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ABSTRACT

Deep generative models have emerged as a powerful class of priors
for signals in various inverse problems such as compressed sensing,
phase retrieval and super-resolution. Here, we assume an unknown
signal to lie in the range of some pre-trained generative model. A
popular approach for signal recovery is via gradient descent in the
low-dimensional latent space. While gradient descent has achieved
good empirical performance, its theoretical behavior is not well un-
derstood. In this paper, we introduce the use of stochastic gradient
Langevin dynamics (SGLD) for compressed sensing with a genera-
tive prior. Under mild assumptions on the generative model, we prove
the convergence of SGLD to the true signal. We also demonstrate
competitive empirical performance to standard gradient descent.

1. INTRODUCTION

We consider the familiar setting of inverse problems where the goal
is to recover an n-dimensional signal (or image) x∗ that is observed
via a linear measurement operation y = Ax∗. The measurement
vector can be noisy, and its dimension m may be less than n. Several
imaging applications fit this setting, including super-resolution [1],
in-painting, denoising [2], and compressed sensing [3].

Since such an inverse problem is ill-posed in general, the recovery
of x∗ from y often requires assuming a low-dimensional structure or
prior on x∗. Choices of good priors have been extensively explored in
the past three decades, including sparsity [4], structured sparsity [5],
end-to-end training via convolutional neural networks [3], pre-trained
generative priors [6], as well as untrained deep image priors [7, 8].

In this paper, we focus on a powerful class of priors based on
deep generative models. The setup is the following: the unknown
signal x∗ is assumed to lie in the range of some pre-trained generator
network, obtained from (say) a generative adversarial network (GAN)
or a variational autoencoder (VAE). That is, x∗ = G(z∗) for some
z∗ in the latent space. The task is again to recover x∗ from (noisy)
linear measurements.

Such generative priors have been shown to achieve high empirical
success [3, 6]. However, progress on the theoretical side for inverse
problems with generative priors has been much more modest. On
the one hand, the seminal work of [9] established the first statistical
upper bounds (in terms of measurement complexity) for compressed
sensing for fairly general generative priors, which was later shown
in [10] to be nearly optimal. On the other hand, provable algorithmic
guarantees for recovery using generative priors are only available
in very restrictive cases. The paper [?] proves the convergence of
(a variant of) gradient descent for shallow generative priors whose
weights obey a distributional assumption. The paper [11] proves the
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convergence of projected gradient descent (PGD) under the assump-
tion that the range of the (possibly deep) generative modelG admits a
polynomial-time oracle projection. To our knowledge, the most gen-
eral algorithmic result in this line of work is by [12]. Here, the authors
show that under rather mild and intuitive assumptions on G, a lin-
earized alternating direction method of multipliers (ADMM) applied
to a regularized mean-squared error loss converges to a (potentially
large) neighborhood of x∗.

A barrier for obtaining guarantees for recovery algorithms based
on gradient descent is the non-convexity of the recovery problem in-
duced by the generator network. Therefore, in this paper we sidestep
traditional gradient descent-style optimization methods, and instead
show that a good estimate of x∗ can be obtained by performing
stochastic gradient Langevin Dynamics (SGLD) [?, 13–15]. We show
that this dynamics amounts to sampling from a Gibbs distribution
whose energy function is precisely the reconstruction loss 1.

As a stochastic version of gradient descent, SGLD is simple to
implement. However, care must be taken in constructing the additive
stochastic perturbation to each gradient update step. Nevertheless,
the sampling viewpoint enables us to achieve finite-time convergence
guarantees for compressed sensing recovery. To the best of our knowl-
edge, this is the first theoretical result for solving inverse problems
with generative neural priors using Langevin gradients. Moreover,
our analysis succeeds under (slightly) weaker assumptions on the
generator network than those made in [12].

Our specific contributions are as follows:
1. We propose a provable image recovery algorithm for generative

priors based on stochastic gradient Langevin dynamics (SGLD).
2. We prove polynomial-time convergence of our proposed recovery

algorithm to the true underlying solution, under assumptions of
smoothness and near-isometry of G. These are technically weaker
than the mild assumptions made in [12]. We emphasize that
these conditions are valid for a wide range of generator networks.
Section 3 describes them in greater details.

3. We provide several empirical results and demonstrate that our
approach is competitive with existing (heuristic) methods based
on gradient descent.

2. PRIOR WORK

We briefly review the literature on solving inverse imaging problems
with deep generative models. For a more thorough survey on deep
learning for inverse problems, see [17].

In [6], the authors provide sufficient conditions under which
the solution of the inverse problem is a minimizer of the (possibly
non-convex) program:

min
x=G(z)

‖Ax− y‖22 . (2.1)

1While preparing this manuscript, we became aware of concurrent work
by [16] which also pursues a similar Langevin-style approach for solving
compressed sensing problems; however, they do not theoretically analyze its
dynamics.



Specifically, they show that if A satisfies the so-called set-Restricted
Eigenvalue Condition (REC), then the solution to (2.1) equals the
unknown vector x∗. They also show that if the generator G has a
latent dimension k and is L-Lipschitz, then a matrix A ∈ Rm×n
populated with i.i.d. Gaussian entries satisfies the REC, provided
m = O(k logL). However, they propose gradient descent as a
heuristic to solve (2.1), but do not analyze its convergence. In [11],
the authors show that projected gradient descent (PGD) for (2.1)
converges at a linear rate under the REC, but only if there exists a
tractable projection oracle that can compute arg minz ‖x −G(z)‖
for any x. The recent work [18] provides sufficient conditions under
which such a projection can be approximately computed. In [12],
a provable recovery scheme based on ADMM is established, but
guarantees recovery only up to a neighborhood around x∗.

Note that all the above works assume mild conditions on the
weights of the generator, use variations of gradient descent to update
the estimate for x, and require the forward matrix A to satisfy the
REC over the range ofG. [?] showed global convergence for gradient
descent, but under the (strong) assumption that the weights of the
trained generator are Gaussian distributed.

Generator networks trained with GANs are most commonly stud-
ied. However, more recently, [19] have advocated using invertible
generative models, which use real-valued non-volume preserving
(NVP) transformations [20]. An alternate strategy for sampling im-
ages consistent with linear forward models was proposed in [21]
where the authors assume an invertible generative mapping and sam-
ple the latent vector z from a second generative invertible prior.

