

1 **Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine
2 and serine during photorespiration**

3 Authors: Xinyu Fu¹, Luke M. Gregory^{1,2}, Sean E. Weise¹, Berkley J. Walker^{1,2*}

4

5 ¹ Michigan State University-Department of Energy Plant Research Laboratory, Michigan State
6 University, East Lansing, MI 48824, USA

7 ² Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA

8 *Correspondence to: Berkley Walker, berkley@msu.edu

9

10 **Abstract**

11 Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that
12 responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from
13 oxygenation reactions catalyzed by rubisco back into the C₃ cycle, but it is unclear what proportions of its
14 nitrogen-containing intermediates (glycine and serine) are exported into other metabolisms *in vivo* and
15 how these pool sizes affect net CO₂ gas exchange during photorespiratory transients. To address this
16 uncertainty, we measured rates of amino acid export from photorespiration using isotopically
17 nonstationary metabolic flux analysis. This analysis revealed that ~23-41% of the photorespiratory carbon
18 was exported from the pathway as serine under various photorespiratory conditions. Furthermore, we
19 determined that the build-up and relaxation of glycine pools constrained a large portion of photosynthetic
20 acclimation during photorespiratory transients. These results reveal the unique and important roles of
21 glycine and serine in successfully maintaining various photorespiratory fluxes that occur under
22 environmental fluctuations in nature and providing carbon and nitrogen for metabolism.

23 **Main**

24 In C₃ plants, photorespiration is a high-flux metabolic pathway that recycles the inhibitory 2-
25 phosphoglycolate (2PG) produced from the oxygenation reaction catalyzed by ribulose-1,5-bisphosphate
26 carboxylase-oxygenase (rubisco). The recycling of 2PG to the C₃ intermediate, 3-phosphoglycerate
27 (3PGA) involves a series of energy-consuming reactions across multiple organelles ^{1,2}. Upon cursory
28 consideration, photorespiration is often viewed as a wasteful process, because the conversion from
29 glycine to serine releases a large amount of CO₂ and ammonia, the former is released from
30 photorespiration and the latter is re-assimilated with high-energy cost. However, besides the beneficial
31 removal of 2PG, photorespiration also plays a vital role in central metabolism due to its close interaction
32 with many other pathways, especially nitrate assimilation ³⁻⁶. Although the interaction between
33 photorespiration and nitrate assimilation is not mechanistically clear, nitrate assimilation depends to some
34 degree on photorespiration ^{5,7}. For example, plants grown under elevated CO₂ partial pressures with
35 decreased photorespiration have decreased nitrate assimilation into organic nitrogen (N) compounds and
36 total N concentration of plant tissues ^{8,9}. Additionally, the major route of ammonia assimilation, glutamate
37 synthesis, increases as photorespiration increases possibly not only facilitating increased rates of
38 ammonia recapture from photorespiration but also increased rates of *de novo* nitrate assimilation ^{10,11}.

39 The mechanism linking photorespiration to nitrate assimilation could be related to the export of N-rich
40 amino acids from photorespiration. Due to the high metabolic flux channeled through photorespiration,
41 even small changes in photorespiratory flux could affect the flux distribution through central carbon (C)
42 and N metabolism. The extent to which photorespiration operates as a closed cycle to regenerate 3-PGA
43 for the C₃ cycle or as an open cycle allowing metabolite export to interacting metabolisms remains
44 unknown ¹². Exporting glycine and serine from photorespiration into non-photorespiratory metabolism
45 (e.g., protein synthesis, providing amino groups to alternative metabolic processes or transport) instead of
46 returning their C to the chloroplast as 3PGA additionally affects the CO₂ loss and the energy costs
47 associated with recycling of 2PG into 3PGA.

48 Evidence for a fraction of photorespiratory C exported from photorespiration as glycine and/or serine is
49 revealed in biochemical modeling of leaf photosynthesis ¹³. The export of photorespiratory C as amino
50 acids can explain the decreased rates of net CO₂ assimilation (*A*) in response to CO₂ and O₂ at high CO₂
51 partial pressures, typically 2-4 times ambient conditions and saturating illumination ¹³. In this paper we
52 define glycine and serine export as amino acids that leave photorespiratory metabolism, this includes
53 amino acids that leave the leaf entirely, as in phloem exudate, but also to amino acids that leave
54 photorespiration to participate in non-photorespiratory metabolism in the same leaf tissue. The fraction of
55 photorespiratory C exported as amino acids estimated using photosynthetic models ranges between 0.3-

56 0.77 under the high CO₂ partial pressures where this approach can be used, with serine being the primary
57 amino acid exported ^{14,15}. Exporting glycine and serine from photorespiration increases photosynthesis at
58 high CO₂ partial pressures when carbon assimilation is limited by the availability of inorganic phosphate
59 in the chloroplast ¹⁶.

60 Exporting glycine and serine from photorespiration is also coupled to the N flux to these amino acids.
61 Specifically, this N flux out of photorespiration in the form of amino acids must be supplemented by
62 increasing the *de novo* assimilation of N to replace the amino groups required for glyoxylate amination to
63 glycine, potentially explaining why the estimated fraction of amino acid export increases with increasing
64 NO₃⁻ availability ¹⁵. Despite this compelling evidence for serine and glycine export under high CO₂
65 partial pressures when photorespiration is limited, it is unclear if high rates of amino acid export happen
66 under more physiologically relevant CO₂ partial pressures and forms a regular component of central
67 metabolism under more typical growing conditions. C export from photorespiration also raises interesting
68 questions concerning the functional importance of photorespiration, since this export would not replenish
69 C lost from the C₃ cycle following rubisco oxygenation.

70 Another uncertainty of photorespiration is the speed of its metabolic response and subsequent impact on
71 *A*. Photorespiration is a dynamic process, responding to *A*, stomatal conductance, and light regimes.
72 However, it is mostly investigated under steady-state conditions by comparing the metabolomic profile
73 and physiology following different environmental and genetic perturbations ¹⁷⁻¹⁹. Under non-steady-state
74 conditions, amounts of photorespiratory intermediates are sensitive to photorespiratory conditions both in
75 the long- and short-term ¹⁷⁻¹⁹. Photorespiratory intermediates additionally accumulate during transient
76 changes in rubisco oxygenation rate or when downstream photorespiratory reactions are not
77 stoichiometrically balanced ²⁰⁻²⁴. When photorespiratory intermediates upstream of the glycine
78 decarboxylase (GDC) reaction like glycine accumulate, the CO₂ release per rubisco oxygenation should
79 decrease proportionally, increasing subsequent *A* during this accumulation. Despite this theoretical
80 underpinning, it is not clear if the change in glycine pools is large enough to affect *A* to a measurable
81 degree during transients in photorespiratory rates.

82 The use of isotopic tracers and metabolic flux analysis (MFA) are powerful tools to resolve how
83 metabolism responds to environmental changes ^{25,26}. For example, isotopic labeling with ¹³CO₂ in
84 combination with varied CO₂ and/or O₂ mole fraction has been commonly used to infer the impact of
85 photorespiration on leaf C metabolism. Under different CO₂/O₂ conditions, distinct ¹³C labeling
86 enrichment has been observed in many primary and specialized metabolites ^{20,27}, as well as proteins ^{28,29}.
87 These studies were usually performed at isotopic pseudo-steady state with a single time-point, which does
88 not allow flux quantification in autotrophic metabolism ³⁰. Recent development of isotopically

89 nonstationary metabolic flux analysis (INST-MFA) more fully leverages the benefits of $^{13}\text{CO}_2$ labeling to
90 provide a global assessment of C fluxes through autotrophic leaf metabolism^{26,31-34}. INST-MFA is
91 therefore a promising approach for estimating fluxes and metabolic responses to changes in
92 photorespiratory rates *in vivo*.

93 Here, INST-MFA was applied to examine the C fluxes through and out of the photorespiratory pathway
94 under different photorespiratory conditions manipulated by the O₂ mole fraction. This INST-MFA
95 analysis gave a quantitative estimate of serine and glycine exported from photorespiration under steady-
96 state conditions at ambient CO₂ partial pressures, which agreed with estimates made under high CO₂
97 partial pressures using estimates from CO₂ response curves. Metabolite pool size measurements of 38
98 central metabolites showed that glycine had the strongest changes in response to photorespiratory shifts.
99 We also determined that changes in glycine concentration were large enough to explain 20-30% of the
100 gain in net CO₂ assimilation when transitioning from low to high photorespiratory conditions.

101

102 **Results**

103 **Isotopically Nonstationary Metabolic Flux Analysis**

104 To estimate C flux distribution on central metabolism, transient ^{13}C labeling experiments were performed
105 on fully expanded *Nicotiana tabacum* (tobacco) leaves after short-term acclimation to three O₂ conditions
106 (2%, 21%, and 40%). The labeling experiments were carried out at the same irradiance as the growth
107 chamber (100 $\mu\text{mol m}^{-2} \text{s}^{-1}$) to minimize changes in metabolism due to light acclimation. Metabolic
108 fluxes through central metabolism were determined from a metabolic network model (Supplementary
109 Data 1), mass isotopologue distributions (MIDs) during the transient labeling period (Supplementary Data
110 2), and measured input and output fluxes to constrain the flux solutions. The independently determined
111 input and output fluxes used to constrain the flux solution included the *A*, rubisco oxygenation rate (v_o),
112 rubisco carboxylation rate (v_c), starch and sucrose production rates, and output flux ratios of amino acids
113 and sucrose measured in vascular exudate (Supplementary Table 1 and 2 and Supplementary Method 1-
114 4). INST-MFA was performed under the assumption that the metabolism is steady-state (Supplementary
115 Method 4 with steady-state assumption validated below). The selection of labeling data for INST-MFA
116 modeling and tests for several network models are described in Supplementary Method 4. A subset of key
117 measured labeling data and the labeling kinetics simulated by the best-fit INST-MFA flux values are
118 shown in Supplementary Figure 1 and the detailed fits of the best-fit models are shown in Supplementary
119 Data 3.

120 Manipulating O₂ condition had a large and significant effect on ν_o (2.60-26.37 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$) and a
121 smaller but significant effect on ν_c (53.36-79.70 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$, Fig. 1, 95% confidence intervals of the
122 best-fit fluxes are shown in Supplementary Figure 2 and 3 and Supplementary Data 4). The rate of starch
123 and sucrose synthesis decreased significantly with increasing rates of photorespiration (Fig. 1 and
124 Supplementary Data 4). Direct measurement of the allocation of photo-assimilated C using ¹⁴CO₂
125 labelling showed that rates of starch and sucrose synthesis are strongly correlated with A (Supplementary
126 Figure 4 and Supplementary Method 2).

127 The INST-MFA revealed the export rates of photorespiratory serine and glycine from the
128 photorespiratory pathway at ambient CO₂ partial pressures (Fig. 1). The serine export rate to alternative
129 sinks increased from 3.61 to 7.02 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at high rates of photorespiration, but it decreased to
130 0.02 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at low photorespiration rates. The export of glycine to alternative sinks was less
131 than 0.01 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at three conditions, much lower than that of serine. A portion of the export of
132 amino acids from photorespiration, the removal of glycine or serine through phloem, was estimated based
133 on the output flux to phloem and the output flux ratios of amino acids and sucrose measured in vascular
134 exudate (Supplementary Table 2 and Supplementary Method 4). The removal rates of glycine or serine
135 through the phloem were small relative to the total export, between 0.03 to 0.38 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at
136 various photorespiratory conditions (Fig. 1). The total amount of C leaving the photorespiratory pathway
137 as serine scaled with the rate of photorespiration. At high photorespiration (40% O₂), 41% of the
138 photorespiratory C influx (52.8 $\mu\text{mol C g}^{-1} \text{FW hr}^{-1}$) was exported as serine (at a rate of 21.5 $\mu\text{mol C g}^{-1}$
139 FW hr⁻¹). The percentage of photorespiratory C leaving as serine was 32% at normal photorespiration
140 (21% O₂) and 23% at low photorespiration (2% O₂). These data indicate that 23-41% of the
141 photorespiratory C could be exported from the pathway as serine under physiologically relevant CO₂
142 partial pressures. The INST-MFA model was also run with glycerate labelling data and allowing glycerate
143 export from the photorespiratory pathway. This extended model predicted that glycerate and glycine
144 export rate was slow (< 0.1 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ in all oxygen conditions), while the serine export rate was
145 slow at low photorespiration and rose at normal and high photorespiration (<0.1, 3.7 and 7.0 $\mu\text{mol g}^{-1} \text{FW}$
146 hr⁻¹ in 2%, 21%, and 40% O₂ respectively) (see Supplemental Method 4).

147 **Estimating photorespiratory C export using CO₂ response of A**

148 The export of photorespiratory C to amino acid synthesis or alternative metabolism accounts for the
149 behavior of A at high CO₂ partial pressures in leaf photosynthesis models^{13,15}. Using this approach, we
150 estimated the fraction of C that leaves the photorespiratory pathway as glycine (α_G) and serine (α_S) using
151 the measured CO₂ response of A at ambient O₂ and high light ($\sim 1000 \mu\text{mol m}^{-2} \text{s}^{-1}$) fitted with the
152 photosynthetic model over the triose phosphate utilization (TPU)-limited range to compare to the INST-

153 MFA results (Fig. 2). The high- CO_2 portion of the curve in orange, where TPU limits CO_2 assimilation,
154 showed the characteristic curve that is only explained by amino acid removal from photorespiration^{13,35}.
155 This curvature was used to fit a resultant α_G and α_S of 0.01 and 0.45, indicating that the C flow out of
156 photorespiration was primarily in the form of serine, consistent with the estimates ($\alpha_G < 0.01$ and $\alpha_S =$
157 0.32) calculated from the INST-MFA (Fig. 1).

158 **Metabolic responses to low and high photorespiration**

159 The absolute pool sizes of 38 central metabolic intermediates were measured in tobacco leaves exposed to
160 varied photorespiratory conditions. Compared to the ambient O_2 condition, the metabolic changes at high
161 photorespiration (40% O_2) and low photorespiration (2% O_2) were modest (Fig. 3). Most metabolites had
162 insignificant changes in pool size during the short-term photorespiratory changes (Fig. 3 shows the mean
163 fold-changes of the pool size between 2% and 21% O_2 or between 40% and 21% O_2 ; Supplementary Data
164 5 shows the absolute concentrations under the three oxygen conditions). The most significantly altered
165 metabolites were photorespiratory intermediates (glycine, glycolate and glyoxylate), alanine, and ADPG
166 (Supplementary Data 5). Many photorespiratory intermediates (glycine, serine, glycerate, glycolate and
167 glyoxylate) were far from fully labelled even at high photorespiratory condition (Supplementary Figure
168 5). The average ^{13}C enrichment of these metabolites reached between 10% and 75% following 30 min of
169 $^{13}\text{CO}_2$ labeling (Supplementary Figure 5), indicating that these intermediates exist in multiple subcellular
170 pools with an active pool being involved in photorespiration and other pools (presumably in the vacuole
171²⁵) not involved in photorespiration. The active and inactive pools of glycine were estimated using the
172 measured total pool size and the dilution parameters from the INST-MFA (Supplementary Data 4 and 5).
173 The extent of changes in glycine was much greater in the active pool (15-fold) than in the total pool (4-
174 fold) (Fig. 4). These data support the steady-state assumption of INST-MFA (Supplementary Figure 6).
175 These data highlight the value of combining metabolite abundance with labeling and demonstrate the
176 principle that in many cases changes in metabolite pool size do not directly translate into flux changes.
177 For example, the pool size of 2PG was not significantly different between different oxygen conditions
178 (Fig. 3 and Supplementary Data 5), but the ^{13}C labeling kinetics of 2PG were faster in high oxygen than in
179 low oxygen (Supplementary Figure 1 and Supplementary Data 2), suggesting higher flux through rubisco
180 oxygenation. This highlights that time-dependent labeling profiles are more informative indicators for
181 flux rather than changes in pool sizes and that inferring flux from pool sizes alone can lead to inaccurate
182 interpretations.

183 **Photorespiration under non-steady state**

184 Quantifying the steady-state active pool size of glycine at low and high photorespiratory conditions
185 helped determine how much the size of glycine pools constrain net gas exchange during photorespiratory
186 transients. To do this, A during O_2 transients was measured when tobacco leaves were exposed to 2% O_2
187 until the steady-state and then switched to 40% O_2 . During the low-to-high O_2 transient, A did not
188 instantly reach a new steady state at 40% O_2 but gradually declined at an exponential rate for ~2 min until
189 the new steady-state was reached (Fig. 5). The extra C gained or lost during the transient in the decrease
190 (or increase) in A as compared to how much C would be fixed with an instant transition to the new steady
191 state was defined as the “C lag”, which can be quantified by integrating the area between the fitted curve
192 of A and a baseline of A at the new steady state (Fig. 5a). During the transition from 2% O_2 to 40% O_2 , the
193 total glycine pool increased by $30.8 \pm 2.4 \mu\text{mol m}^{-2}$ based on the differences in steady-state levels (after
194 30 min acclimation to high or low oxygen) between high and low oxygen levels (Fig 4) or 20.8 ± 6.2
195 $\mu\text{mol m}^{-2}$ based on the initial build-up of glycine pool after switching oxygen for 60 s when the gas
196 exchange transient is near complete (Supplementary Figure 7), accounting for 20-30% of the total C lag
197 ($50.4 \pm 1.7 \mu\text{mol m}^{-2}$) as the accumulated glycine would otherwise be metabolized by the downstream
198 glycine decarboxylase reaction (2 mol of glycine yielding 1 mol of CO_2). The build-up of the active
199 glycine pool based on the steady-state measurement ($25.7 \pm 3.4 \mu\text{mol m}^{-2}$, Fig 4) accounted for ~25% of
200 the total C lag. When looking at the transition from 40% O_2 to 2% O_2 , the lag in the photosynthetic
201 increase resulted in loss of C represented by the shaded area (Fig. 5b). The reduction of the active glycine
202 pool based on the steady-state measurement explained ~15% of this total C lag ($83.9 \pm 3.8 \mu\text{mol m}^{-2}$).
203 Note that the change in concentrations in response to O_2 treatment is negligible and small in other
204 metabolites upstream of glycine (i.e. 2PG, glycolate and glyoxylate, Fig. 5), further indicating glycine is
205 the primary metabolic pool impacting this transient response.

206

207 **Discussion**

208 **Impact of photorespiratory flux changes on C and N metabolism**

209 Our INST-MFA indicates that C was exported from photorespiration under ambient CO_2 partial pressures
210 as serine at high rates. The INST-MFA-estimated fraction of serine export is 0.27-0.39 (95% confidence
211 interval using the parameter continuation method) under ambient O_2 and CO_2 partial pressures
212 (Supplementary Figure 2 and Supplementary Data 4), which is close to the 95% confidence interval of the
213 value estimated using photosynthetic models fitted at high CO_2 partial pressures (0.38-0.51) (Fig. 2).
214 Given these large export rates, where do these amino acids go? Prior studies have shown that glycine is
215 incorporated into leaf protein when photorespiration is induced by low CO_2 ^{28,36}, and almost all

photorespiratory glycine is routed to protein synthesis in water-stressed soybean leaves under high light and low CO₂ partial pressure²⁹. Protein synthesis is not likely to explain all the amino acid export from photorespiration, since glycine and serine are present in similar proportions in total plant protein, but serine is exported at a much higher rate³⁷. Past work also suggests that at least some photorespiratory serine and glycine is exported out of source leaves under photorespiratory conditions as is evident by an increased labeling in serine and glycine within the petiole when source leaves were labeled with ¹⁴CO₂ under elevated O₂³⁸, but our vascular exudates indicated that removal from the leaf only accounted for a small percentage of the total amino acids exported from photorespiration. Photorespiratory glycine and serine are also required for the synthesis of various essential metabolites. For example, serine provides the carbon backbone for the synthesis of cysteine and tryptophan, which are further used to produce sulphur-containing compounds (e.g. S-adenosylmethionine) and indolic compounds (e.g. auxin and glucosinolates)^{39,40}. Serine also is an important substrate for the biosynthesis of phosphatidylserine and sphingolipid that are critical to plant development and survival⁴¹. Glycine enhances the synthesis of glutathione (γ -Glu–Cys–Gly) as suggested by previous leaf feeding experiments⁴². Taken together, these findings indicate that photorespiration is an important source of amino acids for protein and metabolite synthesis and future work should work to resolve where specifically this serine goes within metabolism.

The increased fraction of photorespiratory C exported as amino acids with increased photorespiration in this study also helps explain the mechanistic link between photorespiration and N metabolism^{5,43}. Large serine export fluxes diverted from photorespiration would need to be supplemented by equivalent *de novo* N assimilation. The *de novo* N assimilation rate would need to increase to support a higher total amount of photorespiratory C leaving as amino acids under higher photorespiratory condition. Supporting this hypothesis, plants under ambient photorespiration had ~10-30% higher N assimilation rates than those under low photorespiration (high CO₂ or low O₂)⁸. The coupling of N assimilation with photorespiration-derived glycine and serine has also been suggested from a dual labeling study with ¹³CO₂ and ¹⁵N-ammonium nitrate⁴⁴. In this 6-h labeling study, up to 50% of ¹⁵N glycine and ¹⁵N serine molecules were also ¹³C enriched, probably due to large turnover glycine and serine associated with high flux rates of photorespiration, whereas many other amino acids were only ¹⁵N-labelled because their ¹⁵N-amino groups were not fixed onto ¹³C-enriched C skeletons. Exporting glycine and serine from the photorespiratory pathway could enable plants to efficiently assimilate N onto C skeletons produced during photorespiration, also stimulating CO₂ uptake at high CO₂¹⁵.

The finding that large amounts of C leave photorespiration for other metabolisms and do not re-enter the C₃ cycle suggests some interesting hypotheses concerning the central purpose of photorespiration. Photorespiration is thought to be essential for returning C back into the C₃ cycle, but our flux values

249 indicate that only 43% returns following serine export, instead of the theoretically maximal 75% under
250 21% O₂. This rate of carbon removal is (large) relative to other fluxes in central metabolism, comprising
251 50% and 62% the C flux of starch and sucrose syntheses at 21% O₂. This indicates that the C₃ cycle is
252 resilient against carbon removal and can replenish its own intermediates even under high rates of removal
253 following rubisco oxygenation. This is not surprising given the ability for the C₃ cycle to operate even
254 under high rates of rubisco oxygenation, like what occurs under 40% O₂ or elevated temperatures.

255 Conceptually this is similar to carbon removal from the C3 cycle to other metabolisms like sucrose and
256 starch. These findings favor the hypothesis that the major roles of photorespiration are to provide C and N
257 for downstream metabolism in addition to processing inhibitory byproducts of rubisco oxygenation. This
258 would help explain why it interacts with so many other aspects of metabolism. It may also explain why
259 photorespiration is maintained in all oxygenic phototrophs, and is even essential (albeit in reduced
260 amounts) in plant species with an efficient carbon concentrating mechanism in addition to its role in
261 processing 2PG⁴⁵.

262

263 **Role of glycine in photorespiration and *A* during transients**

264 Our metabolomics analyses identified a significant correlation between photorespiratory rate and glycine
265 pool size, which is large enough to explain much of the transient response of *A* to changing
266 photorespiratory conditions. The metabolically active glycine pools inferred from the dilution parameters
267 in our INST-MFA changed 15-fold when comparing low and high photorespiration (Fig. 4). Our gas
268 exchange data showed that during the low-to-high O₂ transient, the concomitant accumulation of active
269 glycine pools that are not decarboxylated accounted for ~25% of the excess CO₂ fixed (Fig. 5a).

270 Interestingly, the relaxation of active glycine pools accounts for a slightly smaller ~15% of the excess
271 CO₂ lost during the high-low O₂ transient (Fig. 5b). These findings indicate a unique connection between
272 the accumulation of a single metabolite and the subsequent effects to *A*. Further research is needed to
273 determine what the remaining determinants of the acclimation of net assimilation between
274 photorespiratory conditions are and how well these findings translate to other changes in photorespiratory
275 rate, like under fluctuating light⁴⁶.

