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Co-design for Resilience and Performance
Navid Hashemi, Justin Ruths

Abstract—We present two optimization approaches to mini-
mize the impact of sensor falsification attacks in linear time
invariant systems controlled by estimate-based feedback. We
accomplish this by finding observer and controller gain matrices
that minimize outer ellipsoidal bounds that contain the reachable
set of attack-induced states. To avoid trivial solutions, we involve
a covariance-based ∥H∥2 closed-loop performance constraint.
This exposes a trade-off between system security and closed-
loop performance and demonstrates that only small concessions
in performance can lead to large gains in our reachability-based
security metric. We provide both a nonlinear optimization based
on geometric sums and a fully convexified approach formulated
with linear matrix inequalities. We demonstrate the effectiveness
of these tools on two numerical case studies.

Index Terms—LMI, reachable set, security, robust control.

I. INTRODUCTION

A growing awareness of security concerns in automated
physical processes has increased interest in our ability to

quantify the impact of would-be attackers. It is the networked
nature and cyber portion of these modern control systems
that provides improvements in efficiency, performance, and
reliability as well as exposes new avenues for disruption
through attack. It is also this large and distributed nature of
cyber physical systems that requires a systematic approach
for detecting anomalies rather than relying on operators to
spot abnormal behavior. Work along these lines imposes a
detector to raise alerts when sensor measurements do not
fall in line with model-based predictions, thus constraining
what an attacker can do while staying undetected [1]-[4]. The
tuning of such detectors is a balancing act between increasing
the sensitivity to attacks while reducing the number of false
alarms (alerts raised during normal operation) [5]. The next
clear step in this direction of research is to then minimize
this impact through control system design. Initially work used
the distance (norm) that an attacker could drive the state as
a proxy for impact [5], [6], however, ultimately the reachable
set provides important information about which components
of a system are effected more than others and can inform
whether the attacked state might reach dangerous regions of
state space [7]. The quantification, or analysis, studies have
often used ellipsoidal bounds on the actual attack-induced
reachable set achieved either through iterative methods [1] or
the satisfaction of linear matrix inequalities (LMIs) [3], [7].
The latter extends gracefully to optimization to address the
design question, although doing so often requires re-linearizing
the inequalities with respect to the new design variables.

In this paper, we leverage past work [3] on quantification
of ellipsoidal bounds on the attack-induced reachable set to
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design the observer and controller gain matrices to minimize
the ellipsoidal bound (and thus the reachable set) when a
linear time invariant system is controlled with estimate-based
feedback. As has been pointed out (see, e.g., [7]), it is
important to pair a security minimization with a constraint
on closed-loop performance, otherwise a trivial solution exists
to disconnect the feedback loop and thus cut off the effect
of the attack on the system state. Our design solutions then
characterize a trade-off between resilience to attacks and
closed-loop performance. Here we specify an input covariance-
based (ICB) ∥H∥2 performance [8], which takes into account
the covariance of the noise, unlike other distribution-agnostic
approaches to robust control [9], [10].

The notion of a trade-off between security and robustness
exists within the literature on Resilient Control [11], [12],
which emphasizes that a system can be fragile and weak
against cyber perturbations despite being robust against phys-
ical uncertainties [13], [14]. In this context, robustness refers
to the performance of the system under physical uncertainties
and disturbances and security refers to the safety of the
system against malicious signals and uncertainties entering
from the cyber layer. Recent work in this theme has primarily
sought to identify criteria to avoid making a compromise
between robustness and security, i.e., maintain uncorrupted
state estimation or control over an attacked system [15]-[20].
The alternative is to quantify the system degradation possible
due to worst-case attacks that are only constrained to avoid
detection [3], [6], [21]. Our contribution here is to design
the system to minimize this worst-case degradation, through
optimization over bounds with some linearization assumptions.

Our work is distinguished from [7]by (a) using estimate
feedback, which would create nonlinearities in the formulation
in [7]; (b) approximating the residual covariance, which allows
the optimization to maintain a fixed false alarm rate for the
detector despite changes in the gain matrices; (c) using a
covariance-informed ∥H∥2 performance metric as opposed
to a distributionally insensitive version (we develop a novel
convexification of the ICB ∥H∥2 design problem, by dividing
the problem into a convex optimization and a generalized alge-
braic Riccati equation); (d) introducing a magnification factor
to scale the shape matrices associated with the ∥H∥2 and
reachable set decision variables; and (e) develop a nonlinear
optimization based on geometric sums to more accurate probe
the security-performance trade-off. Our tools enable us to
demonstrate that small reductions in closed-loop performance
can enable substantive improvements in our security metric
when attackers seek to remain undetected.
Sn++ denotes the space of n× n positive definite matrices.

We use i, j := i, i + 1, . . . , j − 1, j to denote an interval of
integers. J ij

A is a matrix of all zeros with the same size as
matrix A whose (i, j) entry is a one ([J ij

A ]ij = 1).
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II. BACKGROUND

We are motivated by modern networked control systems in
which sensing, control, and actuation often occur in physically
disparate locations and are coordinated through a wired and/or
wireless communication network - such as in power distri-
bution, where several hierarchical layers coordinate across
large geographic regions; in process control, where plants are
composed of many interacting but mostly siloed modules;
in autonomous driving, where vehicles might combine local
sensing and vehicle-to-vehicle communication in order to
navigate. We model the physical dynamics with a discrete-
time linear time invariant (LTI) system, characterized by the
state, input, and output matrices F , G, and C,

xk+1 = Fxk +Guk + νk, (1)
yk = Cxk + ηk, (2)

with k ∈ N, the state xk ∈ Rn and output yk ∈ Rp are driven
by the control input uk ∈ Rm and i.i.d, Gaussian, and mutually
independent process noise νk ∼ N (0, R1), R1 ∈ Sn++, and
sensor noise ηk ∼ N (0, R2), R2 ∈ Sp++. We assume that F is
stable, the pair (F,C) is detectable, and (F,G) is stabilizable.

It is the networked and physically distributed nature of the
system that allows the opportunity for the actual measurement
yk to be corrupted by an attack, δk ∈ Rp. The attack is injected
at some point between the measurement and reception of the
output by the controller,

ȳk = yk + δk = Cxk + ηk + δk. (3)

If the attacker has access to the measurements, then it is
possible for the attack δk to cancel some or all of the original
measurement yk.

Because our system is stochastic, we require an estimator
to produce a prediction of the system behavior

x̂k+1 = Fx̂k +Guk + L(ȳk − Cx̂k), (4)

where x̂k ∈ Rn is the estimated state and the observer gain L
is designed to force the estimate to track the system states.

We consider observer-based feedback controllers

uk = Kx̂k, (5)

where K ∈ Rm×n is the controller gain matrix. Next, we
define the residual sequence

rk = ȳk − Cx̂k = Cek + ηk + δk, (6)

as the difference between what we actually receive (ȳk) and
expect to receive (Cx̂k), which evolves according to

xk+1 = (F +GK)xk −GKek + νk

ek+1 =
(
F − LC

)
ek − Lηk + νk − Lδk,

(7)

where ek = xk − x̂k is the estimation error. In the absence
of attacks (i.e., δk = 0), we can show that the steady-state
distribution of rk is Gaussian with covariance,

Σ = lim
k→∞

E[rkr
⊤
k ] = CPeC

⊤ +R2, (8)

where the steady state covariance of the estimation error Pe =
limk→ E[eke

⊤
k ] is the solution of

Pe = (F − LC)Pe(F − LC)⊤ + LR2L
⊤ +R1. (9)

Although similar analysis can be done with other detector
choices [5], [6], we consider the chi-squared detector, which
constructs a quadratic distance measure zk and raises alarms
when the distance measure exceeds a threshold ᾱ ∈ R>0

zk = r⊤k Σ
−1rk > ᾱ −→ alarm: k′ = k, (10)

such that alarm time(s) k′ are produced. The Σ−1 factor in
the definition of zk re-scales the distribution (E[zk] = p,
E[zkz

⊤
k ] = 2p) so that the threshold ᾱ can be designed

independent of the specific statistics of the noises νk and ηk
as well as system parameters (e.g., gains K, L) [5].