Our proposed approach also traces its roots to Bayesian sparse
modeling [22], where instead of modeling the problem as estimating
a (deterministic) sparse vector, one models the signal x to be sampled
from a sparsity promoting distribution, such as a Laplace prior. One
can then derive the maximum a posteriori (MAP) estimate of x under
the constraint that the measurements y = Ax are consistent. Our
motivation is similar, except that we model the distribution of x as
being supported on the range of a generative prior.

3. RECOVERY VIA LANGEVIN DYNAMICS

In the rest of the paper, x ∧ y denotes min{x, y} and x ∨ y for
max{x, y}. Given a distribution µ and set A, we denote µ(A) the
probability measure of A with respect to µ. ‖µ− ν‖TV is the total
variation distance between two distributions µ and ν. Finally, we use
standard big-O notation in our analysis.

3.1. Preliminaries

We focus on the problem of recovering a signal x∗ ∈ Rn from a set
of linear measurements y ∈ Rm where

y = Ax∗ + ε.

To keep our analysis and results simple, we consider zero mea-
surement noise, i.e., ε = 02. Here, A ∈ Rm×n is a matrix populated
with i.i.d. Gaussian entries with mean 0 and variance 1/m. We
assume that x∗ belongs to the range of a known generative model
G : D ⊂ Rd → Rn; that is,

x∗ = G(z∗) for some z∗ ∈ D.

Following [9], we restrict z to belong to a d-dimensional Euclidean
ball, i.e., D = B(0, R). Then, given the measurements y, our goal

2We not in passing that our analysis techniques succeed for any vector ε
with bounded `2 norm.

Algorithm 1 CS-SGLD
Input: step size η; inverse temperature parameter β, radius r and
Lipschitz constant L of F (z).
Draw z0 from µ0 = N (0, 1

2Lβ
I) truncated on D.

for k = 0, 1, . . . , do
Randomly sample ξk ∼ N (0, I).
zk+1 = zk − η∇zF (zk) +

√
2η/βξk

if zk+1 6∈ B(zk, r) ∩ D then
zk+1 = zk

end if
end for
Output: ẑ = {zk}.

is to recover x∗. Again following [9], we do so by solving the usual
optimization problem:

min
z∈D

F (z) , ‖y −AG(z)‖2. (3.1)

Hereon and otherwise stated, ‖ · ‖ denotes the `2-norm. The most
popular approach to solving (3.1) is to use gradient descent [9]. For
generative modelsG(z) defined by deep neural networks, the function
F (z) is highly non-convex, and as such, it is impossible to guarantee
global signal recovery using regular (projected) gradient descent.

We adopt a slightly more nuanced approach. Starting from an
initial point z0 ∼ µ0, our algorithm computes stochastic gradient
updates of the form:

zk+1 = zk − η∇zF (z) +
√

2ηβ−1ξk, k = 0, 1, 2, . . . (3.2)

where ξk is a unit Gaussian random vector in Rd, η is the step size
and β is an inverse temperature parameter. This update rule is known
as stochastic gradient Langevin dynamics (SGLD) [13] and has been
widely studied both in theory and practice [14, 15]. Intuitively, (3.2)
is an Euler discretization of the continuous-time diffusion equation:

dZ(t) = −∇zF (Z(t))dt+
√

2β−1dB(t), t ≥ 0, (3.3)

where Z(0) ∼ µ0. Under standard regularity conditions on F (z),
one can show that the above diffusion has a unique invariant Gibbs
measure.

We refine the standard SGLD to account for the boundedness of
z. Specifically, we require an additional Metropolis-like accept/reject
step to ensure that zk+1 always belongs to the support D, and also
is not too far from zk of the previous iteration. We study this variant
for theoretical analysis; in practice we have found that this is not
necessary. Algorithm 1 (CS-SGLD) shows the detailed algorithm.
Note that we can use stochastic (mini-batch) gradient instead of the
full gradient∇zF (z).

Let us derive sufficient conditions on the convergence (in distri-
bution) of the random process in Algorithm 1 to the target distribution
π, denoted by:

π(dz) ∝ exp(−βF (z))1(z ∈ D), (3.4)

and study its consequence in recovering the true signal x∗. This
leads to the first guarantees of a stochastic gradient-like method for
compressed sensing with generative priors. In order to do so, we make
the following three assumptions on the generator network G(z).
(A.1) Boundedness. For all z ∈ D, we have that ‖G(z)‖ ≤ B for

some B > 0.



(A.2) Near-isometry. G(z) is a near-isometric mapping if there
exist 0 < ιG ≤ κG such that the following holds for any
z, z′ ∈ D:

ιG‖z − z′‖ ≤ ‖G(z)−G(z′)‖ ≤ κG‖z − z′‖.

(A.3) Lipschitz gradients. The Jacobian of G(z) is M -Lipschitz,
i.e., for any z, z′ ∈ D, we have

‖∇zG(z)−∇zG(z′)‖ ≤M‖z − z′‖,

where∇zG(z) = ∂G(z)
∂z

is the Jacobian of the mapping G(·)
with respect to z.

All three assumptions are justifiable. Assumption (A.1) is reasonable
due to the bounded domain K and for well-trained generative models
G(z) whose target data distribution is normalized. Assumption (A.2)
is reminiscent of the ubiquitous restricted isometry property (RIP)
used for compressed sensing analysis [23] and is recently adopted
in [12]. Finally, Assumption (A.3) is needed so that the loss function
F (z) is smooth, following typical analyses of Markov processes.

Next, we introduce a new concept of smoothness for generative
networks. This concept is a weaker version of a condition on G(·)
introduced in [12].

Definition 3.1 (Strong smoothness). The generator network G(z) is
(α, γ)-strongly smooth if there exist α > 0 and γ ≥ 0 such that for
any z, z′ ∈ D, we have

〈G(z)−G(z′),∇zG(z)(z − z′)〉 ≥ α‖z − z′‖2 − γ. (3.5)

Following [12] (Assumption 2), we call this property “strong
smoothness”. However, our definition of strong smoothness requires
two parameters instead of one, and is weaker since we allow for an
additive slack parameter γ ≥ 0.

Definition 3.1 can be closely linked to the following property
of the loss function F (z) that turns out to be crucial in establishing
convergence results for CS-SGLD.

