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Identifying non-thrive trees and predicting wood density from
resistograph using temporal convolution network

Rapeepan Kantavichai and Eric C. Turnblom

School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA

ABSTRACT
Deep learning approaches have been adopted in Forestry research including tree classifica-
tion and inventory prediction. In this study, we proposed an application of a deep learning
approach, Temporal Convolution Network, on sequences of radial resistograph profiles to
identify non-thrive trees and to predict wood density. Non-destructive resistance drilling
measurements on South and West orientations of 274 trees in a 41-year-old Douglas-fir
stand in Marion County, Oregon, USA were used as input series. Non-thrive trees were
defined based on their changes in social status since establishment. Wood density was
derived by X-ray densitometry from cores obtained by increment borers. Data was split for
cross validation. Optimal models were fine-tuned with training and validation datasets, then
run with test datasets for model evaluation metrics. Results confirmed that the application
of the Temporal Convolution Network on resistograph profiles enables non-thrive tree iden-
tification with the probability, represented by the area under the Receiver Operator
Characteristic curve, equal to 0.823. Temporal Convolution Network for wood density predic-
tion showed a slight improvement in accuracy (RMSE ¼ 18.22) compared to the traditional
linear (RMSE ¼ 20.15) and non-linear (RMSE ¼ 20.33) regression methods. We suggest that
the use of machine learning algorithms can be a promising methodology for the analysis of
sequential data from non-destructive devices.
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Introduction

In stand development, the degree of inter-tree compe-
tition is asymmetric for sunlight (Weiner 1990).
Dominant trees or high social class trees are seldom
limited by light availability and produce more growth
in diameter increment compared to low social class
trees. Thus, cambial growth is intrinsically determined
by tree diameter (Zeide 1993). The occurrence of trees
putting on less growth increment compared to the
same size or smaller trees has contributed them to
become slender and lower in social rank. This devi-
ation in stem growth is the reflection of unfavorable
local growing conditions and should be considered in
the silviculture treatment process. However, there is a
lack of simple identification tools to date. Unlike the
suppressed trees, these declining social rank trees can-
not be easily distinguished by diameter or height.

Resistance drill measurement has been widely
applied to inspect tree decay in forest inventory (i.e.,
Rinn et al. 1996; Wang and Allison 2008). Recent
research found that resistance profile amplitude corre-
lated with wood basic density a.k.a. wood density
(WD) or wood specific gravity (Rinn et al. 1996; Park
et al. 2006; Bouffier et al. 2008; da Silva Oliveira et al.
2017). WD is an important wood characteristic that
affects the performance of wood products and is often

used as the criterion for timber grading. This rapid
and inexpensive resistance measurement is potentially
a good alternative to measure WD compared to the
traditional measurement from x-ray densitometry (Gao
et al. 2017). There are a few studies on Douglas-fir
(Pseudotsuga menziesii (Mirb.)) WD and resistance
drilling. Chantre and Rozenberg (1997) reported a cor-
relation in 25 year-old Douglas-fir resistograph ampli-
tude profiles and WD and suggested that resistance
drilling could be an effective tool in estimating WD
for the whole trunk. El-Kassaby et al. (2011) found
that resistograph amplitude can represent WD in gen-
etic control study among 20 unrelated coastal Douglas-
fir full-sib families. Nevertheless, Todoroki et al. (2021)
argued that resistograph amplitude was insufficient to
predict WD due to high prediction error based on
their study of 60–75 years old Douglas-fir trees in six
sites in coastal Western North America.

Traditionally, researchers use features in summary
Statistics. Although, some parts of the data may not
contribute significantly to model performance. Feature
selection and pattern recognition in machine learning
models were introduced to identify critical or influen-
tial features of the target response variables. Deep
learning is a new branch of machine learning, devel-
oped by stacking layers of artificial human brain neu-
rons to learn the complex non-linear relations in

CONTACT Rapeepan Kantavichai rk08@outlook.com USDA Forest Service 4700 Old Kingston Pike, Knoxville, TN 37919, USA
� 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

