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Global changes in response to human encroachment into natural habitats
and carbon emissions are driving the biodiversity extinction crisis and
increasing disease emergence risk. Host distributions are one critical
component to identify areas at risk of viral spillover, and bats act as reservoirs
of diverse viruses. We developed a reproducible ecological niche modelling
pipeline for bat hosts of SARS-like viruses (subgenus Sarbecovirus), given
that several closely related viruses have been discovered and sarbecovirus–
host interactions have gained attention since SARS-CoV-2 emergence. We
assessed sampling biases and modelled current distributions of bats based
on climate and landscape relationships and project future scenarios for host
hotspots. The most important predictors of species distributions were temp-
erature seasonality and cave availability. We identified concentrated host
hotspots in Myanmar and projected range contractions for most species by
2100. Our projections indicate hotspots will shift east in Southeast Asia
in locations greater than 2°C hotter in a fossil-fuelled development future.
Hotspot shifts have implications for conservation and public health, as loss
of population connectivity can lead to local extinctions, and remaining
hotspots may concentrate near human populations.
1. Introduction
Major current and future global changes pose a severe risk to biodiversity and
human survival [1]. Global climate change and human encroachment into
natural habitats are simultaneously driving the biodiversity extinction crisis
and increasing disease emergence risk [2]. Climate and land cover change
will alter the distribution of species [3], an important but poorly defined pre-
dictor of zoonotic disease risk [4,5]. The direction and magnitude of range
shifts are not estimated for many species, leaving the impacts on their viral
interactions uncertain [6,7].

In early 2020, genomic analysis identified the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease
2019 (COVID-19) pandemic. SARS-CoV-2 is closely related to viruses present
in the intermediate horseshoe bat Rhinolophus affinis (virus RaTG13, sampled
from the Yunnan province of China in 2013 [8]), and the following bats
captured in northern Lao People’s Democratic Republic (hereafter, Lao PDR)
in 2020: Rhinolophus malayanus (virus RmYN02), Rhinolophus marshalli (virus
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BANAL-236) and Rhinolophus pusillus (virus BANAL-103)
[9]). These viruses, like SARS-CoV-2, are part of the Sarbecov-
irus subgenus, and belong to the Betacoronavirus genus
(family Coronaviridae, subfamily Orthocoronavirinae). In the
year since SARS-CoV-2 was described, 47 potential Betacoro-
navirus hosts have been reported [10]. Knowledge about
hosts and where they are gives insights into emerging disease
origins and clues on future risk [11,12].

Bats comprise approximately 20% of global mammal
taxonomic diversity, with more than 1435 species described
[13], among 6490 known extant mammals [14]. This diversity
probably contributes to the viral diversity in bats [15,16],
including some viruses that have emerged as pathogenic in
people [17,18], such as sarbecoviruses [12]. Bats have multiple
functions within ecosystems, acting as pollinators, seed dis-
persers and insect predators [19]. However, over a fifth of
species are Threatened or Near Threatened with extinction
according to the IUCN Red List 2021 (www.iucnredlist.org)
and drivers of changes in bat distributions, such as land-
use change, probably contribute both to population
declines and the simultaneous increase in infectious disease
emergence risk [11,20]. Improved range estimates can, there-
fore, support conservation strategies and understanding
disease risk.

Among factors influencing bat distributions, suitable cli-
matic limits and karst are critical for many species [21–23].
The presence of native habitat, especially dense forest is
also vital for many species [3,24]. Maintaining such habitats
has important implications for conservation and potentially
viral transmission through changes in species interactions
and survival probability [7]. For example, host dispersal
among vampire bats, and specifically males, has facilitated
rabies spread in Peru [25] and sympatry has led to host
shifts among bat coronaviruses [26,27]. There are, however,
knowledge gaps ranging from bat distributional ecology to
their behaviour, immunity and physiology [16].