Definition 3.2 (Dissipativity [24]). A differentiable function F (z) on
D is (α, γ)-dissipative around z∗ if for constants α > 0 and γ ≥ 0,
we have

〈z − z∗,∇zF (z)〉 ≥ α‖z − z∗‖2 − γ. (3.6)

It is straightforward to see that (3.6) essentially recovers the
strong smoothness condition (3.5) if the measurement matrix A is
assumed to be the identity matrix. In compressed sensing, it is often
the case that A is a (sub)Gaussian matrix and that given a sufficient
number of measurements as well as Assumptions (A.1), (A.2) and
(A.3), the dissipativity of F (z) for such an A can still be established.

Once F is shown to be dissipative, the machinery of [?,14,15] can
be adapted to show that the convergence of CS-SGLD. The majority
of the remainder of the paper is devoted to proving this series of
technical claims.

3.2. Main results

We first show that a very broad class of generator networks satis-
fies the assumptions made above. The following proposition is an
extension of a result in [12].

Proposition 3.1. Suppose G(z) : D ⊂ Rd → Rn is a feed-forward
neural network with layers of non-decreasing sizes and compact
input domain D. Assume that the non-linear activation is a con-
tinuously differentiable, strictly increasing function. Then, G(z)
satisfies Assumptions (A.2) & (A.3) with constants ιG, κG,M , and
if 2ι2G > MκG, the strong smoothness in Definition 3.1 also holds
almost surely with respect to the Lebesgue measure.

This proposition merits a thorough discussion. First, architectures
with increasing layer sizes are common; many generative models
(such as GANs) assume architectures of this sort. Observe that the
non-decreasing layer size condition is much milder than the expan-
sivity ratios of successive layers assumed in related work [?, 19].

Second, the compactness assumption of the domain of G is mild,
and traces its provenance to earlier related works [9, 12]. Moreover,
common empirical techniques for training generative models (such
as GANs) indeed assume that the latent vectors z lie on the surface
of a sphere [25].

Third, common activation functions such as the sigmoid, or the
Exponential Linear Unit (ELU) are continuously differentiable and
monotonic. Note that the standard Rectified Linear Unit (ReLU)
activation does not satisfy these conditions, and establishing similar
results for ReLU networks is deferred to future work.

The key for our theoretical analysis, as discussed above, is Defini-
tion 3.1, and establishing this requires Proposition 3.1. Interestingly
however, in Section 4 below we provide empirical evidence that
strong smoothness holds for generative adversarial networks with
ReLU activation trained on the MNIST and CIFAR-10 image datasets.

We now obtain a measurement complexity result by deriving a
bound on the number of measurements required for F to be dissipa-
tive.

Lemma 3.1. Let G(z) : D ⊂ Rd → Rn be a feed-forward neural
network that satisfies the conditions in Proposition 3.1. Let κG be its
Lipschitz constant. Suppose the number of measurements m satisfies:

m = Ω

(
d

δ2
log(κG/γ)

)
,

for some small constant δ > 0. If the elements of A are drawn
according to N (0, 1

m
), then the loss function F (z) is (1 − δ, γ)-

dissipative with probability at least 1− exp(−Ω(mδ2)).

The above result can be derived using covering number argu-
ments, similar to the treatment in [9]. Observe that the number of
measurements scales linearly with the dimension of the latent vector
z instead of the ambient dimension, keeping in line with the flavor
of results in standard compressed sensing. Recent lower bounds re-
ported in [10] also have shown that the scaling of m with respect to d
and logL might be tight for compressed sensing recovery in several
natural parameter regimes.

We need two more quantities to state our convergence guaran-
tee. Both definitions are widely used in the convergence analysis of
MCMC methods. The first quantity defines the goodness of an initial
distribution µ0 with respect to the target distribution π.

Definition 3.3 (λ-warm start, [?]). Let ν be a distribution on D. An
initial distribution µ0 is λ-warm start with respect to ν if

sup
A:A⊆D

µ0(A)

ν(A)
≤ λ.

The next quantity is the Cheeger constant that connects the ge-
ometry of the objective function and the hitting time of SGLD to a
particular set in the domain [15].

Definition 3.4 (Cheeger constant). Let µ be a probability measure
on D. We say µ satisfies the isoperimetric inequality with Cheeger
constant ρ if for any A ⊂ D,

lim inf
h→0+

µ(Ah)− µ(A)

h
≥ ρmin

{
µ(A), 1− µ(A)

}
,

where Ah = {u ∈ K : ∃v ∈ A, ‖u− v‖2 ≤ h}.



(a) Ground truth (b) Initial (c) GD (d) SGLD

MSE = 0.0447 MSE = 0.0275

Fig. 1. [MNIST] Comparing the recovery performance of SGLD and GD at m = 0.2n measurements.

Our main theoretical result describing the convergence of Al-
gorithm 1 (CS-SGLD) for compressed sensing recovery is given as
follows. All proofs are in an expanded version of this paper [26].

Theorem 1 (Convergence of CS-SGLD). Assume that the generative
network G satisfies Assumptions (A.1) – (A.3) as well as the strong
smoothness condition. Consider a signal x∗ = G(z∗), and assume
that it is measured with m (sub)Gaussian measurements such that
m = Ω(d log κG/γ). Choose an inverse temperature β and preci-
sion parameter ε > 0. Then, after k iterations of SGLD in Algorithm
1, we obtain a latent vector zk such that

E [F (zk)] ≤ ε+O

(
d

β
log

(
β

d

))
, (3.7)

provided the step size η and the number of iterations k are chosen
such that:

η = Õ

(
ρ2ε2

d2β

)
, and k = Õ

(
d3β2

ρ4ε2

)
.

In words, if we choose a high enough inverse temperature and
appropriate step size, CS-SGLD converges (in expectation) to a signal
estimate with very low loss within a polynomial number of iterations.

Let us parse the above result further. First, observe that the right
hand side of (3.7) consists of two terms. The first term can be made
arbitrarily small (at the cost of greater computational cost since η
decreases ). The second term represents the irreducible expected error
of the exact sampling algorithm on the Gibbs measure π(dz), which
is worse than the optimal loss obtained at z = z∗.

Second, suppose the right hand side of (3.7) is upper bounded
by ε′. Once SGLD finds an ε′-approximate minimizer of the loss,
in the regime of sufficient compressed sensing measurements (as
specified by Lemma 3.1), we can invoke Theorem 1.1 in [9] along
with Jensen’s inequality to immediately obtain a recovery guarantee,
i.e.,

E [‖x∗ −G(zk)‖] ≤
√
ε′.

