.1145/2046660.2046670.

[28] Percival, C. (2005) Cache missing for fun and profit. In
Proc. of BSDCan 2005.

[29] Wu, Z., Xu, Z. and Wang, H. (2015) Whispers in
the hyper-space: High-bandwidth and reliable covert
channel attacks inside the cloud. IEEE/ACM Trans. Netw.
23(2): 603–614. doi:10.1109/TNET.2014.2304439, URL
http://dx.doi.org/10.1109/TNET.2014.2304439.

[30] Zhang, Y., Juels, A., Oprea, A. and Reiter, M.K.

(2011) Homealone: Co-residency detection in the cloud
via side-channel analysis. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11

14

N. Liu et al.

EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

Adaptive Noise Injection against Side-Channel Attacks on ARM Platform

(Washington, DC, USA: IEEE Computer Society): 313–
328. doi:10.1109/SP.2011.31, URL http://dx.doi.org/

10.1109/SP.2011.31.
[31] Gullasch, D., Bangerter, E. and Krenn, S. (2011) Cache

games – bringing access-based cache attacks on aes to
practice. In Proceedings of the 2011 IEEE Symposium on
Security and Privacy, SP ’11 (Washington, DC, USA: IEEE
Computer Society): 490–505. doi:10.1109/SP.2011.22,
URL http://dx.doi.org/10.1109/SP.2011.22.

[32] Irazoqui, G., Eisenbarth, T. and Sunar, B. (2015) S$a: A
shared cache attack that works across cores and defies
vm sandboxing – and its application to aes. In The
proceedings of 2015 IEEE Symposium on Security and
Privacy (San Jose, CA: IEEE): 591–604.

[33] Shih,M.W., Lee, S.,Kim, T. and Peinado,M. (2017) T-sgx:
Eradicating controlled-channel attacks against enclave
programs. In Proceedings of the 2017 Annual Network
and Distributed System Security Symposium (NDSS), San
Diego, CA.

[34] Moghimi, A., Irazoqui, G. and Eisenbarth, T. (2017)
Cachezoom: How sgx amplifies the power of cache
attacks. arXiv preprint arXiv:1703.06986 .

[35] Xu, Y., Cui, W. and Peinado, M. (2015) Controlled-
channel attacks: Deterministic side channels
for untrusted operating systems. In 2015 IEEE
Symposium on Security and Privacy: 640–656.
doi:10.1109/SP.2015.45.

[36] Chen, X., Garfinkel, T., Lewis, E.C., Subrahmanyam,
P., Waldspurger, C.A., Boneh, D., Dwoskin, J. et al.
(2008) Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems.
In In ASPLOS.

[37] Hofmann, O.S., Kim, S., Dunn, A.M., Lee,

M.Z. and Witchel, E. (2013) Inktag: Secure
applications on an untrusted operating system.
In ASPLOS’13, 2013 (New York, NY, USA: ACM):

265–278. doi:10.1145/2451116.2451146, URL
http://doi.acm.org/10.1145/2451116.2451146.

[38] Baumann, A., Peinado, M. and Hunt, G. (2014) Shield-
ing applications from an untrusted cloud with haven. In
OSDI’14, 2014 (Broomfield, CO: USENIX Association):
267–283. URL https://www.usenix.org/conference/

osdi14/technical-sessions/presentation/baumann.
[39] Zhou, Z., Reiter, M.K. and Zhang, Y. (2016), A

software approach to defeating side channels in last-
level caches, arXiv preprint, arXiv:1603.05615v1. http:
//arxiv.org//.

[40] Zhang, N., Sun, K., Lou, W. and Hou, T. (2016) Case:
Cache-assisted secure execution on arm processors. In
The 37th IEEE Symposium on Security and Privacy (S&P)
(SAN JOSE, CA: IEEE).

[41] Pinto, S., Pereira, J., Gomes, T., Tavares, A. and Cabral,

J. (2017) Ltzvisor: Trustzone is the key. In LIPIcs-
Leibniz International Proceedings in Informatics (Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik), 76.

[42] Guan, L., Liu, P., Xing, X., Ge, X., Zhang, S., Yu, M.

and Jaeger, T. (2017) Trustshadow: Secure execution
of unmodified applications with arm trustzone. In
Proceedings of the 15th Annual International Conference
on Mobile Systems, Applications, and Services (ACM): 488–
501.

[43] Hua, Z., Gu, J., Xia, Y., Chen, H., Zang, B. and Guan, H.

(2017) vtz: Virtualizing arm trustzone. In In Proc. of the
26th USENIX Security Symposium.

[44] Limited., A., Coremark benchmarking for arm cortex
processors, https://static.docs.arm.com/dai0350/

a/DAI0350A_coremark_benchmarking.pdf. Accessed
2013.

[45] Shannon, C.E. (2001) A mathematical theory of
communication. SIGMOBILE Mob. Comput. Commun.
Rev. 5(1): 3–55. doi:10.1145/584091.584093, URL http:

//doi.acm.org/10.1145/584091.584093.

15
EAI Endorsed Transactions on

Security and Safety

01 2019 - 01 2019 | Volume 6 | Issue 19 | e1

	1 Introduction
	2 Related Work
	2.1 Cache-based Covert Channels
	2.2 Last-level Cache(LLC) Side-Channel Attacks
	2.3 Manipulating Cache Contents
	2.4 Noise Injection based Defense
	2.5 Other Types of Defense
	2.6 Recent Research on ARM-based Defenses

	3 Overview
	3.1 Background
	3.2 Threat Model and Assumptions

	4 Design and Implementation
	4.1 Design Features
	4.2 Adaptive Control Model
	4.3 Implementations
	Cache FLUSH Operations on ARM Platform
	Time Measurement on ARMv8

	4.4 Monitors Setup
	Other Implementations

	5 Evaluation
	5.1 Experimental Setup and Metrics
	5.2 Experimental Results
	Cost of Interaction with ARM TrustZone
	Noise Injection to Flush+Reload based Side-Channels on ARMv8
	Noise Injection to Prime+Probe based Side-Channels on ARMv8

	6 Discussion
	6.1 Theoretical Analysis
	Information Theory based Analysis
	Channel Quality
	Statistical Discussion

	6.2 Adaptive Noise Injection

	7 Acknowledgments
	8 Conclusion