276 These findings support a hypothesis as to the role of glycine in photorespiration as a “safe” buffering
277 metabolite in a dynamic pathway. The biochemical structure and kinetics of photorespiration may be
278 configured to accumulate glycine so that other upstream or downstream intermediates do not change too
279 rapidly or build up to inhibitory or cytotoxic concentrations. Photorespiratory intermediates downstream
280 of glycine were not significantly changed at varying photorespiratory conditions (Fig. 3). Many other

281 studies have shown that glycine is the most drastically changed photorespiratory intermediates upon
282 photorespiratory pressures^{17,18,20,21,47}, suggesting that glycine is a well-tolerated metabolite in plant cells.
283 The build-up of glycine may also suggest that photorespiration has been optimized to delay the release of
284 ammonium until there is sufficient glutamine synthetase/glutamate synthase activity to recapture the
285 ammonium released from the GDC reaction. In contrast, other photorespiratory intermediates are riskier
286 to accumulate. For example, the cytotoxicity of 2-PG, glycolate, glyoxylate, and serine suggests tight
287 regulation of their intracellular concentrations^{45,48-52}. The toxicity of glycolate and glyoxylate may be
288 more nuanced however, since transformants expressing novel photorespiratory genes had ~3 and ~8 fold
289 higher concentrations of glycolate and glyoxylate with no obvious cytotoxic effects⁵³. In addition to these
290 cytotoxic intermediates, serine may act as a signal for the transcriptional regulation of photorespiration-
291 related genes, as external supply of serine induces transcriptional deregulation so pool sizes would need to
292 be relatively buffered to prevent a hyper-sensitivity to short-term changes in photorespiratory flux⁵⁴.
293 Furthermore, accumulated glycerate could exert a feed-back effect on photosynthesis by blocking the
294 stromal fructose-1,6-bisphosphatase⁵⁵. Of all the photorespiratory intermediates, glycine therefore
295 appears to be the most inert to metabolism and therefore a waypoint to help safely navigate dynamic
296 changes in flux.

297 The transient build-up in glycine pools when switching from low to high photorespiratory condition
298 indicates that the capacity of the downstream photorespiratory enzyme GDC may not be sufficient to
299 process large changes in glycine influx under non-steady state conditions. Limiting GDC activity even by
300 ~50% leads to a 100-fold accumulation of glycine during the day, while stimulating GDC activity leads to
301 a ~40% reduction in steady-state level of glycine^{56,57}. Moreover, upregulating GDC activity improves
302 plant performance both in the laboratory and field conditions^{57,58}, suggesting its key role in controlling
303 photorespiratory flux. While GDC is normally not limited by its substrate glycine and NAD⁺, the efficient
304 operation of GDC requires maintaining low levels of its product NADH, which may accumulate during
305 rapid changes in flux through GDC⁵⁹. The mitochondrial TRX system has been proposed to be important
306 in the redox regulation of GDC under fluctuating light, adding to its potential role under transient
307 conditions^{60,61}.

308 An additional explanation for the increase in glycine pools relative to serine during increasing
309 photorespiration is the need to maintain appropriate concentration gradients to drive transport of these
310 metabolites between the mitochondrion and peroxisome. While these transporters are not yet identified,
311 they must facilitate large fluxes and are most likely driven by concentration gradients that are
312 proportional to their fluxes⁶². Glycine flux into the mitochondria is twice as large as serine flux out since
313 the GDC/serine hydroxymethyltransferase reactions require two glycine per serine produced and

314 assuming a “closed cycle” of photorespiration. Since higher transport gradients would translate to higher
315 leaf-level pool sizes of metabolites, the differences in flux may also help explain the high build-up of
316 glycine relative to serine.

317

318 Methods

319 **Plant material.** Tobacco (*Nicotiana tabacum*) plants were grown in a growth chamber under an 18-h
320 day/6-h night photoperiod at a light intensity of 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$, day/night temperatures of 23°C/18°C,
321 and relative humidity of 60%. All experiments were performed on the fully expanded source leaves of 8-
322 week-old plants.

323 **Gas exchange and $^{13}\text{CO}_2$ labeling system.** Leaf gas exchange measurements under controlled $\text{O}_2/\text{CO}_2/\text{N}_2$
324 conditions were performed using a LI-6800 (LI-COR Biosciences, USA) with a fast atmospheric
325 switching and quenching system as described previously³³. Leaves were equilibrated and monitored in
326 the cuvette at 40 Pa $^{12}\text{CO}_2$ levels with three O_2/N_2 conditions (2% O_2 / 98% N_2 , 21% O_2 / 79% N_2 , and
327 40% O_2 / 60 % N_2), light intensity of 100 $\mu\text{mol photon m}^{-2} \text{s}^{-1}$, leaf temperature of 25 °C, and relative
328 humidity of 70%. $^{13}\text{CO}_2$ labeling was performed after 20-30 min of acclimation to reach a photosynthetic
329 steady-state. Illuminated leaves were incubated at 0, 0.5, 1, 2, 2.5, 3, 5, 7, 10, 15, and 30 min with $^{13}\text{CO}_2$ -
330 containing gas mixture ([40 Pa] $^{13}\text{CO}_2$ with each O_2/N_2 condition) before quenching. Pseudo-steady state
331 metabolism was assumed during the labeling period at each oxygen condition (Supplementary Figure 6).
332 Detailed descriptions of tissue harvesting and quenching for metabolic analyses are shown in
333 Supplementary Method 1.

334 **Metabolite labeling and concentration.** The extraction and analytical procedures for quantifying
335 metabolite labeling and concentration were similar to the method described previously³³. Gas
336 chromatography-mass spectrometry (GC-MS) was used to analyze amino acids, organic acids, and sugars.
337 Ion-pair chromatography-tandem mass spectrometry (IPC-MS/MS) was used to analyze the
338 phosphorylated intermediates in C₃ cycle. Anion exchange chromatography-tandem mass spectrometry
339 (AEC-MS/MS) was used to analyze nucleotide sugars and additional phosphorylated intermediates.
340 Detailed descriptions of the extraction and mass spectrometry analyses are shown in Supplementary
341 Method 1 and Supplementary Data 6. Abbreviations of metabolites are shown in Supplementary Data 7.

342 **Measurements of external fluxes.** Rates of starch and sucrose synthesis were measured by the steady
343 state pulse-chase labeling of $^{14}\text{CO}_2$ as described previously³⁵ with slight modifications (Supplementary
344 Method 2). Rates of rubisco carboxylation and oxygenation were calculated as described earlier using gas

345 exchange measurements², with the required biochemical and diffusional parameters experimentally
346 estimated by gas exchange and isotope analysis (see Supplementary Method 3 for details). The output
347 flux ratios of amino acids and sucrose were estimated by measuring steady-state levels of sucrose and
348 amino acids in vascular exudate as described earlier^{26,33}. Detailed descriptions of exudate collection were
349 described in Supplementary Method 1.

350 **Metabolic network and flux determination.** The network model used for flux determination was
351 modified from published reaction models^{26,33,34} (Supplementary Data 1). INST-MFA was performed
352 using the elementary metabolite unit (EMU)-based software INCA (version 1.8)⁶³ ran within MATLAB
353 2018b (Mathworks, USA). Model formulation details are described in Supplementary Method 4 and the
354 INCA model files are included in Supplementary Data 8. Metabolic fluxes were estimated by iteratively
355 minimizing the sum of squared residuals (SSR) between the experimentally measured and simulated
356 isotopic labeling patterns and measured external rates, using a Levenberg-Marquardt optimization
357 algorithm⁶⁴. Each flux estimation was repeated a minimum of 100 times from random initial values to
358 find best-fit estimates. All results were subjected to a χ^2 -statistical test for goodness-of-fit and the 95%
359 confidence intervals were computed for all estimated fluxes using two independent methods. A parameter
360 continuation method was used to evaluate the sensitivity of SSR to flux variations⁶⁵. A Monte Carlo
361 method was used to estimate flux distributions based on 3,000 sets of external flux measurements and
362 MID data perturbed by normally distributed noise with the measured SD. The parameter continuation and
363 Monte Carlo simulations were computed in parallel using a high-performance computing environment
364 (Institute for Cyber-Enabled Research at Michigan State University) and a cloud computing environment
365 (Microsoft Azure). The cloud-based workflow to run the Monte Carlo simulations can be found at
366 https://github.com/codexf/MFA_Cloud_Computing.

367 **Estimating photorespiratory C export using CO₂ response of A.** *A/C_c* curves were measured with a LI-
368 6800 at a light intensity of 1000 μmol photon $\text{m}^{-2} \text{s}^{-1}$ and a leaf temperature of 25 °C. The sequence of
369 reference CO₂ partial pressures was 40, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 80, 100, and 120 Pa.
370 Photosynthetic parameters, including the C exported from photorespiration as glycine (α_G) or serine (α_S),
371 were estimated from the *A/C_i* curves using the modified Farquhar, von Caemmerer and Berry (FvCB)
372 biochemical model of photosynthesis fitted against rubisco, RuBP-regeneration, triose-phosphate use
373 limitations, α_G and (α_S)^{15,66,67}. Data and custom scripts can be found at
374 https://github.com/codexf/Modeling_Photosynthesis.

375 **Transient response of A to changes in O₂ mole fraction.** Dynamic photosynthesis was recorded using a
376 LI-6800 with 2-s intervals. The leaves were illuminated (100 μmol $\text{m}^{-2} \text{s}^{-1}$) in 40 Pa CO₂ levels (CO₂
377 injector manually controlled) with either high O₂ (40% O₂ / 60% N₂) or low O₂ (2% O₂ / 98% N₂). When

378 the steady-state rate of A had been achieved, the cuvette was switched to low or high O₂ and leaves were
379 left to reach a new steady-state rate of A . The time course data were fitted using one-phase exponential
380 functions and the integrated area between the fitted curve and the baseline of the new steady-state A was
381 calculated to estimate the total C lag during the transients. Data and custom scripts can be found at
382 https://github.com/codexf/Modeling_Photosynthesis.

383

384 **Data availability**

385 All data used in this study are provided as Supporting Information of the article or available upon request.
386 Gas exchange data for modeling the photosynthetic responses to carbon dioxide concentration and
387 photosynthetic responses during oxygen transients can be found on GitHub at
388 https://github.com/codexf/Modeling_Photosynthesis.

389

390 **Code availability**

391 Custom scripts for modeling the photosynthetic responses to carbon dioxide concentration and
392 photosynthetic responses during oxygen transients can be found on GitHub at
393 https://github.com/codexf/Modeling_Photosynthesis. A cloud-based workflow to run the Monte Carlo
394 simulations for computing confidence intervals of metabolic fluxes can be found on GitHub at
395 https://github.com/codexf/MFA_Cloud_Computing.

396

397 **Acknowledgements**

398 We thank Aikaari Ryce at Michigan State University (MSU) for experimental assistance; Thomas D.
399 Sharkey (MSU) for providing lab space and guidance for performing the ¹⁴CO₂ labeling experiments;
400 Yuan Xu and Yair Shachar-Hill (MSU) for helpful discussions on INST-MFA; James Klug and Cody
401 Keilen (MSU Growth Chamber Facility) for plant maintenance; A. Daniel Jones, Lijun Chen, and Casey
402 Johnny (MSU Mass Spectrometry and Metabolomics Core Facility) for advising metabolomics analyses;
403 Patrick Bills (MSU IT Services), Xiaoge Wang, and Mahmoud Parvizi (MSU Institute for Cyber-Enabled
404 Research) for consulting on cloud computing and high-performance computing. The computational work
405 was supported in part through the high-performance computing cluster and services provided by the
406 Institute for Cyber-Enabled Research at MSU. The computational work was also supported in part
407 through MSU's Institute for Cyber-Enabled Research Cloud Computing Fellowship, with computational

408 resources and services provided by Information Technology Services and the Office of Research and
409 Innovation at MSU. We also thank Jamey Young for making INCA accessible and Hilary Stewart
410 Williams for help establishing the online isotope analysis system. This work was supported by the U.S.
411 Department of Energy Office of Science, Basic Energy Sciences under Award DE- FG02-91ER20021
412 (BJW, XF, and SEW). This material is also based upon work supported in part by the Great Lakes
413 Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and
414 Environmental Research under Award Number DE-SC0018409 (BJW) and the National Science
415 Foundation under Grant No. 2030337 (BJW and LMG). We also thank the constructive feedback from
416 three anonymous reviewers, which greatly increased the quality and strength of this work.

417

418 **Author contributions**

419 BJW and XF designed the experiments. XF carried out the bulk of the experiments and analyzed the
420 results. SEW advised and assisted the $^{14}\text{CO}_2$ experiments to measure starch and sucrose partitioning. LG
421 performed the isotope analysis to measure gas exchange parameters. XF wrote the manuscript with
422 contributions from all the authors. BJW serves as the author responsible for contact and ensures
423 communication.

424

425 **Competing interests**

426 The authors declare no competing interests.

427

428 **Figure legends**

429 Fig. 1: Central carbon assimilatory metabolic fluxes in tobacco leaves exposed to varying O_2 conditions.
430 Fluxes were estimated by ^{13}C INST-MFA using the metabolic network model and experimental inputs
431 including mass isotopologue distributions of measured metabolites, the net CO_2 assimilation rate, rates of
432 rubisco carboxylation and oxygenation, rates of starch and sucrose synthesis, and output flux ratios of
433 amino acids and sucrose. Best-fit flux estimates are shown in numbers and corresponding variable width
434 of arrows. Arrows in blue indicate reactions constrained (not fixed) based on the experimental
435 measurements (Supplementary Table 1). Flux units are expressed as $\mu\text{mol molecule g}^{-1} \text{ FW hr}^{-1}$ (for the
436 conversion to $\mu\text{mol carbon g}^{-1} \text{ FW hr}^{-1}$, multiply the presented values by the number of carbons in the
437 molecule). Metabolites compartmentalized to the plastid and cytosol are denoted by (“.p”) and (“.c”)
438 respectively. Abbreviations are shown in Supplementary Data 7.

439 Fig. 2: The response of A to the chloroplastic CO_2 concentration (Cc) in tobacco leaves exposed to 21%
440 O_2 under high light ($1000 \mu\text{mol m}^{-2} \text{s}^{-1}$). Measured A are presented as dots with error bars (mean \pm SD, n
441 = 9 biologically independent leaves) fitted with the modified Farquhar, von Caemmerer and Berry
442 (FvCB) biochemical model of photosynthesis with two terms α_G and α_S , where α_G is the proportion of the
443 carbon exported from the photorespiratory pathway as glycine, and α_S the proportion of the carbon
444 exported from photorespiration as serine (see Method section: *Estimating photorespiratory C export*
445 *using CO_2 response of A*). The parameter values obtained from the individual fits are shown as mean \pm
446 SD (n = 9 biologically independent leaves), including the maximum rubisco carboxylation rate (V_{cmax}),
447 the maximum rate of electron transport (J), the rate of triose phosphate export from the chloroplast (T_p),
448 α_G and α_S . The curves represent Rubisco (red), RuBP (green), and TPU (orange) limitation.

449 Fig. 3: Metabolic pool size alterations in response to photorespiratory conditions. Tobacco leaves were
450 exposed to the three O_2/N_2 conditions (all at 40 Pa $^{12}\text{CO}_2$ levels) in the LI-6800 cuvette for 30 min until
451 quenching with liquid nitrogen under illumination. Leaves acclimated to 2% O_2 and 40% O_2 were
452 compared to the ambient O_2 condition respectively and the steady-state pool sizes of the identified
453 metabolites (plotted on the y-axis) were determined using GC-MS and LC-MS/MS. The x-axis plots the
454 log₂-transformed relative ratio of abundance of each metabolite in the leaves exposed to 2% O_2 (blue) or
455 40% O_2 (red) normalized to the same metabolite in the leaves exposed to 21% O_2 . Results are presented as
456 dots with error bars (mean \pm SEM, n = 7 or 8 biologically independent leaves). Asterisk represents a
457 significant difference between two conditions (Benjamini-Hochberg procedure was used to control the
458 false discovery rate at 0.05 for multiple *t*-tests including all metabolites). Supplementary Data 5 presents
459 the absolute concentration of each metabolite under different oxygen conditions with the results of one-
460 way ANOVA followed by Tukey's test for multiple pairwise comparisons among the three oxygen
461 conditions per metabolite. Abbreviations of metabolites are shown in Supplementary Data 7.

462 Fig. 4: Active and inactive pools of glycine at varying O_2 levels. Tobacco leaves were exposed to the
463 three O_2/N_2 conditions (all at 40 Pa $^{12}\text{CO}_2$ levels) in the LI-6800 cuvette for 30 min until quenching with
464 liquid nitrogen under illumination. Steady-state pool sizes of glycine were determined using GC-MS. The
465 proportion of active (gray) and inactive (white) pools of glycine were estimated using the dilution
466 parameters in INST-MFA modeling. Data are presented as box plots (center line at the median, upper
467 bound at 75th percentile, lower bound at 25th percentile) with whiskers extended to the extreme data
468 point $\leq 1.5 \times$ interquartile range from the edge of the box (n = 7 or 8 biologically independent leaves).
469 Different letters above the data boxes denote statistically significant differences among the three
470 conditions for active glycine pools (uppercase letters) and inactive glycine pools (lowercase letters) at $P <$
471 0.05 (one-way ANOVA followed by Tukey's test for multiple pairwise comparisons). For active glycine

472 pools, the P values for Tukey multiple comparisons of means are 0.0006 (2% O₂ - 21% O₂), <0.0001
473 (2% O₂ - 40% O₂), and 0.0042 (21% O₂ - 40% O₂). For inactive glycine pools, the P values for Tukey
474 multiple comparisons of means are 0.0260 (2% O₂ - 21% O₂), 0.0138 (2% O₂ - 40% O₂), and 0.9511
475 (21% O₂ - 40% O₂).

476 Fig. 5: Dynamics of net CO₂ assimilation rate (*A*) during oxygen transients from 2% O₂ to 40% O₂ (a) and
477 from 40% O₂ to 2% O₂ (b). The leaves were acclimated in a LI-6800 cuvette at low O₂ or high O₂ for 30
478 min to reach the photosynthetic steady-state. Upon switching to the opposite oxygen condition, *A* changed
479 drastically due to slow gas mixing and returned to the previous steady state within ~10 s. The time when
480 the previous steady state was reached after switching oxygen was set to zero for the convenience of curve
481 fitting. Data points of different colors correspond to independent time-course measurements on ten
482 different plants. Lines of different colors represent the fitted curves of a one-phase exponential function
483 for individual replicates. Integrated area between the fitted curve and the baseline of new steady state for
484 a represented replicate is presented in the inserts. The integrated area obtained from the ten individual fits
485 are shown as mean ± SD (n = 10 biologically independent leaves).

486 **References**

1. Walker, B. J., Kramer, D. M., Fisher, N. & Fu, X. Flexibility in the energy balancing network of photosynthesis enables safe operation under changing environmental conditions. *Plants* **9**, (2020).
2. Bauwe, H., Hagemann, M. & Fernie, A. R. Photorespiration: players, partners and origin. *Trends Plant Sci.* **15**, 330–336 (2010).
3. Bauwe, H., Hagemann, M., Kern, R. & Timm, S. Photorespiration has a dual origin and manifold links to central metabolism. *Curr. Opin. Plant Biol.* **15**, 269–275 (2012).
4. Hanson, A. D. & Roje, S. One-carbon metabolism in higher plants. *Annu. Rev. Plant Biol.* **52**, 119–137 (2001).
5. Bloom, A. J. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. *Photosynth. Res.* **123**, 117–128 (2015).
6. Tcherkez, G. *et al.* Respiratory metabolism of illuminated leaves depends on CO₂ and O₂ conditions. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 797–802 (2008).
7. Rachmilevitch, S., Cousins, A. B. & Bloom, A. J. Nitrate assimilation in plant shoots depends on photorespiration. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 11506–11510 (2004).
8. Bloom, A. J., Burger, M., Asensio, J. S. R. & Cousins, A. B. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and arabidopsis. *Science (80-.).* **328**, 899–903 (2010).
9. Cotrufo, M. F., Ineson, P. & Scott, A. Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Glob. Chang. Biol.* **4**, 43–54 (1998).
10. Abadie, C., Blanchet, S., Carroll, A. & Tcherkez, G. Metabolomics analysis of postphotosynthetic effects of gaseous O₂ on primary metabolism in illuminated leaves. *Funct. Plant Biol.* **44**, 929–940 (2017).
11. Tcherkez, G. *et al.* Short-term effects of CO₂ and O₂ on citrate metabolism in illuminated leaves. *Plant, Cell Environ.* **35**, 2208–2220 (2012).
12. Hodges, M. *et al.* Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. *Journal of Experimental*

513 13. *Botany* vol. 67 3015–3026 (2016).

514 13. Harley, P. C. & Sharkey, T. D. An improved model of C3 photosynthesis at high CO₂: Reversed O₂
515 sensitivity explained by lack of glycerate reentry into the chloroplast. *Photosynth. Res.* **27**, 169–
516 178 (1991).

517 14. Busch, F. A. & Sage, R. F. The sensitivity of photosynthesis to O₂ and CO₂ concentration identifies
518 strong Rubisco control above the thermal optimum. *New Phytol.* **213**, 1036–1051 (2017).

519 15. Busch, F. A., Sage, R. F. & Farquhar, G. D. Plants increase CO₂ uptake by assimilating nitrogen via
520 the photorespiratory pathway. *Nat. Plants* **4**, 46–54 (2018).

521 16. McClain, A. M. & Sharkey, T. D. Triose phosphate utilization and beyond: From photosynthesis to
522 end product synthesis. *J. Exp. Bot.* **70**, 1755–1766 (2019).

523 17. Eisenhut, M. *et al.* Photorespiration is crucial for dynamic response of photosynthetic
524 metabolism and stomatal movement to altered CO₂ availability. *Mol. Plant* **10**, 47–61 (2017).

525 18. Timm, S. *et al.* High-to-low CO₂ acclimation reveals plasticity of the photorespiratory pathway
526 and indicates regulatory links to cellular metabolism of Arabidopsis. *PLoS One* **7**, e42809 (2012).

527 19. Wingler, A. *et al.* The role of photorespiration during drought stress: An analysis utilizing barley
528 mutants with reduced activities of photorespiratory enzymes. *Plant, Cell Environ.* **22**, 361–373
529 (1999).

530 20. Abadie, C., Bathellier, C. & Tcherkez, G. Carbon allocation to major metabolites in illuminated
531 leaves is not just proportional to photosynthesis when gaseous conditions (CO₂ and O₂) vary.
532 *New Phytol.* **218**, 94–106 (2018).

533 21. Abadie, C., Boex-Fontvieille, E. R. A., Carroll, A. J. & Tcherkez, G. In vivo stoichiometry of
534 photorespiratory metabolism. *Nat. plants* **2**, 15220 (2016).

535 22. Abadie, C. & Tcherkez, G. ¹³C isotope labelling to follow the flux of photorespiratory
536 intermediates. *Plants* **10**, 1–12 (2021).

537 23. Bao, H. *et al.* Catalase protects against nonenzymatic decarboxylations during photorespiration in
538 *Arabidopsis thaliana*. *Plant Direct* **5**, (2021).

539 24. Tcherkez, G. *et al.* Leaf day respiration: low CO₂ flux but high significance for metabolism and
540 carbon balance. *New Phytol.* **216**, 986–1001 (2017).

541 25. Szecowka, M. *et al.* Metabolic fluxes in an illuminated *Arabidopsis* rosette. *Plant Cell* **25**, 694–714
542 (2013).

543 26. Ma, F., Jazmin, L. J., Young, J. D. & Allen, D. K. Isotopically nonstationary ¹³C flux analysis of
544 changes in *Arabidopsis thaliana* leaf metabolism due to high light acclimation. *Proc. Natl. Acad.
545 Sci. U. S. A.* **111**, 16967–16972 (2014).

546 27. Abadie, C., Lalande, J., Limami, A. M. & Tcherkez, G. Non-targeted ¹³C metabolite analysis
547 demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary.
548 *Plant Cell Environ.* **44**, 445–457 (2021).

549 28. Cegelski, L. & Schaefer, J. NMR determination of photorespiration in intact leaves using in vivo
550 ¹³CO₂ labeling. *J. Magn. Reson.* **178**, 1–10 (2006).