Third, the convergence rate of CS-SGLD can be slow. In particu-
lar, SGLD may require a polynomial number of iterations to recover
the true signal, while linearized ADMM [12] converges within a log-
arithmic number of iterations up to a neighborhood of the true signal.
Obtaining an improved characterization of CS-SGLD convergence (or
perhaps devising a new linearly convergent algorithm) is an important
direction for future work.

Fourth, the above result is for noiseless measurements. A rather
similar result can be derived with noisy measurements of bounded
noise (says, ‖ε‖ ≤ σ). This quantity (times a constant depending on

(a) Ground truth (b) GD (c) SGLD

MSE = 0.0248 MSE = 0.0246

Fig. 2. [CIFAR10] Comparing the recovery performance of SGLD
and GD at m = 0.3n measurements.

A) will affect (3.7) up to an additive term that scales with σ. This is
precisely in line with most compressed sensing recovery results and
for simplicity we omit such a derivation.

4. EXPERIMENTAL RESULTS

While we emphasize that the primary focus of our paper is theoretical,
we corroborate our theory with representative experimental results
on MNIST and CIFAR-10.

We test the SGLD reconstruction by using the update rule in
(3.2) and compare against the optimizing the updates of z using
standard gradient descent as in [9]. For all experiments, we use a
pre-trained DCGAN generator, with network configuration described
as follows: the generator consists of four different layers consisting of
transposed convolutions, batch normalization and RELU activation;
this is followed by a final layer with a transposed convolution and
tanh activation [27].

We display the reconstructions on MNIST in Figure 1. Note
that the implementation in [9] requires 10 random restarts for CS
reconstruction and they report the results corresponding to the best
reconstruction. This likely suggests that the standard implementation
is likely to get stuck in bad local minima or saddle points. In Figure 1
we show reconstructions for the 16 different examples, which were
all reconstructed at once using same k = 2000 steps, learning rate
of η = 0.02 and the inverse temperature β = 1 for both approaches.
The only difference is the additional noise term in SGLD (Figure
1 part (d)), which helps achieve better reconstruction performance
compared to simple gradient descent.

Example reconstructions on CIFAR-10 images can be found
in Fig. 2. More thorough empirical comparisons with PGD-based
approaches [11, 28] are deferred to future work.
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A. PROOF OUTLINE

In this section, we provide a brief proof sketch of Theorem 1, while
relegating details to the appendix.

At a high level, our analysis is an adaptation of the framework
of [?, 15] specialized to the problem of compressed sensing recovery
using generative priors. The basic ingredient in the proof is the use
of conductance analysis to show the convergence of CS-SGLD to the
target distribution in total variation distance.

Let µk denote the probability measure of Zk generated by Al-
gorithm 1 and π denote the target distribution in 3.4. The proof of
Theorem 1 consists of three main steps:
1. First, we construct an auxiliary Metropolis-Hasting Markov pro-

cess to show that µk converges to π in total variation for a suffi-
ciently large k and a “good” initial distribution µ0.

2. Then, we show that there exists an initial distribution µ0 that
serves as a λ-warm start with respect to π.

3. Finally, we show that a random draw from π is a near-minimizer of
F (z), proving that CS-SGLD recovers the signal to high fidelity.
We proceed with a characterization of the evolution of the distri-

bution of zk in Algorithm 1, which basically follows [?].

A.1. Construction of Metropolis-Hasting SGLD

Let g(z) = ∇zF (z), and u and w be the points before and after one
iteration of Algorithm 1; the Markov chain is written as u→ v → w,
where v ∼ N (u− ηg(u), 2η

β
I) with the following density:

P (v|u) =

[
1

(4πη/β)d/2
exp

(
− ‖v − u+ ηg(u)‖22

4η/β

)∣∣∣∣u].
(A.1)

Without the correction step, P (v|u) is exactly the transition prob-
ability of the standard Langevin dynamics. Note also that one can
construct a similar density with a stochastic (mini-batch) gradient.
The process of v → w is

w =

{
v v ∈ B(u, r) ∩ D;

u otherwise.
(A.2)

Let p(u) = Pv∼P (·|u)[v ∈ B(u, r)∩D] be the probability of accept-
ing v. The conditional density Q(w|u) is

Q(w|u) = (1− p(u))δu(w)

+ P (w|u) · 1
[
w ∈ B(u, r) ∩ D

]
,

where δu(·) is the Dirac-delta function at u. Similar to [?, 15], we
consider the 1/2-lazy version of the above Markov process, with the
transition distribution

Tu(w) =
1

2
δu(w) +

1

2
Q(w|u), (A.3)

and construct an auxiliary Markov process by adding an extra
Metropolis accept/reject step. While proving the ergodicity of the
Markov process with transition distribution Tu(w) is difficult, the
auxiliary chain does indeed converge to a unique stationary distri-
bution π ∝ e−βF (z) · 1(z ∈ D) due to the Metropolis-Hastings
correction step.

The auxiliary Markov chain is given as follows: starting from
u, let w be the state generated from Tu(·). The Metropolis-Hasting
SGLD accepts w with probability,

αu(w) = min

{
1,
Tw(u)

Tu(w)
· exp

[
− β

(
F (w)− F (u)

)]}
.

Let T ?u (·) denote the transition distribution of the auxiliary Markov
process, such that

T ?u (w) = (1− αu(w))δ(u) + αu(w)Tu(w).

Below, we establish the connection between Tu(·) and T ?u (·), as well
as the convergence of the original chain in Algorithm 1 through a
conductance analysis on T ?u (·).

Lemma A.1. Under Assumptions, F (z) is L-smooth and satisfies
‖∇zF (z)‖ ≤ D for z ∈ D. For r =

√
10ηd/β, the transition

distribution of the chain in Algorithm 1 is δ-close the auxiliary chain,
i.e., for any set A ⊆ D

(1− δ)T ?u (A) ≤ Tu(A) ≤ (1 + δ)T ?u (A).

where δ = 10Ldη + 10LDd1/2β1/2η3/2.

In Appendix D, we show that F (z) is L-smooth with L =
(MB + κ2

G) and its gradient is bounded by D = κ2
G‖A>A‖.