FOREST SCIENCE AND TECHNOLOGY
E-ISSN 2158-0715, 2022, VOL. 18, NO. 4, 144–149
https://doi.org/10.1080/21580103.2022.2115561

http://crossmark.crossref.org/dialog/?doi=10.1080/21580103.2022.2115561&domain=pdf&date_stamp=2022-11-19
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/21580103.2022.2115561
http://www.tandfonline.com


features and datasets (Schmidhuber 2015). The
Temporal Convolutional Network (TCN) proposed by
Bai et al. (2018), is a variation of Convolution Neural
Networks for sequence modeling whose structure and
associated hyperparameters were derived from opti-
mized function and verified through actual experimen-
tal data. The causal convolution, dilated convolution
and residual block were introduced to extract long-
term series information to overcome the challenges in
time coherence in the conventional convolutional
neural network. Many sequence input applications
found that TCN models yielded high accuracy, includ-
ing Satellite Image Time Series classification (Pelletier
et al. 2019) and El Ni~no-Southern Oscillation predic-
tion (Yan et al. 2020).

In this study, we use the TCN approach to extract
patterns from resistograph amplitude sequences for
both classification and regression tasks. Resistograph
profiles and WD data of 274 trees were obtained from
a 41-year-old Douglas-fir stand located in Marion
County, Oregon, USA. The declining social rank trees,
hereby “non-thrive” trees were derived from periodic
measurements every 2–4 years since establishment as
part of a silvicultural treatment study from The Stand
Management Cooperative at the School of
Environmental and Forest Sciences, University of
Washington. Our hypothesis is that the TCN approach
can distinguish the sequence of resistance drilling amp-
litude of non-thrive trees. Considering that the useful-
ness of resistance drilling for predicting Douglas-fir
WD is unclear with traditional Statistical analysis
methods, this study aims to evaluate the performance
of resistance drilling to predict WD with a deep learn-
ing method, TCN, which is anticipated to filter fea-
tures and capture non-linear dependency. Therefore,
we also hypothesize that the TCN approach has better
performance than traditional regression analysis in
predicting WD from resistograph amplitude profiles.

Materials and methods

Study area

This Stand Management Cooperative study site,
namely the Silver Creek Mainline site was planted in
the winter of 1977 with Douglas-fir seedlings, 1360
stems per hectare, using 2-0 planting stock type, mak-
ing the total age of the stand 3 year after the 1977
growing season. The stand is located in Marion
County, Oregon (44.5202700N, 122.3305800W), at an
average elevation of 671m, facing roughly West with a

slope of 10%. The soil type is Baumgard silt loam and
the Douglas-fir stand adjacent to the site when it was
planted exhibited a Site Index of 36.6m at 50-year
breast height age. The study plots were installed after
the 1989 growing year during the dormant season at a
total stand age of 15 years.

Nine 4,000m2 plots were chosen for this study
with undergoing unique silviculture pathways, rang-
ing from no action to pre-commercial thinning, in
combination with further thinning based on Curtis’
relative density (RD) (Curtis 1982) and fertilization
(Table 1). Thirty trees were chosen from each plot
using a stratified random sampling scheme, where
diameter at breast height (DBH) defined the strata. In
each plot, the DBH of all trees was ranked into per-
centile and divided into five strata. Six trees were ran-
domly selected in the second and fourth quintile
strata. Trees at percentiles 10, 50, and 90 were pre-
selected as the benchmark. Therefore, only five trees
in the first, third, and last quintiles were randomly
selected. Resistance drilling and increment cores from
increment borers were collected from the South and
West sides of the selected standing trees.

Data

Tree diameters were periodically measured by the field
crew. Competition indices were represented by the
basal area of trees larger than the subject tree (BAL,
m2/ha) and the plot basal area (BA, m2/ha). As a
measure of the social rank of the tree within the stand,
we used BAL percentile (BALpct) which was the pro-
portion of BAL over plot BA in percentage unit
(Equation 1).

BALpct ¼ BAL
Plot BA

� 100 (1)

Big or dominant trees have low BALpct. Each tree
was classified as a normal or non-thrive tree based on
its dynamic in BALpct. We define non-thrive trees as
the trees whose BALpct increase more than 25 in late
stand development compared to their BALpct at estab-
lishment. There were 31 non-thrive trees from a total
of 274 trees in nine plots (Figure 1). Noted that one
plot did not have a non-thrive tree due to low compe-
tition. It was the pre-commercial thinned to one-fourth
of original density at establishment without fertilization
treatment plot.

