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Abstract: Rapid Intensification (RI) in Tropical Cyclone (TC) development is one of the most difficult

and still challenging tasks in weather forecasting. In addition to the dynamical numerical simulations,

commonly used techniques for RI (as well as TC intensity changes) analysis and prediction are the

composite analysis and statistical models based on features derived from the composite analysis.

Quite a large number of such selected and pre-determined features related to TC intensity change

and RI have been accumulated by the domain scientists, such as those in the widely used SHIPS

(Statistical Hurricane Intensity Prediction Scheme) database. Moreover, new features are still being

added with new algorithms and/or newly available datasets. However, there are very few unified

frameworks for systematically distilling features from a comprehensive data source. One such unified

Artificial Intelligence (AI) system was developed for deriving features from TC centers, and here,

we expand that system to large-scale environmental condition. In this study, we implemented a

deep learning algorithm, the Convolutional Neural Network (CNN), to the European Centre for

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data and identified and refined

potentially new features relevant to RI such as specific humidity in east or northeast, vorticity and

horizontal wind in north and south relative to the TC centers, as well as ozone at high altitudes that

could help the prediction and understanding of the occurrence of RI based on the deep learning

network (named TCNET in this study). By combining the newly derived features and the features

from the SHIPS database, the RI prediction performance can be improved by 43%, 23%, and 30% in

terms of Kappa, probability of detection (POD), and false alarm rate (FAR) against the same modern

classification model but with the SHIPS inputs only.

Keywords: tropical cyclone (TC); rapid intensification (RI); ERA-Interim; artificial intelligence (AI);

deep learning (DL)

1. Introduction

Forecasting tropical cyclone (TC) intensity is a challenging problem in meteorology,
with only modest improvements occurring in recent decades [1–4]. The errors of intensity
forecasting are particularly large when TCs undergo the rapid intensification (RI) process,
initially defined by Kaplan and DeMaria [5] as an increase of 30 knots of TC intensity
(defined as 1-min maximum sustained wind) within 24 h, and later added with variants of
different wind speed increase and time duration combinations [6].

Although the long-term improvement in TC intensity forecasting possibly depends on
the improvement of dynamical numerical simulation [4], the so-called statistical-dynamical
models, either deterministic or probabilistic, are still playing important roles in the current
prediction of RI [7]. Those models fit various classical statistical techniques, such as
linear discriminant analysis [8] and logistic regression [9], for TC formation and intensity
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prediction, respectively. One common point for the statistical models is that all of them
use the built features (variables) as model inputs. The features are extracted from the vast
amount of data based on past experience and verified via composite analyses. Most of
the features are included in the Statistical Hurricane Intensity Prediction Scheme (SHIPS)
databases [10–12]. However, the feature-extracting processes are based on human expertise
and therefore are subjective. A comprehensive and objective feature extraction process
is needed, which potentially expands the feature space and sheds light on the complex
RI processes.

Wei [13] aimed at that direction with different data filtering, sampling, and modern
machine learning (ML) techniques. The base dataset was chosen as the European Centre
for Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis data [14] because
this dataset was widely used for research on TCs [15–19]. Modern techniques such as
data mining, classification, and deep learning have been recently used for TC intensity
and RI research. For example, Yang et al. [20] used the associated data mining algorithms
to mine the SHIPS data and identified a case where, when three conditions are satisfied,
the rapid intensification probability (RIP) is higher than the RIP found by Kaplan and
DeMaria [5] using five conditions. Moreover, a plausible sufficient condition set was also
discovered by Yang et al. [21]. Su et al. [22] composited satellite observations of surface
precipitation rate, ice water content (IWC), and tropical tropopause layer temperature and
several ML schemes to improve the RI prediction. Mercer et al. [23] combined the rotated
principal component analysis and k-mean clustering algorithm to leverage the Global
Forecast System Analysis data to separate RI and no-RI cases.

Since ML algorithms distill data with difficulty, with hidden dimensions fitting the
targets, the corresponding RI prediction performance usually is better than that with
classical statistical techniques. For this reason, it is better to distinguish the performance
improvement due to learning algorithms from that through newly identified features. For
this reason, an advanced artificial intelligence system for investigating tropical cyclone
rapid intensification was developed, and three models were built based on this framework.
The first one is with SHIPS data as the only input data. The SHIPS data are filtered for
format conversion, missing value cleaning, irrelevant variable removal, highly correlated
variable removal, and value scaling. The instances are resampled with Synthetic Minority
Over-sampling Technique (SMOTE) [24,25] combined with the Gaussian Mixture Model
(GMM) clustering procedure. The filtered and resampled instances with scaled values of
the remaining SHIPS variables are fed to a modern classification algorithm, XGBoost [26],
to form the so-called baseline COR-SHIPS model in Wei and Yang (hereafter WY21) [27].

The COR-SHIPS model not only improves the performance of RI prediction based on
probability of detection (POD) and false alarm ratio (FAR), but also provides a baseline
for assessing the benefits of including additional predictors beyond SHIPS. Wei et al. [28]
(hereafter WYK22) derived new features from the ERA-Interim reanalysis data by applying
the Local Linear Embedding (LLE) [29] dimension reduction scheme to near center areas
around TCs, and integrated the newly extracted features with SHIPS features to have an
LLE-SHIPS model to improve the RI prediction further against the COR-SHIPS model. The
newly derived features refine existing features and reveal factors that have not received
much attention before [28].

Here, we expand the covered spatial areas around TCs and try to excavate large-scale
features impacting RI from the same ERA-Interim reanalysis data. For that purpose, we
inherit the ML framework for the COR-SHIPS and LLE-SHIPS models and replace the
LLE-based data filter with a Convolutional Neural Network (CNN)-based filter, leading
to a CNN-SHIPS type model that is renamed TCNET in this study. CNN is one of the
most significant components in deep learning that extracts features, i.e., variables, directly
from pixel-based images with three RGB channels. Compared with the traditional Artificial
Neural Networks (ANN), CNN can be viewed as a 2D version of ANN, where the one-
dimensional hidden layer is replaced by multiple two-dimensional layers [30].
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The remainder of this paper is constructed as follows. In Section 2, we briefly intro-
duce the data sets we used in this study. Section 3 summarizes the data preprocessing and
emphasizes the implementation procedure of CNN. Section 4 shows the results, including
the hyperparameter tuning for all components, mining results, performance evaluation,
and variable importance. Section 5 concludes the study and discusses issues and poten-
tial strategies.

2. Data

Three data sets are used for this study. The first one is the SHIPS Developmental
Data [31], the most complete dataset with known different types of parameters related to
TC intensity changes. The same SHIPS data filter as that in WY21 [27] is applied, which
leads to 10,185 instances (including 523 RI cases, 5.1%) for training and 1597 instances (95 RI
cases, 5.9%) for testing. The training data are based on 90% of the total 11,317 instances
(cases) from the 1982 to 2016 seasons, with 571 RI (approximately 5.0%) cases. With the
complete training, 465 instances in the 2017 season were added to the testing data. In other
words, the testing data are composed of about 10% 1982–2016 cases and all 2017 cases.
Therefore, the testing data portion in all the data are not the traditional 10% but 13.6%.
Since the 2017 instances are not included in the training at all, the testing performance is
more convincing.

The second data set is the ECMWF ERA-Interim reanalysis data with 6 h of temporal
resolution and approximately 80 km (0.75-degree) horizontal resolution and global cov-
erage [14]. Among the ERA-Interim five data products, the pressure level dataset is the
most frequently used in TC research and is chosen for this study. There are 37 pressure
levels from 1 hPa to 1000 hPa (1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 125, 150, 175, 200, 225, 250,
300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 775, 800, 825, 850, 875, 900, 925, 950, 975, and
1000 hPa from level 37 to level 1), and 14 variables. We just used the ERA-Interim for the
1982–2017 period being consistent with the available TC instances. It is also worth noting
that data on all pressure levels are used in the mining process, although the very top layers
are beyond the reach of any TC.

The last data set used in this study is the NHC best track (HURDAT2) data for
identifying the TC centers and determining which part of the ERA-interim data should be
used. The best track data are available every 6 h (UTC 0000, 0600, 1200, 1800), including the
longitude and latitude values of all TCs. The best track data sets, with the same temporal
resolution as the ERA-Interim data, are processed through the CNN-based ERA-Interim
data filter, and details will be discussed in the following section.

3. Methods

3.1. Summary of SHIPS Data Preprocessing [27]

The last step in the ML framework is to use the modern classifier, XGBoost, to classify
the input instances into RI or non-RI cases based on the features of each instance. Of
course, the inputs to XGBoost, as to any classical classifier, should be in attribute-relation
style, similar to the entries in a relational database. Then, both the SHIPS and the gridded
reanalysis should be preprocessed before being fed to the classifier. As in the work of WY21
and WYK22, the SHIPS data were first filtered via several steps. The first step is to convert
the original SHIPS data from an ASCII instance block to one entry in an attribute relation
table. Then, irrelevant values such as TIME (Original abbreviations used in SHIPS are used
here. Readers are referred to SHIPS documentation [32] for details) and HIST are removed
because they are irrelevant to the TC intensity changes. The remaining features are all with
numerical values, and a special missing value is inserted into values without observations.
The numbers of missing values with the remaining features were analyzed, and features
with 50% or more missing values were removed. Another data removal procedure is
conducted based on pair correlation between features. If Pearson’s r is higher than 0.8, a
tuned parameter, only one of the features will be kept, and all the others will be removed.
After the above procedures, only 72 features from the 141 variables in the original SHIPS
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data sets remain, and all feature values are scaled to the [0, 1] range. The above procedures
are fully inherited from YW21 [27].

3.2. ERA-Interim Data Preprocessing Strategy

The ERA-Interim data are organized with the grid data model, and each grid represents
a cell of about 80 km × 80 km in size. To capture the large-scale information for each TC,
we limit the study to a rectangular area composed of 33 × 33 grid cells around the TC
center, which gives about a 1300 km distance from the center to the boundary, larger
than the distances used for the SHIPS variable extraction [32]. It is impossible to feed the
33 × 33 data directly to any classifier due to the large number of values with all instances
together. Moreover, this large amount of data cannot be processed by LLE because even a
supercomputer cannot handle the computational cost [28]. Correspondingly, an alternative
data filter based on deep learning (DL), Convolutional Neural Network (CNN), a well-
known technique for its capacity to handle a large amount of data, is used to process
information in the large-scale range.

3.3. Review of CNN, a Deep Learning Technique

DL is a kind of Artificial Neural Network (ANN) model which is designed to solve
learning tasks by imitating the human biological neural network. ANN became popular
after 2006 when Hinton and Salakhutdinov [33] proposed the concept of “deep learning,”
an architecture with many more layers than ANN. Since then, deep learning became
very popular, especially in pattern recognition and image classification [30]. One of the
significant components in deep learning is Convolutional Neural Network (CNN), which
can extract features, i.e., variables, directly from pixel-based images. CNN is an ANN-based
network that is mainly used for processing natural images with three RGB channels, and it
significantly outperforms all other data mining techniques [34]. To be specific, CNN can
be viewed as a two-dimensional (2D) version of ANN, where the one-dimensional hidden
layer is replaced by multiple 2D layers. In addition to the astonishing accuracy in image
object classification, CNN is successfully applied in extreme weather prediction [35].

Liu et al. [35] built a CNN model to classify three extreme types of weather, TCs,
atmospheric rivers, and weather fronts based on the CAM5.1 historical run, ERA-interim
reanalysis, 20-century reanalysis, and NCEP-NCAR reanalysis data. The overall accuracy
achieves more than 88%, and the TC detection rate reaches 98%.

Although regular CNN achieves excellent accuracy in tasks such as image classifica-
tion, CNN cannot handle problems with temporal information involved. Tran et al. [36]
proposed a 3D CNN aiming at handling video analysis problems by adding another tem-
poral dimension to CNN.

Another important structure of deep learning is the auto-encoder network, which
is “a type of ANN that is trained to attempt to copy its input to its output. Internally, it
has a hidden layer that describes a code used to represent the input. The network may
be viewed as consisting of two parts: an encoder represents a feature extracted process
and a decoder that produces an input reconstruction” [37]. An auto-encoder is used for
dimension reduction when the original data space dimension is too large and is also used
for classification and prediction [38].

Racah et al. [39] proposed an auto-encoder CNN architecture for a semi-supervised
classification on extreme weather. Since there are a large number of unlabeled extreme
weather images, and to expand the training dataset, Racah et al. employed a bounding
box technique to recognize the location of extreme weather, and the classification is based
on those data. Although the classification performance of Racah et al. [39] still needs
improvement, it reveals that there are many promises to consider deep learning techniques
in the weather community.
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3.4. Implementation Details of CNN for the ERA-Interim Filtering (Readers Familiar with CNN
Procedure Could Read the Figures on Major Structures Only without Going through the Technical
Details of CNN)

For the COR-SHIPS and LLE-SHIPS models, the features from the current time to 18 h
before are included for the RI prediction. The same temporal coverage is chosen here and
therefore, each instance has 14 (variable) × 4 (−18 h, −12 h, −6 h, 0 h) × 37 (pressure
level) × 33 (zonal dimension) × 33 (meridional dimension) dimensions (values). In our
implementation, each variable is handled individually, and therefore, a 3D CNN is used
to extract features from each individual variable. The 37 pressure levels are viewed as
37 channels, similar to RGB channels of videos, with the gridded data at each pressure level
as an image, and the temporal coverage as the image sequence of a video.

In a 2D convolutional layer, the same learnable filter is applied to each group of nearby
pixels to extract features. The filter is defined as a p × q (p and q are integers) size rectangle
that can be convolved through the entire input array with m × n dimensions. The dot
product is computed between the filter weights and the input, and producing an (m − p +
1) × (n − q + 1) output array after scanning assuming a stride of 1. Figure 1 displays an
example of the convolution operation. A 3 × 3 filter is convolved through a 4 × 4 array
and output a 2 × 2 array with values calculated by the dot product of the sliding filter
and the original data value. If the input array has more than one channel, as in a natural
image with RGB channels, there will be the 3rd dimension (depth) added to the previous
two-dimension filer, and the output array will still be two-dimension with value summing
over the depth dimensions. Figure 2 shows a multi-channel example with a 4 × 4 image
with three channels (Figure 2a). Three-dimension filters (Figure 2b) are designed, each one
is applied to the corresponding channel, and the result will be 3 × 2 ×2 outputs (Figure 2c).
Then these three outputs will be simply summed up together, leading to one 2 × 2 output
(Figure 2d).

4 (−18 h, −12 h, −6 h, 0 h

−
−

 

(a) (b) (c) 

Figure 1. Demonstration of the convolution operation. (a) a 4 × 4 array, (b) a 3 × 3 filter and its

weights, and (c) the resulting output array.

4 (−18 h, −12 h, −6 h, 0 h

−
−

(a) (b) (c) (d) 

Figure 2. Convolution operation for input with multiple channels. (a) 3 × 4 × 4 arrays, (b) a three-

dimension filter, (c) the output arrays after filtering the three channels one by one, and (d) the final

output array with values being the sum of values on the depth dimension.

When the input is 3D arrays, the 3D filter, and its convolving operation are the same
as that of 2D except that an additional dimension is added.
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The above-described convolution procedure only extracts linear information, and for
obtaining nonlinear information, an activation layer is introduced after each convolutional
layer. Rectified Linear Units (ReLU) is the most commonly used activation function that
maps negative values to 0, and keeps the positive values, respectively. This function will
not affect the size of the data arrays and will be used in this work.

A pooling layer is usually applied after the convolution and activation transformation
to reduce the input’s dimension in order to avoid overfitting, and unlike convolution, there
is no overlap in pooling operations for each pooling layer. Max pooling is the most widely
used pooling method, which selects the maximum value among all covered values as the
output value.

There are various types of deep learning models, and the most appropriate model for
converting the gridded data into features for mining purposes is the auto-encoder network.
Each auto-encoder network is composed of multiple deep learning layers, which is divided
into two parts: an encoder represents a feature extraction process from the input and a
decoder that reconstructs the input.

With the 14 × 4 × 37 × 33 × 33-dimensional ERA-Interim data, a more efficient auto-
encoder network is a 3D Conv-auto-encoder. That is an auto-encoder with a group of 3D
convolutional, activation (ReLU), and pooling layers. In each 3D convolutional layer, there
are multiple 3D convolutional filters with learnable weights with an additional channel
dimension on the input channels. Moreover, the 14 variables in ERA-Interim data are
treated differently than the usual spatial or temporal dimension, and therefore, 14 different
3D Conv-auto-encoders are adopted to handle the ERA-Interim data.

To be specific, the input of the encoder are observations with the dimension
of 37 × 4 × 33 × 33, with pressure level (37) as its channel. There are 14 such auto-
encoder networks. The network working on a single variable is elaborated below in detail,
and the dimension changes in the data are displayed in Figure 3.

 

Figure 3. Dimension changes in the ERA data through the 3D CNN auto-encoder layers.

The first convolution layer is with 64 different 37 (channel) × 2 × 4 × 4 filters and
converts the 37 × 4 × 33 × 33 array for one variable to 64 3 × 30 × 30 arrays. In
other words, a 37 × 2 × 4 × 4 filter is applied, and the results are summed up in the
channel dimension (37), and therefore the vertical pressure layer dimension number is
reduced to 1. This procedure is repeated 64 times with different convolution weights.
Therefore, after the first convolution layer, the original 37 × 4 × 33 × 33 array becomes
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64 3 × 30 × 30 arrays. The activation applied after each filter in the convolution layer does
not change the array size and therefore is not shown in Figure 3. After the convolution layer,
A 1 × 2 × 2 pooling layer converts the 64 arrays with dimension 3 × 30 × 30 to 64 arrays
with dimension 3 × 15 × 15.

The second convolution layer has 32 different filters with dimensions 64 × 2 × 4 ×

4, and in this layer, the new dimension due to 64 different filters in the previous layer
is considered to be “channels” and the filtered arrays will be summed over the channel
dimension. As a result, each of the 32 filters converts the 64 × 3 × 15 × 15 array to 1
array with reduced dimensions 2 × 12 × 12 with the same operation as that of the first
convolution layer, and finally, there are 32 such arrays. The same 1 × 2 × 2 pooling layer is
then applied to the 32 2 × 12 × 12 arrays, and that results in 32 2 × 6 × 6 arrays. Similar
to the previous two convolutional layers, the third convolution layer has num different
convolution filters 32 × 2 × 5 × 5, and the dimension of 32 is treated as the channel again.
The result after this filtering process is num arrays of dimension 1 × 2 × 2, where the num is
a to-be-determined hyperparameter. Finally, the last 1 × 2 × 2 pooling layers will compress
the arrays into num scalar features.

The decoder is the reverse of the encoder using the deconvolutional and unpooling
layers in DeConvNet network [40–42] to reconstruct the convolutional networks, i.e.,
reverse the convolution and the pooling operations. More details about DeConvNet could
be found in Zeiler et al. [40–42].

The network is trained through the backpropagation, where the mean square error [43]
is used as the loss function, and Adam optimizer [44] is used as the optimizer to update
the filter weights through backpropagation.

Fourteen separated networks with the same structure displayed in Figure 4 are trained
separately for 14 different ERA-Interim variables. The compressed features from each of
the networks are merged with filtered SHIPS variables and together used as the input of
the GMM-SMOTE [27,28].

Figure 4. Combined deep learning filters for the 14 variables in ERA-Interim data.
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4. Results

4.1. Hyperparameters Tuning for the Autoencoder Structure

The framework of this study (TCNET) is almost the same as that for the LLE-SHIPS
model, except that the ERA-Interim data are filtered with a CNN-based autoencoder
network [28]. Unlike in the LLE-SHIPS model where all variables in the ERA-Interim data
are treated together with only one dimension-reducing model for the feature extraction,
one autoencoder network is trained to extract information from each of the 14 ERA-Interim
variables. In other words, there are 14 different autoencoder networks in total for the
14 variables.

The to-be-determined hyperparameter, the dimension of the compressed feature (num)
(see Figure 3), is preset as 8, and therefore, eight new variables are generated from each
network, labeled as variable + order in the compressed feature layer (‘1’ to ‘8’). For example,
v1 to v8 are new variables derived from the trained 3D CNN auto-encoder for variable v.
The “num” is tuned in steps similar to the tuning process of SHIPS data filter [27].

First, train a separated 3D CNN auto-encoder for each of the 14 variables for 200 epochs.
The training losses (mean square error) of 14 auto-encoder networks all converge after
100 epochs (not shown). Eight (num = 8) new variables are engineered from each ERA-
interim variable first. Because of the characteristic of the auto-encoder, features with no
information, i.e., zero feature, could be created, and those features are removed. A cor-
relation check is conducted among the newly derived no-zero variables and against the
72 SHIPS variables [27], and highly correlated (r > 0.8) variables are also removed.

Second, the remaining output features of the ERA data filter (the auto-encoder with
num = 8), and the output from SHIPS data filter (72 variables) [27] are concatenated together
to form the input data set. Then the same Bayesian optimization (BO) with 40 iterations is
used to tune hyperparameters for GMM-SMOTE and XGBoost together with no clustering
and a preset 0.5 classification decision threshold [27,28]. Finally, the hyperparameter set
with the highest 10-fold cross-validation is selected. Here, instead of kappa score used
for COR-SHIPS and LLE-SHIPS, we use the importance score as a tuning criterion. The
importance for each of the 14 variables is calculated as the sum of the importance scores of
all components (up to 8) from the same variable. The final importance scores (IS), number of
remaining features, and the specific removed features (for zero value and high correlation)
are listed in Table 1.

As the summed importance score indicates how important the variable is, the more
important variable (with a higher importance score) should be represented by more com-
pressed features. Therefore, based on the summed importance scores, the 14 variables are
categorized into three classes. If the IS is above 0.045, the dimension of the compressed
feature (num) remains at 8. This is valid for variables q, r, u, v, pv, and vo and their corre-
sponding auto-encoder is displayed in Figure 5a. If 0.02 < IS ≤ 0.045, num is set at 4. This is
valid for variables, w, d, and t, and the corresponding auto-encoder structure is displayed
in Figure 5b. For other variables with IS equal to or smaller than 0.02 (z, o3, cc, ciwc, and
clwc), only two dimensions are selected (num = 2) as shown in Figure 5c.

After the new structures for DL Interim filters are derived, we retrain each network
200 times, although all the networks converge after 100 iterations. It should be emphasized
that the randomness in the TCNET training process makes the training results different for
different training sessions. However, the overall trends in the results should be similar if
not the same. As same as being processed above, 19 variables, i.e., pv2, pv4, pv5, q1, u4, u7,
v1, v2, vo2, vo7, w4, d1, d2, d4, t2, t3, t4, z1, and o32 are zero features, i.e., they contain all
zeros, and are removed. cc2 is highly correlated (>0.8) with cc1, and w2 and w3 are highly
correlated with w1. Hence cc2, w2, and w3 are removed. The remaining 48 (6 × 8 + 3 × 4 +
5 × 2 – 19 − 3) features are concatenated with the filtered SHIPS variables and are used as
the input to the GMM-SMOTE.
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Table 1. The list of the 14 variables, their summed importance scores (IS), number of remaining

features (Feature Number), and the specific removed variables due to all zero value and high

correlation (bold font).

Variables Name IS Feature Number Removed Features

q Specific humidity 0.065 5 q3, q8; q7

r Relative humidity 0.064 7 r4

u Horizontal wind 0.067 8

v Meridional wind 0.062 7 v7

pv
Potential
vorticity

0.056 6 pv7, pv8

vo
Relative
vorticity

0.051 5 vo1, vo6, vo7

w Vertical wind 0.043 5 w3, w4; w1

d Divergence 0.042 3 d1, d4, d6; d2, d3

t Temperature 0.024 4 t1, t2, t5, t6

z Geopotential 0.020 3 z2, z3, z5, z7, z8

o3 mass mixing ratio 0.020 3 o31, o32, o33, o34, o36

clwc Cloud liquid water content 0.013 2 clwc2, clwc4, clwc5, clwc6, clwc7, clwc8

cc Fraction of cloud cover 0.017 1 cc2, cc4, cc5, cc6, cc7; cc3, cc8

ciwc Cloud ice water content 0.011 1
ciwc2, ciwc3, ciwc4, ciwc5, ciwc6, ciwc7,

ciwc8

 

(a) 

 

(b) 

Figure 5. Cont.
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(c) 

Figure 5. The structure for the adjusted auto-encoder network with the number of compressed

features (num) as 8 (a), 4 (b), and 2 (c).

4.2. Hyperparameters Tuning for GMM-SMOTE and XGBoost

After the hyperparameters in data filters are tuned, the hyperparameters for GMM-
SMOTE and XGBoost still need to be tuned for the best results. The procedures are the
same as those described in WY21 and WYK22 [27,28]. Therefore, without providing the
tuning process, we report the values of the tuned parameters in Table 2. Readers interested
in the details are referred to [13].

Table 2. Hyperparameters tuned for GMM-SMOTE and XGBoost. The Min and Max define the search

ranges for each hyperparameter during the tuning processes. The initial value (before tuning, MB)

and the final values (after tuning, MA) are given in the last two columns.

Hyperparameter Component Explanation Min Max MB MA

n_cluster GMM-SMOTE
The maximum number of clusters in the

Gaussian Mixture Model
1 10 1 3

m_neighbors GMM-SMOTE
The number of nearest neighbors used to

determine if a minority sample is in danger
3 10 10 10

k_neighbors GMM-SMOTE
The number of nearest neighbors used to

construct synthetic samples
3 14 5 9

shrinkage XGBoost Shrinkage ratio for each feature 0 0.3 0.1 0.19

n_estimator XGBoost The number of CART to grow 100 2000 100 2000

subsample XGBoost Subsample ratio of the training instances 0.5 1 1 0.5

colsample XGBoost
Subsample ratio of columns for creating

each classifier
0.5 1 1 1

reg_alpha XGBoost L1 regularization term on weights 0 20 0 0.5

reg_lambda XGBoost L2 regularization term on weights 0.5 20 1 20

gamma XGBoost
Minimum loss reduction required to make a
further partition on a leaf node of the CART

0 10 0 0

min_child_weight XGBoost Minimum sum of instance weight in a split 0.5 5 1 0.5

max_depth XGBoost Max depth of each CART model in XGBoost 3 10 3 3

decision threshold XGBoost
Decision threshold on the XGBoost

classifier output
0 1 0.5 0.2

4.3. Model Results on Test Data

Similar to LLE-SHIPS model, the evaluation of the prediction for the TCNET model
is on the test data only. The test confusion matrix for the model, before hyperparameter
tuning (MB), and after hyperparameter tuning (MA) is displayed in Table 3. The increase
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of correctly predicted RI cases indicates that the hyperparameter tuning procedure does
help the model performance.

Table 3. Confusion matrix values after (before) hyperparameter tuning with the test data. The RI

definition is the original definition by Kaplan and DeMaria (30 kt/day Vmax increase) [5].

Predicted RI Predicted Non-RI Actual

Actual RI 48 (29) 47 (66) 95

Actual non-RI 37 (31) 1465 (1471) 1502

Total Predicted 85 (60) 1512 (1537)

Kappa, PSS (Peirce’s skill score), POD, and FAR are used here for the model evaluation,
and their values for MB and MA are elaborated in Table 4. After tuning, POD increases
65.6% from 0.305 to 0.505, while FAR decreases from 0.517 to 0.435 (15.9%). The overall
statistics PSS and Kappa score also increased from 0.285 to 0.481 (68.8%) and from 0.344 to
0.506 (47.1%), respectively, confirming the substantial improvement in RI prediction with
the hyperparameter tuning procedure. Apparently, the model was overfitted before the
tuning process with so many variables.

Table 4. Performance comparisons for the tuning benefit. MB and MA denote the models before and

after the hyperparameters in GMM-SMOTE and XGBoost are tuned.

Model Kappa PSS POD FAR

MB 0.344 0.285 0.305 0.517

MA 0.506 0.481 0.505 0.435

Improvement 47.10% 68.80% 65.60% −15.90%

4.4. Performance Comparison

As in WYK22 [28], we aim to compare the performance of the TCNET model against
the baseline COR-SHIPS first. Table 5 shows the values of Kappa, PSS, POD, and FAR for
both models, with the values for the LLE-SHIPS model [28] as references. TCNET performs
better than LLE-SHIPS, and the improvement over the baseline COR-SHIPS is substantial
with 42.9%, 30.7%, 22.9%, and 30.0% in terms of kappa, PSS, POD, and FAR, respectively.
It is worth noting that the 48 newly derived features in the TCNET model are almost half
of the 90 variables generated by LLE [28], and this fact shows that using large-scale ERA
variables provides much more information than incorporating near core ERA variables
only in RI prediction. Of course, here, the structure of the data is partially preserved with
the CNN framework but for the LLE process, the values in near center areas are averaged.

Two other works, i.e., the best results in RI prediction research by Yang [45] (hereafter,
Y16) and Kaplan et al. [6] (hereafter, KRD15), which outperform almost all of the other
works, are used to compare with the performance the newly developed RI prediction model,
too. The corresponding valid values for the four performance measures are also listed in
Table 5. The POD improvement is 48.5% and 83.6% over Y16 and KRD15, respectively
while the FAR were reduced by 38.8% and 47.3%. Please note the ERA-Interim data are
retrospectively generated with comprehensive data sources “after the fact”. Therefore,
the model cannot be directly used for forecasting purposes, and it is not fair to compare
with operational RI prediction models, which give much lower POD with comparable FAR
(Table 6 in [7]). Even with that limitation, the results here, in particular the newly identified
RI impacting features, should shed a light on understanding of RI and potentially help the
improvement of the statistical-dynamical-based RI predictions.
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Table 5. Performance metric values for the COR-SHIPS, LLE-SHIPS, TCNET, Y16 and KRD15 models

and the comparisons of TCNET model developed in this study vs. the baseline model, COR-SHIPS,

Y16 and KRD15 represented by the improvement.

Model Kappa PSS POD FAR

COR-SHIPS 0.354 0.368 0.411 0.621

LLE-SHIPS 0.454 0.399 0.421 0.563

TCNET 0.506 0.481 0.505 0.435

Y16 0.275 NA 0.34 0.711

KRD15 NA 0.225 0.275 0.825

vs. COR-SHIPS 42.9% 30.7% 22.9% −30.0%

vs. Y16 84.0% NA 48.5% −38.8%

vs. KRD15 NA 114.0% 83.6% −47.3%

4.5. Feature Importance

Similar to the LLE-SHIPS model, the importance scores could be derived from XGBoost
for the output of the data filters. However, in the TCNET model, since there are even
significantly more variables (each grid in each variable could be regarded as a feature) than
that of the input for the LLE data filter, it is even more computationally expensive and
impossible to implement the same feature importance evaluation approach (permutation)
as in LLE-SHIPS model. In other words, tracing back the importance of each ERA-Interim
feature is almost impossible for the TCNET model. Therefore, although we can evaluate the
importance of the output of data filters, how to evaluate the contribution from each of the
original ERA-Interim variables is a notoriously difficult task for deep learning networks,
a.k.a, the autoencoder network. Here we roughly evaluate the importance of the ERA-
Interim variables by calculating their summed importance score derived from the XGBoost
classifier for each of the 14 ERA-Interim variables, as well as the averaged individual
score for parameters associated with each variable. In addition, for variables with a higher
importance score, feature level information from the individual 3D auto-encoder is traced
back based on the feature map [42], where the extracted information, for example, the
geometric location, is visualized, and the maps of selected variables.

Table 6 displays the 10 most important variables among the 120 selected variables
including 72 SHIPS variables, and the 48 variables extracted from the DL ERA-interim data
filter. The importance scores of all the 120 variables are given in Table A1. We can find that
among the top 10, there are six SHIPS variables and four DL variables. The importance
score (IS) is scaled in such a way that the sum of all IS values is equal to one. We found
that the total importance score for the 48 DL variables is 0.4119 and for the SHIPS variables,
0.5881. Therefore, the average score per SHIPS [ERA] variable is 0.0082 [0.0086]. The fact
that the average score for the SHIPS variable is less than that of ERA variables indicates
that the ERA-Interim data filter has a similar importance score compared to that of SHIPS
variables; hence DL ERA-interim data filter is working efficiently.

Since the 3D auto-encoder model structure is different over 14 ERA-Interim variables,
the summed importance scores as well as the average score per valid feature should be
considered. Table 7 displays the total scores and the average scores per feature for all the
14 variables. The specific humidity (q), relative vorticity (vo), and zonal component of wind
(u) are scored in the top 5 in terms of both summed score and the average score.
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Table 6. The variables with top 10 importance scores (IS) in the TCNET model and their description.

Variable IS Description

BD12 0.019747 The past 12-h intensity change

VMAX 0.0176 Maximum Surface Wind

SHRD 0.01481 850–200 hPa shear magnitude

DTL 0.014381 The distance to nearest major land

IRM1_5 0.013737
Predictors from GOES data (not time dependent)
for r = 100–300 km but at 1.5 h before initial time

o31 0.013308 1st variable in o3

G150 0.013093

Temperature perturbation at 150 hPa due to the
symmetric vortex calculated from the gradient
thermal wind. Averaged from r = 200 to 800 km
centered on input lat/lon (not always the
model/analysis vortex position)

q7 0.013093 7th variable in q

u3 0.012878 3rd variable in u

q4 0.012878 4th variable in q

Table 7. Summed variable importance score and its ranking, the number of non-zero, non-correlated

features, the feature-wise averaged importance score, and its ranking for each ERA-Interim variable.

Variables Summed IS
Feature
Number

IS Rank Average IS
Average IS

Rank

q 0.0759 7 1 0.0108 3

vo 0.0635 6 2 0.0106 4

u 0.0585 6 3 0.0098 5

v 0.0509 6 4 0.0085 7

pv 0.0441 5 5 0.0088 6

r 0.0387 8 6 0.0048 14

ciwc 0.0144 2 7 0.0072 10

o3 0.0133 1 8 0.0133 1

cc 0.0120 2 9 0.0060 12

d 0.0118 1 10 0.0118 2

t 0.0082 1 11 0.0082 8

z 0.0077 1 12 0.0077 9

w 0.0071 1 13 0.0071 11

clwc 0.0058 1 14 0.0058 13

The famous problem with DL is difficulties in the interpretation of the results. Here
we try to shed lights on the learning process and the result explanation with more displays.
The first group of displays consist of the feature maps showing the value distributions after
the first layer in the auto-encoder network (referred to Figure 5).

Figure 6 shows the feature maps after the first convolutional layer of the network
for variable q, the relative humidity, with the demonstrated structure in Figure 5a. The
64 × 3 × 30 × 30 information are presented in 64 × 3 30 × 30 maps, i.e., each tiny map is
with 30 × 30 pixels, and 64 of them are grouped in one panel, and there are three such
panels after the first convolutional layer. The maps conserve the relative locations after the
original values are convoluted with local filters. However, the order in other dimensions
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is broken down but the corresponding positions are preserved with different instances
through the same network.

   

   

Figure 6. Feature map arrays for the first convolution layer (the layer after the input in the auto-

encoder network of Figure 5a). Each map is of 30 × 30 dimensions covering the whole physical

domain (approximately 1300 km × 1300 km). There are 64 such maps corresponding to the 64 convo-

lution filters. The three channels are represented by the three parallel map arrays, and their order

does not matter by the network design. The maps are coresponding to the specific humidity (variable

q). The maps in the top row are for a randomly selected non-RI case, and the bottom row is for a RI

case. Deep blue implies the value in a pixel is 0, and the brighter the color is, the higher the value in a

particular pixel.

From this figure, we find that the extracted feature maps are quite sparse with many
empty maps. Careful checking of those maps reveals that there are roughly 22 to 24 non-
empty feature maps in each 64-feature-map group. One apparent difference between the
RI and non-RI instances is that the trained filter catches more information (more colored
areas) in the non-RI case than that in the RI case. This possibly indicates that the q fields in
non-RI cases are relatively more uniform than the corresponding fields of RI cases. Another
observation is that most selected features for the RI instance concentrate in the southeast
of the center (bottom right). Therefore, we can conclude that the specific humidity (q) in
southeast of the center is more important in RI occurrence.

Another feature map group is displayed in Figure 7 for zonal component of wind
(variable u). in this case, the non-zero feature maps are even fewer, only 11/64 non-empty
features identified for both the non-RI and RI instances. For this variable, the major
character of those displays is that features are mainly retrieved with north-south structures.
The feature maps for relative vorticity (vo) are also checked (not shown). Only seven
non-zero features are identified, and the features are of vertical structures across the north
and south ends as well as the middle parts.
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Figure 7. Same as Figure 6 but for zonal component of wind (variable u).

Although the feature maps demonstrated the feature retrieval procedure, they could
not give much help on defining practical RI-related features based on the selected pa-
rameter (for q or u or any other variables). For this purpose, we need to go back to the
physical variables and show the behaviors of RI instances and non-RI ones and compare
the differences between them.

Figure 8 shows the distribution of average q for RI instances and non-RI instances. One
can see that the high values are mainly concentrated in the southeastern corner as identified
by the corresponding feature maps. As expected, in RI cases, the mean humidity is generally
higher than that for the non-RI cases. However, the difference is not uniformly distributed
around the TC centers. The differences between them are displayed in Figure 9. In SHIPS
database, the humidity related parameters are those defined with relative humidity from
300 to 1000 hPa (RHHI, RHMD, RHLO, and R000), and most of time, RHLO is singled out
for its deterministic impact on RI [5]. The displays in Figure 9 support the conclusions.
However, SHIPS uses average values in 200–800 km circular bands around TC centers. The
results displayed in Figure 9 demonstrated the differences between RI and non-RI averaged
humidity is not uniformly distributed. In 1000 (not shown) to 700 hPa, the differences are
the highest east of the TC centers but around the middle in the meridional direction. The
difference is close to uniform at 500 hPa but becomes more concentrated at 300 hPa around
the middle in the vertical direction but almost across all longitudes.

The selected displays of the distribution of the second important parameter vo, relative
vorticity, are displayed in Figure 10. First, with the corresponding parameter in SHIPS
database, the averaged 850 hPa vorticity in r = 0–1000 km area (Z850), we displayed the
distribution of mean differences of relative vorticity between RI and non-RI samples at
850 hPa. It seems that it is hard to say the roles of this parameter at this level in the RI cases
because the values are kind of randomly varying between positive and negative values.
However, when we raise the level to 300 hPa, the difference field shows a clear pattern,
positive differences in the south of the TC centers and negative differences far away from
the centers in the north direction. The mean fields of the RI instances and non-RI instances
obviously support the difference, although all relative vorticity values in this level are
negative. The transition from lower random pattern to the organized pattern in higher
layers takes place around 500 hPa.

The third important parameter identified via the TCNET is the u-component of the
wind, and the selected distributions are demonstrated in Figures 11 and 12 The field images
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in Figure 11 show that the overall patterns are similar for RI and non-RI means at 850 and
200 hPa although the details are different. The high wind is relatively concentrated in RI
cases but more scattered in the non-RI cases at both 850 and 200 hPa levels. Actually, from
the distribution, one can derive the commonly accepted conclusion that the vertical shear of
the horizontal wind between 850 and 200 hPa levels is weaker in RI cases when compared
with that of the non-RI cases. The wind difference between RI and non-RI cases is shown in
Figure 12. At 850 hPa, the positive difference in the lower part may be simply interpreted
by stronger TCs in general during RI, and the negative values at 200 hPa are related to
stronger wind shear in the non-RI cases.

 

Figure 8. Distribution of mean specific humidity (q) (unit: kg/kg) at 850 hPa layer for RI (left) and

non-RI cases (right) based on 584 RI cases and randomly selected 584 non-RI samples. The area

covers the 33 × 33 (approximately 1300 km × 1300 km) Interim data grids centered on the TC location

based on the NHC best track data. The orientation is the same as the data, i.e., the X-axis is aligned

with horizontal direction or roughly longitude and Y-axis is aligned with meridional direction or

roughly latitude.

Figure 13 shows the differences of ozone mass mixing ratio (o3) between the RI cases
and non-RI cases. Ozone concentration is highest between 10 to 20 km above the surface or
around 200 to 50 hPa [46]. A strong upper tropospheric downward motion would make
high ozone on top of TCs [47]. It is clear to see that the ozone difference is all negative
in high layers (at 100, 200, and 300 hPa). This can be explained by the fact that RI TCs
are usually higher in the vertical structure than those non-RI cases. This is not a surprise
because a taller structure means more ventilation and more energy to the TCs. As we
move the observations downward, we find that the difference is of mixed positive and
negative values at 500 and 800 hPa, and the horizontal pattern is not evident. At the surface
(1000 hPa), most of the differences are negative values with a little positive difference in the
north-western corner. However, due to the relative smaller ozone values in lower layers, it
is hard to say much about how the ozone impacts to the RI processes.



Atmosphere 2023, 14, 195 17 of 26

 

  

Figure 9. Distribution of mean specific humidity (q) differences (RI mean—non-RI mean) (unit:

kg/kg) between the 584 RI cases and randomly selected 584 non-RI samples at (left-to-right, top-to-

bottom) 850 hPa, 700 hPa, 500 hPa, and 300 hPa, respectively (in that order). The X-axis and Y-Axis

are aligned as in Figure 8.
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Figure 10. Distribution of mean vorticity (relative, vo) and differences (unit: s−1) for the 584 RI

cases and randomly selected 584 non-RI samples: differences between the RI and non-RI means

at 850 hPa (upper left), 300 hPa (upper right), and the value distribution for RI (bottom left) and

non-RI (bottom right) at 300 hPa. The X-axis and Y-Axis are aligned as in Figure 8.
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Figure 11. Distribution of mean u-component of wind (u) (unit: m/s) for RI (left) and non-RI cases

(right) based on 584 RI cases and randomly selected 584 non-RI samples at (top) 850 hPa and (bottom)

200 hPa. The X-axis and Y-axis are aligned as in Figure 8.
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Figure 12. Distribution of mean u-component of wind (u) differences (unit: m/s) between the 584 RI

cases and randomly selected 584 non-RI samples at (left) 850 hPa and (right) 200 hPa. The X-axis and

Y-axis are aligned as in Figure 8.

  

  

Figure 13. Cont.
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Figure 13. Distribution of mean Ozone mass mixing ratio (o3) differences (unit: kg/kg) between the

584 RI cases and randomly selected 584 non-RI samples at (in order of left-to-right and top-to-bottom)

100 hPa, 200 hPa, 300 hPa, 500 hPa, 800 hPa, and 1000 hPa, respectively. The X-axis and Y-axis are

aligned as in Figure 8.

5. Conclusions and Discussion

To enhance RI prediction with modern machine learning techniques, we extended
a well-tailored artificial intelligence (AI) system [27]. This system consists of four major
components, data filters to remove variables unrelated to RI, reduce variables among
highly correlated variables, screen out variables with high missing value rates, and en-
gineer/extract a reduced set of variables from the high-dimensional variable space; a
customized sampler to upsample the minority (RI) instances and downsample majority
instances simultaneously by a GMM-SMOTE sampler; a very powerful state-of-the-art
classifier, the XGBoost, to classify instances into RI and non-RI and to evaluate variable
importance based on the information gain; a hyperparameter tuning procedure tweak-
ing hyperparameters appearing in all of the three above components, within pre-defined
value ranges.

The first implementation of the system is for COR-SHIPS, a model depending only
on SHIPS data as a new ML-based RI prediction system as well as a baseline for other
ML-enhanced RI predictions [27]. One step further, the ECMWF ERA-Interim reanalysis
data were also included in this framework in the hope to derive RI impact features beyond
SHIPS. A model based on local linear embedding (LLE) for feature extraction from data
near TC centers (small scale), the LLE-SHIPS model, was created and the RI prediction
power was improved with the introduction of new data [28].

In this study, we extended the DL framework further to use a CNN-based auto-encoder
network (TCNET) to derive features from the large-scale environment around TCs within
the ECMWF ERA-Interim reanalysis data. The so-called TCNET model was discussed
in detail in terms of the learning structure and learning processes and results, and its
performance in RI prediction was compared with the COR-SHIPS and LLE-SHIPS models.
We used the same training/validation data splitting and reported the performance based
on the validation/testing data only. Three models are selected for the comparisons, KRD15,
Y16, and COR-SHIPS, and the most commonly used metrics, kappa, PSS, POD, and FAR
are evaluated.

It was found that the TCNET model outperforms Y16 and COR-SHIPS by 84% and
43% in kappa, and KRD15 and COR-SHIPS by 114% and 31% in PSS. On the positive POD,
the current model improved the three reference models, KRD15, Y16, and COR-SHIPS by
83.6%, 48.5%, and 22.9%, respectively. In the meantime, the negative FAR is reduced by
47.3%, 38.8%, and 30.0%, respectively.
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Although the three models based on the ML framework, COR-SHIPS, LLE-SHIPS,
and this TCNET, all substantially improve the prediction of RI compared with traditional
statistical models (KRD15 and Y16), understanding the mechanism for the performance
improvement is not easy because of the famous black-box issue with ML, deep learning.
For that purpose, we investigated the relative importance scores among the original SHIPS
variables and the corresponding variables in reanalysis data sets. Most of the findings
with the gridded reanalysis data sets are consistent with those identified within SHIPS
databases. Moreover, the detailed investigation guided by the learning results reveals that
the impacts of certain variables on RI depend on not only the averages of the values but
also the orientation of value distributions. For example, at 850 to 700 hPa, the differences
between RI and non-RI specific humidity averages show the highest values east or northeast
of the TC centers (refer to Figure 9). For the relative vorticity (vo), the RI/non-RI difference
field at 300 hPa shows a clear pattern, positive differences in the south of the TC centers
and negative differences far away from the centers in the north direction (Figure 10). The
horizontal wind (u) also shows a clear south-north difference pattern instead of a pattern
of circular shapes.

An interesting variable we discovered but was not included in SHIPS databases is the
ozone mass mixing ratio (o3). The impact of ozone on RI may not be strong for most TCs
except for those tall TCs because the difference fields below 300 hPa show complicated
patterns. Therefore, in most composite analyses, usually on data below 200 hPa, it may
be difficult to find any obviously distinguishable patterns between RI and non-RI cases.
Ozone has been related to TC development for quite some time and was introduced in
the TC simulations [48,49]. Ozone is closely related to potential vorticity (PV) in middle
and high latitudes and reflects the top structure of TCs [47]. Here, we tried to attribute the
ozone role in RI to its relationship to the height of TCs, consistent with [47].

This model (TCNET) as well as the other two models based on the same framework,
COR-SHIPS and LLE-SHIPS, significantly improve the RI prediction based on traditional
performance measures. However, the reanalysis is not available for real-time forecasting
unless the general prediction models can provide the same quality of data for the future
at the predicting time. At this moment, we intend to use the after-fact reanalysis data for
helping us to understand the RI mechanism or to identify new impact factors.

In all the three models under this framework, the “negative” time is limited up to 18 h
before RI onsets based on the selections of previous statistical analyses and models. Earlier
warning on potential RI scenarios could be helpful for operational forecasting (we thank
one anonymous reviewer for pointing this out). Therefore, extending the before RI time
beyond −18 h could be helpful with TCNET because not much computing is involved in
the ML procedure. In that way, the RI will not only be forecasted at onset but also warned
some time before the onset. Of course, in those cases, the parameter investigation such
as those via Figures 8–13 should include the distribution of parameter values before the
current time.

As for the ML part, one potential implementable improvement is to define convolution
filters based on the TC shape, or filters with the circular, sectorial, and annulus shapes
with variable radii and sectorial angles, which may be more effective and efficient for TCs.
The difficult part is to uncover what is going on inside the DL black boxes, which seems
almost impossible.
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Appendix A

Table A1. The importance scores of all of the 120 variables.

IS Variable Ranking IS Variable Ranking IS Variable Ranking

0.02 BD12 1 0.009 vo6 41 0.007 Z850 81

0.018 VMAX 2 0.009 MTPW_1 42 0.007 SHTD 82

0.015 SHRD 3 0.009 u2 43 0.007 NOHC 83

0.014 DTL 4 0.009 r4 44 0.007 OAGE 84

0.014 IRM1_5 5 0.009 pv7 45 0.006 XD18 85

0.013 o31 6 0.009 pv6 46 0.006 IR00_3 86

0.013 G150 7 0.009 PSLV_1 47 0.006 IRM1_16 87

0.013 q7 8 0.009 TADV 48 0.006 PSLV_4 88

0.013 u3 9 0.009 v8 49 0.006 NTFR 89

0.013 q4 10 0.009 HIST_2 50 0.006 HIST_9 90

0.013 G200 11 0.009 VMPI 51 0.006 ND20 91

0.013 vo3 12 0.009 V300 52 0.006 IR00_14 92

0.012 REFC 13 0.009 SHRS 53 0.006 IRM3_17 93

0.012 vo5 14 0.009 VVAC 54 0.006 EPSS 94

0.012 vo8 15 0.009 MTPW_19 55 0.006 clwc2 95

0.012 PEFC 16 0.009 v5 56 0.006 D200 96

0.012 d3 17 0.008 t1 57 0.006 V850 97

0.012 CFLX 18 0.008 RD26 58 0.006 PC00 98

0.012 PSLV_3 19 0.008 SDDC 59 0.006 r8 99

0.011 T150 20 0.008 q6 60 0.005 u5 100

0.011 jd 21 0.008 O500 61 0.005 NDFR 101

0.011 R000 22 0.008 v7 62 0.005 PCM1 102

0.011 TWXC 23 0.008 IRM3_11 63 0.005 NSST 103

0.011 u8 24 0.008 E000 64 0.005 PENV 104

0.011 PW08 25 0.008 PW14 65 0.005 TGRD 105

0.011 q3 26 0.008 z2 66 0.005 IRM3_14 106

0.011 XDTX 27 0.008 G250 67 0.005 IR00_20 107

0.011 CD26 28 0.008 pv1 68 0.005 T250 108

0.011 q8 29 0.008 cc1 69 0.005 RHMD 109

0.011 pv3 30 0.008 XDML 70 0.005 IRM1_14 110

0.011 v4 31 0.008 pv8 71 0.005 IRM1_17 111

0.011 r1 32 0.007 vo1 72 0.005 cc2 112
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Table A1. Cont.

IS Variable Ranking IS Variable Ranking IS Variable Ranking

0.01 u1 33 0.007 ciwc1 73 0.003 NDTX 113

0.01 q5 34 0.007 v3 74 0.003 r7 114

0.01 IR00_12 35 0.007 SHTS 75 0.003 TLAT 115

0.01 vo4 36 0.007 v6 76 0.002 PCM3 116

0.01 HE07 37 0.007 ciwc2 77 0.002 HIST_16 117

0.01 u6 38 0.007 w1 78 0.0006 r2 118

0.01 q2 39 0.007 IRM3_19 79 0 r3 119

0.009 r6 40 0.007 IR00_17 80 0 r5 120

References

1. DeMaria, M.; Knaff, J.A.; Sampson, C.R. Evaluation of Long-Term Trends in Operational Tropical Cyclone Intensity Forecasts.

Meteor. Atmos. Phys. 2007, 97, 19–28. [CrossRef]

2. Rappaport, E.N.; Franklin, J.L.; Avila, L.A.; Baig, S.R.; Beven, J.L.; Blake, E.S.; Burr, C.A.; Jiing, J.-G.; Juckins, C.A.;

Knabb, R.D.; et al. Advances and Challenges at the National Hurricane Center. Weather Forecast. 2009, 24, 395–419. [CrossRef]

3. DeMaria, M.; Sampson, C.R.; Knaff, J.; Musgrave, K.D. Is Tropical Cyclone Intensity Guidance Improving? Bull. Amer. Meteor. Soc.

2014, 95, 387–398. [CrossRef]

4. Cangialosi, J.P.; Blake, E.; DeMaria, M.; Penny, A.; Latto, A.; Rappaport, E.; Tallapragada, V. Recent Progress in Tropical Cyclone

Intensity Forecasting at the National Hurricane Center. Weather Forecast. 2020, 35, 1913–1922. [CrossRef]

5. Kaplan, J.; DeMaria, M. Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Weather

Forecast. 2003, 18, 1093–1108. [CrossRef]

6. Kaplan, J.; Rozoff, C.M.; DeMaria, M.; Sampson, C.R.; Kossin, J.; Velden, C.S.; Cione, J.J.; Dunion, J.P.; Knaff, J.; Zhang, J.; et al.

Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Weather

Forecast. 2015, 30, 1374–1396. [CrossRef]

7. DeMaria, M.; Franklin, J.L.; Onderlinde, M.J.; Kaplan, J. Operational Forecasting of Tropical Cyclone Rapid Intensification at the

National Hurricane Center. Atmosphere 2021, 12, 683. [CrossRef]

8. Schumacher, A.B.; DeMaria, M.; Knaff, J.A. Objective Estimation of the 24-h Probability of Tropical Cyclone Formation. Weather

Forecast. 2009, 24, 456–471. Available online: https://journals.ametsoc.org/view/journals/wefo/24/2/2008waf200710 (accessed

on 6 October 2022). [CrossRef]

9. DeMaria, M. A Simplified Dynamical System for Tropical Cyclone Intensity Prediction. Mon. Weather Rev. 2009, 137, 68–82.

Available online: https://journals.ametsoc.org/view/journals/mwre/137/1/2008mwr2513.1 (accessed on 6 October 2022).

[CrossRef]

10. DeMaria, M.; Kaplan, J. A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Weather Forecast. 1994,

9, 209–220. [CrossRef]

11. DeMaria, M.; Kaplan, J. An Updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and Eastern North

Pacific Basins Mark. Weather Forecast. 1999, 14, 326–337. [CrossRef]

12. DeMaria, M.; Mainelli, M.; Shay, L.K.; Knaff, J.A.; Kaplan, J. Further Improvements to the Statistical Hurricane Intensity Prediction

Scheme (SHIPS). Weather Forecast. 2005, 20, 531–543. [CrossRef]

13. Wei, Y. An Advanced Artificial Intelligence System for Investigating the Tropical Cyclone Rapid Intensification. Ph.D. Thesis,

George Mason University, Fairfax, VA, USA, 2020.

14. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.;

Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc.

2021, 137, 553–597. [CrossRef]

15. Wang, Y.; Rao, Y.; Tan, Z.-M.; Schönemann, D. A statistical analysis of the effects of vertical wind shear on tropical cyclone

intensity change over the western North Pacific. Mon. Weather Rev. 2015, 143, 3434–3453. [CrossRef]

16. Qian, Y.; Liang, C.; Peng, S.; Chen, S.; Wang, S. A Horizontal Index for the Influence of Upper-Level Environmental Flow on

Tropical Cyclone Intensity. Weather Forecast. 2016, 31, 237–253. [CrossRef]

17. Wang, Z. What is the key feature of convection leading up to tropical cyclone formation? J. Atmos. Sci. 2018, 75, 1609–1629.

[CrossRef]

18. Astier, N.; Plu, M.; Claud, C. Associations between tropical cyclone activity in the Southwest Indian Ocean and El Niño Southern

Oscillation. Atmos. Sci. Lett. 2015, 16, 506–511. [CrossRef]

19. Ferrara, M.; Groff, F.; Moon, Z.; Keshavamurthy, K.; Robeson, S.M.; Kieu, C. Large-scale control of the lower stratosphere on

variability of tropical cyclone intensity. Geophys. Res. Lett. 2017, 44, 4313–4323. [CrossRef]



Atmosphere 2023, 14, 195 25 of 26

20. Yang, R.; Tang, J.; Kafatos, M. Improved associated conditions in rapid intensifications of tropical cyclones. Geophys. Res. Lett.

2007, 34, L20807. [CrossRef]

21. Yang, R.; Sun, D.; Tang, J. A “sufficient” condition combination for rapid intensifications of tropical cyclones. Geophys. Res. Lett.

2008, 35, L20802. [CrossRef]

22. Su, H.; Wu, L.; Jiang, J.H.; Pai, R.; Liu, A.; Zhai, A.J.; Tavallali, P.; DeMaria, M. Applying satellite observations of tropical cyclone

internal structures to rapid intensification forecast with machine learning. Geophys. Res. Lett. 2020, 47, e2020GL089102. [CrossRef]

23. Mercer, A.E.; Grimes, A.D.; Wood, K.M. Application of Unsupervised Learning Techniques to Identify Atlantic Tropical Cyclone

Rapid Intensification Environments. J. Appl. Meteorol. Climatol. 2021, 60, 119–138. Available online: https://journals.ametsoc.org/

view/journals/apme/60/1/jamc-d-20-0105.1.xml (accessed on 23 March 2021). [CrossRef]

24. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.

Res. 2002, 16, 321–357. [CrossRef]

25. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning. In

International Conference on Intelligent Computing; Springer: Berlin/Heidelberg, Germany, 2005; pp. 878–887.

26. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.

27. Wei, Y.; Yang, R. An Advanced Artificial Intelligence System for Investigating Tropical Cyclone Rapid Intensification with the

SHIPS Database. Atmosphere 2021, 12, 484. [CrossRef]

28. Wei, Y.; Yang, R.; Kinser, J.; Griva, I.; Gkountouna, O. An Advanced Artificial Intelligence System for Identifying the Near-Core

Impact Features to Tropical Cyclone Rapid Intensification from the ERA-Interim Data. Atmosphere 2022, 13, 643. [CrossRef]

29. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]

30. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017

International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [CrossRef]

31. SHIPS. A Link to the 2018 Version of the SHIPS Developmental Data. 2018. Available online: http://rammb.cira.colostate.edu/

research/tropical_cyclones/ships/docs/AL/lsdiaga_1982_2017_sat_ts.dat (accessed on 3 February 2020).

32. SHIPS. A Link to the 2018 Version of the SHIPS Developmental Data Variables. 2018. Available online: http://rammb.cira.

colostate.edu/research/tropical_cyclones/ships/docs/ships_predictor_file_2018.doc (accessed on 3 February 2020).

33. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.

[CrossRef]

34. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,

7–12 June 2015; pp. 1–9.

35. Liu, Y.; Racah, E.; Correa, J.; Khosrowshahi, A.; Lavers, D.; Kunkel, K.; Wehner, M.; Collins, W. Application of Deep Convolutional

Neural Networks for Detecting Extreme Weather in Climate Datasets. arXiv 2016, arXiv:1605.01156.

36. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In

Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497.

37. Wei, Y.; Sartore, L.; Abernethy, J.; Miller, D.; Toppin, K.; Hyman, M. Deep Learning for Data Imputation and Calibration Weighting.

In JSM Proceedings, Statistical Computing Section; American Statistical Association: Alexandria, VA, USA, 2018; pp. 1121–1131.

38. Gogna, A.; Majumdar, A. Discriminative Autoencoder for Feature Extraction: Application to Character Recognition. Neural

Process. Lett. 2019, 49, 1723–1735. [CrossRef]

39. Racah, E.; Beckham, C.; Maharaj, T.; Pal, C. Semi-Supervised Detection of Extreme Weather Events in Large Climate Datasets.

arXiv 2016, arXiv:1612.02095.

40. Zeiler, M.D.; Krishnan, D.; Taylor, G.W.; Fergus, R. Deconvolutional networks. In Proceedings of the 2010 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2528–2535.

41. Zeiler, M.D.; Taylor, G.W.; Fergus, R. Adaptive deconvolutional networks for mid and high level feature learning. In Proceedings

of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2018–2025.

42. Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional neural networks. In Proceedings of the 13th European

Conference Computer Vision and Pattern Recognition, Zurich, Switzerland, 6–12 September 2014; pp. 6–12.

43. Trevor, H.; Robert, T.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer Science &

Business Media: New York, NY, USA, 2009.

44. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2016, arXiv:1609.04747.

45. Yang, R. A Systematic Classification Investigation of Rapid Intensification of Atlantic Tropical Cyclones with the SHIPS Database.

Weather Forecast. 2016, 31, 495–513. [CrossRef]

46. Randel, W.J.; Stolarski, R.S.; Cunnold, D.M.; Logan, J.A.; Newchurch, M.J.; Zawodny, J.M. Trends in the vertical distribution of

ozone. Science 1999, 285, 1689–1692. [CrossRef]

47. Wu, Y.; Zou, X. Numerical test of a simple approach for using TOMS total ozone data in hurricane environment. Q. J. R. Meteorol.

Soc. 2008, 134, 1397–1408. [CrossRef]



Atmosphere 2023, 14, 195 26 of 26

48. Zou, X.; Wu, Y. On the relationship between total ozone mapping spectrometer ozone and hurricanes. J. Geophys. Res. 2005,

110, D06109. [CrossRef]

49. Lin, L.; Zou, X. Associations of Hurricane Intensity Changes to Satellite Total Column Ozone Structural Changes within

Hurricanes. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–7. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction 
	Data 
	Methods 
	Summary of SHIPS Data Preprocessing B27-atmosphere-2125686 
	ERA-Interim Data Preprocessing Strategy 
	Review of CNN, a Deep Learning Technique 
	Implementation Details of CNN for the ERA-Interim Filtering (Readers Familiar with CNN Procedure Could Read the Figures on Major Structures Only without Going through the Technical Details of CNN) 

	Results 
	Hyperparameters Tuning for the Autoencoder Structure 
	Hyperparameters Tuning for GMM-SMOTE and XGBoost 
	Model Results on Test Data 
	Performance Comparison 
	Feature Importance 

	Conclusions and Discussion 
	Appendix A
	References