One can verify that T ?u (·) is time-reversible [15]. Moreover,
following [29,30], the convergence of a time-reversible Markov chain
to its stationary distribution depends on its conductance, which is
defined as follows:

Definition A.1 (Restricted conductance). The conductance of a time-
reversible Markov chain with transition distribution T ?u (·) and sta-
tionary distribution π is defined by,

φ , inf
A:A⊆D,π(A)∈(0,1)

∫
A Tu(D\A)π(du)

min{π(A), π(D\A)} .

Using the conductance parameter φ and the closeness δ between
Tu(·) and T ?u (·), we can derive the convergence of Tu(·) in total
variation distance.

Lemma A.2 ( [?]). Assume the conditions of Lemma A.1 hold. If
Tu(·) is δ-close to T ?u (·) with δ ≤ min{1−

√
2/2, φ/16}, and the

initial distribution µ0 serves as a λ-warm start with respect to π, then

‖µk − π‖TV ≤ λ
(
1− φ2/8

)k
+ 16δ/φ.

We will further give a lower bound on δ in order to establish an
explicit convergence rate.

Lemma A.3 ( [?]). Under the same conditions of Lemma A.1 and
the step size η ≤ 1

30Ld
∧ d

25βD2 , there exists a constant c0 such that

φ ≥ c0ρ
√
η/β.

A.2. Convergence to the target distribution

Armed with these tools, we formally establish the first step of the
proof.

Theorem 2. Suppose that the generative networkG satisfies Assump-
tions (A.1) – (A.3) as well as the strong smoothness condition. Set
η = O

(
d−1∧ρ2β−1d−2

)
and r =

√
10ηd/β, then for any λ-warm

start with respect to π, the output of Algorithm 1 satisfies

‖µk − π‖TV ≤ λ(1− C0η)k + C1η
1/2,

where ρ is the Cheeger constant of π, C0 = Õ
(
ρ2β−1

)
, and C2 =

Õ
(
dβ1/2ρ−1

)
. In particular, if the step size and the number of

iterations satisfy:

η = Õ

(
ρ2ε2

d2β

)
, and k = Õ

(
d2β2 log(λ)

ρ4ε2

)
,

then ‖µk − π‖TV ≤ ε for ε > 0.



The convergence rate is polynomial in the Cheeger constant ρ
whose lower bound is difficult to obtain generally. A rough bound ρ =

e−Õ(d) can be derived using the Poincaré constant of the distribution
π, under the smoothness assumption. See [31] for details.

Proof outline of Theorem 2. To prove the result, we find a sufficient
condition for η that fulfills the requirements of Lemmas A.1, A.2 and
A.3 hold. For η ≤ d

25βD2 , we have

δ = 10Ldη + 10LDd1/2β1/2η3/2 ≤ 12Ldη.

Moreover, Lemma A.2 requires δ ≤ min{1−
√

2/2, φ/16}, while
φ ≥ c0ρ

√
η/β by Lemma A.3, so we can set

η = min

{
1

30Ld
,

d

25βD2
,

c20ρ
2

(156Ld)2β

}
for these conditions to hold. Putting all together, we obtain

‖µk − π‖TV ≤ λ
(
1− φ2/8

)k
+

16δ

φ

≤ λ(1− C0η)k + C1η
1/2,

where C0 = c20ρ
2/8β, C1 = 156Ldβ1/2ρ−1/c0. Therefore, we

have proved the first part.
For the second part, to achieve ε-sampling error, it suffices to

choose η and k such that

λ(1− C0η)k ≤ ε

2
, and C1η

1/2 ≤ ε

2
.

Plugging in C0, C1 above, we can choose

η = O

(
ρ2ε2

d2β

)
and k = O

(
log(λ/ε)

C0η

)
= Õ

(
d2β2 log(λ)

ρ4ε2

)
such that ‖µk − π‖TV ≤ ε, which completes the proof.

A.3. Existence of warm start initial distribution

Apart from the step size and the number of iterations, the convergence
depends on λ, the goodness of the initial distribution µ0. In this part,
we specify a particular choice of µ0 in establish this.

Definition A.2 (Set-Restricted Eigenvalue Condition, [9]). For some
parameters τ > 0 and o ≥ 0, A ∈ Rm×n is called S-REC(τ, o) if
for all z, z′ ∈ D,

‖A(G(z)−G(z′))‖ ≥ τ‖G(z)−G(z′)‖ − o.

Lemma A.4. Suppose that G(z) satisfies the near-isometry property
in Assumption A.2, and F (z) is L-smooth. If A is S-REC(τ, 0), then
the Gaussian distributionN (0, 1

2βL
I) supported on D is a λ-warm

start with respect to π with λ = eO(d).

Proof. Let µ0 denote the truncated Gaussian distributionN (0, 1
2βL

I)
on D whose measure is

µ0(dz) = e−βL‖z‖
2
21(z ∈ D)dz/Γ

where Γ =
∫
D e
−βL‖z‖22dz is the normalization constant. Along

with the target measure π, we can easily verify that

µ0(dz)

π(dz)
≤
∫
D e
−βF (z)dz

Γ
· e−βL‖z‖

2
2+βF (z).

Our goal is to bound the right hand side. Using the smoothness and
the simple fact F (z∗) = 0, we have

F (z) ≤ L

2
‖z − z∗‖22 ≤ L‖z∗‖22 + L‖z‖22,

which implies that e−βL‖z‖
2
2+βF (z) ≤ eβL‖z

∗‖22 . To bound∫
D e
−βF (z)dz, we use the S-REC property of A as well as the

near-isometry of G(z). Recall the objective function:

F (z) = ‖y −AG(z)‖2 = ‖A(G(z)−G(z∗)‖2

≥ τ2‖G(z)−G(z∗)‖2 − o ≥ τ2ι2G‖z − z∗‖2

where we have dropped o for simplicity. Therefore,∫
D
e−βF (z)dz ≤

∫
D
e−βτ

2ι2G‖z−z
∗‖2dz ≤

(
π

βτ2ι2G

)d/2
.

Putting the above results together, we can get

λ ≤ max
z∈K

µ0(dz)

π(dz)
≤
(

π

βτ2ι2G

)d/2
eβL‖z

∗‖22

Γ
= eO(d),

and conclude the proof.

A.4. Completing the proof

Proof of Theorem 1. Consider a random draw Ẑ from µk and another
Ẑ∗ from π. We have

E[F (Ẑ)] =
(
E[F (Ẑ)]− E[F (Ẑ∗)]

)
+ E[F (Ẑ∗)]

We will first give a crude bound for the second term E[F (Ẑ∗)] fol-
lowing the idea from [14]:

E[F (Ẑ∗)] =

∫
D
F (z)π(dz) ≤ O

(
d

β
log

β

d

)
.