Attempts to estimate bat sarbecovirus-host spatial distri-
butions have included modelling near-current distributions
for bats of the family Rhinolophidae in Southeast Asia [28]
and filtering their expected areas of habitat [12]. However,
estimating species distributions with future projections can
help us understand their conservation status, inform land-
use planning to avoid conflicts [29], generate better models
for estimating the risk of emerging novel pathogens, and
allow targeted infectious disease surveillance. The rapid
increase in bat data after the COVID-19 pandemic provides
opportunities to better understand bats’ distributional ecol-
ogy, but may bring sampling biases in areas where
surveillance has been greatest [11,30,31]. Avoiding mispredic-
tion is essential, and we have the opportunity to update
ecological niche models with the help of big data, reproduci-
ble tools and open science. We need adequate inferences
regarding bat species distributions from the current period
projected to proximate future scenarios, so we can establish
guidelines for how to transition from the current trajectory
of biodiversity loss and pandemic risk to a more sustainable
future [1].

Here, we use ecological niche models to assess the poten-
tial distribution of bat hosts to Sarbecovirus in order to address
the following questions. (a) What is the availability and
spatial coverage of data for inferring the distribution of bats
known to host sarbecoviruses? (b) How are Sarbecovirus bat
host distributions affected by climate, karst and forest
amount in the near-current and future scenarios? (c) Where
are current and future areas with high species richness (hot-
spots) of Sarbecovirus bat hosts? Finally, we share a dynamic
data analysis pipeline, considering the inevitable addition
of new data on host species in the future.
2. Methods
(a) Target species and occurrence data
All analyses were in R v. 4.1.2 [32] (electronic supplementary
material, figure S1). Code and workflow [33] are provided in
GitHub (https://github.com/renatamuy/dynamic) and data in
Dryad [34]. We spatially predicted the occurrence of all known
Sarbecovirus hosts regardless of the first viral detection location
using Ecological Niche Models (ENMs) and approximating
them to species distribution models (SDMs). We compiled host
data (electronic supplementary material, table S1) from pub-
lished articles, preprints and NCBI (National Center for
Biotechnology Information) accession numbers cross-checked in
Virion v. 0.2.1 [35] with Genbank references. Bat hosts of Sarbe-
covirus viruses were: (1) explicitly named in the reference; and
(2) the source of viruses or viral fragments of Sarbecovirus or
synonyms for SARS-related coronaviruses.

Then, in September 2021 we mined bat host species occur-
rences from: Darkcides v1 [23], Global Biodiversity Information
Facility (GBIF) [36], Berkeley Ecoinformatics Engine (Ecoengine),
Vertnet, Integrated Digitized Biocollections (IDigBio), iNatural-
ist, Obis and data compiled for previous publications [11,37].
We filtered all data sources, and with iNaturalist kept only
‘research quality grade’ data. We performed data mining using
a custom loop through spocc function [21]. We only kept records
from 1970 onwards, and records from 1970 to 2000 comprised
only 4% of records. All points from DarkCideS (n = 1351) are
from the 2000s onwards.

(b) Sampling bias assessment
To reduce spatial sampling bias due to uneven and undersam-
pling [38,39], we performed a series of filtering steps, removing
data concentrated in political centroids of countries, provinces,
national capitals and centroids for GBIF headquarters and
museums. Duplicate coordinates for the same species and
points in permanent water bodies and oceans were excluded
with clean_coordinates from CoordinateCleaner 2.0-18 [40] and
we used cc_outl to remove geographical outliers, defined by
the interquartile range. Because the number of points can
define outliers differently and lead to information loss for rare
data, we set 20 as the minimum value for correction. We then
visually inspected points in QGIS 3.10.7 [41].

We inspected points for taxonomic and range consistency
based on IUCN Red List polygons and the Handbook of the Mam-
mals of the World when an IUCN polygon was not available [42].
We used IUCN Red List habitat and population trend infor-
mation to discuss our findings. For species complexes, the
broader range matching the viral detection information was
intersected with input data points. Species complexes like Hippo-
sideros pomona and H. ruber were treated as sensu lato across their
distributions. For H. pomona, we considered the broad distri-
bution for H. gentilis as a mask for filtering occurrences for the
IUCN-intersected input. H. ruber occurrences were kept within
and outside their matching IUCN polygons, since range and tax-
onomy may need review. Occurrences of Rhinolophus cornutus in
continental areas from DarkCides were not considered, as they
refer to R. pusillus in recent assessments [43].

Final preprocessing point thinning was made in ENMTML
[44], using an approximated search-cell radius of 13 km. We
did not perform further environmental filtering as the largest
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gains in model performance using those filters are for 10 points
or fewer [45] and we only ran models with more than 40 points,
as is good practice [46].

We assume that areas with low sampling coverage driven by
accessibility bias should be investigated more, especially if SDMs
predict a suitable habitat for a high numbers of species. We
assessed accessibility bias for the thinned occurrence data
(regardless of species) considering the distance of points from
cities, rivers, roads and airports through sampbias [47]. We
estimated how sampling rates (a Poisson process with rate λ)
vary as a function of proximity to drivers, generating a sampling
coverage metric driven by accessibility bias. After generating the
layers including estimated sampling rates (input parameters in
electronic supplementary material, table S2), we used a bivariate
choropleth map to visualize which highly species-rich areas
predicted by our ensembles have high values of estimated
sampling rates.

(c) Accessible area and spatial restriction
Accessible areas where species may disperse were defined by the
extent of the ecoregion [48] within which each species occurred
(IUCN polygon intersected and non-intersected). This extent
was used for geographically and environmentally constrained
background point sampling [49] with the default ratio between
presence and background points around a 50 km buffer from
occurrence points. Data partitioning for training:testing was
75 : 25% by split sample. We included dispersal capability in
the model ensembles using the a posteriori method ‘OBR’ for
SDMs. This method was coupled within the accessible areas
for spatial restriction of the final maps, as it performed well in
virtual species tests [50], reducing overprediction without
increasing omission errors. Because the ‘OBR’ method [50] is
not applied to future projections (we cannot restrict them
based on observed future occurrences), we compared all pro-
jected ranges within the accessible area in future scenarios as
being the maximum limit for dispersal. We define range as the
area where the species most likely occurs (estimated occupied
area) driven by the environmental covariates used.

(d) Covariates and workflow
We defined environmental variables that are important drivers of
target species distributions in the current geographical space,
which can also be projected into the future. Based on the focal
species’ ecology, we chose selected climatic (annual precipitation,
precipitation seasonality, annual mean temperature, temperature
seasonality) and landscape variables (karst and primary forest
cover) as covariates (electronic supplementary material, table S3).

Habitats used by each species were extracted using rredlist
v. 0.7 (electronic supplementary material, figure S2). We selected
forest cover as the main land-cover variable to avoid correlation
and error inflation due to limited data. Furthermore, most of our
target species benefit from forest physiognomies (electronic sup-
plementary material, figure S2). Forest habitat was calculated as a
proportion from LUH2 [51] for near-current and future scenarios
at 0.25 dd, so we resampled all other layers through bilinear
interpolation to match this resolution. Distance to cave or karst
was the only static variable. We calculated the minimum eucli-
dean distance (km) from karst or cave and averaged it within
the working resolution grid. Distances were calculated in QGIS
3.10.7 after warping layers to Mercator metric projection Datum
WGS84 and then reprojected back to the geographical system
with Datum WGS84.

Climate predictors were downloaded from WorldClim 2.1
[52] with 10 arc-minutes spatial resolution. We selected covari-
ates with Pearson’s product-moment correlation value |r| <
0.70 [53] across all covariates prior to modelling to avoid colli-
nearity (electronic supplementary material, figure S3). From 19
near-current (1970–2000) bioclimatic variables, we selected
annual mean temperature (bio_1), temperature seasonality (stan-
dard deviation × 100, bio_4), annual precipitation (bio_12), and
precipitation seasonality (coefficient of variation, bio_15).

We built ENM ensembles using ‘MXS’ and ‘MXD’ maximum
entropy algorithms. We selected these algorithms based on
experience and performance [50,54,55]. We used consensus
ensemble maps including the suitability values weighted by
TSS (weighted mean of True Skill Statistics values) and report
performance using TSS, but also report Boyce discrimination
values [56]. Each model algorithm was replicated 10 times
through the ‘bootstrap’ term in ENMTML. Despite being called
bootstrap, this method applies a split sampling method. To
evaluate model performance, we randomized occurrence data
into 75% : 25% train:test samples to calculate the TSS [34] for
each model. Models with TSS > 0.5 were considered as perform-
ing above that expected by chance [57]. We weighted the
ensembles based on model performance and used weighted
TSS value differences for selecting the most realistic maps
between IUCN-intersected and non-IUCN-intersected data.
Threshold values were calculated to transform each model’s pre-
dictions to presence or absence of each species, using
‘MAX_TSS’, the threshold at which the sum of the sensitivity
and specificity is the highest [58]. After generating species
maps, we calculated host richness as the sum of presences of
each host per pixel in the binary maps, producing a map of
host–species taxonomic richness. We derived zonal statistics
based on the host species map for the country’s shapefile, calcu-
lating the maximum predicted host richness per country using
administrative regions from Natural Earth (https://www.natur-
alearthdata.com/). We compared estimated taxonomic richness
maps generated from the two sets of models to check for conver-
gent patterns using Pearson’s product-moment correlation. We
ran models for two sets of filtered and thinned datasets:
(1) IUCN-intersected polygon data; and (2) non-IUCN polygon
intersected data. We compared performance values between
those two sets of ensembles to infer improvement in per-
formance. Correlative variable contribution was inspected
throughout each set of model algorithms.
(e) Hotspots and future projections
We downloaded SSP (Shared Socioeconomic Pathways) scen-
arios for Coupled Model Intercomparison Project Phase 6
(CMIP6) at 10 arc-minutes spatial resolution. We present results
for projections using the SSP2-4.5 and SSP5-8.5, focusing on
SSP5-8.5 for our results. SSPs represent baseline paths with vary-
ing human behaviour reflected in actions changing land cover,
and coupled with greenhouse gas (GHG) emissions they provide
future global change scenarios. Scenario SSP5-8.5, for instance,
means 8.5 radiative forcing level coupled with an SSP5 (fossil-
fuelled development), which translates in a pessimistic scenario
[59]. The SSP2-4.5 is known as a middle-of-the-road scenario.
Here, we present results for BCC-CSM2-MR (Beijing Climate
Center Climate System Model) and CanESM5 (Canadian Earth
System Model v. 5) GCMs for 2021–2040, 2041–2060, 2061–
2080, 2081–2100 periods. We report values for SSP5-8.5 and
BCC-CSM2-MR for 2100 in our maps, as a more extreme, but
possible future scenario. We include results for all scenarios,
periods and GCMs in the supplements. Our pipeline easily incor-
porates all combinations of SSPs, periods and GCMs, depending
on computational power. We resampled all future rasters to 0.25
dd using the bilinear method. Area calculations of range shifts
and shifts in range overlap were made for each consensus
binary map. Hotspots were simply defined as pixels with the
greatest predicted species richness. The centroids of hotspots in
the present and future were calculated to describe changes in cli-
mate and their locations. To investigate if hotspots were getting

https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
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physically hotter we inspected the distribution of richness values
and average temperature in the present and by 2100 for SSP5-8.5
and SSP2-4.5. Finally, changes in the number of contiguous areas
with the highest values of estimated richness and division index
were calculated with landscape metrics [60].
ypublishing.org/journal/rspb
Proc.R.Soc.B

289:20220397
3. Results
Sarbecoviruses were reported from 35 bat species (electronic
supplementary material, table S1). We could model the poten-
tial distribution of 17 species using IUCN-intersected data,
and 23 with non-intersected data (electronic supplementary
material, figure S4). Of the latter 23 species, the potential dis-
tribution of six could only be modelled without intersecting
their points with IUCN data; models for nine species did not
show improvement in TSS values after intersecting data
with IUCN ranges, while for eight there were small improve-
ments after cropping occurrences within IUCN range limits
(electronic supplementary material, table S4).

The maps show three focal areas of suitability across
species; one each in Western Europe, Indochina and Central
Africa (electronic supplementary material, figures S5 and
S6). IUCN delimitation for occurrence inclusion does not
improve model performance for more than 10% added value
in TSS in most cases (electronic supplementary material,
table S4). Richness maps for the two datasets were highly posi-
tively correlated (|r| 0.955; p-value < 0.0001), indicating
agreement between richness hotspots for IUCN-intersected
data and data gathered inside and outside IUCN polygons.
Therefore, we report the non-IUCN intersected datasets. Over-
all, species with smaller ranges had fewer filtered points
(electronic supplementary material, figure S7).

Environmental covariates affected Sarbecovirus bat hosts
differently, with temperature seasonality (n = 12), karst
(n = 5) or precipitation seasonality (n = 4) the top-ranked vari-
ables for most species considering the correlative covariate
importance, with all variables varying in their relative contri-
bution (electronic supplementary material, figure S8). All
variables had importance values above 26% at least once,
depending on the species. From the lower ranking contribu-
tors, annual precipitation had greater than 10% contribution
for 19 of 23 species (82%), annual mean temperature greater
than or equal to 10% for 14 (61%), and forest amount greater
than 10% for ten (43%).

The highest number of bat species (i.e. host hotspots) in
the present and future projections occurred in Southeast
Asia (figure 1 and table 1). The highest values were in Myan-
mar (13 species), then China, Lao PDR, Thailand and
Vietnam (12 species). Area changes are visible in SSP5-8.5
in 2100, and highest richness values are less continuous in
the future due to projected species losses (electronic sup-
plementary material, figure S9). The number of contiguous
areas with 10 or more estimated species increases from 26
patches in the present to 38 in the future. The overall division
index for these hotspot areas increased in future projections
from 13.97 to 14.97.

From the top 10 countries for maximum potential species
richness in a pixel, Italy had the highest estimated sampling
rate. Figure 2 shows the interaction between estimated rich-
ness of Sarbecovirus bat hosts with estimated sampling rates.
We highlight areas where the number of species is high
and sampling proportion low as future priorities for data
collection. Sampling rates were mostly correlated with the
distance from roads (electronic supplementary material,
figure S10). Overall the estimated sampling rates through
accessibility were low for individual locations (min = 0,
median = 0.013, mean = 0.045, 3rd q. = 0.065, max = 0.49),
even when species are present by ENMs (min = 0, median =
0.08, mean = 0.098, 3rd q. = 0.141, max = 0.446). In Europe,
sampling rates show high accessibility bias and better cover-
age of hosts than other regions, but regions in Southeast Asia
are also well sampled, especially eastern coastal areas (purple
in figure 2). Highest values for richness were estimated for
areas with low sampling rates (electronic supplementary
material, figure S11).

Highest host richness values decline in future SSP5-8.5
projections (figure 3). Average temperature of current
hotspots—the few where 13 species are present—is 20.6°C,
increasing to 22.7°C in future hotspots (SSP5-8.5, BCC-
CSM2-MR in 2100). The hotspot centroid in Southeast Asia
is predicted to shift from Myanmar into eastern forests
regardless of GCM used. The predicted centroids for highest
richness shift from Kat Ku, Myanmar, to denser forest sur-
roundings to the east, only 42 km away, considering BCC-
CSM2-MR, or more distantly 373 km further east if we
consider the CanESM5 GCM (in the east of Ban Ka Kiak,
Lao PDR) by 2100 using SSP5-8.5. Scenarios project increased
species richness in locations (figure 3) where temperature is
also higher. Temperature increases pose consequences for
bat distribution in response to seasonality. Compared to
areas with less species, there are smaller averages and
ranges for temperature seasonality values in the future host
hotspots (electronic supplementary material, figure S12).

Potential ranges for all periods, scenarios and GCMs used
are in electronic supplementary material, table S5. Several
species showed resilience, such as Hipposideros armiger,
H. galeritus and H. larvatus. However, some species with large
ranges (electronic supplementary material, figure S13), such
as Rhinolophus ferrumequinum and R. affinis, will probably
suffer range contractions (electronic supplementary material,
table S6). Population trend data showed that many species
do not have a current evaluation (n = 20, electronic supplemen-
tary material, table S7). Considering the most extreme global
warming scenario (SSP5-8.5), most species will suffer range
contractions (n = 17, 74%), while six may gain area (n = 6). For
SSP2-4.5, fewer, but still more than half the species will suffer
range contraction (n = 14, 61%). Overall species estimated occu-
pied areas overlapped less in the future, with higher overlap in
SSP2-4.5 in comparison to SSP5-8.5 (electronic supplementary
material, figures S14 and S15), however it varies with species
(electronic supplementary material, table S8). Range shift
trends did not differ across SSPs for most species modelled
(n = 16, 70%). Most differences pointed to range contractions
in SSP5-8.5, while there was a slight expansion in potential
ranges in SSP2-4.5 (electronic supplementary material, table
S6 and figure S16).
4. Discussion
Human-driven habitat change—including through global
warming—will alter species distributions, and as a conse-
quence species interactions. Species interactions can have
far reaching effects in ecological communities. Parasites and
infections that animals carry are often overlooked yet
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key components of ecological systems [61–63] and host distri-
bution changes may redistribute and alter disease emergence
risk. Here, we developed SDMs to determine the drivers of
Sarbecovirus bat host distributions, identify hotspots of host
species richness and model changes in distributions and
hotspots under future scenarios. For the species modelled,
temperature seasonality and karst were important determi-
nants of geographic distributions, and we identified host
hotspots in Europe and Asia. We projected how these
hotspots may change under future climate and forest-
cover change scenarios, shifting and becoming more frag-
mented as species’ ranges will often contract. We also
identified where sampling rates were partially biased, being
mainly driven by road accessibility.

Our focal species are insectivorous bats with varying geo-
graphical ranges and sensitivity to habitat disturbance [64].
Species responses to climate change can be complex [65,66].
Though some species are resilient (electronic supplementary
material, figure S13), Sarbecovirus bat hosts are impacted by
forest quality and cave disturbance [3], and our projections
highlight their overall sensitivity to changes in seasonality.
We assume increased temperatures, forest amount and proxi-
mity to roost areas will be crucial in driving their future
distributions. The implications of host hotspots becoming
restricted in the future to warmer tropical, less seasonal
environments are unknown [67]. Hosts may have reduced
physiological tolerance to higher temperatures and decreas-
ing oscillations in temperature, potentially impacting both
their survival and viral dynamics. Concomitant host disper-
sal to refugia areas and resulting cascading effects may
include increased encounters among species that did not
overlap before, likely with implications for host switching
and pathogen spillover [7]. Zoonotic spillovers, in turn, will
be influenced by how people separate themselves from wild-
life, especially for viruses with pandemic potential, such as
the sarbecoviruses [67]. Wildlife and viral monitoring may
be especially relevant in areas where hosts live and humans
and potential intermediate hosts use, such as caves and
rural areas of Southeast Asia. Monitoring programmes
should take into consideration the species-specific role temp-
erature variability and habitat disturbance play in
host distribution.



Table 1. Highest national maximum Sarbecovirus host richness values (i.e.
hotspots) predicted through SDMs.

country subregion hosts
median sampling rate
(mean ± s.d.)

Myanmar Southeast Asia 13 0.033 (0.053 ± 0.061)

China East Asia 12 0.024 (0.051 ± 0.064)

Lao PDR Southeast Asia 12 0.052 (0.063 ± 0.041)

Thailand Southeast Asia 12 0.087 (0.102 ± 0.067)

Vietnam Southeast Asia 12 0.086 (0.107 ± 0.074)

Cambodia Southeast Asia 8 0.112 (0.127 ± 0.076)

India South Asia 8 0.069 (0.09 ± 0.078)

France West Europe 8 0.128 (0.144 ± 0.076)

Italy South Europe 8 0.146 (0.152 ± 0.079)

Malaysia Southeast Asia 8 0.051 (0.074 ± 0.072)
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Our findings, therefore, reinforce the need to evaluate dif-
fering environment responses even within the same genus.
For example, R. sinicus lives in montane forests [68], yet
R. affinis can live in lowland forest, dry forest and disturbed
areas [64]. R. ferrumequinum, a species ranging from Europe
and Northwest Africa to Asia, hibernates during winter in
caves, but this varies across the range and with age and
sex [64]. Most modelled species are associated with caves
(electronic supplementary material, figure S8), with karst
availability ranking first or second for seven bat species eval-
uated in our models in terms of contribution. How karst will
change due to mining and land conversion is unclear. Metal
mining and limestone quarrying increasingly threaten karst
habitats [69] that bats depend upon [3]. We did not model
this potential change, but it may reduce suitable habitat
and fragment populations.

Remaining primary forests will probably be refugia for
many species. The average temperature in the current host
diversity hotspots in SE Asia is 20.6°C, potentially increasing
to 22.7°C under SSP5-8.5. With hotspots getting hotter, most
sarbecovirus hosts’ rangeswill contract in the future, following
the expected pattern for Southeast Asian bats [70]. Host diver-
sity hotspots will shift to more climatically stable areas where
shrinking primary forests remain (electronic supplementary
material, figure S9). Suitable areas are lost in northern regions,
especially on the China borders. These changes reduce species
richness with time in both scenarios used.

We chose a very high GHG emissions scenario as an
example here (SSP5-8.5), which is considered a likely scenario
[71] evaluated as a possible future in CMIP6, though less
likely according to a recent report [72]. Nevertheless, there
is high convergence between SSP2-4.5 and SSP5-8.5 hotspot
projections (figure 3), though SSP5-8.5 hotspots concentrate
more species. In fact SSP2-4.5 is, to some extent, less extreme
with fewer range contractions, whereas species are projected
to become more spatially concentrated, especially in SSP5-8.5,
probably due to a refugia effect [73] since there will be less
suitable habitat. We project slight range gains for 2015–
2040, possibly due to forest regrowth, which is more likely
if international initiatives for reducing deforestation and
nature-based solutions succeed [74,75]. After 2040, the high
GHG emission scenario projects habitat loss for most species
and a shift in the hotspot centroids from Kat Ku, Myanmar, to
denser forest surroundings to the east towards Lao PDR.
Importantly, this hotspot shift occurs regardless of the
global circulation model used.

Our analyses highlight the dynamic and uneven nature of
data acquisition. Our pipeline can be easily updated to
include new data. Ongoing viral discovery will almost
certainly add to the list of bat species testing positive for sar-
becoviruses, and many bat species, particularly the
Rhinolophidae and Hipposideridae in Africa [76–78] are in
need of taxonomic revision. Furthermore, bat species con-
tinue to be discovered and described, which could rapidly
change conservation assessments. Similar rapid changes
happen with viral surveillance, particularly for bats [79,80].
Also, new species descriptions and discoveries can alter
sampling bias, since remote areas may be undersampled.
More intensive sampling in species-rich, but low sampling
effort areas can reduce biases, mainly in areas that are not
intensively connected by roads, as identified by our esti-
mates. Despite these challenges, after data curation to
reduce sampling bias and autocorrelation, we could still
model most species while identifying important biodiversity
research shortfalls [81]. The smallest-ranged bats in our data-
set did not reach our modelling criteria (electronic
supplementary material, figure S7) because of data gaps,
which are probably larger for Sarbecovirus ecology in their
natural hosts (from Wallacean (distribution) to Eltonian
(biotic interaction) shortfalls) [16]. By providing a surface of
estimated sampling rate, we provide a more realistic scenario
for prioritizing sampling of the focal species, as uneven
sampling is one of the most common violations of assump-
tion in distribution models [82]. Initiatives to prioritize
specific bat viral sampling have been based on phylogeny,
expert range definition and viral sharing probabilities
[10,83]. We suggest areas with high estimated diversity of
hosts and low estimated sampling rates should be a priority
for Sarbecovirus host studies in the future, such as Indochina
and China hotspots (figure 2) [84].

There are conservation implications from our findings.
Range contractions are projected for several species, even for
species using variable habitats, such as Rhinolophus pearsonii
(electronic supplementary material, table S4 and figure S5).
Most species’ populations are currently declining (n = 8) or
have unknown population trends (n = 20, electronic sup-
plementary material, table S6). Local species loss values
were almost twice the number of maximum gain (electronic
supplementary material, figure S9). Along with climate
change mitigation, strategies for maintaining landscape-level
habitat connectivity will allow populations to reach refugia
and lower extinction risk. This could be done by developing
landscape connectivity surfaces that maximize diversity hot-
spot extensions, with monitoring effective dispersal through
genetics [85,86] and population assessments [87].

Our results identify broad regions where bats reported
positive for sarbecoviruses most probably occur and co-
occur. These hotspots coincide, but are not restricted only
to Rhinolophidae diversity hotspots [88] and to hotspots of
mammal vulnerability to climate change [89]. Projections
suggest that hundreds of new future viral sharing events
may occur in Southeast Asia [7]. Novel interactions may be
of concern for species survival as pathogens could spread
more easily in vulnerable wild populations, which could
facilitate epizootics and panzootics [90]. The role of bats as
putative reservoirs of different zoonosis-causing agents
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must be interpreted with care, though [91]. Sarbecoviruses
circulating in horseshoe bats might be directly infectious for
humans [92,93], or infect other species prior to people
[18,94]. Thus, the presence of potential hosts may act as one
component of hazard in risk assessments using ecosystem
perspectives and multiple drivers [95]. Increased incidence
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of zoonoses is more likely through human-mediated change
of the environment, including climate [96]. Changes in host
hotspots may alter disease risk when other changes to
human, intermediate domestic or wildlife populations take
place [12].

Our future projections assume models using present data
perform adequately. However, our models do not account for
biotic components that also interfere with suitability, so we
are limited to inferences of distribution derived from land-
scape and climate drivers. Projections will therefore need
validation with new data and new predictions. Related,
small changes may be relevant for local health and conserva-
tion initiatives, and coronavirus hosts are a focus of
increasing research [84]. Data change as new hosts are ident-
ified [10], host distributions revised, and remote sensing of
their drivers updated. We provide a pipeline ready for the
inevitable addition of new bat hosts (e.g. [9,80]), which
could also be applied for inferring the distribution of poten-
tial intermediate hosts for sarbecoviruses. Beyond refining
distributional ecology, more work on host characterization
will improve our understanding of the role of bats as reser-
voirs of coronaviruses [84]. Here, we estimated range
contractions for most species of bats hosts of sarbecoviruses
in response to global changes in climate and forest cover,
along with host hotspot shifts. Further evaluations will help
inform global change vulnerability assessments [97] and inte-
grative data-modelling steps, in addition to communication
of processes involving bats that could benefit One Health
[98] and nature-based solutions projects.
Data accessibility. Data provided in the Dryad Digital Repository [34],
GBIF [36], and electronic supplementary material [99]. Code pro-
vided in GitHub (https://github.com/renatamuy/dynamic) and
Zenodo [100].
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