551 29. Dirks, R. C., Singh, M., Potter, G. S., Sobotka, L. G. & Schaefer, J. Carbon partitioning in soybean
552 (*Glycine max*) leaves by combined ¹¹C and ¹³C labeling. *New Phytol.* **196**, 1109–1121 (2012).

553 30. Ratcliffe, R. G. & Shachar-Hill, Y. Measuring multiple fluxes through plant metabolic networks.
554 *Plant J.* **45**, 490–511 (2006).

555 31. Chu, K. L. *et al.* Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in
556 mature tobacco leaves. *Metab. Eng.* **69**, 231–248 (2022).

557 32. Treves, H. *et al.* Carbon flux through photosynthesis and central carbon metabolism show distinct
558 patterns between algae, C3 and C4 plants. *Nat. Plants* **8**, 78–91 (2022).

559 33. Xu, Y., Fu, X., Sharkey, T. D., Shachar-Hill, Y. & Walker, B. J. The metabolic origins of non-
560 photorespiratory CO₂ release during photosynthesis: A metabolic flux analysis. *Plant Physiol.*

561 186, 297–314 (2021).

562 34. Xu, Y., Wieloch, T., Kaste, J. A. M., Shachar-Hill, Y. & Sharkey, T. D. Reimport of carbon from
563 cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling
564 anomalies. *Proc. Natl. Acad. Sci. U. S. A.* **119**, (2022).

565 35. Sharkey, T. D., Berry, J. A. & Raschke, K. Starch and sucrose synthesis in *Phaseolus vulgaris* as
566 affected by light, CO₂, and abscisic acid. *Plant Physiol.* **77**, 617–620 (1985).

567 36. Cegelski, L. & Schaefer, J. Glycine metabolism in intact leaves by in vivo¹³C and ¹⁵N labeling. *J.*
568 *Biol. Chem.* **280**, 39238–39245 (2005).

569 37. Heinemann, B., Künzler, P., Eubel, H., Braun, H. P. & Hildebrandt, T. M. Estimating the number of
570 protein molecules in a plant cell: protein and amino acid homeostasis during drought. *Plant*
571 *Physiol.* **185**, 385–404 (2021).

572 38. Madore, M. & Grodzinski, B. Effect of oxygen concentration on ¹⁴C-photoassimilate transport
573 from leaves of *Salvia splendens* L. *Plant Physiol.* **76**, 782–786 (1984).

574 39. Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. Sulfur assimilation in photosynthetic
575 organisms: Molecular functions and regulations of transporters and assimilatory enzymes. *Annu.*
576 *Rev. Plant Biol.* **62**, 157–184 (2011).

577 40. Radwanski, E. R. & Last, R. L. Tryptophan biosynthesis and metabolism: Biochemical and
578 molecular genetics. *Plant Cell* **7**, 921–934 (1995).

579 41. Ros, R., Muñoz-Bertomeu, J. & Krueger, S. Serine in plants: Biosynthesis, metabolism, and
580 functions. *Trends Plant Sci.* **19**, 564–569 (2014).

581 42. Noctor, G., Arisi, A. C. M., Jouanin, L. & Foyer, C. H. Photorespiratory glycine enhances
582 glutathione accumulation in both the chloroplastic and cytosolic compartments. *J. Exp. Bot.* **50**,
583 1157–1167 (1999).

584 43. Foyer, C. H., Bloom, A. J., Queval, G. & Noctor, G. Photorespiratory metabolism: Genes, mutants,
585 energetics, and redox signaling. *Annu. Rev. Plant Biol.* **60**, 455–484 (2009).

586 44. Gauthier, P. P. G. *et al.* In folio isotopic tracing demonstrates that nitrogen assimilation into
587 glutamate is mostly independent from current CO₂ assimilation in illuminated leaves of *Brassica*
588 *napus*. *New Phytol.* **185**, 988–999 (2010).

589 45. Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P. & Brutnell, T. P. High glycolate oxidase
590 activity is required for survival of maize in normal air. *Plant Physiol.* **149**, 195–204 (2009).

591 46. Fu, X. & Walker, B. J. Dynamic response of photorespiration in fluctuating light environments. *J.*
592 *Exp. Bot.* (2022) doi:<https://doi.org/10.1093/jxb/erac335>.

593 47. Hitz, W. D. & Stewart, C. R. Oxygen and carbon dioxide effects on the pool size of some
594 photosynthetic and photorespiratory intermediates in soybean (*Glycine max* [L.] Merr.). *Plant*
595 *Physiol.* **65**, 442–446 (1980).

596 48. Flügel, F. *et al.* The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis
597 and starch accumulation in *Arabidopsis*. *Plant Cell* **29**, 2537–2551 (2017).

598 49. Anderson, L. E. Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate isomerases.
599 *BBA - Enzymol.* **235**, 237–244 (1971).

600 50. Campbell, W. J. & Ogren, W. L. Glyoxylate inhibition of ribulosebisphosphate
601 carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts. *Photosynth.*
602 *Res.* **23**, 257–268 (1990).

603 51. Gonzalez-Moro, B., Lacuesta, M., Becerril, J. M., Gonzalez-Murua, C. & Munoz-Rueda, A.
604 Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in
605 maize. *J. Plant Physiol.* **150**, 388–394 (1997).

606 52. Kelly, G. J. & Latzko, E. Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate.
607 *FEBS Lett.* **68**, 55–58 (1976).

608 53. South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways

609 stimulate crop growth and productivity in the field. *Science (80-.)*. **363**, (2019).

610 54. Timm, S. *et al.* Serine acts as a metabolic signal for the transcriptional control of
611 photorespiration-related genes in *Arabidopsis*. *Plant Physiol.* **162**, 379–389 (2013).

612 55. Schimkat, D., Heineke, D. & Heldt, H. W. Regulation of sedoheptulose-1,7-bisphosphatase by
613 sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in
614 spinach chloroplasts. *Planta* **181**, 97–103 (1990).

615 56. Heineke, D., Bykova, N., Gardeström, P. & Bauwe, H. Metabolic response of potato plants to an
616 antisense reduction of the P-protein of glycine decarboxylase. *Planta* **212**, 880–887 (2001).

617 57. Timm, S. *et al.* Glycine decarboxylase controls photosynthesis and plant growth. *FEBS Lett.* **586**,
618 3692–3697 (2012).

619 58. López-Calcagno, P. E. *et al.* Overexpressing the H-protein of the glycine cleavage system increases
620 biomass yield in glasshouse and field-grown transgenic tobacco plants. *Plant Biotechnol. J.* **17**,
621 141–151 (2019).

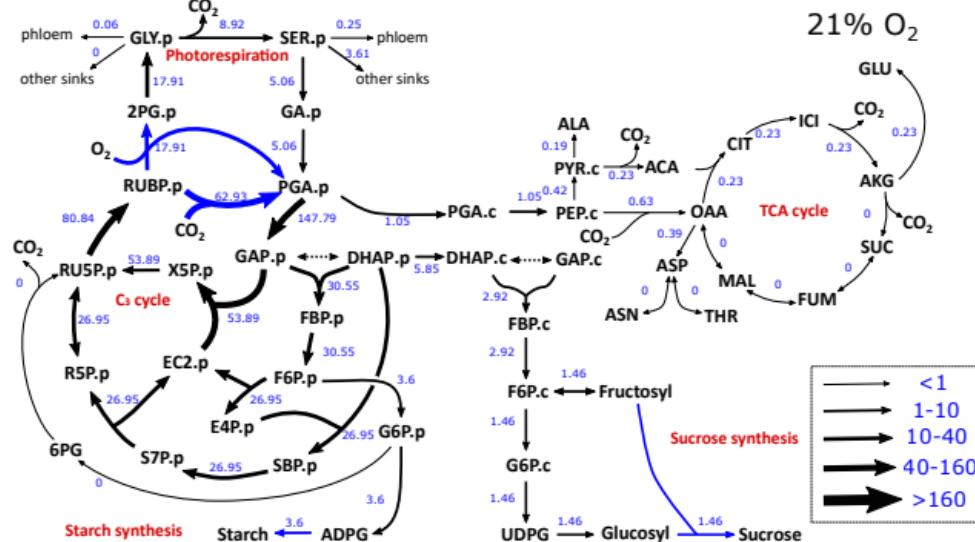
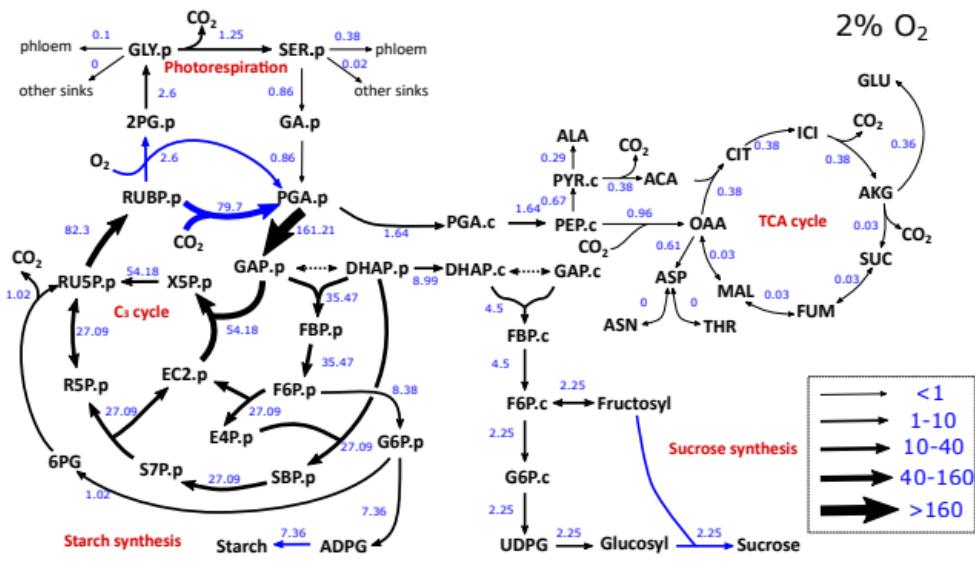
622 59. Bykova, N. V., Møller, I. M., Gardeström, P. & Igamberdiev, A. U. The function of glycine
623 decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its
624 reaction products. *Mitochondrion* **19**, 357–364 (2014).

625 60. da Fonseca-Pereira, P. *et al.* Thioredoxin h2 contributes to the redox regulation of mitochondrial
626 photorespiratory metabolism. *Plant Cell Environ.* **43**, 188–208 (2020).

627 61. Reinholdt, O. *et al.* Redox-regulation of photorespiration through mitochondrial thioredoxin O1.
628 *Plant Physiol.* **181**, 442–457 (2019).

629 62. Eisenhut, M., Pick, T. R., Bordych, C. & Weber, A. P. M. Towards closing the remaining gaps in
630 photorespiration - the essential but unexplored role of transport proteins. *Plant Biol.* **15**, 676–
631 685 (2013).

632 63. Young, J. D. INCA: A computational platform for isotopically non-stationary metabolic flux
633 analysis. *Bioinformatics* **30**, 1333–1335 (2014).



634 64. Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary
635 metabolite unit (EMU) based method of isotopically nonstationary flux analysis. *Biotechnol.*
636 *Bioeng.* **99**, 686–699 (2008).

637 65. Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Determination of confidence intervals of
638 metabolic fluxes estimated from stable isotope measurements. *Metab. Eng.* **8**, 324–337 (2006).

639 66. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO₂
640 assimilation in leaves of C3 species. *Planta* **149**, 78–90 (1980).

641 67. Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon
642 dioxide response curves for C3 leaves. *Plant, Cell Environ.* **30**, 1035–1040 (2007).

643

1 **Integrated flux and pool size analysis in plant central metabolism reveals unique roles of glycine
2 and serine during photorespiration**

3 Authors: Xinyu Fu¹, Luke M. Gregory^{1,2}, Sean E. Weise¹, Berkley J. Walker^{1,2*}

4

5 ¹ Michigan State University-Department of Energy Plant Research Laboratory, Michigan State
6 University, East Lansing, MI 48824, USA

7 ² Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA

8 *Correspondence to: Berkley Walker, berkley@msu.edu

9

10 **Abstract**

11 Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that
12 responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from
13 oxygenation reactions catalyzed by rubisco back into the C₃ cycle, but it is unclear what proportions of its
14 nitrogen-containing intermediates (glycine and serine) are exported into other metabolisms *in vivo* and
15 how these pool sizes affect net CO₂ gas exchange during photorespiratory transients. To address this
16 uncertainty, we measured rates of amino acid export from photorespiration using isotopically
17 nonstationary metabolic flux analysis. This analysis revealed that ~23-41% of the photorespiratory carbon
18 was exported from the pathway as serine under various photorespiratory conditions. Furthermore, we
19 determined that the build-up and relaxation of glycine pools constrained a large portion of photosynthetic
20 acclimation during photorespiratory transients. These results reveal the unique and important roles of
21 glycine and serine in successfully maintaining various photorespiratory fluxes that occur under
22 environmental fluctuations in nature and providing carbon and nitrogen for metabolism.

23 **Main**

24 In C₃ plants, photorespiration is a high-flux metabolic pathway that recycles the inhibitory 2-
25 phosphoglycolate (2PG) produced from the oxygenation reaction catalyzed by ribulose-1,5-bisphosphate
26 carboxylase-oxygenase (rubisco). The recycling of 2PG to the C₃ intermediate, 3-phosphoglycerate
27 (3PGA) involves a series of energy-consuming reactions across multiple organelles ^{1,2}. Upon cursory
28 consideration, photorespiration is often viewed as a wasteful process, because the conversion from
29 glycine to serine releases a large amount of CO₂ and ammonia, the former is released from
30 photorespiration and the latter is re-assimilated with high-energy cost. However, besides the beneficial
31 removal of 2PG, photorespiration also plays a vital role in central metabolism due to its close interaction
32 with many other pathways, especially nitrate assimilation ³⁻⁶. Although the interaction between
33 photorespiration and nitrate assimilation is not mechanistically clear, nitrate assimilation depends to some
34 degree on photorespiration ^{5,7}. For example, plants grown under elevated CO₂ partial pressures with
35 decreased photorespiration have decreased nitrate assimilation into organic nitrogen (N) compounds and
36 total N concentration of plant tissues ^{8,9}. Additionally, the major route of ammonia assimilation, glutamate
37 synthesis, increases as photorespiration increases possibly not only facilitating increased rates of
38 ammonia recapture from photorespiration but also increased rates of *de novo* nitrate assimilation ^{10,11}.

39 The mechanism linking photorespiration to nitrate assimilation could be related to the export of N-rich
40 amino acids from photorespiration. Due to the high metabolic flux channeled through photorespiration,
41 even small changes in photorespiratory flux could affect the flux distribution through central carbon (C)
42 and N metabolism. The extent to which photorespiration operates as a closed cycle to regenerate 3-PGA
43 for the C₃ cycle or as an open cycle allowing metabolite export to interacting metabolisms remains
44 unknown ¹². Exporting glycine and serine from photorespiration into non-photorespiratory metabolism
45 (e.g., protein synthesis, providing amino groups to alternative metabolic processes or transport) instead of
46 returning their C to the chloroplast as 3PGA additionally affects the CO₂ loss and the energy costs
47 associated with recycling of 2PG into 3PGA.

48 Evidence for a fraction of photorespiratory C exported from photorespiration as glycine and/or serine is
49 revealed in biochemical modeling of leaf photosynthesis ¹³. The export of photorespiratory C as amino
50 acids can explain the decreased rates of net CO₂ assimilation (*A*) in response to CO₂ and O₂ at high CO₂
51 partial pressures, typically 2-4 times ambient conditions and saturating illumination ¹³. In this paper we
52 define glycine and serine export as amino acids that leave photorespiratory metabolism, this includes
53 amino acids that leave the leaf entirely, as in phloem exudate, but also to amino acids that leave
54 photorespiration to participate in non-photorespiratory metabolism in the same leaf tissue. The fraction of
55 photorespiratory C exported as amino acids estimated using photosynthetic models ranges between 0.3-

56 0.77 under the high CO₂ partial pressures where this approach can be used, with serine being the primary
57 amino acid exported ^{14,15}. Exporting glycine and serine from photorespiration increases photosynthesis at
58 high CO₂ partial pressures when carbon assimilation is limited by the availability of inorganic phosphate
59 in the chloroplast ¹⁶.

60 Exporting glycine and serine from photorespiration is also coupled to the N flux to these amino acids.
61 Specifically, this N flux out of photorespiration in the form of amino acids must be supplemented by
62 increasing the *de novo* assimilation of N to replace the amino groups required for glyoxylate amination to
63 glycine, potentially explaining why the estimated fraction of amino acid export increases with increasing
64 NO₃⁻ availability ¹⁵. Despite this compelling evidence for serine and glycine export under high CO₂
65 partial pressures when photorespiration is limited, it is unclear if high rates of amino acid export happen
66 under more physiologically relevant CO₂ partial pressures and forms a regular component of central
67 metabolism under more typical growing conditions. C export from photorespiration also raises interesting
68 questions concerning the functional importance of photorespiration, since this export would not replenish
69 C lost from the C₃ cycle following rubisco oxygenation.

70 Another uncertainty of photorespiration is the speed of its metabolic response and subsequent impact on
71 *A*. Photorespiration is a dynamic process, responding to *A*, stomatal conductance, and light regimes.
72 However, it is mostly investigated under steady-state conditions by comparing the metabolomic profile
73 and physiology following different environmental and genetic perturbations ¹⁷⁻¹⁹. Under non-steady-state
74 conditions, amounts of photorespiratory intermediates are sensitive to photorespiratory conditions both in
75 the long- and short-term ¹⁷⁻¹⁹. Photorespiratory intermediates additionally accumulate during transient
76 changes in rubisco oxygenation rate or when downstream photorespiratory reactions are not
77 stoichiometrically balanced ²⁰⁻²⁴. When photorespiratory intermediates upstream of the glycine
78 decarboxylase (GDC) reaction like glycine accumulate, the CO₂ release per rubisco oxygenation should
79 decrease proportionally, increasing subsequent *A* during this accumulation. Despite this theoretical
80 underpinning, it is not clear if the change in glycine pools is large enough to affect *A* to a measurable
81 degree during transients in photorespiratory rates.

82 The use of isotopic tracers and metabolic flux analysis (MFA) are powerful tools to resolve how
83 metabolism responds to environmental changes ^{25,26}. For example, isotopic labeling with ¹³CO₂ in
84 combination with varied CO₂ and/or O₂ mole fraction has been commonly used to infer the impact of
85 photorespiration on leaf C metabolism. Under different CO₂/O₂ conditions, distinct ¹³C labeling
86 enrichment has been observed in many primary and specialized metabolites ^{20,27}, as well as proteins ^{28,29}.
87 These studies were usually performed at isotopic pseudo-steady state with a single time-point, which does
88 not allow flux quantification in autotrophic metabolism ³⁰. Recent development of isotopically

89 nonstationary metabolic flux analysis (INST-MFA) more fully leverages the benefits of $^{13}\text{CO}_2$ labeling to
90 provide a global assessment of C fluxes through autotrophic leaf metabolism^{26,31-34}. INST-MFA is
91 therefore a promising approach for estimating fluxes and metabolic responses to changes in
92 photorespiratory rates *in vivo*.

93 Here, INST-MFA was applied to examine the C fluxes through and out of the photorespiratory pathway
94 under different photorespiratory conditions manipulated by the O₂ mole fraction. This INST-MFA
95 analysis gave a quantitative estimate of serine and glycine exported from photorespiration under steady-
96 state conditions at ambient CO₂ partial pressures, which agreed with estimates made under high CO₂
97 partial pressures using estimates from CO₂ response curves. Metabolite pool size measurements of 38
98 central metabolites showed that glycine had the strongest changes in response to photorespiratory shifts.
99 We also determined that changes in glycine concentration were large enough to explain 20-30% of the
100 gain in net CO₂ assimilation when transitioning from low to high photorespiratory conditions.

101

102 **Results**

103 **Isotopically Nonstationary Metabolic Flux Analysis**

104 To estimate C flux distribution on central metabolism, transient ^{13}C labeling experiments were performed
105 on fully expanded *Nicotiana tabacum* (tobacco) leaves after short-term acclimation to three O₂ conditions
106 (2%, 21%, and 40%). The labeling experiments were carried out at the same irradiance as the growth
107 chamber (100 $\mu\text{mol m}^{-2} \text{s}^{-1}$) to minimize changes in metabolism due to light acclimation. Metabolic
108 fluxes through central metabolism were determined from a metabolic network model (Supplementary
109 Data 1), mass isotopologue distributions (MIDs) during the transient labeling period (Supplementary Data
110 2), and measured input and output fluxes to constrain the flux solutions. The independently determined
111 input and output fluxes used to constrain the flux solution included the *A*, rubisco oxygenation rate (v_o),
112 rubisco carboxylation rate (v_c), starch and sucrose production rates, and output flux ratios of amino acids
113 and sucrose measured in vascular exudate (Supplementary Table 1 and 2 and Supplementary Method 1-
114 4). INST-MFA was performed under the assumption that the metabolism is steady-state (Supplementary
115 Method 4 with steady-state assumption validated below). The selection of labeling data for INST-MFA
116 modeling and tests for several network models are described in Supplementary Method 4. A subset of key
117 measured labeling data and the labeling kinetics simulated by the best-fit INST-MFA flux values are
118 shown in Supplementary Figure 1 and the detailed fits of the best-fit models are shown in Supplementary
119 Data 3.

120 Manipulating O₂ condition had a large and significant effect on ν_o (2.60-26.37 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$) and a
121 smaller but significant effect on ν_c (53.36-79.70 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$, Fig. 1, 95% confidence intervals of the
122 best-fit fluxes are shown in Supplementary Figure 2 and 3 and Supplementary Data 4). The rate of starch
123 and sucrose synthesis decreased significantly with increasing rates of photorespiration (Fig. 1 and
124 Supplementary Data 4). Direct measurement of the allocation of photo-assimilated C using ¹⁴CO₂
125 labelling showed that rates of starch and sucrose synthesis are strongly correlated with A (Supplementary
126 Figure 4 and Supplementary Method 2).

127 The INST-MFA revealed the export rates of photorespiratory serine and glycine from the
128 photorespiratory pathway at ambient CO₂ partial pressures (Fig. 1). The serine export rate to alternative
129 sinks increased from 3.61 to 7.02 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at high rates of photorespiration, but it decreased to
130 0.02 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at low photorespiration rates. The export of glycine to alternative sinks was less
131 than 0.01 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at three conditions, much lower than that of serine. A portion of the export of
132 amino acids from photorespiration, the removal of glycine or serine through phloem, was estimated based
133 on the output flux to phloem and the output flux ratios of amino acids and sucrose measured in vascular
134 exudate (Supplementary Table 2 and Supplementary Method 4). The removal rates of glycine or serine
135 through the phloem were small relative to the total export, between 0.03 to 0.38 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ at
136 various photorespiratory conditions (Fig. 1). The total amount of C leaving the photorespiratory pathway
137 as serine scaled with the rate of photorespiration. At high photorespiration (40% O₂), 41% of the
138 photorespiratory C influx (52.8 $\mu\text{mol C g}^{-1} \text{FW hr}^{-1}$) was exported as serine (at a rate of 21.5 $\mu\text{mol C g}^{-1}$
139 FW hr⁻¹). The percentage of photorespiratory C leaving as serine was 32% at normal photorespiration
140 (21% O₂) and 23% at low photorespiration (2% O₂). These data indicate that 23-41% of the
141 photorespiratory C could be exported from the pathway as serine under physiologically relevant CO₂
142 partial pressures. The INST-MFA model was also run with glycerate labelling data and allowing glycerate
143 export from the photorespiratory pathway. This extended model predicted that glycerate and glycine
144 export rate was slow (< 0.1 $\mu\text{mol g}^{-1} \text{FW hr}^{-1}$ in all oxygen conditions), while the serine export rate was
145 slow at low photorespiration and rose at normal and high photorespiration (<0.1, 3.7 and 7.0 $\mu\text{mol g}^{-1} \text{FW}$
146 hr⁻¹ in 2%, 21%, and 40% O₂ respectively) (see Supplemental Method 4).