The detailed proof is given in Appendix F.
The first term is related to the convergence of µk to π in total

variation shown in Theorem 2. Notice that F (z) ≤ 2R‖A‖κG for
all z ∈ D due the Lipschitz property of the generative network G.
Moreover, by Theorem 2, we have ‖µk − π‖TV ≤ ε′ for any ε′ > 0
and a sufficiently large k. Hence, the first term is upper bounded by∣∣∣∣∫

D
F (z)µk(dz)−

∫
D
F (z)π(dz)

∣∣∣∣
≤ 2R‖A‖κG

∣∣∣∣∫
D
µk(dz)−

∫
D
π(dz)

∣∣∣∣ ≤ 2R‖A‖κGε′.

Given the target error ε, choose ε′ = ε/(2R‖A‖κG). By Lemma
A.4, we have λ = eO(d). Then, for

η = Õ

(
ρ2ε2

d2β

)
, and k = Õ

(
d3β2

ρ4ε2

)
, we have

E[F (Ẑ)] ≤ ε+O
(
d

β
log

(
d+ γβ

αβ2

))
.

Therefore, we complete the proof of our main result.



B. ADDITIONAL EXPERIMENTS

B.1. Validation of strong smoothness

We wish to verify whether the following condition holds for some
α > 0 and γ ≥ 0:

〈∇zG(z)>(G(z)−G(z′)), z − z′〉 ≥ α‖z − z′‖2 − γ (B.1)

where z and z′ are all possible pairs of latent vectors. To estimate
these constants, we generate samples z and z′ from N (0, I). To
establish α and γ, we perform experiments on two different datasets
(i) MNIST (Net1) and (ii) CIFAR10 (Net2). For both datasets, we
compute the terms u(z, z′) = ∇zG(z)>(G(z) − G(z′)), z − z′〉
and v(z, z′) = ‖z − z′‖2 for 500 different instantiations of z and
z′. We then plot these pairs of (αv − γ, u) samples for different
z’s and z′’s and tune the values of α and γ such that u ≥ αv − γ.
We do this experiment for a DCGAN (Net1) generator trained on
MNIST (Figure 3 (a)) as well as DCGAN (Net2) generator trained
on CIFAR10 (Figure 3 (c)).

Similarly, we also derive values αA and γA, where a compressive
matrix A acts on the output of the generator G. Here we have picked
m = 0.1n. This is encapsulated in the following equation:

〈∇z(AG(z))>(AG(z)−AG(z′)), z − z′〉 ≥ αA‖z − z′‖2 − γA
(B.2)

for all possible Gaussian matrices A and different instantiations
of z and z′. Here, we capture the left side of the inequality in
u(z, z′) = 〈∇z(AG(z))>(AG(z) − AG(z′)), z − z′〉. We simi-
larly plot points (αAv − γA, u). The scatter plot generated for 50
different instantiations of z and z′ and 5 different instantiations of
A. We do this experiment for a DCGAN (Net1) generator trained on
MNIST (Figure 3 (b)) as well as DCGAN (Net2) generator trained
on CIFAR10 (Figure 3 (d)).

B.2. Reconstructions for CIFAR10

We display the reconstructions on CIFAR10 in Figure 4. As with
the implementation for MNIST, for the sake of fair comparison, we
fix the same random initialization of latent vector z for both GD
and SGLD with no restarts. We select m = 0.3n. In Figure 4 we
show reconstructions for the 16 different examples from MNIST,
which were all reconstructed at once using same k = 2000 steps,
learning rate of η = 0.05 and the inverse temperature β = 1 for
both approaches. The only difference is the additional noise term
in SGLD (Figure 1 part (d)). Similar to our experiments on MNIST
we notice that this additional noise component helps achieve better
reconstruction performance overall as compared to simple gradient
descent.

Next, we plot phase transition diagrams by scanning the com-
pression ratio f = m/n = [0.2, 0.4, 0.6, 0.8, 1.0] for the MNIST
dataset in Figure 5. For this experiment, we have chosen 5 different
instantiations of the sampling matrix A for each compression ratio
f . In Figure 5 we report the average Mean Square Error (MSE) of
reconstruction ‖x̂−x‖2 over 5 different instances ofA. We conclude
that SGLD gives improved reconstruction quality as compared to GD.

C. CONDITIONS ON THE GENERATOR NETWORK

Proposition C.1. Suppose G(z) : D ⊂ Rd → Rn is a feed-forward
neural network with layers of non-increasing sizes and compact input

domainD. Assume that the non-linear activation is a continuously dif-
ferentiable, strictly increasing function. Then, G(z) satisfies Assump-
tions (A.2) & (A.3) with constants ιG, κG,M , and if 2ι2G > MκG,
the strong smoothness in Definition 3.1 also holds almost surely with
respect to the Lebesgue measure.

Proof. The proof proceeds similar to [12], Appendix B. Since G(z)
is a composition of linear maps followed by C1 activation functions,
G(z) is continuously differentiable. As a result, the Jacobian∇zG is
a continuous matrix-valued function and its restriction to the compact
domain D ⊆ Rd is Lipschitz-continuous. Therefore, there exists
M ≥ 0 such that

‖∇zG(z)−∇zG(z′)‖ ≤M‖z − z′‖, ∀z, z′ ∈ D. (C.1)

Thus, Assumption (A.3) holds. Assumption (A.2) is also satisfied
according to [12], Lemma 5. To show the strong smoothness, we
use the fundamental theorem of calculus with the Lipchitzness of
G(z) obtained by Assumption (A.2). For every z, z′ ∈ D, and
u(t) = tz + (1− t)z′:
〈G(z)−G(z′),∇zG(z)(z − z′)〉

= ‖G(z)−G(z′)‖2 − 〈G(z)−G(z′), G(z)−G(z′)−∇zG(z)(z − z′)〉

= ‖G(z)−G(z′)‖2 −
∫ 1

0

〈G(z)−G(z′),
(
∇zG(u(t))−∇zG(z)

)
(z − z′)〉dt

≥ ι2G‖z − z′‖2 − κGM‖z − z′‖2
∫ 1

0

(1− t)dt

= (ι2G −
κGM

2
)‖z − z′‖2,

where in the last step we use the near-isometry and the Lipschitzness
of∇zG(z) we have obtained. Consequently,G(z) is (ι2G− κGM

2
, 0)-

strongly smooth, if ι2G > κGM
2

.