A. Definition of Attack

Detectors are designed to identify anomalies in system
behavior. If an attacker aims to remain undetected, the choice
of detector and its parameters limit what the attacker is
able to accomplish. The type of attacks we consider here
require strong knowledge of and access to system dynamics,
statistics of the noises, current estimate (x̂k), and the detector
configuration (complete disclosure and model capabilities;
complete sensor disruption capabilities). The goal of this
powerful stealthy attack is to construct the worst case scenario
to aid the design of more robust systems.

Zero-alarm attacks employ attack sequences that maintain
the distance measure at or below the threshold of detection,
i.e., zk ≤ ᾱ. Hence, these attacks generate no alarms. To
satisfy this condition we define the attack as

δk = ϕk − (yk − Cx̂k) = −Cek − ηk + ϕk, (11)

where ϕk ∈ Rp is any vector such that ϕ⊤
k Σ

−1ϕk ≤ ᾱ (recall
the attacker has access to the sensor, yk, and knowledge of
the estimator, x̂k). Under this attack no alarms are raised,

zk = r⊤k Σ
−1rk = (Cek + ηk + δk)

⊤Σ−1(Cek + ηk + δk),

= ϕ⊤
k Σ

−1ϕk ≤ ᾱ. (12)

B. Reachable Set

The dynamics under a zero-alarm attack (11) become

xk+1 = Fxk +GKx̂k + νk,

x̂k+1 = LCxk + (F +GK − LC)x̂k − LCek + Lϕk,

ek+1 = Fek − Lϕk + νk.

(13)

We stack these into a combined state ξk =
[
x⊤
k , x̂

⊤
k , e

⊤
k

]⊤
and combined input µk =

[
ν⊤k , ϕ⊤

k

]⊤
,

ξk+1 = Aξk +Bµk, (14)

with

A =

 F GK 0
LC F +GK − LC −LC
0 0 F

, B =

I 0
0 L
I −L

. (15)

Remark 1: The choice of including xk, x̂k, and ek seems
redundant since ek = xk − x̂k, however, this choice is crucial
as we layer additional constraints into the design optimization.
Throughout the rest of the paper we will use a n×3n selection
matrix Ex = [In, 0n, 0n] to pull out the state xk = Exξk.
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The reachable set of attack-induced states is then,

R =

xk = Exξk

∣∣∣∣∣∣∣
ξκ+1 = Aξκ +Bµκ,

ξ1 = 0, ϕ⊤
κΣ

−1ϕκ ≤ ᾱ,

ν⊤κ R−1
1 νκ ≤ ν̄, ∀k ∈ N

 , (16)

where the ellipsoidal bound on the attack ϕk is imposed by the
attacker’s desire to remain stealthy (12). The ellipsoidal bound
on the noise is created by truncating the Gaussian process
noise to a desired probability, i.e., Pr[ν⊤k R−1

1 νk ≤ ν̄] = pν ,
where pν is some desired (typically high) probability. In
principle, the noise has unbounded support, and hence the
reachable set is unbounded. To ensure bounded reachable sets,
we apply this truncation at the desired confidence level.

III. SCALABLE GAIN DESIGN VIA LMI APPROACH

In the first subsection below, we reframe an existing result
more concisely, which identifies a minimal outer ellipsoidal
bound on the set of states reachable by a stealthy (zero-alarm)
attacker. We then consider minimizing the upper bound of this
set further through the design of the feedback and estimator
gains K and L. A trivial solution exists to this design problem
- to make either GK = 0 or L = 0. Doing so cuts the
feedback loop and guarantees that corrupted measurements do
not impact the system state. Simultaneously, this destroys the
purpose - more specifically the performance - of the feedback
loop. While many performance metrics could be used, in Sec-
tion III-B we impose a ∥H∥2 constraint to avoid these trivial
solutions. Unlike prior work where the performance criteria
ignored the distribution of the noise, this ∥H∥2 constraint is
specific to the covariance of the noise, thereby allowing our
design optimization to leverage this important knowledge. This
input covariance based (ICB) ∥H∥2 constraint is non-convex;
and here we offer a convexification of the ICB ∥H∥2 criteria
into an LMI framework.

A. Bounding Ellipsoid LMI (given K and L)

Before we move on to the synthesis problem of designing
the gain matrices, we first provide a solution to the analysis
problem of finding a minimal outer ellipsoidal bound of the
reachable set given K and L, when the system is driven by the
process noise and attack. A similar analysis result appears in
[3], however, there the problem is split into two optimizations
- one to find a bound on the estimation error reachable set, the
result of which is used in the second optimization to bound
the state reachable set. Here, in Lemma 1, we solve these
simultaneously through the stacked states ξk and inputs µk.

Lemma 1: Given the system matrices A and B in (15), gains
K, L, detector threshold ᾱ with steady state residual covari-
ance Σ, process noise truncation threshold ν̄ with covariance
R1, if there exists a constant a ∈ [0, 1) such that the following
optimization is feasible, the solution of

min
a1,a2,Q

tr(E⊤
x QEx)

s.t. 0 ≤ a1, a2 < 1, a1 + a2 ≥ a,

B =

aQ QA⊤ 0
AQ Q B
0 B⊤ 1−a

2−aW

 ⪰ 0,

(17)

provides the shape matrix Q of an ellipsoidal bound on the
reachable set of states, i.e., R ⊆ E(E⊤

x QEx), where

W =

[
1−a1

ν̄ R−1
1 0

0 1−a2

ᾱ Π

]
, Π = Σ−1. (18)

Proof: The stacked dynamics (14) is driven by two inputs
which are both ellipsoidally bounded. Letting W1 = R−1

1 and
W2 = Σ−1, from Lemma 1 in [7], we can write,

Vk+1−aVk−
1− b

ᾱ
ϕ⊤
k Σ

−1ϕk−
1− a1

ν̄
ν⊤k R−1

1 νk ≤ 0. (19)

Substituting the choice Vk = ξ⊤k
(
2−a
1−aP

)
ξk ≤ 2−a

1−a , P ≻ 0,
into this equation and expanding using the dynamics (14)
results in the LMI,

H =

aP A⊤P 0
PA P PB
0 B⊤P 1−a

2−aW

 ⪰ 0. (20)

which defining Q = P−1, can be rephrased as B, see
Appendix A.

B. Input Covariance Based ∥H∥2 Constraint

The introduction of this section and past related work has
identified that trivial solutions exist for the synthesis problem
unless a performance criteria is imposed in the optimization
[7]. One of the distinguishing features of this work is that
we implement an input covariance based ∥H∥2 constraint,
which involves the covariances of the process and sensor
noises. In contrast, the standard ∥H∥2 metric is independent
of the noise distribution and hence is unable to exploit this
information to yield improved solutions. The challenge is to
convexify and linearize this inherently nonlinear constraint.
Most optimizations in the literature either use ∥H∥∞ robust
constraint that is already convex [7], [9] or solve the standard
∥H∥2 using iterative algorithms [22], [23].