147 **Estimating photorespiratory C export using CO₂ response of A**

148 The export of photorespiratory C to amino acid synthesis or alternative metabolism accounts for the
149 behavior of A at high CO₂ partial pressures in leaf photosynthesis models^{13,15}. Using this approach, we
150 estimated the fraction of C that leaves the photorespiratory pathway as glycine (α_G) and serine (α_S) using
151 the measured CO₂ response of A at ambient O₂ and high light ($\sim 1000 \mu\text{mol m}^{-2} \text{s}^{-1}$) fitted with the
152 photosynthetic model over the triose phosphate utilization (TPU)-limited range to compare to the INST-

153 MFA results (Fig. 2). The high- CO_2 portion of the curve in orange, where TPU limits CO_2 assimilation,
154 showed the characteristic curve that is only explained by amino acid removal from photorespiration^{13,35}.
155 This curvature was used to fit a resultant α_G and α_S of 0.01 and 0.45, indicating that the C flow out of
156 photorespiration was primarily in the form of serine, consistent with the estimates ($\alpha_G < 0.01$ and $\alpha_S =$
157 0.32) calculated from the INST-MFA (Fig. 1).

158 **Metabolic responses to low and high photorespiration**

159 The absolute pool sizes of 38 central metabolic intermediates were measured in tobacco leaves exposed to
160 varied photorespiratory conditions. Compared to the ambient O_2 condition, the metabolic changes at high
161 photorespiration (40% O_2) and low photorespiration (2% O_2) were modest (Fig. 3). Most metabolites had
162 insignificant changes in pool size during the short-term photorespiratory changes (Fig. 3 shows the mean
163 fold-changes of the pool size between 2% and 21% O_2 or between 40% and 21% O_2 ; Supplementary Data
164 5 shows the absolute concentrations under the three oxygen conditions). The most significantly altered
165 metabolites were photorespiratory intermediates (glycine, glycolate and glyoxylate), alanine, and ADPG
166 (Supplementary Data 5). Many photorespiratory intermediates (glycine, serine, glycerate, glycolate and
167 glyoxylate) were far from fully labelled even at high photorespiratory condition (Supplementary Figure
168 5). The average ^{13}C enrichment of these metabolites reached between 10% and 75% following 30 min of
169 $^{13}\text{CO}_2$ labeling (Supplementary Figure 5), indicating that these intermediates exist in multiple subcellular
170 pools with an active pool being involved in photorespiration and other pools (presumably in the vacuole
171²⁵) not involved in photorespiration. The active and inactive pools of glycine were estimated using the
172 measured total pool size and the dilution parameters from the INST-MFA (Supplementary Data 4 and 5).
173 The extent of changes in glycine was much greater in the active pool (15-fold) than in the total pool (4-
174 fold) (Fig. 4). These data support the steady-state assumption of INST-MFA (Supplementary Figure 6).
175 These data highlight the value of combining metabolite abundance with labeling and demonstrate the
176 principle that in many cases changes in metabolite pool size do not directly translate into flux changes.
177 For example, the pool size of 2PG was not significantly different between different oxygen conditions
178 (Fig. 3 and Supplementary Data 5), but the ^{13}C labeling kinetics of 2PG were faster in high oxygen than in
179 low oxygen (Supplementary Figure 1 and Supplementary Data 2), suggesting higher flux through rubisco
180 oxygenation. This highlights that time-dependent labeling profiles are more informative indicators for
181 flux rather than changes in pool sizes and that inferring flux from pool sizes alone can lead to inaccurate
182 interpretations.

183 **Photorespiration under non-steady state**

184 Quantifying the steady-state active pool size of glycine at low and high photorespiratory conditions
185 helped determine how much the size of glycine pools constrain net gas exchange during photorespiratory
186 transients. To do this, A during O_2 transients was measured when tobacco leaves were exposed to 2% O_2
187 until the steady-state and then switched to 40% O_2 . During the low-to-high O_2 transient, A did not
188 instantly reach a new steady state at 40% O_2 but gradually declined at an exponential rate for ~2 min until
189 the new steady-state was reached (Fig. 5). The extra C gained or lost during the transient in the decrease
190 (or increase) in A as compared to how much C would be fixed with an instant transition to the new steady
191 state was defined as the “C lag”, which can be quantified by integrating the area between the fitted curve
192 of A and a baseline of A at the new steady state (Fig. 5a). During the transition from 2% O_2 to 40% O_2 , the
193 total glycine pool increased by $30.8 \pm 2.4 \mu\text{mol m}^{-2}$ based on the differences in steady-state levels (after
194 30 min acclimation to high or low oxygen) between high and low oxygen levels (Fig 4) or 20.8 ± 6.2
195 $\mu\text{mol m}^{-2}$ based on the initial build-up of glycine pool after switching oxygen for 60 s when the gas
196 exchange transient is near complete (Supplementary Figure 7), accounting for 20-30% of the total C lag
197 ($50.4 \pm 1.7 \mu\text{mol m}^{-2}$) as the accumulated glycine would otherwise be metabolized by the downstream
198 glycine decarboxylase reaction (2 mol of glycine yielding 1 mol of CO_2). The build-up of the active
199 glycine pool based on the steady-state measurement ($25.7 \pm 3.4 \mu\text{mol m}^{-2}$, Fig 4) accounted for ~25% of
200 the total C lag. When looking at the transition from 40% O_2 to 2% O_2 , the lag in the photosynthetic
201 increase resulted in loss of C represented by the shaded area (Fig. 5b). The reduction of the active glycine
202 pool based on the steady-state measurement explained ~15% of this total C lag ($83.9 \pm 3.8 \mu\text{mol m}^{-2}$).
203 Note that the change in concentrations in response to O_2 treatment is negligible and small in other
204 metabolites upstream of glycine (i.e. 2PG, glycolate and glyoxylate, Fig. 5), further indicating glycine is
205 the primary metabolic pool impacting this transient response.

206

207 **Discussion**

208 **Impact of photorespiratory flux changes on C and N metabolism**

209 Our INST-MFA indicates that C was exported from photorespiration under ambient CO_2 partial pressures
210 as serine at high rates. The INST-MFA-estimated fraction of serine export is 0.27-0.39 (95% confidence
211 interval using the parameter continuation method) under ambient O_2 and CO_2 partial pressures
212 (Supplementary Figure 2 and Supplementary Data 4), which is close to the 95% confidence interval of the
213 value estimated using photosynthetic models fitted at high CO_2 partial pressures (0.38-0.51) (Fig. 2).
214 Given these large export rates, where do these amino acids go? Prior studies have shown that glycine is
215 incorporated into leaf protein when photorespiration is induced by low CO_2 ^{28,36}, and almost all

photorespiratory glycine is routed to protein synthesis in water-stressed soybean leaves under high light and low CO₂ partial pressure²⁹. Protein synthesis is not likely to explain all the amino acid export from photorespiration, since glycine and serine are present in similar proportions in total plant protein, but serine is exported at a much higher rate³⁷. Past work also suggests that at least some photorespiratory serine and glycine is exported out of source leaves under photorespiratory conditions as is evident by an increased labeling in serine and glycine within the petiole when source leaves were labeled with ¹⁴CO₂ under elevated O₂³⁸, but our vascular exudates indicated that removal from the leaf only accounted for a small percentage of the total amino acids exported from photorespiration. Photorespiratory glycine and serine are also required for the synthesis of various essential metabolites. For example, serine provides the carbon backbone for the synthesis of cysteine and tryptophan, which are further used to produce sulphur-containing compounds (e.g. S-adenosylmethionine) and indolic compounds (e.g. auxin and glucosinolates)^{39,40}. Serine also is an important substrate for the biosynthesis of phosphatidylserine and sphingolipid that are critical to plant development and survival⁴¹. Glycine enhances the synthesis of glutathione (γ -Glu–Cys–Gly) as suggested by previous leaf feeding experiments⁴². Taken together, these findings indicate that photorespiration is an important source of amino acids for protein and metabolite synthesis and future work should work to resolve where specifically this serine goes within metabolism.

The increased fraction of photorespiratory C exported as amino acids with increased photorespiration in this study also helps explain the mechanistic link between photorespiration and N metabolism^{5,43}. Large serine export fluxes diverted from photorespiration would need to be supplemented by equivalent *de novo* N assimilation. The *de novo* N assimilation rate would need to increase to support a higher total amount of photorespiratory C leaving as amino acids under higher photorespiratory condition. Supporting this hypothesis, plants under ambient photorespiration had ~10-30% higher N assimilation rates than those under low photorespiration (high CO₂ or low O₂)⁸. The coupling of N assimilation with photorespiration-derived glycine and serine has also been suggested from a dual labeling study with ¹³CO₂ and ¹⁵N-ammonium nitrate⁴⁴. In this 6-h labeling study, up to 50% of ¹⁵N glycine and ¹⁵N serine molecules were also ¹³C enriched, probably due to large turnover glycine and serine associated with high flux rates of photorespiration, whereas many other amino acids were only ¹⁵N-labelled because their ¹⁵N-amino groups were not fixed onto ¹³C-enriched C skeletons. Exporting glycine and serine from the photorespiratory pathway could enable plants to efficiently assimilate N onto C skeletons produced during photorespiration, also stimulating CO₂ uptake at high CO₂¹⁵.

The finding that large amounts of C leave photorespiration for other metabolisms and do not re-enter the C₃ cycle suggests some interesting hypotheses concerning the central purpose of photorespiration. Photorespiration is thought to be essential for returning C back into the C₃ cycle, but our flux values

249 indicate that only 43% returns following serine export, instead of the theoretically maximal 75% under
250 21% O₂. This rate of carbon removal is (large) relative to other fluxes in central metabolism, comprising
251 50% and 62% the C flux of starch and sucrose syntheses at 21% O₂. This indicates that the C₃ cycle is
252 resilient against carbon removal and can replenish its own intermediates even under high rates of removal
253 following rubisco oxygenation. This is not surprising given the ability for the C₃ cycle to operate even
254 under high rates of rubisco oxygenation, like what occurs under 40% O₂ or elevated temperatures.

255 Conceptually this is similar to carbon removal from the C3 cycle to other metabolisms like sucrose and
256 starch. These findings favor the hypothesis that the major roles of photorespiration are to provide C and N
257 for downstream metabolism in addition to processing inhibitory byproducts of rubisco oxygenation. This
258 would help explain why it interacts with so many other aspects of metabolism. It may also explain why
259 photorespiration is maintained in all oxygenic phototrophs, and is even essential (albeit in reduced
260 amounts) in plant species with an efficient carbon concentrating mechanism in addition to its role in
261 processing 2PG⁴⁵.

262

263 **Role of glycine in photorespiration and *A* during transients**

264 Our metabolomics analyses identified a significant correlation between photorespiratory rate and glycine
265 pool size, which is large enough to explain much of the transient response of *A* to changing
266 photorespiratory conditions. The metabolically active glycine pools inferred from the dilution parameters
267 in our INST-MFA changed 15-fold when comparing low and high photorespiration (Fig. 4). Our gas
268 exchange data showed that during the low-to-high O₂ transient, the concomitant accumulation of active
269 glycine pools that are not decarboxylated accounted for ~25% of the excess CO₂ fixed (Fig. 5a).

270 Interestingly, the relaxation of active glycine pools accounts for a slightly smaller ~15% of the excess
271 CO₂ lost during the high-low O₂ transient (Fig. 5b). These findings indicate a unique connection between
272 the accumulation of a single metabolite and the subsequent effects to *A*. Further research is needed to
273 determine what the remaining determinants of the acclimation of net assimilation between
274 photorespiratory conditions are and how well these findings translate to other changes in photorespiratory
275 rate, like under fluctuating light⁴⁶.

276 These findings support a hypothesis as to the role of glycine in photorespiration as a “safe” buffering
277 metabolite in a dynamic pathway. The biochemical structure and kinetics of photorespiration may be
278 configured to accumulate glycine so that other upstream or downstream intermediates do not change too
279 rapidly or build up to inhibitory or cytotoxic concentrations. Photorespiratory intermediates downstream
280 of glycine were not significantly changed at varying photorespiratory conditions (Fig. 3). Many other

281 studies have shown that glycine is the most drastically changed photorespiratory intermediates upon
282 photorespiratory pressures^{17,18,20,21,47}, suggesting that glycine is a well-tolerated metabolite in plant cells.
283 The build-up of glycine may also suggest that photorespiration has been optimized to delay the release of
284 ammonium until there is sufficient glutamine synthetase/glutamate synthase activity to recapture the
285 ammonium released from the GDC reaction. In contrast, other photorespiratory intermediates are riskier
286 to accumulate. For example, the cytotoxicity of 2-PG, glycolate, glyoxylate, and serine suggests tight
287 regulation of their intracellular concentrations^{45,48-52}. The toxicity of glycolate and glyoxylate may be
288 more nuanced however, since transformants expressing novel photorespiratory genes had ~3 and ~8 fold
289 higher concentrations of glycolate and glyoxylate with no obvious cytotoxic effects⁵³. In addition to these
290 cytotoxic intermediates, serine may act as a signal for the transcriptional regulation of photorespiration-
291 related genes, as external supply of serine induces transcriptional deregulation so pool sizes would need to
292 be relatively buffered to prevent a hyper-sensitivity to short-term changes in photorespiratory flux⁵⁴.
293 Furthermore, accumulated glycerate could exert a feed-back effect on photosynthesis by blocking the
294 stromal fructose-1,6-bisphosphatase⁵⁵. Of all the photorespiratory intermediates, glycine therefore
295 appears to be the most inert to metabolism and therefore a waypoint to help safely navigate dynamic
296 changes in flux.

297 The transient build-up in glycine pools when switching from low to high photorespiratory condition
298 indicates that the capacity of the downstream photorespiratory enzyme GDC may not be sufficient to
299 process large changes in glycine influx under non-steady state conditions. Limiting GDC activity even by
300 ~50% leads to a 100-fold accumulation of glycine during the day, while stimulating GDC activity leads to
301 a ~40% reduction in steady-state level of glycine^{56,57}. Moreover, upregulating GDC activity improves
302 plant performance both in the laboratory and field conditions^{57,58}, suggesting its key role in controlling
303 photorespiratory flux. While GDC is normally not limited by its substrate glycine and NAD⁺, the efficient
304 operation of GDC requires maintaining low levels of its product NADH, which may accumulate during
305 rapid changes in flux through GDC⁵⁹. The mitochondrial TRX system has been proposed to be important
306 in the redox regulation of GDC under fluctuating light, adding to its potential role under transient
307 conditions^{60,61}.

308 An additional explanation for the increase in glycine pools relative to serine during increasing
309 photorespiration is the need to maintain appropriate concentration gradients to drive transport of these
310 metabolites between the mitochondrion and peroxisome. While these transporters are not yet identified,
311 they must facilitate large fluxes and are most likely driven by concentration gradients that are
312 proportional to their fluxes⁶². Glycine flux into the mitochondria is twice as large as serine flux out since
313 the GDC/serine hydroxymethyltransferase reactions require two glycine per serine produced and

314 assuming a “closed cycle” of photorespiration. Since higher transport gradients would translate to higher
315 leaf-level pool sizes of metabolites, the differences in flux may also help explain the high build-up of
316 glycine relative to serine.

317

318 Methods

319 **Plant material.** Tobacco (*Nicotiana tabacum*) plants were grown in a growth chamber under an 18-h
320 day/6-h night photoperiod at a light intensity of 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$, day/night temperatures of 23°C/18°C,
321 and relative humidity of 60%. All experiments were performed on the fully expanded source leaves of 8-
322 week-old plants.

323 **Gas exchange and $^{13}\text{CO}_2$ labeling system.** Leaf gas exchange measurements under controlled $\text{O}_2/\text{CO}_2/\text{N}_2$
324 conditions were performed using a LI-6800 (LI-COR Biosciences, USA) with a fast atmospheric
325 switching and quenching system as described previously³³. Leaves were equilibrated and monitored in
326 the cuvette at 40 Pa $^{12}\text{CO}_2$ levels with three O_2/N_2 conditions (2% O_2 / 98% N_2 , 21% O_2 / 79% N_2 , and
327 40% O_2 / 60 % N_2), light intensity of 100 $\mu\text{mol photon m}^{-2} \text{s}^{-1}$, leaf temperature of 25 °C, and relative
328 humidity of 70%. $^{13}\text{CO}_2$ labeling was performed after 20-30 min of acclimation to reach a photosynthetic
329 steady-state. Illuminated leaves were incubated at 0, 0.5, 1, 2, 2.5, 3, 5, 7, 10, 15, and 30 min with $^{13}\text{CO}_2$ -
330 containing gas mixture ([40 Pa] $^{13}\text{CO}_2$ with each O_2/N_2 condition) before quenching. Pseudo-steady state
331 metabolism was assumed during the labeling period at each oxygen condition (Supplementary Figure 6).
332 Detailed descriptions of tissue harvesting and quenching for metabolic analyses are shown in
333 Supplementary Method 1.

334 **Metabolite labeling and concentration.** The extraction and analytical procedures for quantifying
335 metabolite labeling and concentration were similar to the method described previously³³. Gas
336 chromatography-mass spectrometry (GC-MS) was used to analyze amino acids, organic acids, and sugars.
337 Ion-pair chromatography-tandem mass spectrometry (IPC-MS/MS) was used to analyze the
338 phosphorylated intermediates in C₃ cycle. Anion exchange chromatography-tandem mass spectrometry
339 (AEC-MS/MS) was used to analyze nucleotide sugars and additional phosphorylated intermediates.
340 Detailed descriptions of the extraction and mass spectrometry analyses are shown in Supplementary
341 Method 1 and Supplementary Data 6. Abbreviations of metabolites are shown in Supplementary Data 7.

342 **Measurements of external fluxes.** Rates of starch and sucrose synthesis were measured by the steady
343 state pulse-chase labeling of $^{14}\text{CO}_2$ as described previously³⁵ with slight modifications (Supplementary
344 Method 2). Rates of rubisco carboxylation and oxygenation were calculated as described earlier using gas

345 exchange measurements², with the required biochemical and diffusional parameters experimentally
346 estimated by gas exchange and isotope analysis (see Supplementary Method 3 for details). The output
347 flux ratios of amino acids and sucrose were estimated by measuring steady-state levels of sucrose and
348 amino acids in vascular exudate as described earlier^{26,33}. Detailed descriptions of exudate collection were
349 described in Supplementary Method 1.

350 **Metabolic network and flux determination.** The network model used for flux determination was
351 modified from published reaction models^{26,33,34} (Supplementary Data 1). INST-MFA was performed
352 using the elementary metabolite unit (EMU)-based software INCA (version 1.8)⁶³ ran within MATLAB
353 2018b (Mathworks, USA). Model formulation details are described in Supplementary Method 4 and the
354 INCA model files are included in Supplementary Data 8. Metabolic fluxes were estimated by iteratively
355 minimizing the sum of squared residuals (SSR) between the experimentally measured and simulated
356 isotopic labeling patterns and measured external rates, using a Levenberg-Marquardt optimization
357 algorithm⁶⁴. Each flux estimation was repeated a minimum of 100 times from random initial values to
358 find best-fit estimates. All results were subjected to a χ^2 -statistical test for goodness-of-fit and the 95%
359 confidence intervals were computed for all estimated fluxes using two independent methods. A parameter
360 continuation method was used to evaluate the sensitivity of SSR to flux variations⁶⁵. A Monte Carlo
361 method was used to estimate flux distributions based on 3,000 sets of external flux measurements and
362 MID data perturbed by normally distributed noise with the measured SD. The parameter continuation and
363 Monte Carlo simulations were computed in parallel using a high-performance computing environment
364 (Institute for Cyber-Enabled Research at Michigan State University) and a cloud computing environment
365 (Microsoft Azure). The cloud-based workflow to run the Monte Carlo simulations can be found at
366 https://github.com/codexf/MFA_Cloud_Computing.

367 **Estimating photorespiratory C export using CO₂ response of A.** *A/C_c* curves were measured with a LI-
368 6800 at a light intensity of 1000 μmol photon $\text{m}^{-2} \text{s}^{-1}$ and a leaf temperature of 25 °C. The sequence of
369 reference CO₂ partial pressures was 40, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 80, 100, and 120 Pa.
370 Photosynthetic parameters, including the C exported from photorespiration as glycine (α_G) or serine (α_S),
371 were estimated from the *A/C_i* curves using the modified Farquhar, von Caemmerer and Berry (FvCB)
372 biochemical model of photosynthesis fitted against rubisco, RuBP-regeneration, triose-phosphate use
373 limitations, α_G and (α_S)^{15,66,67}. Data and custom scripts can be found at
374 https://github.com/codexf/Modeling_Photosynthesis.

375 **Transient response of A to changes in O₂ mole fraction.** Dynamic photosynthesis was recorded using a
376 LI-6800 with 2-s intervals. The leaves were illuminated (100 μmol $\text{m}^{-2} \text{s}^{-1}$) in 40 Pa CO₂ levels (CO₂
377 injector manually controlled) with either high O₂ (40% O₂ / 60% N₂) or low O₂ (2% O₂ / 98% N₂). When

378 the steady-state rate of A had been achieved, the cuvette was switched to low or high O_2 and leaves were
379 left to reach a new steady-state rate of A . The time course data were fitted using one-phase exponential
380 functions and the integrated area between the fitted curve and the baseline of the new steady-state A was
381 calculated to estimate the total C lag during the transients. Data and custom scripts can be found at
382 https://github.com/codexf/Modeling_Photosynthesis.

383

384 **Data availability**

385 All data used in this study are provided as Supporting Information of the article or available upon request.
386 Gas exchange data for modeling the photosynthetic responses to carbon dioxide concentration and
387 photosynthetic responses during oxygen transients can be found on GitHub at
388 https://github.com/codexf/Modeling_Photosynthesis.

389

390 **Code availability**

391 Custom scripts for modeling the photosynthetic responses to carbon dioxide concentration and
392 photosynthetic responses during oxygen transients can be found on GitHub at
393 https://github.com/codexf/Modeling_Photosynthesis. A cloud-based workflow to run the Monte Carlo
394 simulations for computing confidence intervals of metabolic fluxes can be found on GitHub at
395 https://github.com/codexf/MFA_Cloud_Computing.

396

397 **Acknowledgements**

398 We thank Aikaari Ryce at Michigan State University (MSU) for experimental assistance; Thomas D.
399 Sharkey (MSU) for providing lab space and guidance for performing the $^{14}CO_2$ labeling experiments;
400 Yuan Xu and Yair Shachar-Hill (MSU) for helpful discussions on INST-MFA; James Klug and Cody
401 Keilen (MSU Growth Chamber Facility) for plant maintenance; A. Daniel Jones, Lijun Chen, and Casey
402 Johnny (MSU Mass Spectrometry and Metabolomics Core Facility) for advising metabolomics analyses;
403 Patrick Bills (MSU IT Services), Xiaoge Wang, and Mahmoud Parvizi (MSU Institute for Cyber-Enabled
404 Research) for consulting on cloud computing and high-performance computing. The computational work
405 was supported in part through the high-performance computing cluster and services provided by the
406 Institute for Cyber-Enabled Research at MSU. The computational work was also supported in part
407 through MSU's Institute for Cyber-Enabled Research Cloud Computing Fellowship, with computational

408 resources and services provided by Information Technology Services and the Office of Research and
409 Innovation at MSU. We also thank Jamey Young for making INCA accessible and Hilary Stewart
410 Williams for help establishing the online isotope analysis system. This work was supported by the U.S.
411 Department of Energy Office of Science, Basic Energy Sciences under Award DE- FG02-91ER20021
412 (BJW, XF, and SEW). This material is also based upon work supported in part by the Great Lakes
413 Bioenergy Research Center, U.S. Department of Energy, Office of Science, Office of Biological and
414 Environmental Research under Award Number DE-SC0018409 (BJW) and the National Science
415 Foundation under Grant No. 2030337 (BJW and LMG). We also thank the constructive feedback from
416 three anonymous reviewers, which greatly increased the quality and strength of this work.

417

418 **Author contributions**

419 BJW and XF designed the experiments. XF carried out the bulk of the experiments and analyzed the
420 results. SEW advised and assisted the $^{14}\text{CO}_2$ experiments to measure starch and sucrose partitioning. LG
421 performed the isotope analysis to measure gas exchange parameters. XF wrote the manuscript with
422 contributions from all the authors. BJW serves as the author responsible for contact and ensures
423 communication.

424

425 **Competing interests**

426 The authors declare no competing interests.

427

428 **Figure legends**

429 Fig. 1: Central carbon assimilatory metabolic fluxes in tobacco leaves exposed to varying O_2 conditions.
430 Fluxes were estimated by ^{13}C INST-MFA using the metabolic network model and experimental inputs
431 including mass isotopologue distributions of measured metabolites, the net CO_2 assimilation rate, rates of
432 rubisco carboxylation and oxygenation, rates of starch and sucrose synthesis, and output flux ratios of
433 amino acids and sucrose. Best-fit flux estimates are shown in numbers and corresponding variable width
434 of arrows. Arrows in blue indicate reactions constrained (not fixed) based on the experimental
435 measurements (Supplementary Table 1). Flux units are expressed as $\mu\text{mol molecule g}^{-1} \text{ FW hr}^{-1}$ (for the
436 conversion to $\mu\text{mol carbon g}^{-1} \text{ FW hr}^{-1}$, multiply the presented values by the number of carbons in the
437 molecule). Metabolites compartmentalized to the plastid and cytosol are denoted by (“.p”) and (“.c”)
438 respectively. Abbreviations are shown in Supplementary Data 7.

439 Fig. 2: The response of A to the chloroplastic CO_2 concentration (Cc) in tobacco leaves exposed to 21%
440 O_2 under high light ($1000 \mu\text{mol m}^{-2} \text{s}^{-1}$). Measured A are presented as dots with error bars (mean \pm SD, n
441 = 9 biologically independent leaves) fitted with the modified Farquhar, von Caemmerer and Berry
442 (FvCB) biochemical model of photosynthesis with two terms α_G and α_S , where α_G is the proportion of the
443 carbon exported from the photorespiratory pathway as glycine, and α_S the proportion of the carbon
444 exported from photorespiration as serine (see Method section: *Estimating photorespiratory C export*
445 *using CO_2 response of A*). The parameter values obtained from the individual fits are shown as mean \pm
446 SD (n = 9 biologically independent leaves), including the maximum rubisco carboxylation rate (V_{cmax}),
447 the maximum rate of electron transport (J), the rate of triose phosphate export from the chloroplast (T_p),
448 α_G and α_S . The curves represent Rubisco (red), RuBP (green), and TPU (orange) limitation.

449 Fig. 3: Metabolic pool size alterations in response to photorespiratory conditions. Tobacco leaves were
450 exposed to the three O_2/N_2 conditions (all at 40 Pa $^{12}\text{CO}_2$ levels) in the LI-6800 cuvette for 30 min until
451 quenching with liquid nitrogen under illumination. Leaves acclimated to 2% O_2 and 40% O_2 were
452 compared to the ambient O_2 condition respectively and the steady-state pool sizes of the identified
453 metabolites (plotted on the y-axis) were determined using GC-MS and LC-MS/MS. The x-axis plots the
454 log₂-transformed relative ratio of abundance of each metabolite in the leaves exposed to 2% O_2 (blue) or
455 40% O_2 (red) normalized to the same metabolite in the leaves exposed to 21% O_2 . Results are presented as
456 dots with error bars (mean \pm SEM, n = 7 or 8 biologically independent leaves). Asterisk represents a
457 significant difference between two conditions (Benjamini-Hochberg procedure was used to control the
458 false discovery rate at 0.05 for multiple *t*-tests including all metabolites). Supplementary Data 5 presents
459 the absolute concentration of each metabolite under different oxygen conditions with the results of one-
460 way ANOVA followed by Tukey's test for multiple pairwise comparisons among the three oxygen
461 conditions per metabolite. Abbreviations of metabolites are shown in Supplementary Data 7.

462 Fig. 4: Active and inactive pools of glycine at varying O_2 levels. Tobacco leaves were exposed to the
463 three O_2/N_2 conditions (all at 40 Pa $^{12}\text{CO}_2$ levels) in the LI-6800 cuvette for 30 min until quenching with
464 liquid nitrogen under illumination. Steady-state pool sizes of glycine were determined using GC-MS. The
465 proportion of active (gray) and inactive (white) pools of glycine were estimated using the dilution
466 parameters in INST-MFA modeling. Data are presented as box plots (center line at the median, upper
467 bound at 75th percentile, lower bound at 25th percentile) with whiskers extended to the extreme data
468 point $\leq 1.5 \times$ interquartile range from the edge of the box (n = 7 or 8 biologically independent leaves).
469 Different letters above the data boxes denote statistically significant differences among the three
470 conditions for active glycine pools (uppercase letters) and inactive glycine pools (lowercase letters) at $P <$
471 0.05 (one-way ANOVA followed by Tukey's test for multiple pairwise comparisons). For active glycine

472 pools, the P values for Tukey multiple comparisons of means are 0.0006 (2% O₂ - 21% O₂), <0.0001
473 (2% O₂ - 40% O₂), and 0.0042 (21% O₂ - 40% O₂). For inactive glycine pools, the P values for Tukey
474 multiple comparisons of means are 0.0260 (2% O₂ - 21% O₂), 0.0138 (2% O₂ - 40% O₂), and 0.9511
475 (21% O₂ - 40% O₂).

476 Fig. 5: Dynamics of net CO₂ assimilation rate (*A*) during oxygen transients from 2% O₂ to 40% O₂ (a) and
477 from 40% O₂ to 2% O₂ (b). The leaves were acclimated in a LI-6800 cuvette at low O₂ or high O₂ for 30
478 min to reach the photosynthetic steady-state. Upon switching to the opposite oxygen condition, *A* changed
479 drastically due to slow gas mixing and returned to the previous steady state within ~10 s. The time when
480 the previous steady state was reached after switching oxygen was set to zero for the convenience of curve
481 fitting. Data points of different colors correspond to independent time-course measurements on ten
482 different plants. Lines of different colors represent the fitted curves of a one-phase exponential function
483 for individual replicates. Integrated area between the fitted curve and the baseline of new steady state for
484 a represented replicate is presented in the inserts. The integrated area obtained from the ten individual fits
485 are shown as mean ± SD (n = 10 biologically independent leaves).

486 **References**

1. Walker, B. J., Kramer, D. M., Fisher, N. & Fu, X. Flexibility in the energy balancing network of photosynthesis enables safe operation under changing environmental conditions. *Plants* **9**, (2020).
2. Bauwe, H., Hagemann, M. & Fernie, A. R. Photorespiration: players, partners and origin. *Trends Plant Sci.* **15**, 330–336 (2010).
3. Bauwe, H., Hagemann, M., Kern, R. & Timm, S. Photorespiration has a dual origin and manifold links to central metabolism. *Curr. Opin. Plant Biol.* **15**, 269–275 (2012).
4. Hanson, A. D. & Roje, S. One-carbon metabolism in higher plants. *Annu. Rev. Plant Biol.* **52**, 119–137 (2001).
5. Bloom, A. J. Photorespiration and nitrate assimilation: A major intersection between plant carbon and nitrogen. *Photosynth. Res.* **123**, 117–128 (2015).
6. Tcherkez, G. *et al.* Respiratory metabolism of illuminated leaves depends on CO₂ and O₂ conditions. *Proc. Natl. Acad. Sci. U. S. A.* **105**, 797–802 (2008).
7. Rachmilevitch, S., Cousins, A. B. & Bloom, A. J. Nitrate assimilation in plant shoots depends on photorespiration. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 11506–11510 (2004).
8. Bloom, A. J., Burger, M., Asensio, J. S. R. & Cousins, A. B. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and arabidopsis. *Science (80-.).* **328**, 899–903 (2010).
9. Cotrufo, M. F., Ineson, P. & Scott, A. Elevated CO₂ reduces the nitrogen concentration of plant tissues. *Glob. Chang. Biol.* **4**, 43–54 (1998).
10. Abadie, C., Blanchet, S., Carroll, A. & Tcherkez, G. Metabolomics analysis of postphotosynthetic effects of gaseous O₂ on primary metabolism in illuminated leaves. *Funct. Plant Biol.* **44**, 929–940 (2017).
11. Tcherkez, G. *et al.* Short-term effects of CO₂ and O₂ on citrate metabolism in illuminated leaves. *Plant, Cell Environ.* **35**, 2208–2220 (2012).
12. Hodges, M. *et al.* Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. *Journal of Experimental*

513 13. *Botany* vol. 67 3015–3026 (2016).

514 13. Harley, P. C. & Sharkey, T. D. An improved model of C3 photosynthesis at high CO₂: Reversed O₂
515 sensitivity explained by lack of glycerate reentry into the chloroplast. *Photosynth. Res.* **27**, 169–
516 178 (1991).

517 14. Busch, F. A. & Sage, R. F. The sensitivity of photosynthesis to O₂ and CO₂ concentration identifies
518 strong Rubisco control above the thermal optimum. *New Phytol.* **213**, 1036–1051 (2017).

519 15. Busch, F. A., Sage, R. F. & Farquhar, G. D. Plants increase CO₂ uptake by assimilating nitrogen via
520 the photorespiratory pathway. *Nat. Plants* **4**, 46–54 (2018).

521 16. McClain, A. M. & Sharkey, T. D. Triose phosphate utilization and beyond: From photosynthesis to
522 end product synthesis. *J. Exp. Bot.* **70**, 1755–1766 (2019).

523 17. Eisenhut, M. *et al.* Photorespiration is crucial for dynamic response of photosynthetic
524 metabolism and stomatal movement to altered CO₂ availability. *Mol. Plant* **10**, 47–61 (2017).

525 18. Timm, S. *et al.* High-to-low CO₂ acclimation reveals plasticity of the photorespiratory pathway
526 and indicates regulatory links to cellular metabolism of Arabidopsis. *PLoS One* **7**, e42809 (2012).

527 19. Wingler, A. *et al.* The role of photorespiration during drought stress: An analysis utilizing barley
528 mutants with reduced activities of photorespiratory enzymes. *Plant, Cell Environ.* **22**, 361–373
529 (1999).

530 20. Abadie, C., Bathellier, C. & Tcherkez, G. Carbon allocation to major metabolites in illuminated
531 leaves is not just proportional to photosynthesis when gaseous conditions (CO₂ and O₂) vary.
532 *New Phytol.* **218**, 94–106 (2018).

533 21. Abadie, C., Boex-Fontvieille, E. R. A., Carroll, A. J. & Tcherkez, G. In vivo stoichiometry of
534 photorespiratory metabolism. *Nat. plants* **2**, 15220 (2016).

535 22. Abadie, C. & Tcherkez, G. ¹³C isotope labelling to follow the flux of photorespiratory
536 intermediates. *Plants* **10**, 1–12 (2021).

537 23. Bao, H. *et al.* Catalase protects against nonenzymatic decarboxylations during photorespiration in
538 *Arabidopsis thaliana*. *Plant Direct* **5**, (2021).

539 24. Tcherkez, G. *et al.* Leaf day respiration: low CO₂ flux but high significance for metabolism and
540 carbon balance. *New Phytol.* **216**, 986–1001 (2017).

541 25. Szecowka, M. *et al.* Metabolic fluxes in an illuminated *Arabidopsis* rosette. *Plant Cell* **25**, 694–714
542 (2013).

543 26. Ma, F., Jazmin, L. J., Young, J. D. & Allen, D. K. Isotopically nonstationary ¹³C flux analysis of
544 changes in *Arabidopsis thaliana* leaf metabolism due to high light acclimation. *Proc. Natl. Acad.
545 Sci. U. S. A.* **111**, 16967–16972 (2014).

546 27. Abadie, C., Lalande, J., Limami, A. M. & Tcherkez, G. Non-targeted ¹³C metabolite analysis
547 demonstrates broad re-orchestration of leaf metabolism when gas exchange conditions vary.
548 *Plant Cell Environ.* **44**, 445–457 (2021).

549 28. Cegelski, L. & Schaefer, J. NMR determination of photorespiration in intact leaves using in vivo
550 ¹³CO₂ labeling. *J. Magn. Reson.* **178**, 1–10 (2006).

551 29. Dirks, R. C., Singh, M., Potter, G. S., Sobotka, L. G. & Schaefer, J. Carbon partitioning in soybean
552 (*Glycine max*) leaves by combined ¹¹C and ¹³C labeling. *New Phytol.* **196**, 1109–1121 (2012).

553 30. Ratcliffe, R. G. & Shachar-Hill, Y. Measuring multiple fluxes through plant metabolic networks.
554 *Plant J.* **45**, 490–511 (2006).

555 31. Chu, K. L. *et al.* Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in
556 mature tobacco leaves. *Metab. Eng.* **69**, 231–248 (2022).

557 32. Treves, H. *et al.* Carbon flux through photosynthesis and central carbon metabolism show distinct
558 patterns between algae, C3 and C4 plants. *Nat. Plants* **8**, 78–91 (2022).

559 33. Xu, Y., Fu, X., Sharkey, T. D., Shachar-Hill, Y. & Walker, B. J. The metabolic origins of non-
560 photorespiratory CO₂ release during photosynthesis: A metabolic flux analysis. *Plant Physiol.*

561 186, 297–314 (2021).

562 34. Xu, Y., Wieloch, T., Kaste, J. A. M., Shachar-Hill, Y. & Sharkey, T. D. Reimport of carbon from
563 cytosolic and vacuolar sugar pools into the Calvin-Benson cycle explains photosynthesis labeling
564 anomalies. *Proc. Natl. Acad. Sci. U. S. A.* **119**, (2022).

565 35. Sharkey, T. D., Berry, J. A. & Raschke, K. Starch and sucrose synthesis in *Phaseolus vulgaris* as
566 affected by light, CO₂, and abscisic acid. *Plant Physiol.* **77**, 617–620 (1985).

567 36. Cegelski, L. & Schaefer, J. Glycine metabolism in intact leaves by in vivo¹³C and ¹⁵N labeling. *J.*
568 *Biol. Chem.* **280**, 39238–39245 (2005).

569 37. Heinemann, B., Künzler, P., Eubel, H., Braun, H. P. & Hildebrandt, T. M. Estimating the number of
570 protein molecules in a plant cell: protein and amino acid homeostasis during drought. *Plant*
571 *Physiol.* **185**, 385–404 (2021).

572 38. Madore, M. & Grodzinski, B. Effect of oxygen concentration on ¹⁴C-photoassimilate transport
573 from leaves of *Salvia splendens* L. *Plant Physiol.* **76**, 782–786 (1984).

574 39. Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. Sulfur assimilation in photosynthetic
575 organisms: Molecular functions and regulations of transporters and assimilatory enzymes. *Annu.*
576 *Rev. Plant Biol.* **62**, 157–184 (2011).

577 40. Radwanski, E. R. & Last, R. L. Tryptophan biosynthesis and metabolism: Biochemical and
578 molecular genetics. *Plant Cell* **7**, 921–934 (1995).

579 41. Ros, R., Muñoz-Bertomeu, J. & Krueger, S. Serine in plants: Biosynthesis, metabolism, and
580 functions. *Trends Plant Sci.* **19**, 564–569 (2014).

581 42. Noctor, G., Arisi, A. C. M., Jouanin, L. & Foyer, C. H. Photorespiratory glycine enhances
582 glutathione accumulation in both the chloroplastic and cytosolic compartments. *J. Exp. Bot.* **50**,
583 1157–1167 (1999).

584 43. Foyer, C. H., Bloom, A. J., Queval, G. & Noctor, G. Photorespiratory metabolism: Genes, mutants,
585 energetics, and redox signaling. *Annu. Rev. Plant Biol.* **60**, 455–484 (2009).

586 44. Gauthier, P. P. G. *et al.* In folio isotopic tracing demonstrates that nitrogen assimilation into
587 glutamate is mostly independent from current CO₂ assimilation in illuminated leaves of *Brassica*
588 *napus*. *New Phytol.* **185**, 988–999 (2010).

589 45. Zelitch, I., Schultes, N. P., Peterson, R. B., Brown, P. & Brutnell, T. P. High glycolate oxidase
590 activity is required for survival of maize in normal air. *Plant Physiol.* **149**, 195–204 (2009).

591 46. Fu, X. & Walker, B. J. Dynamic response of photorespiration in fluctuating light environments. *J.*
592 *Exp. Bot.* (2022) doi:<https://doi.org/10.1093/jxb/erac335>.

593 47. Hitz, W. D. & Stewart, C. R. Oxygen and carbon dioxide effects on the pool size of some
594 photosynthetic and photorespiratory intermediates in soybean (*Glycine max* [L.] Merr.). *Plant*
595 *Physiol.* **65**, 442–446 (1980).

596 48. Flügel, F. *et al.* The photorespiratory metabolite 2-phosphoglycolate regulates photosynthesis
597 and starch accumulation in *Arabidopsis*. *Plant Cell* **29**, 2537–2551 (2017).

598 49. Anderson, L. E. Chloroplast and cytoplasmic enzymes II. Pea leaf triose phosphate isomerases.
599 *BBA - Enzymol.* **235**, 237–244 (1971).

600 50. Campbell, W. J. & Ogren, W. L. Glyoxylate inhibition of ribulosebisphosphate
601 carboxylase/oxygenase activation in intact, lysed, and reconstituted chloroplasts. *Photosynth.*
602 *Res.* **23**, 257–268 (1990).

603 51. Gonzalez-Moro, B., Lacuesta, M., Becerril, J. M., Gonzalez-Murua, C. & Munoz-Rueda, A.
604 Glycolate accumulation causes a decrease of photosynthesis by inhibiting RUBISCO activity in
605 maize. *J. Plant Physiol.* **150**, 388–394 (1997).

606 52. Kelly, G. J. & Latzko, E. Inhibition of spinach-leaf phosphofructokinase by 2-phosphoglycollate.
607 *FEBS Lett.* **68**, 55–58 (1976).

608 53. South, P. F., Cavanagh, A. P., Liu, H. W. & Ort, D. R. Synthetic glycolate metabolism pathways

609 stimulate crop growth and productivity in the field. *Science (80-.)*. **363**, (2019).

610 54. Timm, S. *et al.* Serine acts as a metabolic signal for the transcriptional control of
611 photorespiration-related genes in *Arabidopsis*. *Plant Physiol.* **162**, 379–389 (2013).

612 55. Schimkat, D., Heineke, D. & Heldt, H. W. Regulation of sedoheptulose-1,7-bisphosphatase by
613 sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in
614 spinach chloroplasts. *Planta* **181**, 97–103 (1990).

615 56. Heineke, D., Bykova, N., Gardeström, P. & Bauwe, H. Metabolic response of potato plants to an
616 antisense reduction of the P-protein of glycine decarboxylase. *Planta* **212**, 880–887 (2001).

617 57. Timm, S. *et al.* Glycine decarboxylase controls photosynthesis and plant growth. *FEBS Lett.* **586**,
618 3692–3697 (2012).

619 58. López-Calcagno, P. E. *et al.* Overexpressing the H-protein of the glycine cleavage system increases
620 biomass yield in glasshouse and field-grown transgenic tobacco plants. *Plant Biotechnol. J.* **17**,
621 141–151 (2019).

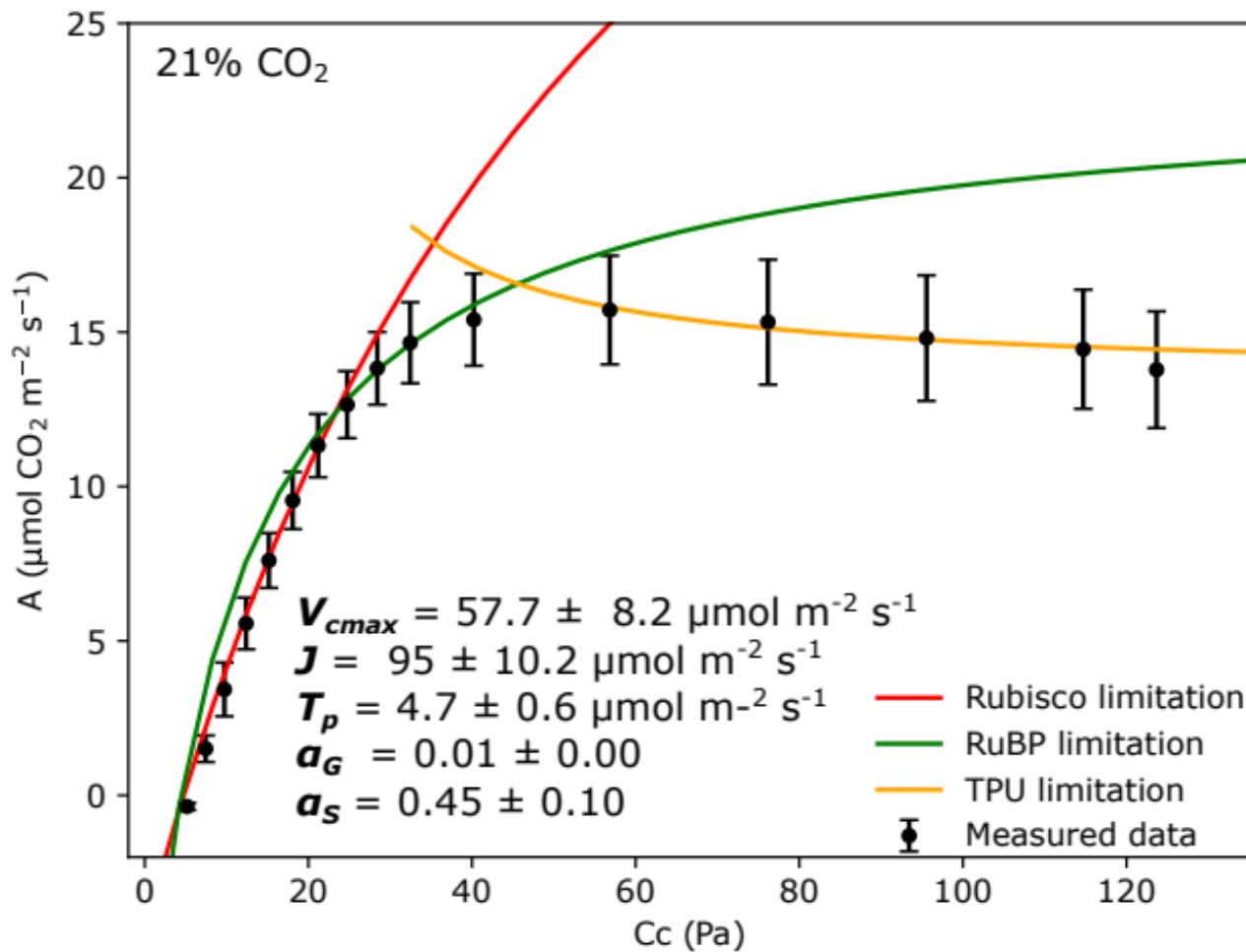
622 59. Bykova, N. V., Møller, I. M., Gardeström, P. & Igamberdiev, A. U. The function of glycine
623 decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its
624 reaction products. *Mitochondrion* **19**, 357–364 (2014).

625 60. da Fonseca-Pereira, P. *et al.* Thioredoxin h2 contributes to the redox regulation of mitochondrial
626 photorespiratory metabolism. *Plant Cell Environ.* **43**, 188–208 (2020).

627 61. Reinholdt, O. *et al.* Redox-regulation of photorespiration through mitochondrial thioredoxin O1.
628 *Plant Physiol.* **181**, 442–457 (2019).

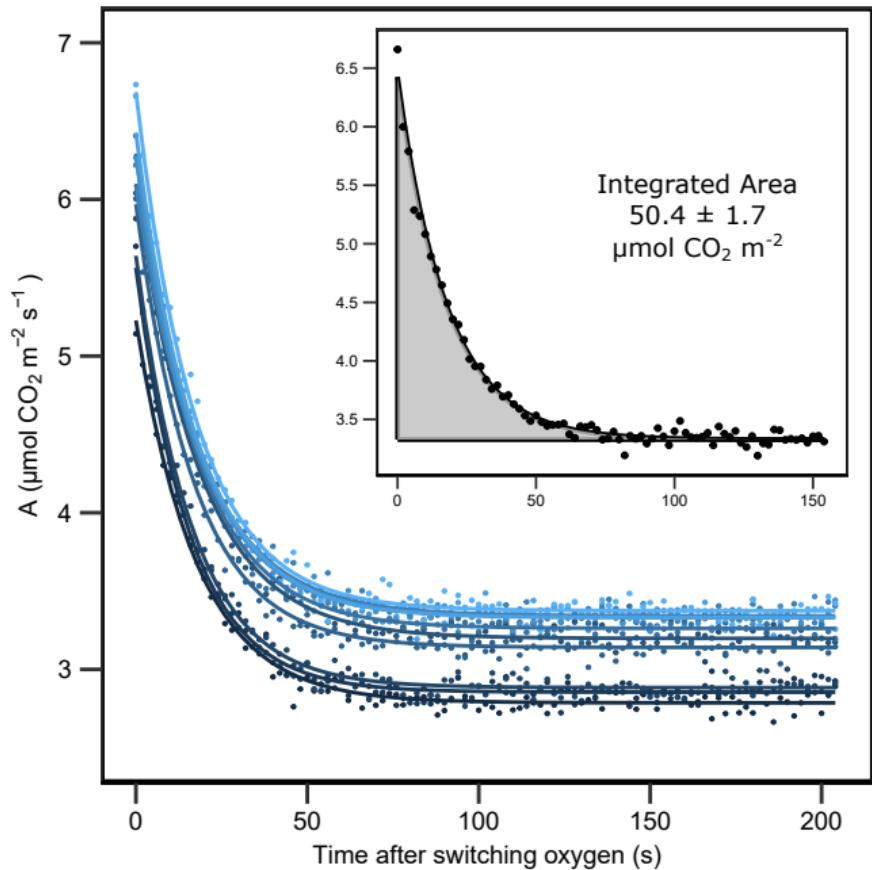
629 62. Eisenhut, M., Pick, T. R., Bordy, C. & Weber, A. P. M. Towards closing the remaining gaps in
630 photorespiration - the essential but unexplored role of transport proteins. *Plant Biol.* **15**, 676–
631 685 (2013).

632 63. Young, J. D. INCA: A computational platform for isotopically non-stationary metabolic flux
633 analysis. *Bioinformatics* **30**, 1333–1335 (2014).

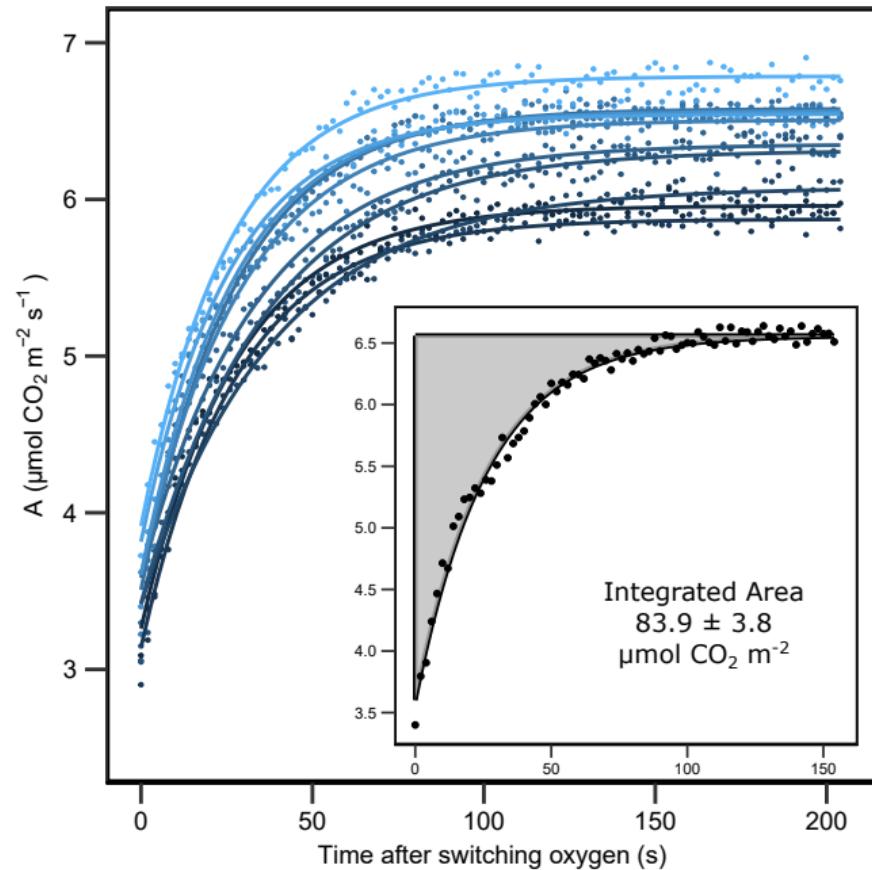

634 64. Young, J. D., Walther, J. L., Antoniewicz, M. R., Yoo, H. & Stephanopoulos, G. An elementary
635 metabolite unit (EMU) based method of isotopically nonstationary flux analysis. *Biotechnol.*
636 *Bioeng.* **99**, 686–699 (2008).

637 65. Antoniewicz, M. R., Kelleher, J. K. & Stephanopoulos, G. Determination of confidence intervals of
638 metabolic fluxes estimated from stable isotope measurements. *Metab. Eng.* **8**, 324–337 (2006).

639 66. Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO₂
640 assimilation in leaves of C3 species. *Planta* **149**, 78–90 (1980).


641 67. Sharkey, T. D., Bernacchi, C. J., Farquhar, G. D. & Singsaas, E. L. Fitting photosynthetic carbon
642 dioxide response curves for C3 leaves. *Plant, Cell Environ.* **30**, 1035–1040 (2007).

643



a

Transients from 2% O₂ to 40% O₂

b

Transients from 40% O₂ to 2% O₂

Concentration (nmol g FW⁻¹)

150
100
50
0

active

inactive

b

C

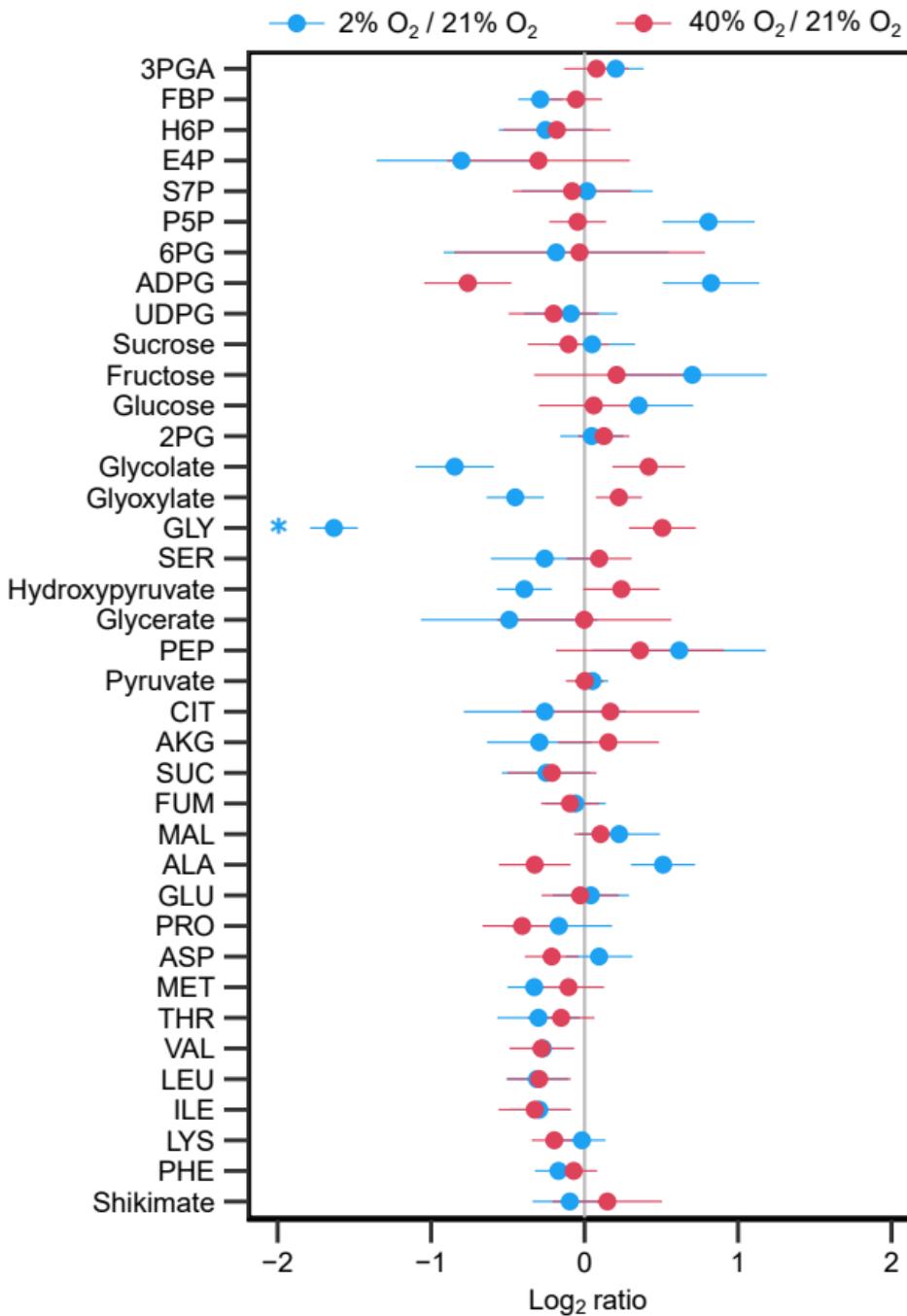
2

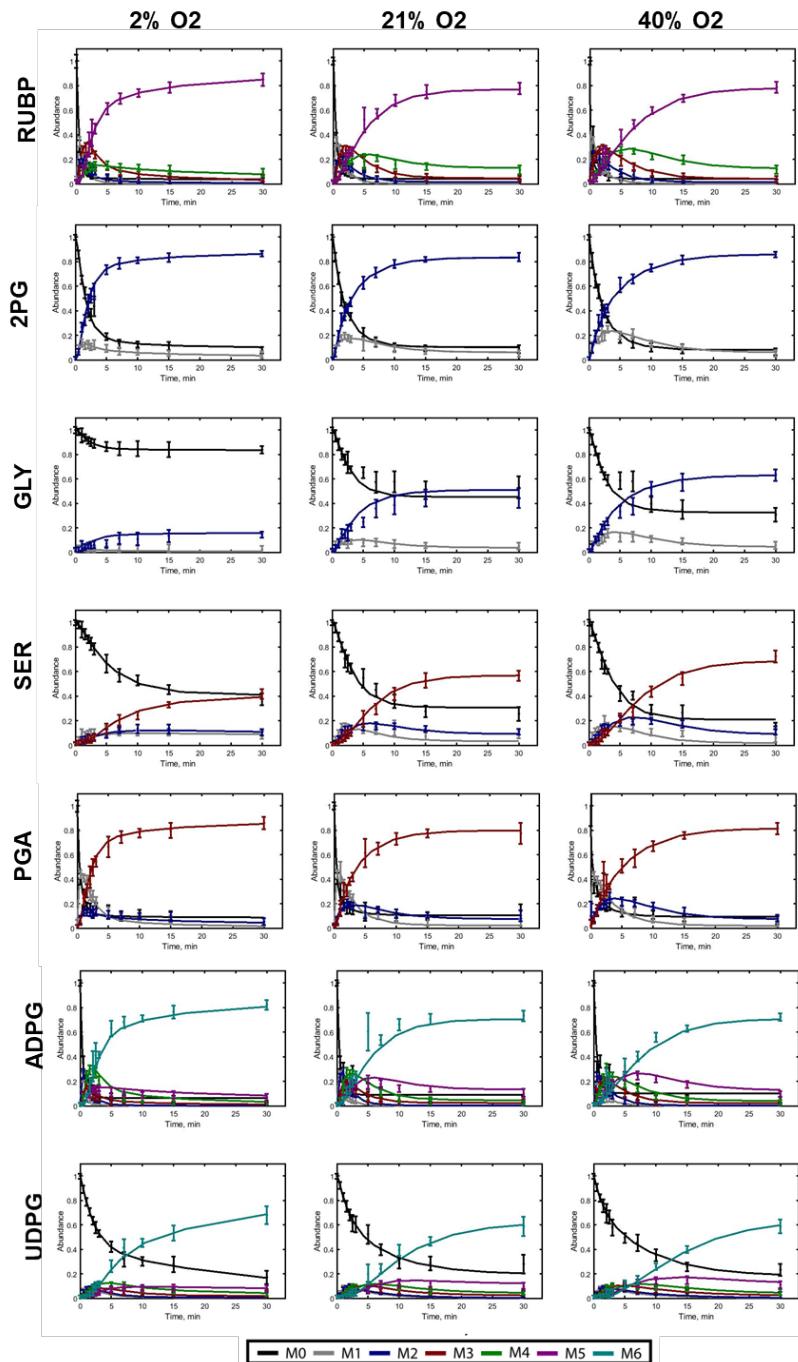
B

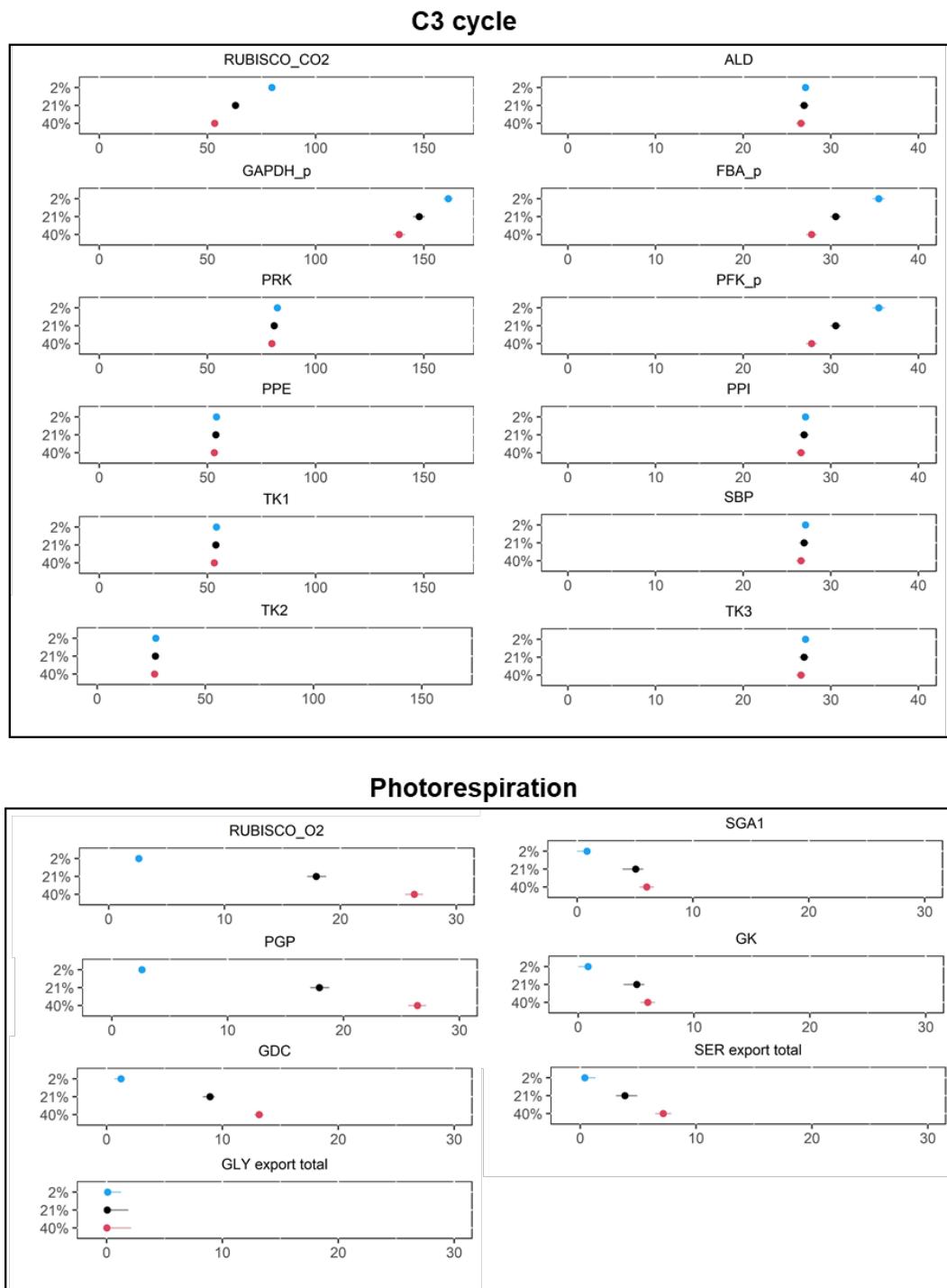
21

a

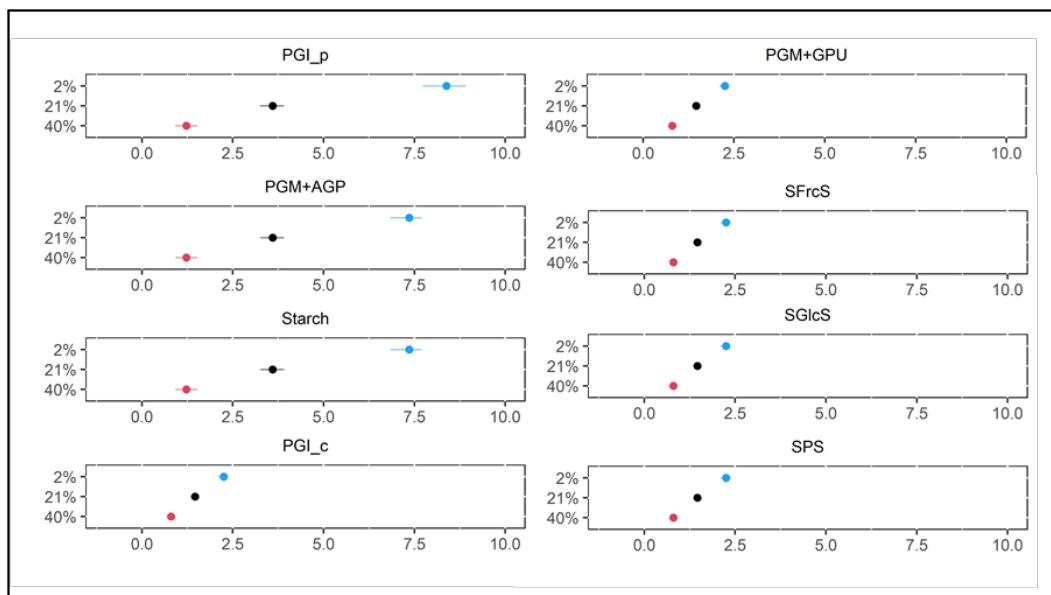
40


A

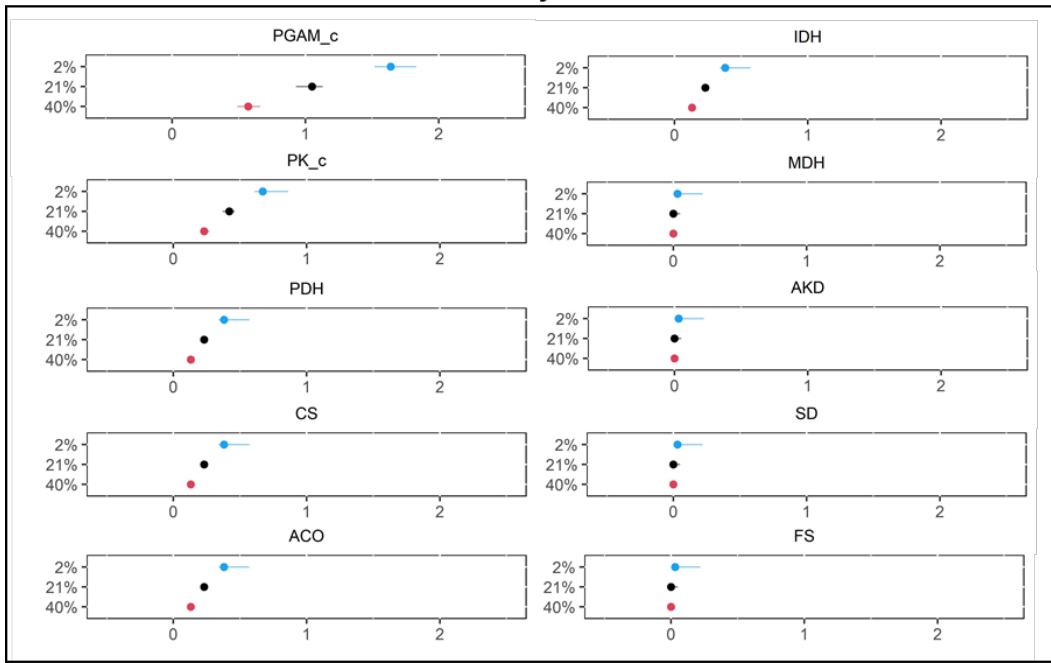

a


O₂ levels (%)

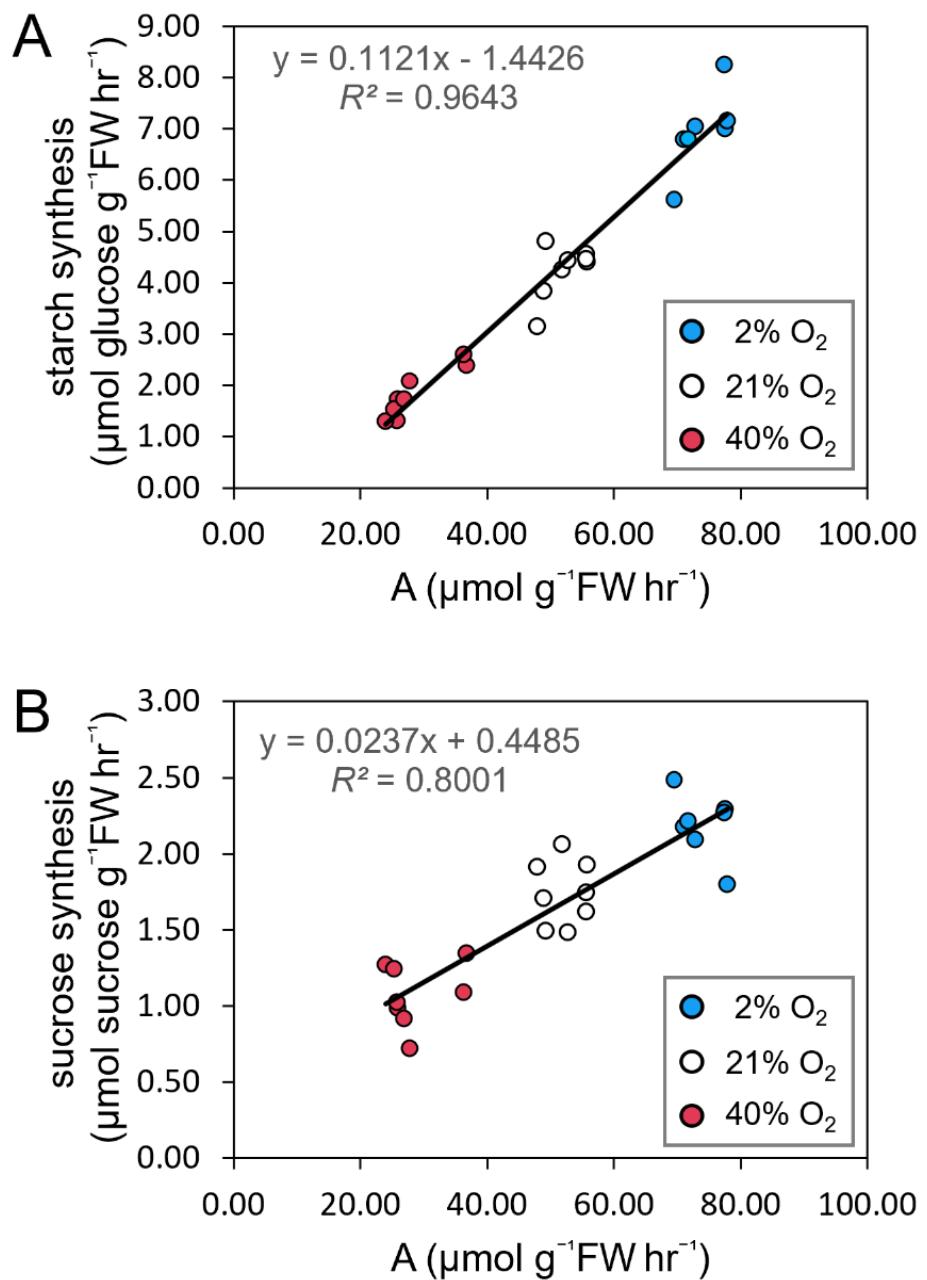
Supplementary Figure 1. Transient $^{13}\text{CO}_2$ labeling in selected metabolites. Experimental measurements are shown as dots with error bars (mean \pm SD, $n = 3$ biologically independent leaves). Solid lines represent the simulated labeling kinetics obtained with our best-fit set of fluxes from INST-MFA. The nominal mass isotopologues are represented as M0 and labeled isotopologues are distinguished by their mass differences from M0 (M1, M2, M3, etc.).

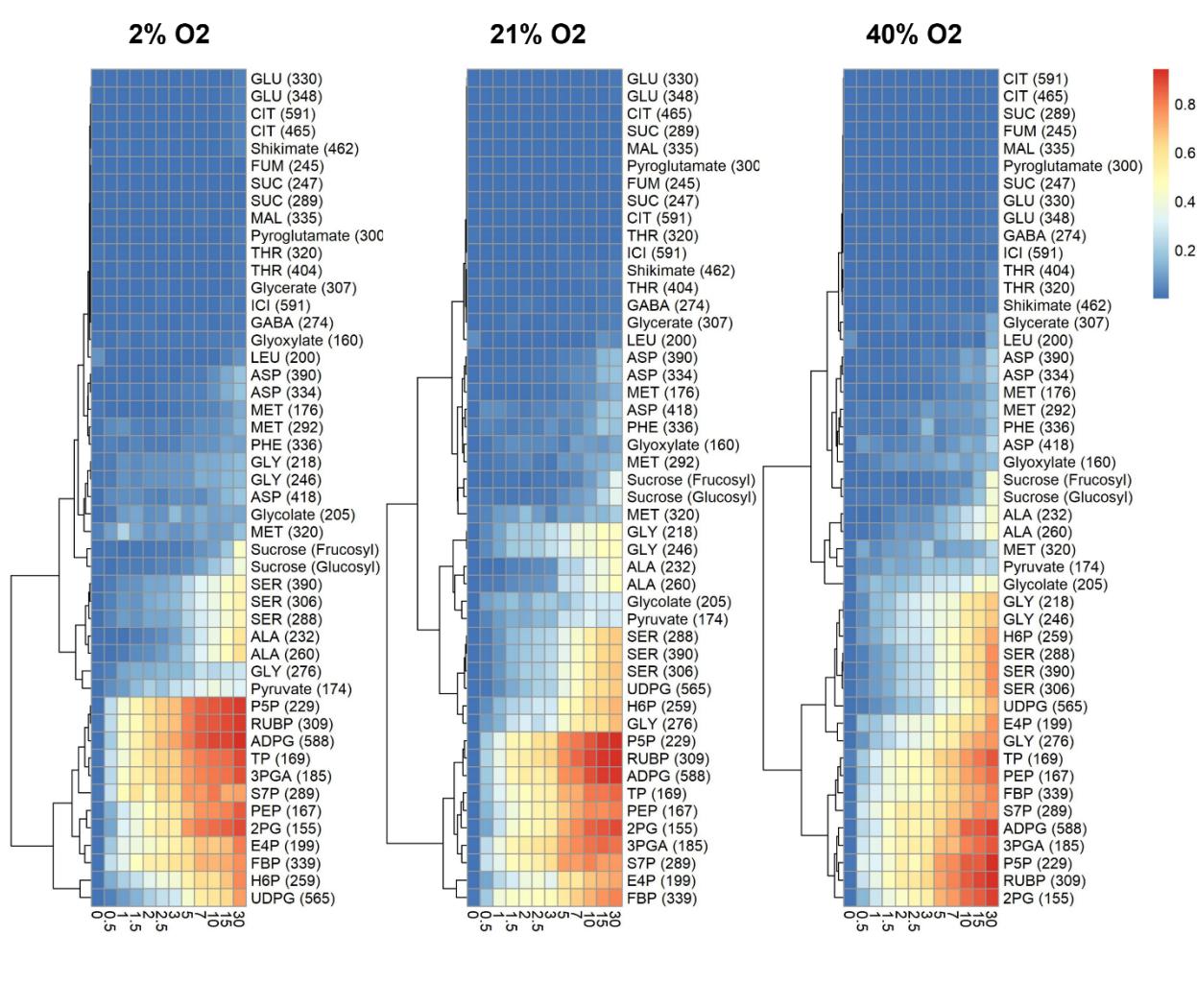


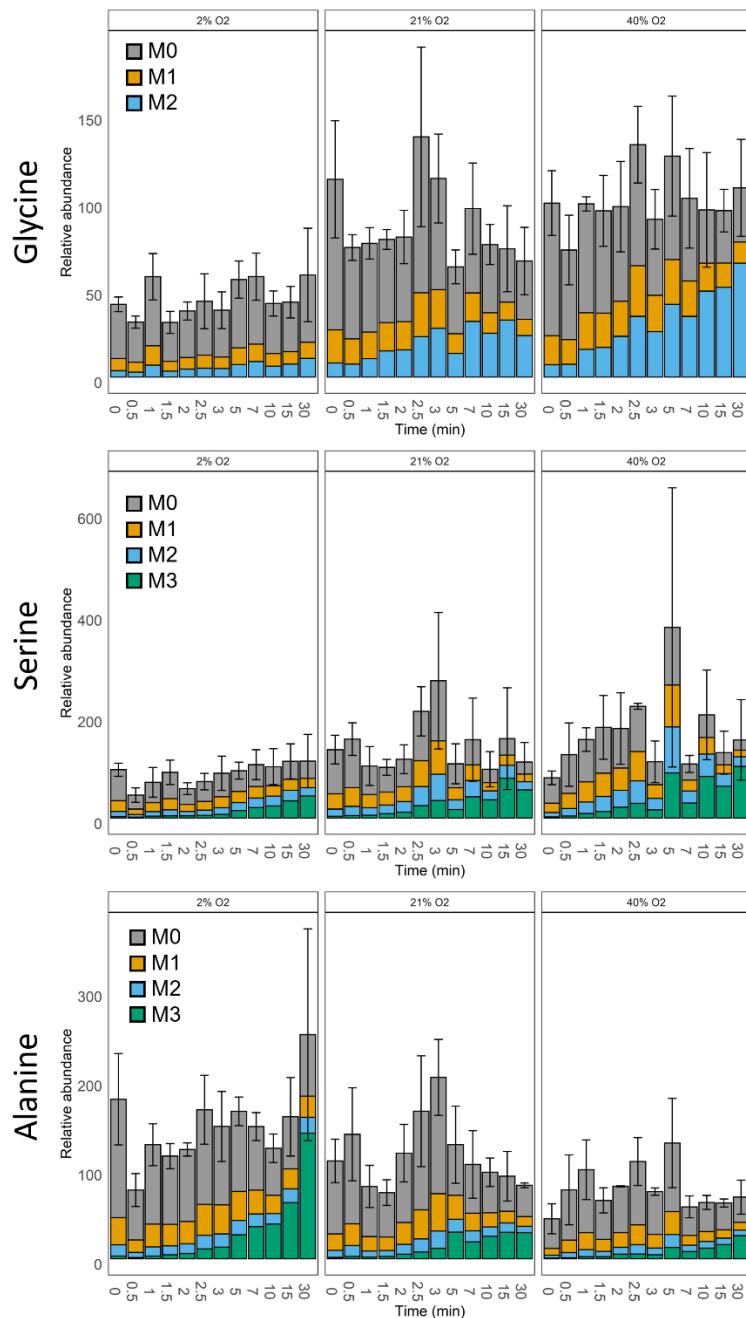
Supplementary Figure 2. Estimated fluxes and 95% confidence intervals by parameter continuation for reactions in the C3 cycle and photorespiration. Dots represent the best-fit values and horizontal lines represent the upper and lower bounds on the 95% confidence intervals calculated by the parameter continuation method. Results of all reactions are shown in a tabular form in Supplementary Data 4 and abbreviations of reactions are shown in Supplementary Data 7.

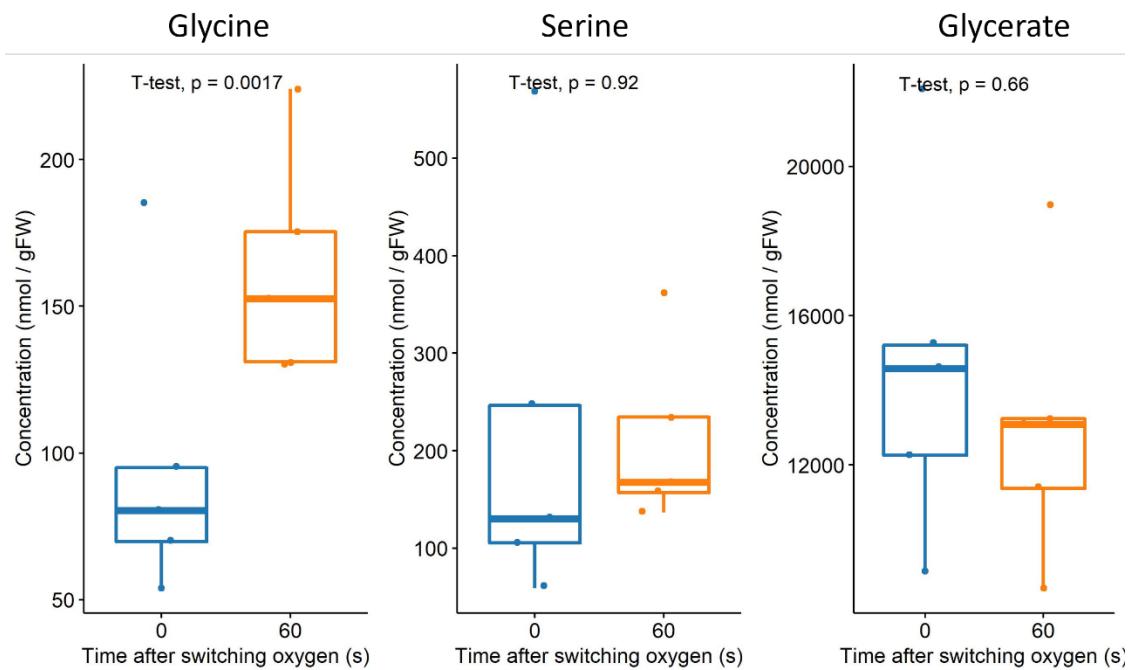


Supplementary Figure 3. Estimated flux values and 95% confidence intervals by parameter continuation for reactions in starch and sucrose synthesis and the TCA cycle. Dots represent the best-fit values and horizontal lines represent the upper and lower bounds on the 95% confidence intervals calculated by the parameter continuation method. Results of all reactions are shown in a tabular form in Supplementary Data 4 and abbreviations of reactions are shown in Supplementary Data 7.


Starch and sucrose synthesis


TCA cycle


Supplementary Figure 4. The relationships between the net CO_2 assimilation rate (A) and synthesis rates of starch and sucrose under varied O_2 conditions. Rates of starch (A) and sucrose synthesis (B) were measured by the steady state pulse-chase labeling of $^{14}\text{CO}_2$ at each of the three O_2 conditions (see Supplementary method 2 for the estimation of starch and sucrose synthesis rates).


Supplementary Figure 5. Dendrogram and heatmap of the average ^{13}C -enrichment for identified metabolites over the 30 min labeling period under varying oxygen conditions. The scale of the heatmap indicates blue as lowest and red as highest in the average ^{13}C -enrichment. The average ^{13}C enrichment of a metabolite was calculated by the formula of $(\frac{1}{N}) \sum_{i=1}^N M_i \times i$, where M_i represents the fraction of the mass isotopologue distribution (MID) after natural isotope abundance correction and N represents the number of carbon atoms in the metabolite. Nominal masses of M0 mass isotopologues are shown in parentheses after metabolite names.

Supplementary Figure 6. Relative abundance of key metabolites (glycine, serine, and alanine) was relatively constant during the labeling period at each oxygen condition. Tobacco leaves were exposed to the three O₂ conditions in the LI-6800 cuvette for 20-30 min before incubating at 0, 0.5, 1, 2, 2.5, 3, 5, 7, 10, 15, and 30 min with ¹³CO₂-containing gas mixture at each oxygen condition. To assess differences in relative pool sizes of each metabolite between time-points, relative amounts of all isotopologues of a given metabolite were normalized to the internal standard and fresh weight. Data are presented as mean \pm SEM (n = 3 biologically independent leaves). Total bar height represents the relative abundance of the total pool, and the shaded sections represent the fractions of isotopologues.

Supplementary Figure 7. Transient changes in photorespiratory intermediates (glycine, serine, and glycerate) after a switch from low to high photorespiratory condition. Leaves were acclimated under 2% oxygen for 30 min to reach the photosynthetic steady state. Samples were collected before (time = 0 s) and after (time = 60 s) switching to 40% oxygen. Data are presented as box plots (center line at the median, upper bound at 75th percentile, lower bound at 25th percentile) with whiskers extended to the extreme data point $\leq 1.5 \times$ interquartile range from the edge of the box. Statistical significance between treatments (0 s and 60 s after switching oxygen) in each metabolite was assessed using two-tailed *t*-tests ($P < 0.05$, $n = 5$ biologically independent leaves). While serine and glycerate did not change during the transition, glycine increased significantly. The build-up of glycine pool after switching oxygen for 60 s was 20.6 ± 6.2 (mean \pm SD) $\mu\text{mol m}^{-2}$ on a leaf area basis or 65.6 ± 19.6 (mean \pm SD) nmol g^{-1} FW on a fresh-weight basis.

Supplementary Table 1. External flux measurements used in INST-MFA as constraints to determine intracellular fluxes. The net CO₂ assimilation rate was measured in the ¹³C-labeled leaves using a LI-6800. Rates of rubisco carboxylation and oxygenation were calculated based on the biochemical model of photosynthesis using gas exchange data. Rates of starch and sucrose synthesis were measured by the steady state pulse-chase labeling of ¹⁴CO₂ at each of the three O₂ conditions (see Supplementary method 2 for the estimation of starch and sucrose synthesis rates). Flux values are presented as mean \pm SEM (n = 7 biologically independent leaves) in units of $\mu\text{mol molecule g}^{-1} \text{FW hr}^{-1}$ (for the conversion to $\mu\text{mol carbon g}^{-1} \text{FW hr}^{-1}$, multiply the presented values by the number of carbons in the molecule).

External rates	2% O ₂	21% O ₂	40% O ₂
net CO ₂ assimilation rate ($\mu\text{mol CO}_2 \text{g}^{-1} \text{FW hr}^{-1}$)	74.34 \pm 0.77	48.82 \pm 0.76	34.11 \pm 0.78
rubisco oxygenation rate ¹ ($\mu\text{mol O}_2 \text{g}^{-1} \text{FW hr}^{-1}$)	2.59 \pm 0.06	18.8 \pm 0.44	27.63 \pm 0.44
rubisco carboxylation rate ¹ ($\mu\text{mol CO}_2 \text{g}^{-1} \text{FW hr}^{-1}$)	83.33 \pm 0.77	65.92 \pm 0.83	55.62 \pm 0.86
starch synthesis rate ($\mu\text{mol glucose g}^{-1} \text{FW hr}^{-1}$)	6.95 \pm 0.29	4.22 \pm 0.18	1.85 \pm 0.17
sucrose synthesis rate ($\mu\text{mol sucrose g}^{-1} \text{FW hr}^{-1}$)	2.19 \pm 0.08	1.72 \pm 0.07	1.09 \pm 0.07

¹ The calculation of rubisco carboxylation and oxygenation rates requires the determination of three gas exchange parameters. The mesophyll conductance (g_m), respiration in the light (R_L) and the CO₂ compensation point in the absence of mitochondrial respiration (Γ^*) were determined to be 2.00 $\mu\text{mol m}^{-2} \text{s}^{-1} \text{Pa}^{-1}$, 0.67 $\mu\text{mol m}^{-2} \text{s}^{-1}$, and 4.04 Pa (see Supplementary Method 4 for details of calculations).

Supplementary Table 2. Sucrose and amino acid levels in vascular exudates. Vascular exudates were collected using a pressure bomb chamber to force release of liquid from the petiole of a fresh cut tobacco leaf previously exposed to ambient oxygen (21%) and analyzed by GC-MS (see Supplementary Method 1). Values of the levels are mean \pm SEM ($n = 9$ biologically independent leaves). The ratios of several amino acids to sucrose (Glutamate (GLU) / Sucrose = 0.159, Aspartate (ASP) / Sucrose = 0.270, Alanine (ALA) / Sucrose = 0.128, Glycine (GLY) / Sucrose = 0.042, Serine (SER) / Sucrose = 0.168) were used to constrain the output flux reaction ($S6P + 0.159*GLU + 0.27*ASP + 0.129*ALA.c + 0.042*dummyGLY + 0.169*dummySER \rightarrow Sink$) in all INST-MFA models. The amino acid to sucrose ratios were comparable to those measured in the aphid stylet-collected phloem sap¹.

Metabolite	Level (nmol/ μ L)
Sucrose	0.403 \pm 0.063
ASP	0.1 \pm 0.021
SER	0.069 \pm 0.017
GLU	0.064 \pm 0.013
ALA	0.048 \pm 0.008
GLY	0.014 \pm 0.001

¹ Winter, H., Lohaus, G. & Heldt, H. W. Phloem transport of amino acids in relation to their cytosolic levels in barley leaves. *Plant Physiol.* 99, 996–1004 (1992).

Supplementary Method 1. The extraction and analytical procedures for quantifying metabolite labeling and concentration.

1.1 Harvesting and quenching

For the $^{13}\text{CO}_2$ labeling experiment at each O_2/N_2 condition (2% O_2 / 98% N_2 , 21% O_2 / 79% N_2 , or 40% O_2 / 60 % N_2), labeled tobacco leaf samples were collected at time points of 0, 0.5, 1, 2, 2.5, 3, 5, 7, 10, 15, 30 min inside the 9 cm^2 cuvette of a LI-COR 6800 (LI-COR Biosciences, USA) with at least three biological replicates. To quench metabolism rapidly under illumination at a given time point, liquid nitrogen was directly sprayed on the leaf surface by inserting a liquid nitrogen cryospray nozzle (Wallach UltraFreeze, Cooper Surgical, USA) via an injection port on the LI-COR cuvette. The frozen leaf portions were rapidly removed from the cuvette, then cut and placed in a tube with liquid nitrogen and stored at -80°C until analysis before they were thawed. This sampling procedure has been extensively described earlier ¹ with pictures of the setup and measurements of the $^{13}\text{CO}_2$ switching and quenching speed.

To determine the steady-state pool sizes of central metabolites in leaves exposed to the three O_2/N_2 conditions (all at 40 Pa $^{12}\text{CO}_2$ levels), leaves were put in the LI-COR cuvette for 30 min to acclimate until they reached a photosynthetic steady-state. At least seven biological replicates for each condition were harvested and quenched as described earlier.

To measure the vascular sucrose and amino acids, exudates were collected using a pressure bomb chamber on plants harvested under ambient conditions. A fresh cut tobacco leaf was placed inside the chamber, with the cut end of the petiole protruding from the rubber seal of the chamber. Pressure was gradually applied from a gas cylinder until droplets of liquid appeared at the cut surface. Exudates were collected from nine randomly chosen mature leaves in different plants. The exudate collection was carried out in the same condition for each replicate within 3 min to avoid dehydration and lack of light. Samples were subsequently frozen in liquid nitrogen and stored at -80°C for further analysis.

To determine the transient changes in metabolite pool sizes after a switch from low to high photorespiratory condition, leaves were first put in the LI-COR cuvette under low oxygen (40 Pa $^{12}\text{CO}_2$, 2% O_2 , and 98% N_2) for 30 min. After the leaves reached the photosynthetic steady-state, five low-oxygen adapted leaves were quenched and collected immediately. The other five leaves were quenched and collected after the gas in the cuvette was switched to high oxygen (40 Pa $^{12}\text{CO}_2$, 40% O_2 , and 98% N_2) for 1 min. In all experiments, leaves were randomly assigned to one of the treatments or time points.

1.2 Metabolite extraction of polar metabolites

Frozen leaf tissues were pulverized under cryogenic conditions using a FastPrep-24 tissue homogenizer with a CoolPrep Adapter (MP biomedicals, USA). Metabolites were extracted using a methanol/chloroform/water protocol as described earlier ². The extracts were separated into upper (methanol/water) phase and bottom (chloroform) phase after centrifugation. Several aliquots of polar extracts were taken from the upper layer, lyophilized to dryness, and frozen at -80°C before the GC-MS and LC-MS/MS analyses. For pool size quantification of unlabeled samples, known concentrations of internal standards (nor-Leucine, 98 atom % ^{15}N , 98 atom % ^{13}C free amino acid mixture, D-[UL- $^{13}\text{C}_6$] fructose 1, 6-bisphosphate, and [UL- $^{13}\text{C}_{12}$] sucrose) were spiked onto the tissue before the extraction.

1.3 Gas chromatography- mass Spectrometry (GC-MS) analyses

Organic acids, amino acids, and sugars recovered in the polar fractions were first derivatized by adding methoxyamine hydrochloride dissolved in dry pyridine. The reaction mixture was shaken at 90 rpm at 40°C for 12 h. An aliquot of the reaction mixture was silylated by adding N, O-Bis (trimethylsilyl)

trifluoroacetamide with 1% (w/v) trimethylchlorosilane and incubated at 60°C for 60 min, resulting in trimethylsilyl (TMS) derivatives. Another aliquot of the reaction mixture was silylated by adding N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide with 1% (w/v) tert-butyldimethylchlorosilane and incubated at 60°C for 60 min, resulting in trimethylsilyl (TBDMS) derivatives. The TMS- and TBDMS-derivatives were analyzed by an Agilent 7890A GC (Agilent, USA) equipped with a 30 m VF-5ms column and interfaced to an Agilent 5975C inert XL Mass Selective Detector (Agilent, Santa Clara, CA, USA). Aliquots of the derivatized sample (1 μ L) were injected in splitless mode with a helium carrier gas flow set at 1 mL/min. For some highly abundant metabolites (e.g., malate, fumarate, glycerate, and sucrose, etc.), a split mode with a 20:1 split ratio was applied. The inlet temperature and MS transfer line temperature were set at 230°C and 300°C, respectively. The oven temperature was initially held at 40°C for 1 min, then raised at 40°C/min to 80°C, ramped at 10°C/min to 240°C, then 20°C/min to 320°C, and finally kept at this temperature for 5 min. The mass spectrometer was operated on scan mode (electron impact at 70 eV, ion source temperature at 230°C, the quadrupole temperature at 150°C), monitoring ions at m/z values of 50–600.

GC-MS data files were deconvoluted and searched against the NIST 14 Mass Spectral Library and the Golm Metabolome Database using NIST software AMDIS V2.72 for initial identification.

Chromatographic peaks were further identified based on the retention time of authentic standard peaks and the corresponding MS spectrum. The characteristic fragment ions that were used for the isotopologue analysis are shown in Supplementary Data 6. The mass isotopologue distribution (MID) for each metabolite was correct for natural abundance of isotopes and mean ^{13}C enrichment was calculated as described earlier³. The EI spectrum of the TMS derivative of sucrose cannot be directly used for the isotopologue analysis, as each of the two major fragment ions m/z 361 and 451 represents a mixture of glucosyl and fructosyl moieties of sucrose. The fragmentation patterns of [UL- $^{13}\text{C}_6$ fru] sucrose was used to deduce the proportion of the glucosyl and fructosyl moieties in each fragment ion. Fragment m/z 361 corresponds to a mixture of 54% fructosyl and 46% glucosyl unit. Fragment m/z 451 is a mixture of 96% fructosyl and 4% glucosyl. The actual MIDs of glucosyl and fructosyl moieties of sucrose were solved using the m/z 361-367 and 451-457 as described earlier³.

1.4 Ion-pair chromatography – tandem mass spectrometry (IPC-MS/MS) analyses

Phosphorylated intermediates in C3 cycle were analyzed by an IPC-MS/MS method as described earlier¹. Aliquots of freshly reconstituted lyophilized extract (10 μ L) were injected into a Waters ACQUITY UPLC pump system (Waters, USA) coupled to a Waters Quattro Premier tandem quadrupole mass spectrometer in negative-mode electrospray ionization (ESI). Chromatographic separation was performed using a Waters UPLC BEH C18 column (2.1 \times 50 mm) at 40°C using a multi-step gradient with eluent A (10 mM tributylamine in 5%(v/v) methanol, adjusted to pH 6 with 0.5 M acetic acid) and eluent B (methanol): 0-1 min, 95-85% A; 1-6 min, 65-40% A; 6-7 min, 40-0% A; 7-8 min, 0% A; 8-9 min, 100% A. The flow rate was 0.3 mL min⁻¹, source temperature 120°C, and desolvation temperature 350°C. The parent-product ion pairs for each metabolite and the specific metabolite-dependent MS parameters are shown in Supplementary Data 6.

1.5 Anion exchange chromatography – tandem mass spectrometry (AEC-MS/MS) analyses

Nucleotide sugars (ADPG and UDPG) and additional phosphorylated intermediates (i.e., 2PG, PEP) were analyzed by AEC-MS/MS as described earlier¹. Aliquots of freshly reconstituted lyophilized extract (10 μ L) were analyzed by a Waters ACQUITY UPLC pump system coupled to a Xevo ACQUITY TQ Triple Quadrupole Detector (Waters, USA) in negative-ESI mode. Chromatographic separation was performed using an IonPac AS11 analytical column (Dionex, 2 \times 250 mm) coupled to an IonPac guard column AG11

(2 × 50 mm, Dionex, Thermo Scientific, USA) and an IonPac ATC-3 Anion Trap Column (4 × 35 mm, Dionex, Thermo Scientific, USA) using a multi-step gradient with eluent A (0.5 mM KOH) and eluent B (75 mM KOH): 0-2 min, 100% A; 2-4 min, 100-93% A; 4-13 min, 93-60% A; 13-15 min, 0% A; 15-17 min, 100% A, at a flow rate of 0.35 mL min⁻¹. Salt suppression was carried out using a post-column anion self-regenerating suppressor (Dionex ADRS 600, Thermo Scientific, USA), operated in the AutoSuppression External Water mode with a flow rate of 3.5 mL min⁻¹ and current of 50 mA. The parent-product ion pairs for each metabolite and the specific metabolite-dependent MS parameters are shown in Supplementary Data 6.

1.6 Data analysis for metabolite labeling and profiling data

Chromatographic peaks for LC-MS/MS and GC-MS were integrated using the Waters software MassLynx version 4.2 and DExSI version 1.11 (<https://github.com/DExSI/DExSI/>). For natural isotope abundance correction, the measured mass isotopologue distributions determined from the GC-MS and LC-MS/MS data were subsequently processed using Fluxfix version 0.1 (<https://fluxfix.science/>). Statistical analysis of metabolite labeling and profiling data was performed in R version 4.0.2.

Supplementary Method 2. Steady state pulse-chase labeling of ¹⁴CO₂ to estimate rates of starch and sucrose accumulation at varying O₂ conditions

Fully expanded tobacco leaves were pulsed with ¹⁴CO₂ at each of the three O₂/N₂ conditions (2% O₂ / 98%N₂, 21% O₂ / 79% N₂, and 40% O₂ / 60 % N₂) through the sample port on the back of a head of a LI-6800 (LI-COR Biosciences, USA) for 10 min. The assimilated ¹⁴C was then chased with ¹²CO₂ for 5 min, under a light intensity of 100 μmol photon m⁻² s⁻¹ and temperature of 25°C. The leaves were exposed to CO₂ concentrations of 400 μL L⁻¹ (v/v) during the entire pulse-chase labeling process. At the end of the chase period, the labeled leaf tissue was immediately frozen in liquid nitrogen and stored at -80°C. Frozen tissue was extracted with 0.5 mL formic acid solution (formic acid/ethanol 4:75, v/v). The suspension was centrifuged at 12000 g, 4°C for 10 min. Half of the supernatant was directly counted for radioactivity (total soluble fraction) using a 1450 Microbeta Trilux scintillation counter (Perkin Elmer, USA). The other half the supernatant was passed through a Dowex 1 (Cl⁻ form) column, followed by a Dowex 50 (H⁺ form) column. The first 1 mL flow through was discarded and the next five 1 mL fractions were separately collected and counted for radioactivity (neutral soluble fraction). The ionic fraction was calculated as the difference in radioactivity between total soluble fraction and the neutral soluble fraction. The pellet was washed once with water and twice with 80 % ethanol and then resuspended in 0.5 mL of 0.2 M KOH. Starch in the pellet was gelatinized at 95 °C for 30 min, then digested with 50 U alpha -amylase and 6.5 U amyloglucosidase in an acetate buffer (pH 5) for 2 days. After centrifugation, the supernatant was removed and counted for radioactivity. Proportion of counts in the starch and neutral soluble fraction (presumably mostly sucrose) relative to total counts were multiplied by the photosynthetic rate of each leaf to estimate rates of starch and sucrose accumulation. Due to the relatively large sucrose pool and slow turnover rate, we assume that the loss of sucrose exported from the labeled leaf region during the short labeling period is negligible.

Supplementary Method 3. Determining diffusional and biochemical parameters for estimating rates of rubisco oxygenation (v_o) and rubisco carboxylation (v_c).

3.1 Describing the Gas-Exchange and Carbon Isotope Discrimination System

To estimate g_m , which is required to calculate the intercellular CO₂ concentrations needed to estimate v_o and v_c , *in vivo* gas exchange measurements of steady-state photosynthesis were combined with on-line measurements of carbon isotope discrimination, Δ , as described earlier⁴⁻⁶ using a LI-6800 (LI-COR

Biosciences, USA) coupled to a tunable infrared laser differential absorption spectrometer (TILDAS-CS, Aerodyne Research, USA).

A computer-controlled front-end was provided for the system, as an integrated hardware and software system “Vinland” created by H. Stuart-Williams at the Australian National University (Contact information available upon request). In brief, software running on a PC/Arduino pair reads and displays output from the laser and controls hardware devices including valves (VICI Valco Instruments Co. Inc., USA) and mass flow controllers (Alicat Scientific, Inc., USA) to manage a gas mixing system to make synthetic air and dope it with isotopically characterized reference CO₂ as required, using pneumatic injection valves with capillaries (SGE MOVPT, SGE International, Ringwood, Australia).

The fully expanded leaf was placed across the leaf chamber avoiding the midrib. The CO₂ in the leaf chamber, flow rate, and irradiance were set to 400 μmol mol⁻¹, 300 μmol s⁻¹, 1750 μmol m⁻² s⁻¹, respectively. The LI-6800 was located inside a heating cabinet (Percival Scientific, USA) to maintain a 25°C leaf temperature and a 1.2 kPa vapor pressure deficit throughout the measurement. One synthetic air line was bubbled through a flask of water and fed into the LI-6800 air inlet port. A separate isotope reference line was doped with a specified concentration of CO₂ ($\delta^{13}\text{C}$ vs. VPDB: -4.6 ‰, (Airgas Specialty Gases, USA)) to produce a calibration reference line to correct the raw $\delta^{13}\text{C}$ signals. To determine Δ , the reference and sample exhaust lines of the LI-6800 were subsampled into the TILDAS-CS on an alternating basis. To accomplish this, two lines connected the LI-6800 exhaust ports A and B carried sample and reference airstreams through Nafion tubing and a dry-ice ethanol trap to remove all water vapor from the airstream. These lines and the calibration reference line from the mixing system, were connected to separate ports on the VICI multiposition valve to switch airstreams entering the TILDAS-CS. The TILDAS-CS measured molar ratios of the different carbon dioxide isotopologues (¹⁶O¹²C¹⁶O, ¹⁶O¹²C¹⁷O, ¹⁶O¹²C¹⁸O & ¹⁶O¹³C¹⁶O). Scripts running in the Vinland software controlled the valves and mixing and calculated/averaged raw $\delta^{13}\text{C}$ values for each measurement period.

$\delta^{13}\text{C}$ was calculated as:

$$\delta^{13}\text{C} = \left(\frac{R_{sample}}{R_{standard}} - 1 \right) * 1000 \quad (1)$$

where R_{sample} is the molar ratio of the fractional abundance of the heavy isotope over the fractional abundance of the light isotope from the airstream that is measured by the TILDAS-CS, $\frac{^{16}\text{O}^{13}\text{C}^{16}\text{O}}{^{16}\text{O}^{12}\text{C}^{16}\text{O} + ^{16}\text{O}^{12}\text{C}^{17}\text{O} + ^{16}\text{O}^{12}\text{C}^{18}\text{O}}$. While the $R_{standard}$ is the molar ratio of Vienna Pee Dee Belemnite, the international reference standard for ¹³C/¹²C and is 0.0111797 ⁴.

The TILDAS-CS was calibrated using an offset calibration approach as described earlier ⁴ to correct the raw $\delta^{13}\text{C}$. With the corrected $\delta^{13}\text{C}$, the observed ¹³C photosynthetic discrimination, Δ_{obs} , was calculated from an equation presented in ^{4,7}:

$$\Delta_{obs} = \frac{\zeta(\delta^{13}\text{C}_{sample} - \delta^{13}\text{C}_{reference})}{1 + \delta^{13}\text{C}_{sample} - \zeta(\delta^{13}\text{C}_{sample} - \delta^{13}\text{C}_{reference})} \quad (2)$$

$$\zeta = \frac{{}^{12}CO_{2; reference}}{{}^{12}CO_{2; reference} - {}^{12}CO_{2; sample}} \quad (3)$$

where $\delta^{13}C_{sample}$ and $\delta^{13}C_{reference}$ are the carbon isotope compositions of the sample and reference airstreams coming from the LI-6800. ζ is the ratio of the ${}^{12}CO_2$ mole fraction in the dry air coming into the gas-exchange cuvette over the difference in ${}^{12}CO_2$ mole fractions of air in and out of the cuvette ⁴.

3.2 Measurement Cycle

To find accurate Δ_{obs} values, the system needed to cycle the calibration reference line and the LI-6800 sample and reference lines to determine the $\delta^{13}C$ of the gases. A Vinland script automated the calibration and sampling analysis. The calibration reference line was measured at two different concentrations (39 and 46.5 Pa) at the beginning and end of the measurement cycle. In-between the calibration measurements were the LI-6800 reference and sample measurements. These lines were subsampled five times to produce five technical replicates within one measurement cycle. An autolog program was written on the LI-6800 GUI to match the timing of the Vinland script so that gas-exchange measurements could be taken simultaneously with the carbon isotope discrimination measurements.

Measurements were corrected using an offset calibration. Offsets were calculated from the true (-4.6 ‰) and measured calibration reference $\delta^{13}C$ values at each CO_2 concentration. With these offsets, a linear regression was modeled between the CO_2 concentrations and offsets to create an offset calibration line. This offset calibration line was applied to correct the raw $\delta^{13}C$ measurements ⁴.

3.3 Final Estimation of g_m

Estimation of g_m was performed using the online isotope data according to ^{4,5}

$$g_m = \frac{1+t}{1-t} \frac{b'_3 - a_m - \frac{\alpha_b}{\alpha_e} e \frac{R_L}{A-R_L}}{\bar{a} \frac{C_i}{C_a} - \frac{1+t \alpha_b}{1-t \alpha_e} e \frac{R_L}{A-R_L} \frac{C_i - \Gamma^*}{C_a} - \frac{1+t \alpha_b}{1-t \alpha_f} f \frac{\Gamma^*}{C_a} - \Delta_{obs}} \frac{A}{C_a} \quad (4)$$

where, $t = \frac{\alpha_{ac}E}{2g_{ac}}$, and $\bar{a} = \frac{a_b(C_a - C_s) + a_s(C_s - C_i)}{C_a - C_i}$. e was calculated with the assumption that the plant used old photosynthate as the substrate for respiration, $e = \delta^{13}C_{tank} - \delta^{13}C_{atmosphere}$, where $\delta^{13}C_{tank}$ was the measured $\delta^{13}C$ of the sample airstream, and the $\delta^{13}C_{atmosphere}$ was assumed to be -8‰. R_L and Γ^* values were used from the common intersection method (described below). Other variables and fractionation factors used in the equation 4 are defined in the table below as described earlier ⁴.

Variable (units)	Definition
A ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	Net CO_2 assimilation rate
a_b (‰)	${}^{12}C/{}^{13}C$ fractionation for CO_2 diffusion in the boundary layer ($a_b = 2.9\text{‰}$)
a_m (‰)	Summed ${}^{12}C/{}^{13}C$ fractionation during the liquid-phase dissolution and dissolution of CO_2 diffusion in the boundary layer ($a_m = 1.8\text{‰}$)
a_s (‰)	${}^{12}C/{}^{13}C$ fractionation for CO_2 diffusion in air ($a_s = 4.4\text{‰}$)
\bar{a} (‰)	The weighted fractionation for CO_2 diffusion across boundary layer and stomata in series
b'_3 (‰)	Overall <i>in vivo</i> ${}^{12}C/{}^{13}C$ fractionation during carboxylation by rubisco and PEPC ($b'_3 = 30\text{‰}$)

C_a (Pa)	The CO_2 partial pressure in the ambient air
C_i (Pa)	The CO_2 partial pressure in the intercellular airspace of the leaf
C_i^* (Pa)	The CO_2 partial pressure in the intercellular airspace of the leaf at the photorespiratory CO_2 compensation point
C_s (Pa)	The CO_2 partial pressure at the leaf surface
E (mol $\text{m}^{-2} \text{s}^{-1}$)	Transpiration rate
e (‰)	$^{12}\text{C}/^{13}\text{C}$ fractionation during decarboxylation
f (‰)	$^{12}\text{C}/^{13}\text{C}$ fractionation during photorespiration ($f = 11.8\text{‰}$)
g_{ac} (mol $\text{m}^{-2} \text{s}^{-1}$)	Conductance to diffusion of CO_2 in air
R_L ($\mu\text{mol m}^{-2} \text{s}^{-1}$)	Non-photorespiratory CO_2 release in the light
t	Ternary correction coefficient
α_{ac}	$\alpha_{ac} = 1 + \bar{\alpha}$
α_b	$\alpha_b = 1 + b'_3$
α_e	$\alpha_e = 1 + e$
α_f	$\alpha_f = 1 + f$
Γ^* (Pa)	The CO_2 partial pressure in the chloroplast at the photorespiratory CO_2 compensation point

3.4 Measurement of C_i^* and R_L

To measure C_i^* and R_L , we used the common intersection method ^{8,9}. As described above, measurements were performed using a LI-6800. The LI-6800 maintain a 25°C leaf temperature, a 1.5 kPa vapor pressure deficit, and a flow rate of 500 $\mu\text{mol s}^{-1}$ during the measurement. The common intersection method measurements were linear fits of CO_2 response curves measured at 3, 5, 7, 9, 11, 40 (Pa) at irradiances of 250, 165, 120, 80, 50 ($\mu\text{mol m}^{-2} \text{s}^{-1}$). C_i^* and R_L values were determined from the linear regression of the slopes and y-intercepts from each irradiance as described earlier ^{9,10}.

3.5 Calculating Γ^*

Γ^* was determined from $\Gamma^* = C_i^* + \frac{R_L}{g_m}$, where g_m , C_i^* , and R_L were determined from the gas exchange, and carbon isotope discrimination approaches described earlier ¹¹. g_m and Γ^* were resolved iteratively using previous g_m , Γ^* , and R_L values to improve solutions accuracy; iterations were stopped when unity was reached. Gas exchange and stable carbon isotope data were analyzed using R; scripts will be available upon request.

3.6 Calculating v_o and v_c

The key equation for estimating v_o and v_c using measured rates of A is

$$A = v_c - 0.5v_o - R_L \quad (5)$$

Based on the following relationships from the previous work ¹²

$$\Phi = \frac{v_o}{v_c} \quad (6)$$

$$\Phi = \frac{2\Gamma^*}{C_c} \quad (7)$$

where I^* was determined from the section 3.5 above, C_c is the partial pressure of CO_2 at the site of rubisco catalysis and was determined by

$$C_c = C_i - \frac{A}{g_m} \quad (8)$$

where A and C_i were determined from gas exchange measurements and g_m was determined from the section 3.3 above.

Rearranging equations (5) – (7), we can estimate v_o and v_c as

$$v_c = \frac{A+R_L}{1 - \Gamma^* / C_c} \quad (9)$$

$$v_o = \frac{v_c - A - R_L}{0.5} \quad (10)$$

Supplementary Method 4. Isotopically non-stationary metabolic flux analysis (INST-MFA) model formulation

Pseudo-steady state metabolism was assumed for INST-MFA because no significant changes in the relative pool sizes of most metabolites was observed throughout the 30 min labeling period at each oxygen condition (Supplementary Figure 7). A network model of central metabolism was constructed using the INCA package (version 1.8) to represent the interactions between the C_3 cycle, photorespiration, starch and sucrose synthesis, the TCA cycle, and amino acid metabolism. The stoichiometry of reactions and atom transitions for each reaction is listed in Supplementary Data 1. The INCA model files (in MATLAB readable format) are included in Supplementary Data 8. Metabolic fluxes were estimated by iteratively minimizing the sum of squared residuals (SSR) between the measured and simulated isotopic labeling patterns and external rate measurements. At each iteration, the network model was used to simulate isotopic labeling kinetics for a given set of fluxes. The fluxes were iteratively adjusted until the local optimum was achieved. The optimization was restarted from 100 random initial values of fluxes to find the global optimum (best-fit solution) (Supplementary Data 4).

The INST-MFA modeling reconciles as well as possible all experimental measurements for each oxygen condition, including the time-course mass isotopologue distribution data, rubisco oxygenation rate (v_o), rubisco carboxylation rate (v_c), starch and sucrose production rates, and output flux ratios of amino acids and sucrose measured in vascular exudate. Due to the technical difficulties of collecting exudates at 2% or 40% oxygen, we used exudates collected at 21% oxygen to constrain the output flux ratios of amino acids and sucrose in all models (Supplementary Table 2). Because the leaf export of amino acids and sucrose were stoichiometrically constrained to each other, the leaf export of glycine or serine was calculated by multiplying the output flux by the ratio of glycine or serine to sucrose.

The labeling data of glycolate, glyoxylate, and glycerate were not included in the INST-MFA modeling for the following reasons: Glycolate and glyoxylate were in low abundance, resulting in relatively large variability in the labeling data (Supplementary Data 2). The labeling of glyoxylate and glycerate was extremely slow, with the average ^{13}C -enrichment reaching only 12% and 16% at 30 min of labeling under high oxygen (Supplementary Figure 5). The lower-than-expected pool size and labeling plateau of glyoxylate was also found in another $^{13}\text{CO}_2$ labeling study in *Arabidopsis*¹³. The slow labeling and large pool size of glycerate indicates the presence of large metabolically inactive pools due to cellular

heterogeneity. To accurately describe the labeling kinetics of metabolites such as glycine, serine, and sugar phosphates, dilution parameters were used in the INCA model to introduce metabolic inactive pools that are not significantly ^{13}C -enriched within the 30 min labeling period (Supplementary Data 1).

To test for the presence of the export of photorespiratory glycine and serine to alternative sinks besides phloem, we removed these two equations (dummyGLY -> outGLY, dummySER -> outSER) from the model. This resulted in slightly increased degrees of freedom (1,714 to 1,716), but worse model fitting for 21% oxygen and 40 % oxygen. The SSR increased from 786 to 882 in the 21% oxygen model and increased from 791 to 1,162 in the 40 % oxygen model. However, the SSR for the 2% oxygen model was not changed when these two reactions were removed, consistent with the very little flux through these export reactions under low photorespiratory conditions. Including the export reactions of photorespiratory glycine and serine to alternative sinks improved the goodness of fit between the flux solution and measured data when modeling photorespiratory scenarios.

Although there is limited evidence for the export of glycerate from the photorespiratory pathway, we included this reaction in the model and added the glycerate labeling data. The addition of the glycerate export reaction only slightly changed the model fitting. The glycine and serine export rates were very close to the values estimated from the original model without the glycerate export reaction. The resulting glycerate and glycine export rate was $< 0.1 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at all oxygen conditions, while the serine export rate was $< 0.1 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at 2% oxygen, $3.7 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at 21% oxygen, and $7.0 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at 40% oxygen.

Removing all dilution parameters from the model resulted in worse model fitting but predicted the similar trend of export rates of photorespiratory glycine and serine to alternative sinks besides phloem as compared to the model with dilution parameters (Fig. 1). Without dilution parameters, the glycine export rate was $< 0.1 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at all oxygen conditions; the serine export rate was $< 0.1 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at 2% oxygen, $5.0 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at 21% oxygen, and $8.1 \mu\text{mol g}^{-1} \text{ FW hr}^{-1}$ at 40% oxygen.

Literature Cited

- 1 Xu, Y., Fu, X., Sharkey, T. D., Shachar-Hill, Y. & Walker, B. J. The metabolic origins of non-photorespiratory CO_2 release during photosynthesis: A metabolic flux analysis. *Plant Physiol* **186**, 297-314 (2021).
- 2 Lunn, J. E. *et al.* Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in *Arabidopsis thaliana*. *Biochem J* **397**, 139-148 (2006).
- 3 Fu, X., Yang, H., Pangestu, F. & Nikolau, B. J. Failure to maintain acetate homeostasis by acetate-activating enzymes impacts plant development. *Plant Physiol* **182**, 1256-1271 (2020).
- 4 Ubierna, N., Holloway-Phillips, M.-M. & Farquhar, G. D. in *Photosynthesis: Methods and Protocols* (ed Sarah Covshoff) 155-196 (Springer New York, 2018).
- 5 Evans, J. R. & von Caemmerer, S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. *Plant Cell Environ* **36**, 745-756 (2013).
- 6 Tazoe, Y., von Caemmerer, S., Estavillo, G. M. & Evans, J. R. Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO_2 diffusion dynamically at different CO_2 concentrations. *Plant Cell Environ* **34**, 580-591 (2011).

7 Evans, J. R., Sharkey, T. D., Berry, J. A. & Farquhar, G. D. Carbon Isotope Discrimination
measured Concurrently with Gas Exchange to Investigate CO₂ Diffusion in Leaves of Higher
Plants. *Functional Plant Biology* **13**, 281-292 (1986).

8 Laisk, A. K. Kinetics of photosynthesis and photorespiration of C3 in plants. (1977).

9 Walker, B. J., Skabelund, D. C., Busch, F. A. & Ort, D. R. An improved approach for measuring the
impact of multiple CO₂ conductances on the apparent photorespiratory CO₂ compensation point
through slope–intercept regression. *Plant Cell Environ* **39**, 1198-1203 (2016).

10 Walker, B. J. & Ort D. R. Improved method for measuring the apparent CO₂ photocompensation
point resolves the impact of multiple internal conductances to CO₂ to net gas exchange. *Plant
Cell Environ* **38**, 2462-24.47 (2015).

11 von Caemmerer, S., Evans, J. R., Hudson, G. S. & Andrews, T. J. The kinetics of ribulose-1,5-
bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in
leaves of transgenic tobacco. *Planta* **195**, 88-97 (1994).

12 von Caemmerer, S. Biochemical Models of Leaf Photosynthesis. (CSIRO Publishing, 2000).
doi:10.1071/9780643103405.

13. Bergman, M. E. et al. An Arabidopsis GCMS chemical ionization technique to quantify adaptive
responses in central metabolism. *Plant Physiol.* **189**, 2072–2090 (2022).