Total 548 resistograph profiles of two orientations
at breast height from 274 trees were obtained.
However, only 480 cores from 264 trees could

Table 1. Treatment regimes used on nine plots in Silver Creek Mainline site (Note: RD: Curtis’ relative density).

Plot no. Treatment regime

1 Repeated thinning from RD 55 to 35, and RD 55 to 40
2 Precommercial thinning to one-quarter original stems, no further thinning
3 Precommercial thinning to half original stems, and minimal thinning from RD 55 to 35 once
4 Only minimal thinning from RD 55 to 35 once
5 No action
8 Precommercial thinning to half original stems, no further thinning
10 Applying fertilization every 4 years and repeated thinning from RD 55 to 35, and RD 55 to 40
11 Precommercial thinning to half original stems, applying fertilization every 4 years and minimal thinning from RD 55 to 35 once
12 Precommercial thinning to one-quarter original stems, and applying fertilization every 4 years
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be achieved in X-ray densitometry for ring density
(kg/m3), ringwidth, and latewood percent. Each core
WD was calculated as average weighted ring density
with ring width (Equation 2). The arithmetic mean
value of core WD was 433 kg/m3 with a standard
deviation of 24 kg/m3.

WD ¼
Pðring density� ringwidthÞ

P
ringwidth

(2)

The examples of resistograph profiles are illustrated
in Figure 2 showing four profiles from two different
trees in the same plot with the same diameter but one
tree (tree no. 672) is a non-thrive tree while the other
(tree no. 614) is the normal tree.

Analyses

Resistograph profiles derived from core drilling sam-
ples at breast height vary in length (Figure 3). In this
study, we truncated resistograph profiles to 200mm
from bark which obtain the best metrics compared to
other core lengths. The first 25.2mm of resistograph
profiles close to barks were trimmed out also to avoid
measurement or calibration errors.

Measured amplitudes of resistograph with the reso-
lution of every 0.1mm from 25.2 to 200mm were fed
as sequential input for the TCN algorithm. Causal
convolutions where output at time t is convolved only
with elements from time t and earlier in the previous
layer differentiating TCN architectures from other
convolution models. The illustrated TCN model in
Figure 4 has dilation rate set to 4 and kernel size of
3. Dilation consists of skipping with d values between

the inputs of the convolutional operation and kernel
size controls area in convolution. Other hyperpara-
meters are the number of filters and dropout rate
which are linked to predictive power and overfitting
control, respectively. Analysis was done in Keras
(Chollet 2015) with TensorFlow as a backend (Abadi
et al. 2016) and library keras-tcn1 was applied for the
TCN implementation.

TCN classification with class weights for unbalanced
classes and sigmoid activation function was applied to
non-thrive tree classification. TCN regression with rec-
tified linear unit activation function was applied to
predict WD. With these small numbers of sample
sizes, we assigned a bigger portion of data for training
to ensure model accuracy. Therefore, data was ran-
domly split into three sets: training, validation (in the
training process), and testing at the ratio of �75:15:10.
Parameters; the number of filters, kernel size, dilation
size, and dropout rate, were fine-tuned based on evalu-
ation metrics in training dataset for the best perform-
ance models. Then these models were applied to the
test dataset for the evaluation metrics. The flow chart
of the analysis process is shown in Figure 5.

Metrics for non-thrive tree classification included
(1) Recall, a.k.a. hit rate, true positive rate, which is
the ability of the classifier to find all the positive sam-
ples. It is the ratio between the correct predicted values
in the target class (true positive) from all target class
values in the data set (true positiveþ false negative).
And (2) Receiver Operating Characteristic (ROC)
curve that is a plot of hit rate vs. false alarm rate at
different thresholds. Metrics for WD prediction were
mean squared error for model selection in the training

Figure 1. Non-thrive trees basal area larger percentile (BALpct) from the establishment (1989) to harvest (2015) in eight plots.
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dataset and root mean squared error (RMSE) in the
test dataset.