Lemma C.1 (Measurement complexity). LetG(z) : D ⊂ Rd → Rn
be a feed-forward neural network that satisfies the conditions in
Proposition 3.1. Let L be its Lipschitz constant. If the number of
measurements m satisfies:

m = Ω

(
d

δ2
log(κG/γ)

)
,

for some small constant δ > 0. If the elements of A are drawn
according toN (0, 1

m
), then the loss function F (z) is (α− δκ2

G, γ)-
dissipative with probability at least 1− exp(−Ω(mδ2).

Proof. Using Proposition C.1, it follows that there exist α > 0 and
γ ≥ 0 such that G(z) is strongly smooth. Now, note that the left
hand side of (3.6) is simplified as

〈z − z∗,∇zF (z)〉 = 〈A(G(z)−G(z∗)), A∇zG(z)(z − z∗)〉 ,
(C.2)

Denote u = G(z)−G(z∗) and v = ∇zG(z)(z − z∗), then

〈z − z∗,∇zF (z)〉 = 〈Au,Av〉 = 〈u, v〉 − 〈(I −A>A)u, v〉.
Using standard result in random matrix theory, we can get P (‖I −
A>A‖ ≥ δ) ≤ exp(−mδ2). Also, ‖u‖, ‖v‖ ≤ κG‖z − z′‖. There-
fore,

〈z − z∗,∇zF (z)〉 ≥ 〈u, v〉 − δ‖z − z′‖2.
For m = Ω

(
d
δ2

log(κG/γ)
)
, then

〈z − z∗,∇zF (z)〉 ≥ (α− δ)‖z − z′‖ − γ,
with probability at least 1 − exp(−Ω(mδ2). Therefore, the loss
function F (z) is (α − δκ2

G, γ)-dissipative with probability at least
1− exp(−Ω(mδ2).



(a) (b)

(c) (d)

Fig. 3. [MNIST] selected base digit G(z∗), evaluating (a) (B.1) (b) (B.2), [CIFAR] selected base image G(z∗), evaluating (c) (B.1) (d) (B.2) .

(a) Ground truth (b) Initial (c) GD (d) SGLD

MSE = 0.0248 MSE = 0.0246

Fig. 4. [CIFAR10] Comparing the recovery performance of SGLD
and GD at m = 0.3n measurements.

D. PROPERTIES OF THE LOSS FUNCTION

In this part, we establish some key properties of the loss function
F (z). We use Assumptions (A.1) – (A.3) on the boundedness,
Lipschitz gradient and near-isometry to obtain an upper bound of
‖∇zF (z)‖ and the smoothness of F (z).

Lemma D.1 (Lipschitzness of F (z)). We have ‖∇zF (z)‖ ≤
κ2
G‖A>A‖‖z − z∗‖ for any z ∈ D ⊂ Rd.

Proof. Recall the gradient of F (z):

∇zF (z) = −(∇zG(z))>A>(y −AG(z)) = −(∇zG(z))>A>A(G(z∗)−G(z))

It follows from the Lipschitz assumption (A.2) that ‖G(z∗) −
G(z)‖ ≤ κG‖z − z∗‖, and hence ‖∇zG(z)‖ ≤ κG. Therefore,

‖∇zF (z)‖ ≤ κ2
G‖A>A‖‖z − z∗‖.

Lemma D.2 (Smoothness of F (z)). For any z, z′ ∈ D ⊂ Rd, we
have

‖∇zF (z)−∇zF (z′)‖ ≤ (MB + κ2
G)‖A>A‖‖z − z′‖.

Proof. We use the assumptions on G(z) to derive the bound:
‖G(z∗)‖ ≤ B.

‖∇zF (z)−∇zF (z′)‖ ≤ ‖(∇zG(z′)−∇zG(z))>A>AG(z∗)‖

+ ‖(∇zG(z))>A>A(G(z)−G(z′))‖

+ ‖(∇zG(z)−∇zG(z′))>A>AG(z′)‖

Then, using the boundedness, Lipschitzness and smoothness, we
arrive at:

‖∇zF (z)−∇zF (z′)‖ ≤ (MB + κ2
G)‖A>A‖.
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Fig. 5. Phase transition plots representing average MSE of reconstructed image using gradient descent and stochastic gradient Langevin
dynamics.

Therefore, F (z) is L-smooth, with L = (MB + κ2
G)‖A>A‖.

E. CONDUCTANCE ANALYSIS

In this section, we provide the proofs of Lemma A.1 and A.3 based
on the conductance analysis laid out in [15] and similarly in [32]. The
proof of A.2 directly follows from Lemma 6.3 of [32].

Proof of Lemma A.1. We use the same idea in Lemma 3 from [15]
(and similarly in Lemma 6.1 from [32].) The main difference of our
proof is that we use full gradient ∇zF (z) in Algorithm 1, instead
of stochastic mini-batch gradient, which simplifies the proof of this
lemma a little.

We consider two cases for each u: u 6∈ A and u ∈ A. As long as
we can prove the first case, the second case easily follows, by splitting
A into {u} and A\{u} and using the result of the first case. For a
detailed treatment of the latter case, we refer the reader to the proof
of Lemma 6.1 in [32].

Now that u /∈ A, we have

T ?u (A) =

∫
A∩B(u,r)

T ?u (w)dw =

∫
A∩B(u,r)

αu(w)Tu(w)dw.

(E.1)

where αu(w) is the acceptance ratio of the Metropolis-Hasting. If
suffices to show that αu(w) ≥ 1 − δ/2 for all w ∈ K ∩ B(u, r),
which implies

(1− δ/2)Tu(A) ≤ T ?u (A) ≤ Tu(A).

The right hand side is obvious by the definition of αu(w) while we
can ensure δ ≤ 1/2 with a sufficiently small η. What remains is to
show that

Tw(u)

Tu(w)
· exp(−β(F (w)− F (u))) ≥ 1− δ/2. (E.2)

The left hand side is simplified by definition of Tu(w) as

exp

(
‖w − u+ ηg(u)‖22

4η/β
− ‖u− w + ηg(w)‖22

4η/β

)
exp(−β(F (w)− F (u))) ≥ 1− δ/2.