To specify the performance, Robust Control studies the gain
observed in a signal hk = Hxk + θk. Here, for the system
without attack, we consider the system driven by process and
sensor noise and enforce an ∥H∥2 constraint between the
controlled output hk with sensor noise θk ∈ N (0, R3), and
excitation ωk =

[
ν⊤k , η⊤k

]⊤
. When there is no attack the

system evolves according to

xk+1 = Fxk +GKx̂k + νk, (21)
x̂k+1 = LCxk + (F +GK − LC)x̂k + Lηk, (22)

hk = Hxk + θk, (23)

which can be combined using the stacked state ζk = Exx̂ξk =[
x⊤
k , x̂

⊤
k

]⊤
, with Exx̂ = [I2n, 02n×n],

ζk+1 = Âζk + B̂ωk, (24)

with Â = Exx̂AE⊤
xx̂ and B̂ = Exx̂BE⊤

xx̂.
Remark 2: The value of the redundant definition of ξk (see

Remark 1) is to express the state matrix without attack Â as
a sub-block of the state matrix under attack A. This parallel
structure facilitates integrating the ∥H∥2 constraint (without
attack) with the reachable set calculation (under attack).
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The standard ∥H∥2 norm is defined as the expected power
of the response to zero mean white noise with unit covariance,
i.e., limk→∞ E[h⊤

k hk] [24]. The ICB ∥H∥2 criteria takes the
same approach, but instead normalizes by the expected power
of the input ωk and specifies the gain from the noise to the
controlled output should be less than a desired value γ̄,

∥H∥2 = lim
k→∞

E[h⊤
k hk]

E[ω⊤
k ωk]

≤ γ̄. (25)

Lemma 2: Given the dynamics in (24), the ICB ∥H∥2
constraint in (25) is satisfied if the convex inequality holds,

Ch = tr
(
Ê⊤

x H⊤HÊxP
)
+ tr(R3)

− γ̄
(
tr(R1) + tr(R2)

)
≤ 0,

(26)

where Êx = [In, 0n], and,

P =

[
Px Pxx̂

P⊤
xx̂ Px̂

]
= lim

k→∞
Pk = lim

k→∞
E[ζkζ

⊤
k ], (27)

is the steady state covariance satisfying the Lyapunov equation

P = ÂPÂ⊤ + R̂, P ⪰ 0, R̂ =

[
R1 0
0 LR2L

⊤

]
. (28)

Proof: See Appendix B.
The inequality (26) bounds the actual performance, γ,

γ =
tr

(
HPxH

⊤)+ tr(R3)

tr(R2) + tr(R1)
≤ γ̄, (29)

by the worst allowable performance, γ̄.
To use this ∥H∥2 constraint in a convex optimization we

need to linearize the Lyapunov equation constraint. We state
this as part of a complete convex optimization problem to
design the gains K and L to achieve the optimal ∥H∥2 gain.

Theorem 1: Given the convex optimization,{
min

Px,Q1,X,Y,Z
tr(HPxH

⊤)

s.t. CL ⪰ 0,
(30)

CL =


Q1 I Q1F +XC Z Q1R1 XR2

∗ Px F FPx +GY R1 0
∗ ∗ Q1 I 0 0
∗ ∗ ∗ Px 0 0
∗ ∗ ∗ ∗ R1 0
∗ ∗ ∗ ∗ ∗ R2

 , (31)

with solution P∗
x and given matrices

Γ1 = GY (I −Q1Px)
−1, Γ2 = F, Γ4 = −XC, (32)

Γ3 = (Q1GY +XCPx +Q1FPx − Z)(I −Q1Px)
−1,

if the nonlinear algebraic Riccati equation,

Q12Γ1Q12 +Q12Γ2 + Γ3Q12 + Γ4 = 0, (33)

has at least one real solution, Q12, then the gains L = Q−1
12 X ,

K = Y (I −Q1Px)
−1Q12 result in the optimal ∥H∥2 gain,

γ∗ =
tr
(
HP∗

xH
⊤)+ tr(R3)

tr(R2) + tr(R1)
. (34)

Proof: See Appendix C
Remark 3: If the NARE (33) does not provide a real

solution, there are several existing scalable nonlinear iterative

algorithms (e.g., [22], [9]) that can be employed to approxi-
mate γ∗ and the corresponding gains.

Remark 4: The NARE (33) can have more than one real
solution (the Schur Algorithm in [25] computes all

(
2n
n

)
possible solutions) and each corresponds to different gains
K and L that result in the same optimal γ∗. Out of these
solutions, we select the one that leads to the smallest attacked
reachable set (using Lemma 1). In practice we have observed
far fewer - namely two - real solutions. Appendix D presents
an analysis of this particular scenario.

The optimal performance γ∗ corresponds to gains that
prioritize performance over security. At the other end of the
performance spectrum, security increases (reachable set size
decreases) as either L or GK approach zero. This represents
worst-case optimal performance (without closed loop control)
and Lemma 3 provides the corresponding value of γ = γ0.

Lemma 3: Given the system dynamics (21) and (22), the
open loop ICB ∥H∥2 gain γ0 is given by

γ0 =
tr
(
HPxH

⊤)+ tr(R3)

tr(R2) + tr(R1)
, (35)

where the steady state covariance, Px, is the solution of

FPxF
⊤ −Px +R1 = 0. (36)

Proof. See Appendix E.
If we pick a performance bound γ̄ > γ0, the goal to

maximize security while keeping γ ≤ γ̄ will still yield
γ = γ0, since security cannot be improved further once the
feedback loop is disconnected. Therefore, for all choices of
γ̄ ∈ [γ∗, ∞], the solution for performance γ < γ̄ always lies
within the trade-off interval, γ∗ ≤ γ ≤ γ0.

C. Bounding ellipsoid LMI (designing K and L)

The goal of this paper is to construct an optimization to
design K and L such that the impact of an attacker on
the proposed upper bound over the the reachable states is
minimized. However, when K and L are considered variables
of the Lemma 1 optimization, (17) contains nonlinear terms.
In the sections that follow, we impose some structure on the
solution so that we can linearize the overall design problem.
Each choice will be motivated individually, but it is also the
combined effect of the these structures taken together that yield
the final linear matrix inequality. While they do impose some
structure on the solution to accomplish the linearization, they
are best seen as one choice out of typically many quasi-optimal
solutions which still enforce the original nonlinear constraints.

Imposed Structure 1: There are an infinite number of
differently shaped tight (tangent) outer ellipsoidal bounds of
the stacked reachable states ξ. Of these we select one that
satisfies the following structure for the inverse of the shape
matrix, which assumes the independence of the ellipsoidal
bound on the estimation error ek from the ellipsoidal bound
on the combined state xk and estimate x̂k,

Q−1 = P =

P1 P12

P⊤
12 P2

P3

 . (37)
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This is inspired by a similar assumption made in [7]. This
selection enables us to utilize the parallel dynamics with and
without attack (see Remarks 1 and 2) and linearize the original
LMI with respect to K and L. This selection also permits
inverting each block separately, such that P−1

3 = Qe and[
P1 P12

P⊤
12 P2

]−1

=

[
Qx Qxx̂

Q⊤
xx̂ Qx̂

]
. (38)

With the linearizing change of coordinates used in [10], [7],

T2 =

T3

T3

In

 , T3 =

Qx I 0
Q⊤

xx̂ 0 0
0 0 I

 , (39)

the LMI H, (20), can be transformed as

HL = T⊤
2 HT2 =

aPL A⊤
L 0

AL PL BL

0 B⊤
L

1−a
2−aW

 , (40)

with PL = T⊤
3 PT3, BL = T⊤

3 PB, and AL = T⊤
3 PAT3,

where Y1 = P12L, X1 = KQ⊤
xx̂,

PL =

Qx I 0
I P1 0
0 0 P3

 , BL =

 I 0
P1 Y1

P3 −P3L

 ,

AL =

FQx +GX1 F 0
Z1 P1F + Y1C −Y1C
0 0 P3F

 ,

Z1 = P1FQx + P12LCQx + P1GKQ⊤
xx̂ + P12FQ⊤

xx̂

+ P12GKQ⊤
xx̂ − P12LCQ⊤

xx̂. (41)

One of the useful features of this transformation is that Qx =
E⊤

x QEx, the quantity used in the objective function of Lemma
1, appears as a variable of the LMI. This section provides
the linearization necessary to separate the gains K and L as
variables in Lemma 1 (and could then be used as the starting
point if a different performance criteria was used, as opposed
to the ∥H∥2 constraint considered in this paper).

Note that the stability of the closed loop system is implicitly
guaranteed if HL > 0 and CL > 0 (see Appendix F).

D. Combining Performance and Security

We design the controller and estimator gains to minimize
the impact of attacks on the system state, measured by an outer
ellipsoidal bound on the reachable states when the system is
driven by the attack and process noise. There are an infinite
number of potential outer bounding - and tight - ellipsoids on
the reachable set, therefore to combine the LMI constraints
from the reachable set and ∥H∥2 calculations, we make a
specific choice about the outer ellipsoidal bound we select.

Imposed Structure 2: We select the shape matrix of the
ellipsoidal bound of the states xk and estimate x̂k under attack
E⊤

xx̂QExx̂ - see (38) - to have the same orientation as the
covariance of the states and estimate without attack (ζk), and
the shape matrix of the estimation error ek under attack to have
the same orientation of the estimation error without attack,

σ1P = E⊤
xx̂QExx̂, σ2Pe = E⊤

e QEe (42)

where σ = [σ1, σ2]
⊤ is the vector of scaling factors that

become new variables of the method and is a function of
gains (L, K). Since Q = P−1, this sets up a common set of
variables to link the ∥H∥2 (left) and ellipsoidal bound (right)
constraints,

σ1

[
Px Pxx̂

P⊤
xx̂ Px̂

]
=

[
Qx Qxx̂

Q⊤
xx̂ Qx̂

]
, σ2Pe = Qe

1

σ1

[
Q1 Q12

Q⊤
12 Q2

]
︸ ︷︷ ︸

∥H∥2

=

[
P1 P12

P⊤
12 P2

]
︸ ︷︷ ︸

E(Q)

,
1

σ2
P−1

e = P3.
(43)

The structure above allows us to replace variables in the
ellipsoidal bound optimization Q and P with quantities from
the performance criteria, P and Q, respectively.

Based on (43) we can link the variables of the bounding
ellipsoid LMI with the ∥H∥2 constraint,

X = σ1Y1 = Q12L, Y =
X1

σ1
= KP⊤

xx̂, (44)

Z = Z1 = Q1FPx +XCPx +Q1GY +Q12FP⊤
xx̂

+Q12GY −XCP⊤
xx̂.

Defining the new change of variables,

Pxσ = σ1Px, Q1σ = 1
σ1
Q1, Xσ = 1

σ1
X, Yσ = σ1Y, (45)

we can rewrite AL, BL , PL as

AL =

FPxσ +GYσ F 0
Z Q1σF +XσC −XσC
0 0 P3F

,
BL =

 I 0
Q1σ Xσ

P3 −P3L

, PL =

Pxσ I 0
I Q1σ 0
0 0 P3

.
(46)

In order to make the convex constraints CL and Ch com-
patible with this new change of variables we apply the
transformations, CLσ = T⊤

4 CLT4 and Chσ = σ1Ch, with
T4 =

√
σ1diag

([
1
σ1
, 1, 1

σ1
, 1, 1, 1

])
,

CLσ =


Q1σ I Q1σF +XσC Z σ1Q1σR1 σ1XσR2

∗ Pxσ F FPxσ +GYσ σ1R1 0
∗ ∗ Q1σ I 0 0
∗ ∗ ∗ Pxσ 0 0
∗ ∗ ∗ ∗ σ1R1 0
∗ ∗ ∗ ∗ ∗ σ1R2

.

Chσ = tr
(
HPxσH

⊤)+ σ1tr(R3)− σ1γ̄
(
tr(R1) + tr(R2)

)
The approach offered in [26], relies on an iterative scheme to

avoid the nonlinearities surrounding the observer gain matrix
L. In each iteration, the solution of the proposed convex
optimization is used to find L using the Riccati equation in
(33) and the corresponding residual covariance Σ using the
Lyapunov equation in (9). To eliminate the iterative approach,
both of these nonlinearities must be linearized. Another impor-
tant nonlinearity is the −P3L term within HL, specifically BL

in (46). We accomplish this linearization through the selection
of additional structure, which we will show only marginally
reduces the quality of the solutions found.

Imposed Structure 3: We impose Pxx̂ = Px̂. This implies
Pe = Px − Px̂ ⪰ 0 and hence Px ⪰ Px̂ ≻ 0. This choice,
in combination with the objective function tr(Px), serves to
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enforce the quality of the estimator (through the choice of the
gain L) by reducing the covariance of the estimation error in
the absence of attack, Pe, by forcing Px to be as close as
possible to Px̂.

From Imposed Structure 3 and the identity PQ = I (see
Appendix G) we can show,

P−1
e = Q1 = −Q12, (47)

where the second part provides a linear relationship between
Q1 and Q12 which is primarily what linearizes the NARE in
(33), and the first part which is a relation between Pe and
Q1, in companion with Imposed Structure 2, enables us to
replace the nonlinear term −P3L with the linear term 1

σ2
X .

Therefore, if we define τ = σ1/σ2 we can rewrite matrices
AL, BL, PL as

AL =

FPxσ +GYσ F 0
Z Q1σF +XσC −XσC
0 0 τQ1σF

 ,

BL =

 I 0
Q1σ Xσ

τQ1σ τXσ

 , PL =

Pxσ I 0
I Q1σ 0
0 0 τQ1σ

 .

(48)

The relation in (47) between Pe and Q1 also helps to
integrate the Lyapunov equation in (9) into the convex op-
timization. Lemma 4 relates the matrix Π = Σ−1 with the
existing decision variables.

Lemma 4: The positive definite matrix Π, can be expressed
as Π = Σ−1 where Σ comes from (8) and (9), if,

XLσ =

 Π ΠC ΠR2

C⊤Π σ1Q1σ 0
R2Π 0 R2

 ⪰ 0 and (49)

SLσ =


Q1σ Q1σF +XσC σ1Q1σR1 σ1XσR2

(Q1σF +XσC)⊤ Q1σ 0 0
σ1R1Q1σ 0 σ1R1 0
σ1R2X

⊤
σ 0 0 σ1R2

 ⪰ 0.

(50)

Proof: See Appendix H.
Remark 5: Both this work and [7] employ a detector

that forms a quadratic distance measure of the form zk =
r⊤k R

−1rk. In [7], the authors make the assumption that the
normalizing factor R is the shape matrix of an ellipsoid that
bounds the residual, but is not related to the actual covariance
and does not offer guarantees about tightness. This makes
the gain design problem easier, however, it means that the
false alarm rate of the detector would change as the gains
K and L are designed. In this paper, we stay true to the
definition of the chi-squared detector where R = Σ, the true
covariance of the steady state residual. Doing so, however,
introduces nonlinearities in the design optimization since Σ
depends on the observer gain L through (8)-(9). Therefore, it
is a critical feature of our formulation that it approximates Σ
(the true residual covariance) through the LMIs in Lemma 4.
This approach ensures that the distance measure distribution
remains chi-squared and the false alarm rate is constant.
It is this separation between the detector tuning and the
gain optimization that enables showing in Section IV that

Algorithm 1: K,L = Thm 2(F,G,C,H,R1, R2, ϵ)

τ ← 1
σ1 ← initialize σ1 such that (51) is feasible.
while true do

Pxσ,Q1σ, Xσ, Yσ, Z ← fix (σ1, τ); solve (51)
(σ̂1, τ̂)← fix (Q1σ, Xσ); solve (51)
if |σ1 − σ̂1| < ϵ then

Px,Q1, X, Y, Z ← (45)
return L← −Q−1

1 X, K ← Y
(
Px −Q−1

1

)−1

else (σ1, τ)← (σ̂1, τ̂)
end

the optimization is entirely independent from the threshold
selection and false alarm rate.

Combining these linearizations, we provide Theorem 2.
Theorem 2: Consider a LTI system (1) equipped with a chi-

squared detector (10). If there exists constants a, a2 ∈ [0, 1),
that make the following optimization feasible then the solution
of Algorithm 1 over the convex optimization

min
a1,Pxσ,Q1σ,Π

Xσ,Yσ,Z

tr(Pxσ)

s.t. 0 ≤ a1 < 1, a1 + a2 ≥ a,

HL, CLσ,SLσ,XLσ ⪰ 0, Chσ ≤ 0,

(51)

provides the observer L and controller K gain matrices that
minimize the outer ellipsoidal bound (subject to Imposed
Structures 1, 2, and 3) on the set of states reachable by a
zero-alarm attack (12) while maintaining an ICB ∥H∥2 gain
(25) no bigger than γ̄ ∈ [γ∗, γ0].
Proof: See Appendix I

IV. GAIN DESIGN VIA GEOMETRIC APPROACH

We now develop an alternative nonlinear optimization ap-
proach to the gain design problem based on ellipsoidal geo-
metric tools. Although less scalable, the high accuracy of the
method is able to characterize the trade-off between robustness
and security with greater fidelity. It is the true nature of this
trade-off curve that demonstrates giving up a small amount of
∥H∥2 performance can lead to large gains in our reachability-
based security metric.

In the steady state condition (once the transience due to the
initial condition is gone), the solution for state and estimation
error in (13), for k ≥ 2, is,

ek =
k−1∑
i=1

F i−1νk−i − F i−1Lϕk−i, (52)

xk =
k−1∑
i=1

F i−1νk−i +
(
(F +GK)i−1 − F i−1

)
Lϕk−i. (53)

Solving for xk in (53) allows us to compute the reachable set
at time k as the geometric sum of the history of ellipsoidally-
bounded inputs νk (noise) and ϕk (attack) [27],

Rk =
k−2⊕
i=0

E
(
ν̄F iR1F

i⊤)⊕ E (ᾱHiLΣL
⊤H⊤

i

)
, (54)
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Pij
g,L =

∑k∗

q=0 A
q
g

[
0 0
0 J ij

L R2L
⊤ + LR2(J

ij
L )⊤

]
Aq⊤

g −
∑k∗

q=1

(∑q
r=1 A

r−1
g

[
0 0
0 J ij

L C

]
Aq−r

g RAq⊤
g +

∑q
r=1

(
Ar−1

g

[
0 0
0 J ij

L C

]
Aq−r

g RAq⊤
g

)⊤)
Puv
g,K =

∑k∗

q=1

(∑q
r=1 A

r−1
g

[
GJuv

K −GJuv
K

0 0

]
Aq−r

g RAq⊤
g +

∑q
r=1

(
Ar−1

g

[
GJuv

K −GJuv
K

0 0

]
Aq−r

g RAq⊤
g

)⊤)
,

i ∈ 1, n, j ∈ 1, p

u ∈ 1,m, v ∈ 1, n
(⋆)

k∗∑
q=1

tr
(
(H⊤

q Hq)(J
ij
L

ΣL⊤+LCEeP
ij
g,L

E⊤
e C⊤L⊤+LΣJ

ijT
L

)
)

2
√

tr(HqLΣL⊤H⊤
q )

+ λ tr(HÊxP
ij
g,LÊ

⊤
x H⊤) = 0,

i ∈ 1, n, j ∈ 1, p

Ee = [0n, In]
(†)

k∗∑
q=1

∑q
r=1 tr

(
2LΣL⊤H⊤

q (F+GK)r−1(GJuv
K )(F+GK)q−r

)
2
√

tr(HqLΣL⊤H⊤
q )

+ λ tr(HÊxP
uv
g,KÊ⊤

x H⊤) = 0, u ∈ 1,m, v ∈ 1, n (‡)

with Hi = (F +GK)i − F i, and ⊕ denotes geometric sum
and

⊕
denotes geometric series.

The reachable set (54) is a convex, although typically
complex, set. Approximations of outer ellipsoidal bounds on
this complex shape can be computed iteratively [28] or directly
[29] using the set of shape matrices

A :=
{
ν̄F iR1F

i⊤, ᾱHiLΣL
⊤H⊤

i

}k∗

i=0
. (55)

Here we use the outer ellipsoidal bound that has the minimum
trace (of the shape matrix) such that Rk ⊆ E(Q∗), with

Q∗ =

(
k∑

i=0

√
ᾱtr
(
HiLΣL⊤H⊤

i

)
+
√

ν̄tr
(
F iR1F i⊤

))

×

(
k∑

i=0

ᾱHiLΣL
⊤H⊤

i√
tr
(
ᾱHiLΣL⊤H⊤

i

) +
ν̄F iR1F

i⊤√
tr
(
ν̄F iR1F i⊤

)
)
. (56)

To capture the infinite horizon reachable set, we typically take
k ≥ k∗, where k∗ is the settling time of the system such that
the transformed noise and attack ellipsoids (55) for 0, k − k∗

are negligible if the system is stable1 [27].
To design the gain matrices to minimize the reachable set

by minimizing the ellipsoid E(Q∗), we formulate a nonlinear
optimization from closed-form derivatives of the ICB ∥H∥2
constraint and the minimum trace objective function.

A. ICB ∥H∥2 Constraint

We now revisit the ∥H∥2 constraint to formulate it for the
nonlinear optimization problem of the geometric approach.
The attack-free dynamics of the system are

ξk+1 = Agξk +Bgωk, (57)

when expressed in terms of ξk =
[
x⊤
k , e

⊤
k

]⊤
, with

Ag =

[
F +GK −GK

0 F − LC

]
, Bg =

[
I 0
I −L

]
. (58)

The steady state covariance of ξ is Pg ⪰ 0,

Pg =

[
Px Pxe

P⊤
xe Pe

]
= lim

k→∞
E[ξkξ

⊤
k ], (59)

and satisfies the Lyapunov equation

Pg = AgPgA
⊤
g +R, R =

[
R1 R1

R1 R1 + LR2L
⊤

]
. (60)

1The reachable set is not necessarily contained within the truncated bound,
but the violation can be made arbitrarily small with increasing k∗.

Following the same logic that leads to (26) (see Appendix B)
but now for Pg , the following inequality,

Cg = tr
(
Ê⊤

x H⊤HÊxPg

)
+ tr(R3)

− γ̄
(
tr(R1) + tr(R2)

)
≤ 0,

(61)

is also valid, because Ê⊤
x PÊx = Ê⊤

x PgÊx. The LMI ap-
proach of Theorem 1 provides a solution for∇tr(HPxH

⊤) =
0, yielding the optimal state covariance Px and corresponding
control gains L and K. This gradient equation can also be
expressed in a polynomial form as,{

tr(HÊxP
ij
g,LÊ

⊤
x H⊤) = 0, i ∈ 1, n, j ∈ 1, p,

tr(HÊxP
uv
g,KÊ⊤

x H⊤) = 0, u ∈ 1,m, v ∈ 1, n.
(62)

where the optimal gains L and K, are also the solution of
np+mn nonlinear equations, where Pij

g,L and Puv
g,K are partial

derivatives of Pg with respect to L, K, given in (⋆).

B. Design

We now develop the nonlinear optimization to find the
optimal gains L and K to minimize the proposed ellipsoidal
bound over the reachable set (56), while maintaining the ICB
∥H∥2 gain less than a desired threshold γ̄. As before, we
minimize the trace of the ellipsoid that bounds the reachable
set, tr(Q∗), as a proxy for the impact of the attack, i.e., we
aim to minimize√

tr(Q∗) =
∑k∗

i=0

(√
ᾱ
√
tr
(
HiLΣL⊤H⊤

i

)
+
√
ν̄tr

(
F iR1F i⊤

))
, (63)

which can be computed by taking tr(.) from both sides of
(56), and decomposes the ellipsoidal bound on the reachable
set into contributions from the noise and attack.

Remark 6: Because the portion of the impact due to noise
in (63) (second term) is not a function of gain matrices L
and K, it does not play a role in minimizing the attack
impact. The threshold ᾱ, which is selected based on the noise
distribution and the detector’s desired false alarm rate, is also
not a function of L and K and since it appears as a uniform
scaling factor it also does not play a role in minimizing the
attack impact. These are both distinct advantages for selecting
an objective that minimizes the trace of the shape matrix of the
ellipsoidal bound (as opposed to, e.g., minimizing the volume).

From Remark 6, we can reduce (63) to the following
objective function

J =
∑k∗

i=0

√
tr
(
HiLΣL⊤H⊤

i

)
. (64)
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Another consequence of using the trace is that the noise
truncation probability pν , which sets the confidence level of
the reachable set, also does not appear in J . This shows that
the optimal gains can be computed independent of pν , and
thus are the optimal gain matrices for any truncation level.

It is intuitive, and can be seen in (64), that over the trade-
off interval γ̄ ∈ [γ∗, γ0] the objective J decreases as, e.g., L
approaches zero, however, the ICB ∥H∥2 gain γ is increasing
as it approaches γ0. Thus we expect for γ̄ ∈ [γ∗, γ0] that
the optimal L∗ and K∗ to minimize the attack impact J will
occur at γ = γ̄. We use this observation to change (61) from
an inequality to equality Cg = 0, which simplifies the process
of including the ICB ∥H∥2 constraint as a Lagrange multiplier
in the optimization.

Theorem 3: Consider a LTI system (1) equipped with a chi-
squared detector (10). The solution of the optimization

min
L,K,λ

J + λCg, (65)

can be found by the simultaneous solution of (†), (‡) and

tr
(
HÊxPgÊ

⊤
x H⊤)+ tr(R3)− γ̄

(
tr(R1) + tr(R2)

)
= 0, (66)

and provides the observer L and controller K gain matrices
that minimize the outer ellipsoidal bound on the set of states
reachable by a zero-alarm attack (12) while maintaining an
ICB ∥H∥2 gain (25) no bigger than γ̄ ∈ [γ∗, γ0].
Proof: Defining the combined objective as Ω = J + λCg , the
necessary condition for a local minimum is that the values of
K, L, and λ satisfy ∇Ω =

(
∂Ω
∂Lij

∂Ω
∂Kuv

∂Ω
∂λ

)
= 0, where

the equations in (†), (‡), and (66) correspond to each term of
the gradient being zero, respectively.

Note that the stabilizability and detectability of the system
along with the output covariance being bounded (ensured
by the ∥H∥2 constraint) guarantees the state covariance is
bounded - hence the optimal L and K found through this
theorem ensure a stable closed loop system. ■

V. NUMERICAL EXAMPLE

We present the solutions provided by our methods for two
numerical examples. The first system enables us to demon-
strate a comparison between the two approaches presented
here and the iterative approach from [26] in their ability
to quantify the trade-off between performance (ICB ∥H∥2
gain) and security (trace of the outer ellipsoid bound on the
reachable set). The second system helps to demonstrate the
scalability of the fully convexified optimization. Throughout,
we employ YALMIP for semi-definite programming equipped
with the MOSEK solver [30], [31]. The code to reproduce
these results is located online: http://justinruths.com/tcns-codesign/.

A. Performance-Security Trade-off
We consider an LTI system with matrices,

F =

[
1.04 −0.14
0.30 0.63

]
, G =

[
2 3
1 1

]
, C =

[
2 2
1 2

]
, (67)

R1 =

[
0.018 −0.022

−0.022 0.026

]
, R2 =

[
0.0018 0.0031
0.0031 0.0096

]
,

0 20 40 60 80 100 120
10

24

0* 2.53 32.03

11.06

13.37

20.85

20.81

Figure 1: Performance-security curve for the nonlinear geo-
metric approach (solid), fully convex LMI approach (dotted),
and the iterative LMI scheme from [26]. The geometric solu-
tions provide the true structure of the fundamental trade-off
between performance (x-axis) and security (y-axis). The steps
taken to linearize the problem make the convex optimization
feasible for only a portion of the entire trade-off interval.

equipped with a chi-squared detector tuned to a false alarm
rate of 1% (ᾱ = 9.21), and with process noise truncated at
pν = 99% (ν̄ = 9.21). We select a settling time of k∗ = 35.
In addition we select the controlled measurement hk = yk.
We start by computing the optimal ICB ∥H∥2 gain γ∗ = 2.45
using Theorem 1. The solution for gain matrices L and K
based on the nonsymmetric algebraic Riccati equation (33)
returns

(
4
2

)
= 6 different answers, two of which are real

valued. Of the real solutions,

L =
[

1.0085 −0.9780
−0.0139 0.2664

]
, K =

[
0.1273 −2.0544
−0.4303 1.4190

]
, (68)

provide the smallest reachable set according to Lemma 1.
Using (63) we calculate the security metric based on

the set of states reachable by a stealthy zero-alarm attack,√
tr(Q∗) = 20.85. Of the observer and controller gain

matrices that achieve γ∗, here we have selected the pair with
the smallest value of

√
tr(Q∗). This point is plotted in Figure

1 with a blue asterisk (∗). From Lemma 3, the open loop ICB
∥H∥2 gain is γ0 = 103.63 (plotted with a red asterisk).

In Figure 1, the solid, dotted, and dashed curves present the
trade-off between performance and security as determined by
Theorem 3, Theorem 2, and Theorem 2 of [26], respectively.
These curves are computed by solving these optimizations
repeatedly for different values of γ̄ ∈ [γ∗, γ0] over the trade-
off interval (hence each point corresponds to different solution
of gain matrices). We use (63) as the security metric in all
cases. The accuracy of the nonlinear optimization produced
by the geometric approach reveals the true, fundamental trade-
off between performance and security, highlighting the fact
that giving up a small amount of ∥H∥2 performance can lead
to a dramatic improvement in our reachability-based security
metric. This is evidenced by the relatively large vertical drop
in moving from γ̄ from γ∗ to γ∗ + ϵ for some small ϵ > 0.

The flatness of the trade-off curve near open loop perfor-
mance (near γ0) shows that there is diminishing returns on re-
ducing performance to gain security. The nearness of all three
approaches in this flat region suggest that the constraints of
the optimization are relatively loose, such that the optimization
problem is less challenging to solve. In contrast, closer to γ∗

the optimization landscape is quite complex. For the nonlinear
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73.03

94.43
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Figure 2: Performance-security trade-off for a larger system.

optimization of Theorem 3, we were able to find solutions
down to γ̄ = 2.53. The linearizations needed to convexify
Theorem 2 prohibits finding solutions over the entire trade off
interval. In this case, the problem is infeasible on the interval
γ ∈ [γ∗, 32.03]. In this interval, a feasible solution cannot
be found that satisfies the manifold Px̂ = Pxx̂ as well as
satisfying the constraints for the system under attack (LMI
HL) and without attack (LMI CL).

B. Scalability

Although the geometric approach of Theorem 3 provides
a highly accurate solution, the scalability of the approach is
highly dependent on the system characteristics (e.g., increasing
the system dimension increases the number of simultaneous
nonlinear equations that need to be solved). The convex
optimization of Theorem 2 offers an approach that scales well,
largely due to the scalability of the optimization solver.

In Figure 2, given the gains K and L, we use
√

tr(Ê⊤
x QÊx)

from Lemma 1 as the security metric. This figure provides the
trade-off between the security and performance for a system
with 12 states and 8 sensors - see (69). Applying Theorem 1,
γ∗ = 3.77 and this ∥H∥2 optimal solution corresponds to a
security metric of 94.43. Based on Lemma 3, the open loop (or
worst-case optimal) ∥H∥2 gain is γ0 = 6.60, corresponding
to a security metric of 63.35. Since no attacks can cause
impact in open loop, this quantifies the contribution due to the
noise only. This term is important to retain so that the attack-
induced ellipsoidal contributions can leverage the geometry of
the noise-induced reachable set to amplify the overall impact.
This is, in part, facilitated by the fact that we incorporate the
actual residual covariance in the optimization (see Remark 5).
Theorem 2 is infeasible over the interval γ ∈ [3.77, 5.16].
Here we keep the result from Theorem 1 since it satisfies the
performance criteria.

Figure 3a plots the first projection of the ellipsoidal bound
from Lemma 1 for the ∥H∥2 optimal solution (Theorem 1,
γ = γ∗) and when security has been optimized (Theorem 2)
with the performance constraint γ = 5.91. This plot shows the
improvement in security achieved by our methods by reducing
the set of states that an attacker is able to reach through
a stealthy attack. This plot also shows the actual reachable
set to illustrate the tightness of the outer bounding strategy,
computed using 50 terms in the geometric sum of (54).

Recall that Theorem 2 approximates the residual covariance
in order to linearize the Lyapunov equation (9). Figure 3b
compares the approximate residual covariance produced by
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Figure 3: (a) Visualization of increased security. The projection
of the optimal ellipsoids that outer-bound the reachable set,
corresponding to the ∥H∥2 optimal gains (dashed) and secured
gains (solid) with γ = 5.91. (b) The closeness of these
ellipsoidal projections (solid - approximate; dashed - actual)
demonstrates our linearizations preserve the structure of the
original problem.

Theorem 2 (Σ = Π−1) with the true residual covariance
calculated from (8)-(9) using the gains produced by Theorem
2. We show the projection of the corresponding ellipsoids onto
the first two components. The closeness of these ellipsoids
demonstrates that our linearizations largely preserve the struc-
ture of the original problem, here namely Lemma 4.

VI. CONCLUSION

In this paper, we have developed two methods to design
estimator and controller gain matrices to minimize the impact
of attacks on modern control systems, subject to a minimum
closed-loop performance constraint. We quantify the impact
of attacks by the trace of the shape matrix of the minimum
trace ellipsoidal bound that contains the reachable set of states.
when the system is driven by the process noise and attacks
that remain stealthy to a chi-squared detector. We choose a
input covariance based (ICB) ∥H∥2 gain as the performance
criteria, which serves to avoid trivial solutions. In doing so, we
are able to use these tools to characterize the trade-off between
closed-loop performance and potential attack impact. Most
notably, we observe that marginal reductions in closed-loop
performance can enable the system to become significantly
more secure through the design of these gain matrices.

We demonstrate these tools, phrased as convex and non-
linear programs, respectively, and some of their advantages.
While the linearizations required to recover linear matrix in-
equalities are shown to produce meaningful solutions, there is
an opportunity to investigate alternative approaches to linearize
this challenging problem.
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APPENDIX A
PROOF OF LEMMA 1

Here P is the inverse of the shape matrix of the ellipsoidal
bound for the ξ reachable set (P−1 = Q), such that the first
block E⊤

x QEx is the shape matrix of the ellipsoidal bound
of the reachable set of system states. To make this ellipsoidal
bound as small as possible, the cost is selected to minimize the
trace of the shape matrix E⊤

x QEx. To use Q as the variable
of the optimization instead of P we apply the transformation
T = diag [Q, Q, In], to (20), i.e., T⊤HT , which results in
the LMI in (17). Equation (17) is convex which implies the
uniqueness of the minimum trace bounding ellipsoid.

Remark 7: Note that the parameter a is not a decision
variable of the optimization in (17). It appears nonlinearly
(multiplying Q). Since a belongs to a compact interval, the
conventional choice is to solve (17) across a grid search in a
and select the minimal, feasible solution.

APPENDIX B
PROOF OF LEMMA 2

From (23) and the definition of ωk, we can calculate the
quadratic terms in (25),

h⊤
k hk = H⊤x⊤

k xkH + 2x⊤
k θk + θ⊤k θk, (70)

ω⊤
k ωk = ν⊤k νk + η⊤k ηk. (71)

Taking the expectation (xk and θk are independent),

E[h⊤
k hk] = E[Hxkx

⊤
k H

⊤] +E[θ⊤k θk]

= tr
(
H E[xkx

⊤
k ]H

⊤)+ tr(R3), and (72)

E[ω⊤
k ωk] = E[ν⊤k νk] +E[η⊤k ηk] = tr(R1) + tr(R2). (73)

The unknown quantity is then the covariance of the state,
E[xkx

⊤
k ], which is the first block of the stacked state ζk

covariance Pk = E[ζkζ
⊤
k ]. This covariance follows the update,

evaluating E[ζk+1ζ
⊤
k+1] with (24),

Pk+1 = ÂPkÂ
⊤ + R̂, R̂ =

[
R1 0
0 LR2L

⊤

]
. (74)

Because the matrix Â is stable the covariance converges to a
steady value limk→∞ Pk = P which satisfies the Lyapunov
equation (28).

APPENDIX C
PROOF OF THEOREM 1

The formula for the optimal gain γ∗, (34), comes natu-
rally from the ∥H∥2 bound derived in (29). Since all other
terms are constant, minimizing tr(HPxH

⊤) is equivalent
to minimizing the gain. This covariance is constrained by
the Lyapunov equation in (28). Here, which is a standard
technique for incorporating Lyapunov equations into convex
optimizations, we replace this equality constraint with the very
similar inequality,

P− ÂPÂ⊤ − R̂ ⪰ 0, P ⪰ 0. (75)

We can now combine these two inequality constraints into one
using the Schur complement [32],

C =
[
P− R̂ ÂP

PÂ⊤ P

]
⪰ 0. (76)

This relaxation is justified because the objective function
tr(HPxH

⊤) minimizes the decision variable P and drives
the optimization to the bound of the inequality - hence driving
the relaxed form (75) to the equality (28).

We use the following transformation to linearize C,

CL =

[
T1

T1

]⊤
C
[
T1

T1

]
=

[
PL −RL ÂL

Â⊤
L PL

]
, (77)

with

T1 =

[
Q1 I
Q⊤

12 0

]
, P−1 = Q =

[
Q1 Q12

Q⊤
12 Q2

]
, (78)

PL = T⊤
1 PT1 =

[
Q1 I
I Px

]
, (79)

RL = T⊤
1 RT1 =

[
Q1R1Q1 + Q12LR2L

⊤Q⊤
12 Q1R1

R1Q1 R1

]
,

ÂL = T⊤
1 ÂPT1 =

[
Q1F +XC Z

F FPx +GY

]
,

where X , Y , and Z are defined as

X = Q12L, (80)

Y = KP⊤
xx̂, (81)

Z = Q1FPx +XCPx +Q1GY +Q12FP⊤
xx̂ (82)

+Q12GY −XCP⊤
xx̂.

The term PL−RL can be linearized by applying a Schur com-
plement to recover CL in (31). This transformation changes the
set of decision variables from (Px, Px̂, Pxx̂, L, K) to (Px,
Q1, X , Z, Y ). The solution in these new decision variables is
then used to calculate Pxx̂ and Q12 using (82) and the identity

PxQ1 +Pxx̂Q
⊤
12 = I, (83)

which comes from the first block of the definition PQ = I .
The definition of Z in (82) and (83) combine to form the non-
symmetric algebraic riccati equation (33), which is analytically
computable and in general, has

(
2n
n

)
different solutions, [33].

Finally, the gain matrices can be found by, L = Q−1
12 X and

K = YP−⊤
xx̂ . Note that the solutions to the original Lyapunov

equality (28) are a subset of the solutions of the relaxed
inequality (75); so Theorem 1 characterizes all ICB ∥H∥2
optimal solutions. Consider the proposed change of variable
is valid only if there is at least one real solution for (33) ■

APPENDIX D
REAL SOLUTIONS OF THEOREM 1

Consider S1, S2 ∈ Rn×n are two distinct solutions of the
NARE (33), where S1 is computed numerically (e.g., gradient
decent). Defining δS = S2 − S1, δS satisfies the NARE,

A1(δS) + (δS)A2 + (δS)Γ1(δS) = 0, (84)

where A1 = Γ3 + S1Γ1 and A2 = Γ2 + Γ1S1. Assuming
δS ∈ Rn×n is invertible, then W = (δS)−1 satisfies the
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Sylvester equation, WA1 + A2W + Γ1 = 0. We know
W,A1, A2,Γ1 ∈ Rn×n, therefore, W has a unique real
solution if A1 and −A2 do not share any eigenvalues, which
implies S2 is unique. Therefore, assuming δS is invertible, the
NARE (33) has only two real solutions since if we take S2

and try to find its unique pair, it is exactly S1. The unique
solution of this specific Sylvester equation is

vec {W} = −
(
(In ⊗A2) +

(
A⊤

1 ⊗ In
))−1

vec {Γ1} , (85)

where ⊗ is the Kronecker product and vec {.} reshapes a
matrix to a vector.

APPENDIX E
PROOF OF LEMMA 3

For both L = 0 or GK = 0, the state dynamics (21) are in
open loop. When L = 0, the state estimate x̂k converges to
zero because the system is open loop stable and the open loop
state dynamic becomes xk+1 = Fxk + νk. Similarly, when
GK = 0, equation (21) simplifies to the same dynamics. With
this state equation, the steady state covariance of the state, Px,
is given by (36) and consequently the desired performance γ0
should be the same in both cases.

APPENDIX F
PROOF OF STABILITY

We show that the LMI constraints HL ⪰ 0 and CL ⪰ 0
imply that the attacked system and nominal system are stable.

For HL, HL ⪰ 0 implies H ⪰ 0 which implies P ⪰ 0 and
aP−A⊤PA ⪰ 0. Since a ∈ [0, 1), (1−a)P+aP−A⊤PA =
P −A⊤PA ⪰ 0. Thus, A⊤, and hence, A is stable.

Similarly, for CL, CL ⪰ 0 implies C ⪰ 0 which implies
P ⪰ 0 and P− ÂPÂ⊤− R̂ ⪰ 0. Therefore, P− ÂPÂ⊤ ⪰ 0,
which makes Â stable as well.

APPENDIX G
MANIFOLD OF Px̂=Pxx̂

We know that PQ = I which means,

PxQ1 +Pxx̂Q
⊤
12 = I (86)

PxQ12 +Pxx̂Q2 = 0 (87)

P⊤
xx̂Q1 +Px̂Q

⊤
12 = 0 (88)

P⊤
xx̂Q12 +Px̂Q2 = I. (89)

If we assume the points located on manifold (Px̂ = Pxx̂),
based on (88) we can conclude, Q1 = −Q12 and based on
(86) we have Px̂ = Px −Q−1

1 . Furthermore, based on ek =
xk− x̂k, we conclude Pe = Px+Px̂−Pxx̂−P⊤

xx̂, where on
the mentioned manifold, Pe = Px−Px̂. Finally, we conclude,
P−1

e = Q1.

APPENDIX H
PROOF OF LEMMA 4

Consider that the inequality HL already provides a lower
bound on Π. We now add an additional upper constraint to
sandwich and fully constrain Π. To that end, we provide a
lower bound on Σ which is an upper bound for Π, through a

relaxation on (8), i.e, Σ−CPeC
⊤−R2 ⪰ 0, which applying

a Schur complement, can be presented as,

X =

[
Σ−R2 CPe

PeC
⊤ Pe

]
⪰ 0. (90)

Using the transformation T5 = diag
[
Σ−1 P−1

e

]
gives

XL = T5XT⊤
5 =

[
Σ−1 − Σ−1R2Σ

−1 Σ−1C
C⊤Σ−1 P−1

e

]
⪰ 0, (91)

and applying a second Schur complement returns

XL =

 Σ−1 Σ−1C Σ−1R2

C⊤Σ−1 P−1
e 0

R2Σ
−1 0 R2

 ⪰ 0. (92)

Thus, replacing Σ−1 = Π and P−1
e = Q1 = σ1Q1σ results

in (49). We now have an upper bound on Π in terms of Q1σ ,
however, Q1σ is not itself constrained. To do this, we relax
the Lyapunov equation (9) equality to inequality,

Pe − (F − LC)Pe(F − LC)⊤ −R1 − LR2L
⊤ ⪰ 0. (93)

We apply the Schur complement to receive

S =

[
Pe − LR2L

⊤ −R1 (F − LC)Pe

Pe(F − LC)⊤ Pe

]
⪰ 0. (94)

Using the transformation T6 = diag
[
P−1

e P−1
e

]
gives

SL = T6ST⊤
6 =

[
PeL −ReL AeL

A⊤
eL PeL

]
⪰ 0, (95)

where,

PeL = P−1
e = Q1, (96)

ReL = P−1
e (R1 + LR2L

⊤)P−1
e = Q1R1Q1 +XR2X

⊤,

AeL = P−1
e (F − LC) = Q1F +XC.

Applying the Schur Complement again yields

SL =


Q1 Q1F +XC Q1R1 XR2

(Q1F +XC)⊤ Q1 0 0
R1Q1 0 R1 0
R2X

⊤ 0 0 R2

 ⪰ 0.

(97)
Finally, using the transformation matrix
T7 = diag

([
1√
σ1

1√
σ1

√
σ1

√
σ1

])
and applying the change

of variables in (45) results in (50).

APPENDIX I
PROOF OF THEOREM 2

Fixing the pair (τ, σ1) makes (51) a convex optimization.
When the optimization is solved, fixing the pair (Q1σ,Xσ)
and introducing the pair (τ, σ1) as decision variables makes
the optimization convex again and guarantees not increasing
the objective function. Therefore, this algorithm guarantees
convergence. Algorithm 1 terminates when σ1 converges (with
threshold ϵ). We know Pxx̂ = Px̂ which implies Pe = Px −
Px̂, thus according to (47), (80) and (81), we conclude: L =

−Q−1
1 X and K = Y

(
Px −Q−1

1

)−1
.
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