Result and discussion

The optimal configuration of TCN for the non-thrive
tree classification model had one TCN layer with 64 fil-
ters, kernel size of 8, 0.5 dropout rate, dilations of 64,
and one dense layer. This model was fitted to the test
dataset in different classification thresholds (Figure 6).
At the selected threshold of 0.708, the result showed
high recall at 0.8 and high precision at 0.31. To screen

for non-thrive trees or control for false negatives, the
model with high recall is better than high precision.
In other words, we rather have normal trees marked
as non-thrive trees (false positive) than misidentify
non-thrive trees as normal trees (false negative). The
accuracy metric, the ability to correctly predict class
at the selected threshold, is 0.81. However, the accur-
acy metric is not suitable due to imbalanced data and
unequal class importance. Another important metric,
The ROC curve displayed a true positive rate against
a false positive rate for each threshold as shown in
Figure 7. The derived metric of accuracy, area under
the ROC curve (AUC), is the aggregate measure of
performance across all possible classification thresh-
olds. In general, an AUC of 0.5 suggests no ability to
discrimination, 0.7–0.8 is considered acceptable,
0.8–0.9 is considered excellent, and more than 0.9 is
considered outstanding (Hosmer et al. 2013). This
study has a model with an AUC of 0.823 indicating
that the model is capable of distinguishing non-thrive
trees from normal trees.

Social status drift trees were found in thinned
stands (i.e., Pretzsch 2021). While social climber trees
got more photosynthate from crown release, non-
thrive trees lost their competitive access to light and
other resources. The majority of non-thrive trees in
this study were intermediate trees at an establishment
with lagged size development at harvest. The rest of
them were codominant trees that lost their privileged
status over time. Developing this prognostic model to
detect non-thrive trees provides information for regu-
lating trees in stand management.

For WD prediction, the linear regression model on
average profile amplitude in the train dataset as shown
in Equation (3) with RMSE ¼ 24.40 kg/m3, Adjusted
R-squared ¼ 0.06.

WD ¼ 410:786þ 0:7865� Amp (3)

Non-linear regression was also evaluated as an alter-
native model and shown in Equation (4) with
RMSE ¼ 24.23 kg/m3, Adjusted R-squared ¼ 0.07.

Figure 2. Example of four resistograph amplitude profiles measured in South and West orientations of a non-thrive tree (dash line) and a normal tree
(solid line) [y-axis: amplitude of resistance (%); x-axis: distance from tree bark (mm)].

Figure 3. Histogram of resistograph lengths (blue) and reverse cumula-
tive (red) of resistograph length from total 480 samples (x-axis: resisto-
graph lengths measured from bark, mm).

Figure 4. Architectural elements in a TCN. A dilated causal convolution
with dilation factors d¼ 1; 2; 4 and kernel size ¼ 3 (adapted from Bai
et al. 2018).
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WD ¼ 442:22� 128:97� ð0:9009AmpÞ (4)

The optimal configuration of TCN for the WD pre-
diction model had one TCN layer with 32 filters, ker-
nel size of 6, 0.5 dropout rate, and dilations of 32.
This TCN model was run in the test dataset and
obtained RMSE at 18.22 kg/m3, which outperformed
RMSE from the linear regression and non-linear
regression models in the test dataset at 20.15 and
20.33 kg/m3, respectively. Figure 8 illustrated that pre-
dicted WD from TCN are generally closer to actual
values than ones from linear and non-linear regression
as TCN allowed non-linearity and also feature

representation in the model. However, Deep learning
algorithms are often seen as a black box problem as
they report results in high accuracy without an explan-
ation of how they make the prediction. On the other
hand, regression models of average amplitude from
resistograph showed a positive correlation with WD.
The relationship can be developed in linear or concave
with asymptote non-linear models. The R-squared
from these regressions were marginal which supported
the recent study from Todoroki et al. (2021) reporting
that average amplitude alone could not give precise
WD prediction in Douglas-fir. The inclusion of other
non-destructive variables could be useful. For example,
Iliadis et al. (2013) and Demertzis et al. (2017) found
that the inclusion of acoustic velocity produced high
predictive power for WD with machine learning mod-
els. The integration of a deep learning algorithm
improves WD prediction and represents a good venue
for future research. