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ABSTRACT: Class Ic ribonucleotide reductases (RNRIc) and R2-
like ligand-binding oxidases (R2lox) are known to contain
heterobimetallic MnIIFeII cofactors. How these enzymes assemble
MnIIFeII cofactors has been a long-standing puzzle due to the weaker
binding affinity of MnII versus FeII. In addition, the heterobimetallic
selectivity of RNRIc and R2lox has yet to be reproduced with
coordination complexes, leading to the hypothesis that RNRIc and
R2lox overcome the thermodynamic preference for coordination of
FeII over MnII with their carefully constructed three-dimensional
protein structures. Herein, we report the selective formation of a
heterobimetallic MnIIFeII complex accomplished in the absence of a
protein scaffold. Treatment of the ligand Py4DMcT (L) with equimolar amounts of Fe

II and MnII along with two equivalents of
acetate (OAc) affords [LMnIIFeII (OAc)2(OTf)]

+ (MnIIFeII) in 80% yield, while the diiron complex [LFeIIFeII(OAc)2(OTf)]
+

(FeIIFeII) is produced in only 8% yield. The formation of MnIIFeII is favored regardless of the order of addition of FeII and MnII

sources. X-ray diffraction (XRD) of single crystals ofMnIIFeII reveals an unsymmetrically coordinated carboxylate ligand�a primary
coordination sphere feature shared by both RNRIc and R2lox that differentiates the two metal binding sites. Anomalous XRD
studies confirm thatMnIIFeII exhibits the same site selectivity as R2lox and RNRIc, with the FeII (d6) center preferentially occupying
the distorted octahedral site. We conclude that the successful assembly of MnIIFeII originates from (1) Fe-deficient conditions, (2)
site differentiation, and (3) the inability of ligand L to house a dimanganese complex.

■ INTRODUCTION

Heterobimetallic cofactors have been discovered in a number
of proteins responsible for life-sustaining chemical trans-
formations, including the heme a3/CuB site in cytochrome c
oxidase, [NiFe] hydrogenase, Cu/Zn superoxide dismutase,
and the Mn/Fe or Zn/Fe sites in purple acid phosphatases.1

Mn/Fe cofactors have also been characterized in class Ic
ribonucleotide reductases (RNRIc),2−9 R2-like ligand-binding
oxidases (R2lox),10−25 and, most recently, in the chlamydia
protein associated with death domains (CADD).26 Since their
discovery, heterobimetallic cofactors have piqued the interest
of chemists and biologists alike. Understanding the mecha-
nisms behind metallocofactor assembly can aid in answering
important questions regarding protein evolution and metal
selectivity in native and engineered proteins.27−29

Of the heterobimetallic cofactors, the most intriguing are
those that incorporate MnII and FeII�two metal ions of similar
size and binding affinity�with apparent selectivity.30 Despite
sharing similar coordination environments to the diiron sites in
canonical bacterial multicomponent monooxygenases
(BMMs),31−34 both RNRIc and R2lox feature distinct, site-
selective heterobimetallic Mn/Fe cofactors (Figure 1A).6,19,20

The mechanism of heterobimetallic MnIIFeII cofactor
assembly in vivo has been the subject of intense scrutiny.
Work by Högbom et al.,12,13,19−25 Shafaat et al.,14−17 Stubbe et

al.,3−5 and Bollinger et al.6−9 suggests that favorable MnIIFeII

assembly is likely driven by a combination of metal availability
and differential binding affinity. While in vivo studies have
provided valuable insights into the selective formation of
MnIIFeII cofactors, the complexity of the protein matrix has
prevented the identification of specific structural features
responsible for this process.
As studies on the assembly of RNRIc and R2lox continue,

there have also been a number of attempts to replicate the
primary coordination sphere, site differentiation, and selectivity
of RNRIc and R2lox with coordination compounds.35−49

However, the synthesis of MnIIFeII species is often complicated
by simultaneous formation and/or scrambling of the
heterobimetallic complex to form homobimetallic FeIIFeII

and MnIIMnII analogues (Figure 1B).38,39 To synthesize pure
Mn/Fe complexes, pioneering work by Que et al. employed
iron(III)/manganese(II) sources, along with a stepwise
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synthetic route to differentiate the binding event of each metal
(Figure 2A).35,44 A second synthetic strategy was developed by
Wieghardt/Girerd et al., in which the heterobimetallic species
was formed via self-assembly from two independently
synthesized mononuclear complexes (Figure 2B).36,43 Follow-
ing these early studies, Neves et al.,45 Chaudhuri et al.,46

Blondin/Latour et al.,48 Borovik et al.,40,49 and Lu et al.38 have
utilized ligands with unsymmetric coordination environments
to further bias the coordination of each metal to inequivalent
sites (Figure 2C,D).

While previous synthetic studies have greatly increased our
understanding of Mn/Fe complex formation, none have been
able to shed light on the formation of MnFe cofactors under
biologically relevant conditions, i.e., self-assembly in the
presence of both Mn and Fe sources at a II,II state. Within
the primary coordination spheres of RNRIc and R2lox, the
only feature that differentiates the two metal binding sites is an
unsymmetric μ-1,1 bridging carboxylate residue. The unsym-
metric binding mode of the carboxylate leads to distinct
geometries at each site: an octahedral site that preferentially

binds MnII and a distorted octahedral site that primarily binds
FeII (Figure 1A).6,19,20

Herein, we report the first synthetic MnIIFeII complex
containing an unsymmetric μ-1,1 bridging acetate ligand.
Despite the lack of a protein scaffold, the MnIIFeII complex
self-assembles in the presence of both FeII and MnII (Figure
1C). Regardless of the order of FeII and MnII addition to the
ligand Py4DMcT, the heterobimetallic complex remains the
major product with >72% selectivity. Anomalous X-ray
diffraction (XRD) studies confirm that the MnIIFeII model
complex has the same site selectivity as R2lox and RNRIc,
where MnII occupies the octahedral site and FeII occupies the
distorted site. The structural similarities of our model complex
to R2lox and RNRIc, along with the same metal site selectivity,
allow us to propose a mechanism for heterobimetallic MnIIFeII

formation that does not contradict the classical Irving−
Williams series.

■ RESULTS AND DISCUSSION

Synthesis and Characterization. To design a ligand
capable of supporting a Mn/Fe bimetallic center, we modified
our previous Py4DMB system

50,51 by introducing a dimercap-
tan-1,3,4-thiadiazole linker. The new ligand L was synthesized
in 85% yield (Py4DMcT, L; Scheme 1). Treatment of L with
one equivalent each of bis-acetonitrile iron(II) triflate
(FeII(OTf)2MeCN2) and iron(II) acetate (Fe

II(OAc)2) in a
1:1 mixture of chloroform/methanol, followed by recrystalliza-
tion from dichloromethane/ether, affords orange crystals of
[LFeII2(OAc)2(OTf)][OTf] (FeIIFeII) in 70% yield (Scheme
2, left). We found that the heterobimetallic analogue can be
synthesized by replacing FeII(OTf)2MeCN2 with one equiv-
a l en t o f b i s - ace ton i t r i l e manganese(I I) t r ifla te
(MnII(OTf)2MeCN2) (Scheme 1, left). Recrystallization
from dichloromethane/ether results in yellow crystals of
[LMnIIFeII (OAc)2(OTf)][OTf] (MnIIFeII) in 60% yield
(Figure 2B). Single-crystal XRD analysis reveals that both
FeIIFeII and MnIIFeII contain two bridging acetate anions with
symmetric and unsymmetric μ-1,3/μ-1,1 binding modes,
respectively (Scheme 2). Despite being isostructural, FeIIFeII

and MnIIFeII crystallize with different unit cell parameters
(Figure 3A,B; see the Supporting Information). The M−M
separation in MnIIFeII (3.4794(6) Å) is also slightly longer

Figure 1. (A) Pymol rendered active sites of class Ia ribonucleotide reductase (PDB: 1PIY), Ib (PDB: 6TQW), Ic (PDB: 4M1I), and R2lox (PDB:
4HR4). (B) Scrambling of heterobimetallic complexes to form homobimetallic complexes. (C) Site-differentiated MnIIFeII complex in this work.