Note that g(z) = ∇zF (z). Simplify the first exponent and combine
with the second one gives the following form:

−β
(
F (w)− F (u)− 1

2
〈w − u,∇zF (w) +∇zF (u)〉

)
+
ηβ

4
(‖∇zF (u)‖2 − ‖∇zF (w)‖2).

(E.3)

To lower bound the left hand side, we appeal to the smoothness of
F (z). Specifically, by Lemmas D.1 and D.2, we have F is L-smooth
and ‖∇zF (z)‖ ≤ D with L = (MB + κ2

G) and D = κ2
G‖A>A‖.

Then,

F (w) ≤ F (u) + 〈w − u,∇F (u)〉+
L‖w − u‖22

2
,

F (u) ≥ F (w) + 〈u− w,∇F (w)〉 − L‖w − u‖22
2

.

This directly implies that

∣∣F (w)− F (u)− 〈w − u, 1

2
∇F (w) + F (u)〉

∣∣ ≤ L‖w − u‖22
2

.

(E.4)

Moreover,∣∣‖∇zF (u)‖22 − ‖∇zF (w)‖22
∣∣ ≤ ‖∇F (u)−∇F (w)‖2 · ‖∇F (u) +∇F (w)‖2
≤ 2LD‖w − u‖2. (E.5)

Combining (E.4) and (E.5) in (E.3), and together with w ∈ B(u, r)

with r =
√

10ηd/β,

LHS of (E.3) ≥ −Lβ‖w − u‖
2

2
− ηβLD‖w − u‖

2

≥ −5Ldη − 5LGd1/2β−1/2η3/2.

Pick δ/2 = 5Ldη + 5LDd1/2β−1/2η3/2, and use the fact e−x ≥
1− x for x ≥ 0, then we have proved the result.

Next, we lower bound the conductance φ of T ?u (·) using the idea
in [32, 33], by first restating the following lemma:

Lemma E.1 (Lemma 13 in [33]). Let T ?u (·) be a time-reversible
Markov chain on D with stationary distribution π. Suppose for any



u, v ∈ D and a fixed ∆ > 0 such that ‖u − v‖2 ≤ ∆, we have
‖T ?u (·)−T ?v (·)‖TV ≤ 0.99, then the conductance of T ?u (·) satisfies
φ ≥ Cρ∆ for some constant C > 0 and ρ is the Cheeger constant of
π.

Proof of Lemma A.3. To apply Lemma E.1, we follow the same idea
of [32] and reuse some of their results without proof. To this end, we
prove that for some ∆, any pair of u, v ∈ D such that ‖u−v‖2 ≤ ∆,
we have ‖T ?u (·)− T ?v (·)‖TV ≤ 0.99. Recall the distribution of the
iterate z after one-step standard SGLD without the accept/reject step
in (A.1) is

P (z|u) =
1

(4πη/β)d/2
exp

(
− ‖z − u+ ηg(u)‖22

4η/β

)
Since Algorithm 1 accepts the candidate only if it falls in the region
D ∩ B(u, r), the acceptance probability is

p(u) = Pz∼P (·|u)
[
z ∈ D ∩ B(u, r)

]
.

Therefore, the transition probability T ?u (z) for z ∈ D ∩ B(u, r) is
given by

T ?u (z) =
2− p(u) + p(u)(1− αu(z))

2
δu(z) +

αu(z)

2
P (z|u) · 1[z ∈ D ∩ B(u, r)].

Take u, v ∈ D and let Su = D∩B(u, r) and Sv = D∩B(v, r).
By the definition of the total variation, there exists a set A ∈ D such
that

‖T ?u (·)− T ?v (·)‖TV = |T ?u (A)− T ?v (A)|

≤ max
u,z

[
2− p(u) + p(u)(1− αu(z))

2

]
︸ ︷︷ ︸

I1

+
1

2

∣∣∣∣ ∫
z∈A

αu(z)P (z|u)1(z ∈ Su)− αv(z)P (z|v)1(z ∈ Sv)dz

∣∣∣∣︸ ︷︷ ︸
I2

.

Using the mini-batch size that is exactly the same as the number of
samples, we can reuse the bounds of I1 and I2 in Lemmas C.4 and
C.5 of [32]. Consequently,

‖T ?u (·)− T ?v (·)‖TV ≤ I1 + I2/2 ≤ 0.85 + 0.1δ +

√
β‖u− v‖2√

2η
.

By Lemma A.1, we have δ = 10Ldη + 10LDd1/2β1/2η3/2 ≤
12Ldη if η ≤ d

25βD2 . Thus if

η ≤ 1

25βD2
∧ 1

30Ldη
and ‖u− v‖2 ≤

√
2η

10
√
β
≤ 0.1r,

we have ‖T ?u (·)− T ?v (·)‖TV ≤ 0.99. As the result of Lemma E.1,
we prove a lower bound on the conductance φ of T ?u (·)

φ ≥ c0ρ
√
η/β,

and finish the proof.

F. PROPERTY OF THE GIBBS ALGORITHM

Proposition F.1. For D = B(0, R), we have∫
D
F (z)π(dz) ≤ O

(
d

β
log

βL

d

)
.

Proof. Let p(z) = e−βF (z)/Λ denote the density of π. Λ ,∫
D e
−βF (z)dz is the partition function. We start by writing∫

D
F (z)π(dz) =

1

β
(h(p)− log Λ) , (F.1)

where

h(p) = −
∫
D
p(z) log p(z)dz = −

∫
K

e−βF (z)

Λ
log

e−βF (z)

Λ
dz

is the differential entropy of p. To upper-bound h(p), we use the
fact that the differential entropy of a probability density with a finite
second moment is upper-bounded by that of a Gaussian density with
the same second moment. Moreover, since p has the support in the
Euclidean ball with radius R, its second moment is simply bounded
by R2. Therefore, we have

h(p) ≤ h(N (0, R2I)) =
d

2
log

2πR2

d
. (F.2)

Next, we give a lower bound on the second term, log Λ. We use the
smoothness of F (z) and the fact that z∗ is the minimizer of F . We
have F (z) ≤ L

2
‖z − z∗‖2 for z ∈ D. As such,

log Λ = log

∫
D
e−βF (z)dz ≥ log

∫
D
e−βL‖z−z

∗‖2/2dz � O
(
d

2
log

2π

βL

)
.

(F.3)

Using (F.2) and (F.3) in (F.1) and simplifying, we prove the result.
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