Paper ID #37335

Behavioral Adaptability of Engineering Instructors Engaging in Emergency Remote Teaching During Three Semesters of the COVID-19 Pandemic

Lucy Atkinson

Lucy Atkinson is a recent graduate of Swarthmore College with a B.S. in Environmental Engineering. She is moving to San Francisco in August for a job in Water Resources Engineering.

Grace Panther (Assistant Professor)

Grace Panther is an Assistant Professor at the University of Nebraska Lincoln. She has experience conducting workshops at engineering education conferences and has been a guest editor for a special issue of European Journal of Engineering Education on inclusive learning environments. Her research areas include spatial visualization, material development, faculty discourses on gender, and defining knowledge domains of students and practicing engineers.

Heidi A. Diefes-dux (Professor)

Heidi A. Diefes-Dux is a Professor in Biological Systems Engineering at the University of Nebraska - Lincoln (UNL). She received her B.S. and M.S. in Food Science from Cornell University and her Ph.D. in Food Process Engineering from the Department of Agricultural and Biological Engineering at Purdue University. She was an inaugural faculty member of the School of Engineering Education at Purdue University and now leads the Discipline-Based Education Research Initiative in the College of Engineering at UNL. Her research focuses on the development, implementation, and assessment of modeling and design activities with authentic engineering contexts. She also focuses on the implementation of learning objective-based grading and reflection.

Behavioral Adaptability of Engineering Instructors Engaging in Emergency Remote Teaching During Three Semesters of the COVID-19 Pandemic

Abstract

The crisis-induced changes in instruction during the pandemic presented a unique opportunity to study instructor adaptability, a possible contributor to future adoption of teaching-related bestpractices. The purpose of this research is to identify the self-reported activities of engineering instructors and how this changed over the course of three semesters during the COVID-19 pandemic. Approximately 40 engineering instructors from a large Midwestern R1 University voluntarily completed online surveys in during Spring 2020, Fall 2020, and Spring 2021 semesters about their engagement in teaching-related activities and the perceived normality of that engagement. Descriptive statistics were used to examine general trends in activity engagement for each semester and to compare activity engagement across all three semesters. Across all three semesters, instructors most often reported engaging in self-teaching and casual conversations with their colleagues. Instructors cited getting help from staff and attending workshops less frequently. By the end of the third semester (Spring 2021), 85% of participants indicated normality of their teaching methods, compared with 25% at the beginning of the study (Spring 2020). The results of this study suggest that to encourage instructor adaptability in the future, a focus should be placed on developing a supportive instructor community as well as providing necessary space, time, and resources for instructor self-teaching. This research is part of a larger study, whose scope includes instructor interviews, an investigation of cognitive and emotional adaptability, and analysis of additional semesters as instructors continue to adapt.

Introduction

In March of 2020, due to growing concerns over the COVID-19 pandemic, universities across the country shut down all in-person interactions, causing an abrupt shift from an in-person learning experience to a remote and virtual experience relying heavily on technology. Instead of meeting in lecture halls, office hours, and dining halls, students and instructors connected via virtual learning platforms, email, and video conferencing services like Zoom. The complicated circumstances of quarantines, infections, and new responsibilities and fears meant interactions between students and faculty and among students were no longer a convenient walk away, but now being made across states, countries, and time zones.

In engineering, instructors have been slow to adopt current research and best-practices in teaching methods [1], including online and virtual techniques, mostly due to the concern that such a hands-on and innovative subject cannot be taught or learned through a screen. Due to the COVID-19 pandemic, and the transition to Emergency Remote Teaching (ERT) [2], engineering instructors were forced to adopt new teaching practices, including technologies. This study took advantage of this opportunity by gathering data about the behavioral adaptations made by engineering instructors over the course of three semesters of the pandemic. The purpose of this study was to understand the self-reported activities of engineering instructors during the COVID-19 pandemic, their perceptions of the normality of their' engagement in these activities, and how these behaviors and perceptions of normality changed over the course of three semesters.

Background

Emergency Remote Teaching (ERT)

In order to complete the Spring 2020 semester, instructors quickly transitioned from in-person lectures and labs to virtual recordings of lectures and crisis-motivated teaching methods, together termed Emergency Remote Teaching (ERT). ERT is defined as a "temporary shift of instructional delivery to an alternate delivery mode due to crisis circumstances" [2, p. 7]. This type of teaching is specific to crises and is distinct from standard online learning methods. ERT is a rapid transition (only two weeks of preparation in the case of this study) that required quick problem solving. Unlike ERT, online education involves a careful design process, with consideration of a multitude of options depending on the context of the course, that usually takes six to nine months to plan, and improves during the second and third semester of teaching [2]. In fact, the common stigma that online learning is less effective than face-to-face instruction is contradicted by research, which details the success of planned online courses [2]. Importantly, while online education requires a supportive community to be successful, under ERT the normal instructor support resources are often overwhelmed [2]. Support during a crisis and other forced instructional changes therefore must be rethought.

In engineering, online teaching has not been incorporated into most curriculums. The lack of online teaching in engineering is typically attributed to the difficulties of converting hands-on labs to virtual classrooms, a lack of helpful resources, and the unfamiliarity of instructors with online teaching techniques [3]. While online education has sometimes been included in the electrical and computer sub-fields of engineering, a lack of instructor competence with helpful tools and technology is still a significant barrier to successful integration [4]. In the past, engineering students have reported negative reactions to online learning. In contrast, when instructors focused on compassion and flexibility when adjusting their pedagogy and communication during the initial COVID-19 crisis, students appreciated the effort and adaptability of their instructors [5]. By studying the issues faced by instructors and students during the COVID-19 pandemic, higher education can better plan for teaching during future crises and forced changes. For example, in response to the technology and logistical challenges faced by instructors during the Spring 2020 semester, Asgari et al. [4] recommended an organized system of resources, training workshops, and access to technology in preparation for crises.

Instructor Adaptability

The theory of adaptability used in this study is defined as "individuals' capacity to constructively regulate psycho-behavioral functions in response to new, changing, and/or uncertain circumstances, conditions and situations" [6, p. 2]. This theory is divided into three dimensions: cognitive, behavioral, and emotional [7]. This study focused on the behavioral dimension and is described as an instructor attempting new behaviors or adjusting existing behaviors to successfully navigate changing circumstances [6].

One's adaptability has also been shown to increase with more social support, and can help in reserving one's psychological resources, ultimately improving one's overall quality of life [8].

For instructors, behavioral adaptability may normally include integrating new research or knowledge into their teaching or adjusting their teaching methods to their students' needs on the fly [9]. Instructors also regularly adapt to curriculum or policy changes and seek helpful people and resources who have knowledge and can offer support. Instructor adaptability is related to innovative teaching behavior, which is generally more planned and meant to improve performance. The ability to assess instructor adaptability is important because of the continual and rapid changes in technology, pedagogy, research, and society [7].

Recent Research

While instructor adaptability has been shown to be important, studying the actions of instructors during a crisis like the COVID-19 pandemic offers a window into their ability to and interest in adapting their teaching methods. Various studies have begun to take advantage of this research opportunity. In a May 2020 commentary and advice article, Schlesselman [10] shared their experience with ERT during the Spring 2020 semester from the perspective of a teaching and learning center. After observing that many instructors did not revise their pedagogy in the Spring of 2020, the article encouraged instructors to prepare full online courses for the fall, rather than maintaining subpar ERT. The author concluded by encouraging instructors to reach out to teaching and learning centers to take advantage of their knowledge of best practices and theories [10].

In a comprehensive bibliographic review, Santos et al. [11]. investigated the effects of ERT on the mental health of university instructors. They found that due to the need to reinvent and innovate pedagogy extremely quickly, while preserving the quality of their teaching, instructors faced increased hours, pace, and diversity of work, while also struggling to adapt to technological tools due to a lack of resources and technophobia [11]. Similarly, Li et al. [12] investigated college instructors' level of content, pedagogy, and technology knowledge during the pandemic and found that they were most lacking in technology knowledge. Although the sample size of this study was small and from a single university, the finding that the majority of instructors had little experience teaching online and needed more time to learn and practice these methods beyond short-term trainings likely extends to instructors at most universities [12].

Further work has been published with a focus on successful adaptations to teaching during the pandemic. A few of these papers suggested that one of the keys to successful adaption is a strong community of instructors, who can rely on each other for support, new ideas, and commiseration. Work from East Carolina University [13] and University of San Diego [14] included significant arguments for cultivating a community of instructors to benefit from collective wisdom and reduce general stress.

A recent research paper specifically looked at the experiences of instructors while converting their classes during the pandemic. Marek et al. [15] conducted a study about the reflections of instructors worldwide on transitioning their classes to ERT. The participants included instructors from a variety of fields. who emphasized the lessons they learned about the importance of planning and adaptability. Along with the trend of higher workloads and stress levels for instructors, the study found that more experience teaching online was a key indicator for success.

Thus, the researchers suggest that universities should routinely train and mentor instructors based on current best practices in online pedagogy [15].

Research Questions

This paper is part of a larger research study that aimed to examine the adaptability of engineering instructors [16]. Through a series of online surveys and interviews, researchers investigated the three dimensions of instructor adaptability (cognitive, behavioral, and emotional) during the onset and extent of the COVID-19 pandemic. By collecting data from the initial three semesters affected by the pandemic (Spring 2020-Spring 2021), this study aimed to present early conclusions about the long-term effects of ERT on engineering instructors and engineering education. Specifically, this paper focuses on the behavioral dimension of adaptability by the activities that engineering instructors self-reported engaging over the course of the first three semesters of the pandemic. The research question addressed in this study is: *In what ways do instructors' activities change over the first three semesters of teaching during the COVID-19 pandemic?*

Methods

Setting and Participants

The participants of this study were engineering instructors at an R1 university in the U.S. Midwest (Table 1).

Table 1. Demographics of Engineering Instructor Participants Over Three Semesters

		Spring		Fall 2020		Spring 2021	
Demographics	2020 (n=39)		(n=46)		(n=45)		
	n	%	n	%	n	%	
Gender	·						
Female	11	28%	14	30%	8	18%	
Male	28	72%	32	70%	37	82%	
Position							
Assistant Tenure-Track Professor	12	31%	15	33%	14	31%	
Associate and Full Professor	15	38%	18	39%	15	33%	
Assistant Tenure-Track, Associate, and Full							
Professor of Practice	12	31%	9	20%	14	31%	
Department							
Architectural & Construction Engineering	5	13%	11	24%	9	20%	
Biological Systems Engineering	7	18%	5	11%	6	13%	
Civil & Environmental Engineering	9	23%	9	20%	8	18%	
Computer Science & Engineering	7	18%	5	11%	6	13%	
Mechanical & Materials Engineering	7	18%	9	20%	8	18%	
Other*	4	10%	7	15%	8	18%	

^{*}Departments were combined to ensure confidentiality if there were <5 participants during a semester.

Participation was limited to tenure-track or tenured professors and professors of practice teaching an undergraduate lecture course. Limiting participation to only these position codes was done so that all participants were full-time instructors with the same incentive structure for promotion and tenure. Out of the 160-175 instructors invited to participate, 50-60 responded to surveys, and 39-46 were included in this study based on the inclusion criteria. Participants were not included in this study if they did not fit the position requirements. Across the three semesters of this study, the number of participants and demographics of participants varied, as shown in Table 1. For all three semesters, participants skewed male and were less commonly professors of practice. In general, the departments of Civil & Environmental Engineering, Mechanical & Materials Engineering, and Architectural & Construction Engineering were overrepresented when compared to the college's composition by department.

Data Collection

Throughout the three semesters of this study, data from participants were collected using an online Qualtrics survey. This survey consisted of multiple-select, multiple-choice, and openended questions. The survey was sent out each week for the last seven weeks of the Spring 2020 semester, from the beginning of ERT (week 12) to the week after final exams (week 18) for a total of seven survey data collection points. The survey was administered every other week during the 14 week semesters of Fall 2020 and Spring 2021 starting at the beginning of the semester and running through finals week for a total of eight survey data collection points each semester. The internal consistency and reliability of these surveys was confirmed by the Cronbach's alpha coefficient of 0.83 [17]. This study focused on a pair of questions (one multiple-select and one multiple-choice) from the survey.

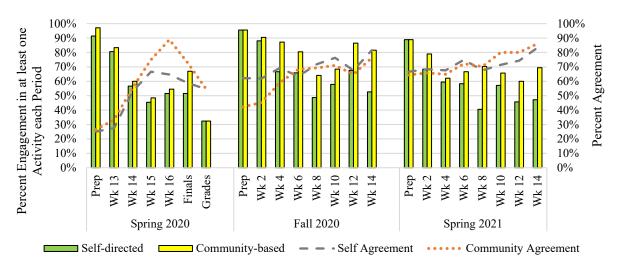
- (1) Which activities (with regards to teaching or technologies for teaching) have you engaged in during the past week? [Click on all that apply]
- (2) In general, the activities I indicated above are similar to those in which I have engaged in a typical week prior to the COVID-19 mandate for remote instruction.

The participants could select from 10 activities when responding to the multiple-select question. These activities were split into two categories for the purpose of analysis (Table 2) [16].

Table 2. Activity Options for Multiple-Select Question

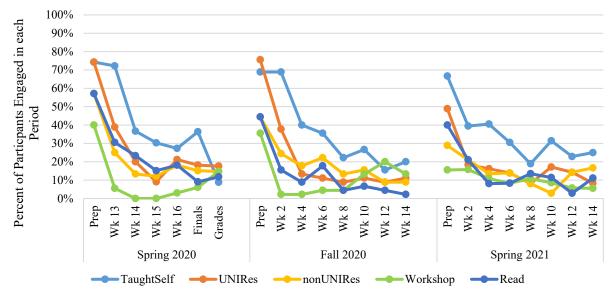
Category	Selection Options	Abbreviations
Self-directed I I Activities I	I taught myself something new.	TaughtSelf
	I referred to [university based] online resources for teaching.	UNIRes
	I referred to other online [non-university] based resources.	nonUNIRes
	I attended a teaching related workshop.	Workshop
	I read about effective teaching practices.	Read
Community- based Activities	I sought help on something specific from a colleague.	GotHelpColl
	I had a casual conversation about teaching with one or more	
	colleagues.	CasConvo
	I sought help from professional teaching and learning staff.	GotHelpStaff
	I pointed one or more colleagues to resources on teaching.	DirectedColl
	I actively helped one or more colleagues.	HelpedColl

Self-directed activities were defined as engagement in learning about teaching to support oneself. Community-based activities were defined as engagement with others in the teaching community. These categories were not made explicit to the participants. For the multiple-choice item, participants could choose between four options: Strongly disagree, disagree, agree, and strongly agree. For the purposes of analysis, the two disagree options were merged into "disagree" and the two agree options were combined into "agree."


Data Analysis

Descriptive statistics were used to capture general trends of participants who engaged in at least one self-directed or community-based activity and if these activities were similar to pre-COVID for each of the three semesters. For each category of activity (self-directed and community-based), the number of participants who selected each individual activity were tabulated before converting into a percent for each the three semesters. Percents were used as a way to normalize the data since the sample size varied across surveys and semesters.

Results


Figure 1 shows for each semester the percent of survey participants who engaged in at least one self-directed and/or community-based activity during each survey period (1 week in Spring 2020 and 2 weeks in Fall 2020 and Spring 2021). In addition, Figure 1 shows the percent of survey participants who agreed that their activity engagement in each survey period was similar to that of pre-COVID semesters. Within each semester, the engagement in both self-directed and community-based activities was relatively high during the prep and initial week of instruction. In the later half of Spring 2020, participants engaged in both self-directed and community-based activities at least once in similar measure but at a lower rate than during the initial switch to ERT. In Fall 2020, after the prep period, instructors consistently engaged in at least one community-based activity more often than a self-directed activity. Engagement in a self-directed activity generally declined over the remainder of each semester. The level of engagement in community-based activities in Fall 2020 remained high for the duration of the semester, a phenomenon not seen in the other two semesters.

In terms of instructors' perception of normality when compared to pre-COVID semesters, participants did not begin to agree at a 50% rate or higher until Week 14 of ERT in Spring 2020. In Fall 2020, instructors' agreement increased from 60% to over 80% over the semester for self-directed activities. At the start of Fall 2020, there was less than 50% agreement for community-based activities during the Prep period and through to at least Week 2. In Spring 2021, agreement hovered between about 65% and 70% agreement until Week 10 and then increased to 85% by the end of the semester.

Figure 1. Engagement in at least one activity each week across all three semesters with agreement in the typicality of the engagement.

Figure 2 provides a detailed look at the self-directed activity trends. Over 65% of instructors engaged in TaughtSelf at the beginning of the ERT transition as well as the start of each subsequent semester. TaughtSelf most frequently occurred in the first two surveys before steadily declining to around 20-30% in Weeks 15 and 16 (Spring 2020) and Weeks 8 through 14 (Fall 2020 & Spring 2021).

Figure 2. Weekly engagement in Self-directed activities across all three semesters.

A similar trend of a higher percent of engagement occurred at the beginning of the transition/semester before tapering off and becoming relatively stable for UNIResources, NonUNIResources, and Read. It is theorized that these activities followed a similar pattern as they are all interrelated activities when an instructor is teaching themselves something new. UNIResources is cited more frequently that NonUNIResources during the beginning of the

transition/semester before becoming more similar later in the survey period. Engagement in workshops never exceeded 40% and typically stayed below the 10% engagement level.

Figure 3 presents the detailed data for the community-based activities. Casual conversations were the most popular activity, with 55% or more participant engagement during the first two surveys of the transition/semester (Sp20 Prep & Week 13 and Fa20 & Sp21 Prep and Week 2). In Week 8 of Fall 2020, Causal Conversations with colleagues reached a low of 24% engagement before bouncing back to 40%. Comparatively, at the same point in time for Spring 2021, Causal Conversations with Colleagues reached a high of 59% before settling around 45%. Getting help from staff was often one of the least engaged in activities by instructors; though there was more engagement at the beginning and near end of each semester, but particularly in Spring 2020. Getting help from staff saw an increase late in the semester across all three semesters though this increase appears to be less significant as pandemic-impacted teaching continued (36% vs. 18% vs. 11%).

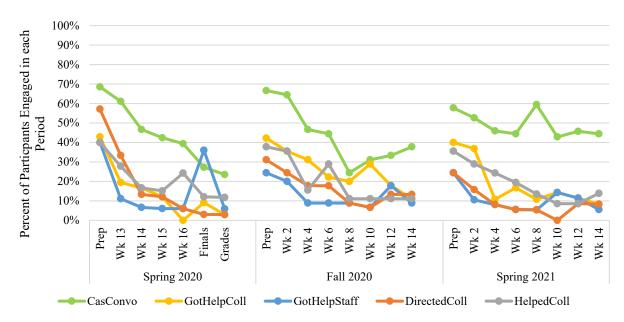


Figure 3. Weekly engagement in Community-based activities across all three semesters.

Discussion

The results of this study provide valuable insights about the resources and strategies instructors use to adapt in times of crisis. Most clearly, engagement in community-based activities was consistently higher than engagement in self-directed activities. This suggests that it is important to maintain connections between instructors and build a supportive community to encourage an atmosphere of adaptation, especially during a crisis. The other significant trend was an increase over the course of the pandemic in the percent of participants who agreed that their activities were similar to pre-COVID semesters, suggesting that instructors felt their activities were getting back to normal or instructors were adjusting to a new normal.

During the Fall 2020 semester, a few restrictions placed on campus access were lifted, allowing instructors to reconnect, albeit abnormally, which may explain the rise in community-based

engagement and a drop in community-based agreement. Community-based engagement may have decreased in Spring 2021 because instructors were becoming more comfortable with the new normal.

Throughout the pandemic, instructors reported teaching themselves something new far more than any other self-directed activity. This activity may have stayed prevalent beyond the first semester because instructors continued to learn new teaching and delivery methods in order to meet the ever-changing pandemic-impacted teaching situation. Importantly, this result indicates that instructors prefer to teach themselves and has implications for how to provide resources for instructor development.

Within the community-based category, instructors reported participating in casual conversations with colleagues about teaching far more than any other community-based activity. This finding suggests that maintaining connections and community is crucial for successful instructor adaptation.

A few notable irregularities in activity engagement may signify short-term reactions rather than long-term adaptation. These irregularities included an increase in seeking staff help near the end of each semester when instructors were likely trying to determine how to deliver exams in a format in which they were unaccustomed. A second notable increase was found in workshop attendance at the end of Fall 2020, likely triggered by a specific workshop on academic integrity and an on-going conversation about how to prevent cheating in an online environment. Lastly, there was an increase in casual conversations during Spring 2021 near the time where spring break typically occurs but was eliminated due to an attempt to reduce the spread of COVID-19 due to travel.

Limitations and Implications for Practice

The results of this study are only a portion of the results from a larger study [16]. The data presented above focused on the behavioral dimension of adaptability Results from the larger study will illuminate the cognitive and emotional dimensions of instructor adaptability.

While these results only represent the activity engagement of a small number of engineering instructors at one university during the pandemic, results provide an important look into what happens when circumstances force instructors to adapt their teaching methods. To encourage future instructor adaptability, during crises and otherwise, faculty developers and policy makers should build a supportive instructor community that can endure the disruption of a crisis and provide resources and time for instructors to learn teaching methods necessary for upheavals that minimize in-person instruction.

Conclusion

The first three semesters of pandemic-impacted teaching provided a unique opportunity to investigate instructor adaptability. Through a series of online surveys, engineering instructors self-reported their activities across three semesters of the pandemic as well as their reflections on

how normal they felt these activities were compared to pre-pandemic semesters. Trends in these survey results revealed the types and timing of activities that instructors most frequently engaged in. Findings could assist faculty developers and policy makers in supporting instructors to adapt in the future, so that engineering education continues to stay relevant and incorporates the best practices about teaching, even in times of disruption.

Acknowledgement

This work was made possible by a grant from the National Science Foundation (NSF #2027471). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Thank you Katie Mowat for data organization assistance.

References

- [1] M. Borrego, J. E. Froyd, and T.S. Hall, "Diffusion of engineering education innovations: A survey of awareness and adoption rates in U.S. engineering departments," *Journal of Engineering Education*, vol. 99, no. 3, pp.185–207, 2010, doi:10.1002/j.2168-9830.2010.tb01056.x
- [2] C. Hodges, S. Moore, B. Lockee, T. Trust, and A. Bond, "The difference between emergency remote teaching and online learning," *Educause review*, vol. 27, pp. 1-12, 2020.
- [3] J. J. Park, M. Park, K. Jackson, and G. Vanhoy, "Remote Engineering Education under COVID-19 Pandemic Environment," *International Journal of Multidisciplinary Perspectives in Higher Education*, vol. 5, no. 1, pp 160-166, 2020.
- [4] S. Asgari, J. Trajkovic, M. Rahmani, W. Zhang, R.C. Lo, and A. Sciortino, "An observational study of engineering online education during the covid-19 pandemic," *EdArXiv*, 2020, doi: 10.35542/osf.io/ursmb.
- [5] L. A. Gelles, S.M. Lord, G.D. Hoople, D.A. Chen, and J.A. Mejia, "Compassionate flexibility and self-discipline: Student adaptation to emergency remote teaching in an integrated engineering energy course during covid-19," *Education Sciences*, vol. 10, no. 11, p. 304, 2020, doi: 10.3390/educsci10110304.
- [6] A. J. Martin, H. Nejad, S. Colmar, and G.A.D Liem, "Adaptability: Conceptual and empirical perspectives on responses to change, novelty and uncertainty," *Australian Journal of Guidance and Counselling*, vol. 22, no. 1, pp. 58-81, 2012, doi: 10.1017/jgc.2012.8.
- [7] R. J. Collie and A. J. Martin, "Adaptability: An important capacity for effective Teachers," *Educational Practice and Theory*, vol. 38, no.1, pp. 27-39, 2016, doi: 10.7459/ept/38.1.03.
- [8] M. Zhou and W. Lin, "Adaptability and life satisfaction: The moderating role of social support," in *Frontiers in Psychology*, vol. 7, 2016, doi: 10.3389/fpsyg.2016.01134.
- [9] L. Corno, "On teaching adaptively," *Educational Psychologist*, vol. 43, no. 3, pp. 161-173, 2008, doi: 10.1080/00461520802178466.
- [10] L. S. Schlesselman, "Perspective from a teaching and learning center during emergency remote teaching," *American Journal of Pharmaceutical Education*, vol. 84, no. 8, 2020, doi: 10.5688/ajpe8142.

- [11] G. M. R. F. dos Santos, M. E. da Silva, and B. do R. Belmonte, "COVID-19: Emergency remote teaching and university professors' mental health," *Revista Brasileira de Saúde Materno Infantil*, vol. 21, no. 1, pp. 237-243, 2021, doi: 10.1590/1806-9304202100s100013.
- [12] Y. Li, X. Chen, Y. Chen, F. Zhang, and M.H. Sallam, "Investigation of College Teachers' TPACK Level During the Epidemic Situation: Taking Chu Kochen Honors College, Zhejiang University as an Example," in 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design, pp. 480-484, 2021, doi: 10.1109/CSCWD49262.2021.9437867.
- [13] J. Yao, R.T. Castles, C. Venters, N. Herndon, and M.T. Doty, "Using Collective Wisdom to Enhance Experimental Learning During the COVID-19 Pandemic," in *2021 ASEE Virtual Annual Conference Proceedings*, 2021.
- [14] D.A. Chen, L.A. Gelles, S.M. Lord, G.D. Hoople, J.A. Mejia, and M.A. Chapman, "Lessons Learned: How Our Agile Department Survived the COVID-19 Pivot," in 2021 ASEE Virtual Annual Conference Proceedings, 2021.
- [15] M.W. Marek, C.S. Chew, and W.C. V. Wu, "Teacher Experiences in Converting Classes to Distance Learning in the COVID-19 Pandemic 2021," *International Journal of Distance Education Technologies*, vol. 19, no.1, pp. 89-109, 2021, doi:10.4018/IJDET.20210101.oa3.
- [16] G. Panther and H. A. Diefes-Dux, "Instruments used to capture instructors' experiences during a forced move to remote instruction," in *ASEE Annual Virtual Conf. & Expo.*, July 26, 2021. [Online].
- [17] A. Rehmat, H. A. Diefes-Dux, and G. Panther, "Engineering instructors' self-reported activities to support emergency remote teaching during the COVID-19 pandemic," in *ASEE Annual Virtual Conf. & Expo.*, July 26, 2021. [Online].