Figure 2. (A−D) Previously reported synthetic Mn/Fe complexes.
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compared to the 3.46409(16) Å distance in FeIIFeII, consistent
with the larger atomic radius of MnII versus FeII.
While an unsymmetric μ-1,1 carboxylate ligand (Scheme 2)

is a common structural feature in RNRs, R2lox, and
BMMs,31−34 it is not as common in synthetic systems.52−57

Notably, a μ-1,1 carboxylate ligand has never been reported in
a synthetic Mn/Fe complex until now. In our synthetic system,
the unsymmetric acetate replicates the unsymmetric carbox-
ylates in RNRIc (E227) and R2lox (E202), producing the
same site-specific geometries as the enzymes. The unsymmetric
μ-1,1 binding of acetate in FeIIFeII and MnIIFeII is likely
promoted by the outward tilting of the metal z-axes following
coordination of the metal centers to the N atoms of the
thiadiazole ring. Similar outward tilting of the metal z-axes can
be observed in RNRIc and R2lox (see the Supporting
Information, Figure S36), although such a structural feature
is not unique to these enzymes.31−34,58 In our complexes, the
N atoms of the central ring form a template for a short M−M
distance, making the six-membered metallacycle of μ-1,1/μ-1,3
binding mode more favorable than the eight-membered
metallacycle of μ-1,3/μ-1,3 binding mode.
The overall structure of MnIIFeII more closely resembles the

unsymmetric core of R2lox, as it lacks the solvent-derived O-
atom bridge present in RNRIc. Further, the metal separation in
MnIIFeII is more comparable to the M−M distance seen in
R2lox (3.65 Å)19 than RNRIc (3.2 Å).25 Given the structural

similarities between MnIIFeII and R2lox, we tentatively
assigned the metal center at the distorted octahedral site as
FeII. Such an assignment also results in a better agreement with
the electron density map, where R1 = 4.30% vs 4.46% with a
reversed Fe/Mn assignment.
The heterobimetallic identity of MnIIFeII was further

confirmed by spectroscopic analysis. The 1H NMR spectrum
of MnIIFeII reveals eight broad resonances from −30 to 140
ppm that are distinct from the paramagnetic peaks of FeIIFeII

(Figure 4A), consistent with the unsymmetric nature of
MnIIFeII.39 Mössbauer spectroscopy reveals that FeIIFeII is
best fitted with two distinct iron sites, whereas MnIIFeII is
fitted best with a single iron site (Figure 4B,C). The isomer
shifts of FeIIFeII (δ1 = 1.20 mm s

−1, δ2 = 1.22 mm s
−1) and

MnIIFeII (δ = 1.28 mm s−1) are consistent with high-spin FeII

centers and are similar to the reported value for the MnIIFeII

cofactor of R2lox (δ = 1.28 mm s−1).20 This indicates that
MnIIFeII accurately models not only the geometry of the
heterobimetallic cofactor but also the spin state of the metal
ions. X-band electron paramagnetic resonance spectroscopy
(EPR) of MnIIFeII shows a broad S = 1/2 signal (Figure S7),
similar to the EPR spectra of MnIIFeII complexes reported by
Que et al. and Carboni et al.44,48 Inductively coupled plasma
mass spectrometry (ICP-MS) analysis ofMnIIFeII indicates the
incorporation of FeII and MnII in approximately a 1:1 ratio
(4.16% FeII to 4.74% MnII).
After the isolation and characterization of FeIIFeII and

MnIIFeII, we attempted to complete the series of bimetallic
complexes by preparing the analogous dimanganese species.
However, treatment of L with MnII(OAc)2 and Mn-
(OTf)2MeCN2 resulted in the isolation of a colorless, NMR-
silent tetramanganese paddlewheel complex, MnII

4 (Scheme 2,
right).39,59 Single-crystal XRD analysis shows two dimanganese

Scheme 1. Synthesis of Py4DMcT (L) and Metal Complexes

Scheme 2. Symmetric versus Unsymmetric Acetate Binding
Modes

Figure 3. Solid-state structures of (A) FeIIFeII and (B) MnIIFeII with
thermal ellipsoids shown at 50% level of probability. The outer sphere
triflate counter anion and co-crystallized dichloromethane solvent
molecules are omitted for clarity.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c11930
J. Am. Chem. Soc. 2023, 145, 3491−3498

3493

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c11930/suppl_file/ja2c11930_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c11930/suppl_file/ja2c11930_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=sch1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c11930?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c11930?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


paddlewheels sandwiched between two Py4DMcT ligands, with
all MnII ions symmetrically bridged by two acetate anions and
one triflate anion, and a Mn−Mn distance of 3.860 Å

́
(see the

SI, Figure S35). The formation of the tetramanganese complex,
rather than a dimanganese species, suggests that L is unable to
accommodate two MnII centers in the same bimetallic
environment, perhaps due to the larger size of MnII versus
FeII. This observation also coincides with the lack of MnIIMnII

cofactor formation in R2lox.16,19,20,23,24

Heterobimetallic Selectivity. With the spectroscopic
characterization of FeIIFeII, MnIIFeII, and MnII

4, we wanted
to determine whether L could reproduce RNRIc and R2lox’s
ability to selectively assemble a heterobimetallic Mn/Fe center.
Importantly, MnIIFeII is stable in CD2Cl2 at room temperature
without noticeable metal scrambling for at least 12 h (Figure
S8), allowing the use of in situ 1H NMR to quantify MnIIFeII

formation. First, we investigated whether the order of addition
of FeII and MnII sources to L influences the yield of MnIIFeII.
Ligand L was treated with FeII and MnII sources in different
orders. Regardless of the order of addition, the resulting 1H
NMR spectra show that MnIIFeII is produced in similar yields
(74−77%; Table 1) with minimal (ca. 6%) FeIIFeII

contamination. As MnIIFeII is the major product under all
conditions, we posited that the formation of MnIIFeII likely
occurs selectively via the same assembly route, no matter the

order of metal addition. Indeed, treatment of L with a mixture
of one equivalent each of FeII and MnII sources simultaneously
affords MnIIFeII in 80% yield with 8% FeIIFeII contamination
(Table 2). Our attempts to characterize a monometallic state

(L:M = 1:1) en route to MnIIFeII were unsuccessful. Addition
of one equivalent of MII to L in the presence of acetate leads to
the formation of the bimetallic complex as the major product
(see the SI, Figures S34 and S35). When acetate is not present
in the reaction mixture, the combination of MII and L in a 1:1
ratio results in an intractable mixture of products.
We further investigated the influence of “metal availability”

on heterobimetallic selectivity. The ligand L was subjected to a
series of reactions with increasing amounts of equimolar Fe
and Mn sources. In all reactions, FeII(OTf)2MeCN2 and
MnII(OTf)2MeCN2 were premixed before being added to one
equivalent of L. The reaction was allowed to stir for several
minutes before acetate was added in the form of TBAOAc.
The resulting solution was then analyzed by 1H NMR
spectroscopy (Table 2).
Strikingly, as the metal availability increased from one

equivalent to two equivalents of FeII/MnII per L, the yield of
MnIIFeII decreases, and the yield of FeIIFeII increases. When
two equivalents of FeII and MnII ions are available, no MnIIFeII

formation is observed, implying that the formation of the
heterobimetallic species is only favored under FeII-deficient
conditions. With two equivalents of FeII/MnII per L, the
binding of FeII outcompetes that of MnII completely, which is
in agreement with the higher binding affinity of FeII over MnII,
as predicted by the classical Irving−Williams series.30 The
availability of MnII vs FeII in biological environments has been
invoked as a potential reason for why the heterobimetallic Mn/
Fe cofactors form.3−5,11

While there is not a complete reversal in selectivity of the
RNRIc and R2lox cofactors under Fe-rich conditions, higher
FeII concentrations have also been found to inhibit
heterobimetallic cofactor assembly.20 Thus, the increased
yield of FeIIFeII in our system under Fe-rich conditions is
similar to that observed for R2lox and RNRIc.18−20 The
stronger binding affinity of FeII versus MnII is further
supported by a computational study.19 The relative stabilities
of each MIIMII complex (M = Fe or Mn) were determined by
comparing the energy sum of the bimetallic complex with
different combinations of solvated metal ions (Table 3).19

Broken-symmetry density functional theory (DFT) calcula-
tions at the B3LYP/def2-TZVP level of theory show that the
formation of FeIIFeII is more favorable than MnIIFeII by 4.6
kcal/mol. The FeIIMnII complex with a reversed metal
occupancy and the theoretical MnIIMnII species are less stable
than MnIIFeII by 2.5 and 5.6 kcal/mol, respectively. These
results follow the same trend as an analogous study performed
on the R2lox cofactor.19

Figure 4. (A) 1H NMR spectra of FeIIFeII (orange) and MnIIFeII

(pink), 2.5 mM in CD2Cl2. Solid-state
57Fe Mössbauer spectra of (B)

FeIIFeII and (C) MnIIFeII.

Table 1. 1H NMR Yields of FeIIFeII and MnIIFeII under
Various Metalation Conditions

order of addition of metal salts
yield of
FeIIFeII

yield of
MnIIFeII

(1) FeII(OTf)2MeCN2 (2) Mn
II(OAc)2 6.6% 77.0%

(1) MnII(OTf)2MeCN2 (2) Fe
II(OAc)2 5.8% 75.4%

(1) FeII(OAc)2 (2) Mn
II(OTf)2MeCN2 5.8% 73.8%

(1) MnII(OAc)2 (2) Fe
II(OTf)2MeCN2 6.6% 77.0%

Table 2. 1H NMR Yields of MnIIFeII as a Function of the
Ratio of FeII:MnII:L

FeII:MnII:L/Apo-protein % FeIIFeII % MnIIFeII ref

1:1:1 L 8.0% 80.0% this work

1.25:1.25:1 L 9.0% 75.0% this work

1.50:1.50:1 L 20.0% 72.0% this work

1.75:1.75:1 L 41.0% 49.0% this work

2:2:1 L 61.0% 0% this work

2:2:1 R2lox 61% 21% ref 20
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Anomalous XRD Study. In addition to the bioavailability
of FeII, the inequivalent metal binding sites in R2lox (distorted
versus octahedral site) have also been regarded as a potential
influence on the selective formation of the heterobimetallic
cofactor. As MnIIFeII contains structurally analogous differ-
entiated metal binding sites and exhibits similar selective
assembly to R2lox and RNRIc, we wanted to further
understand site selectivity in MnIIFeII via single-crystal
anomalous XRD.
Anomalous XRD allows for a quantitative determination of

the amount of metal present at a particular crystallographic
site.38,60,61 Unlike traditional XRD, metal centers with similar
numbers of electrons can be differentiated by exploiting the
differences in their K-edge absorption energies.62 At a
synchrotron source, we collected several anomalous data sets
at 50 eV above and below the FeII and MnII absorption edges.
Additionally, a data set was collected at 30 keV, far from the
absorption edges of any atoms. As the incident X-ray
wavelength approaches the K-edge energy of a metal, the
anomalous scattering terms ( f ′, f″) of the atomic scattering
factor ( f, where f(λ) = f 0 + f ′ + if″) become more pronounced
(Figure 5A). Under these conditions, f ′ and f″ can be utilized
to quantify the amount of metal present at each site (Figure 5B
and Table 4).38,60,61 Gratifyingly, we observed primary
occupation of FeII at the distorted site (82.0%) and primary
occupation of MnII at the octahedral site (73.0%).

Interestingly, the selectivity of the distorted and octahedral
sites by MnIIFeII is quite similar to RNRIc and R2lox (Table
4). Both R2lox and RNRIc display a preference for FeII

coordination at the distorted site and MnII coordination at
the octahedral site (Table 4).6,19,20 It was proposed that the
facile activation of O2 at the correctly assembled Mn

IIFeII site
enriches MnFe cofactors. Exposure to oxygen represents an
irreversible step in the maturation process, in which the metals
are “locked in place” as the less labile MnIIIFeIII cofactors.16

Our study suggests that selective formation of the MnFe site
can also be accomplished in high accuracy at the reduced state
(II,II).

■ DISCUSSION

The simplicity of our synthetic system allows us to draw
several conclusions regarding the mechanism of MnIIFeII

formation (Scheme 3A). We successfully determined that the
binding of FeII is favored as both the first and the second metal,
as the yield of MnIIFeII is reduced to 0% when two equivalents
of FeII are present. Under conditions where only one
equivalent of each metal is present per L, the more favorable
binding of FeII to L results in a MnII-rich environment, which
promotes the loading of MnII as the second metal (Scheme
3A). Since the binding of FeII outcompetes that of MnII (in
accordance with the Irving−Williams series), the formation of
MnIIFeII must result from the depletion of FeII in the solution.
FeII depletion can be attributed to two potential reasons: (1)
highly selective binding of FeII as the first metal and (2) the
inability of L to coordinate two MnII ions. Even if the first
binding step is not perfectly selective for FeII, the monometallic
LMnII cannot bind another MnII ion to form a bimetallic
MnIIMnII complex, preventing further consumption of MnII

ions in the solution (Scheme 3A).
The proposed mechanism of assembly of MnIIFeII more

closely resembles that of R2lox, where the formation of the
Mn/Fe cofactor occurs via initial coordination of FeII, followed
by MnII (Scheme 3B). Rather than loading MnII and FeII in a
stepwise fashion, apo-RNRIc first loads two MnII ions and then
preferentially substitutes one MnII for FeII at the distorted site
(Scheme 3C). A difference between our synthetic system and
RNRIc and R2lox is that the natural proteins have either one
(R2lox) or two (RNRIc) pre-organized metal binding sites,
whereas the metal binding sites in our system are only

Table 3. DFT-Computed Relative Energies (B3LYP/def2-
TZVP) for the Binding of Different Combinations of FeII

and MnII to L

bimetallic complex
solvated
ions

relative energy (kcal/
mol)

FeIIFeII MnII, MnII 0.0

MnIIFeII (Fe at distorted site) MnII, FeII +4.6

FeIIMnII (Mn at distorted site) FeII, MnII +7.1

MnIIMnII FeII, FeII +10.2

Figure 5. (A) Theoretical anomalous dispersion corrections with the
real (Δf ′) and imaginary (Δf″) scattering factors for Fe (orange) and
Mn (pink) as functions of wavelength. Anomalous data were collected
at the wavelengths highlighted with dashed lines. (B) Metal
occupancies determined based on experimental f ′ values of four
sets of anomalous XRD data.

Table 4. Results of Single-Crystal Anomalous XRD Studies
for MnIIFeII, R2lox, and RNRIc

distorted site octahedral site

% Fe % Mn % Fe % Mn ref

MnIIFeIIa 82% 18% 27% 73% this work

RNRIcb 100% 0% 0% 100% ref 6

R2loxc 80% 21% 48% 53% ref 19

R2loxd 69% 31% 18% 82% ref 19

R2loxe 92% 8% 20% 80% ref 20
aSingle crystals isolated from a solution with 1:1 FeII and MnII under
an N2 atmosphere. Average of two data sets.

bProtein crystals isolated
after sequential metal loading in the presence of O2.

cApo-R2lox
crystals soaked for 1 h in excess, equal concentrations of MnII/FeII in
the absence of O2. Average of two data sets.

dApo-R2lox crystals
soaked for 1 h in excess, equal concentrations of MnII/FeII in the
presence of O2. Average of two data sets.

eRecrystallization of R2lox
after reconstitution in a 2:1 ratio of MnII/FeII in the presence of O2.
Average of two data sets.
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differentiated upon acetate binding. Nonetheless, the end
result, following acetate coordination, is the same site-
differentiated Mn/Fe species, with MnII occupying the
octahedral site and FeII occupying the distorted site, suggesting
that the unsymmetric carboxylate is an essential structural
feature for correct site selectivity (MnII in octahedral site and
FeII in distorted site). More importantly, however, metal
availability (an iron deficiency) is the first key requirement that
allows for Mn/Fe cofactor formation. The importance of metal
availability is emphasized by the decreased yields of synthetic
and enzymatic heterobimetallic species in the presence of
excess Fe.

■ CONCLUSIONS

In summary, we have reported a series of synthetic model
complexes, FeIIFeII,MnIIFeII, andMnII

4, which have shed light
onto the mechanism of heterobimetallic assembly in R2lox and
RNRIc. While L was not able to accommodate a dimanganese
complex in the solid state, single-crystal X-ray analysis of
FeIIFeII and MnIIFeII displayed a bimetallic core containing an
unsymmetrically bridged carboxylate ligand. The carboxylate
differentiates the metal binding sites and results in a
heterobimetallic complex that models the binding of FeII and
MnII observed in RNRIc and R2lox, i.e., FeII coordination at
the distorted site and MnII coordination at the octahedral site,
which was confirmed via anomalous XRD.
Our model study provides an alternative explanation as to

why R2lox and RNRIc appear to be violating the fundamental
thermodynamic rules governing coordination chemistry. The
favorable binding of FeII over MnII along with a site-
differentiating μ-1,1-carboxylate was sufficient for correct

heterobimetallic assembly. Despite the overall results of the
reaction appearing to be contrary to the binding affinities of
FeII versus MnII, the Irving−Williams series was not being
circumvented. The μ-1,1-carboxylate is a feature shared by
both R2lox and RNRIc in the reduced state, as is the
observation of favorable diiron cofactor formation under
increased concentrations of iron. Therefore, metal availability
and site differentiation are two of the most critical factors to
correct cofactor assembly in RNRIc and R2lox. This
hypothesis is also consistent with the observation that the
intracellular availability of metal ions plays a role in metal
selection.4,5,19 Beyond correct cofactor formation, we believe
that site differentiation likely has implications toward oxidative
reactivity, as observed in R2lox.16 These intriguing questions
will be the subject of our future studies.
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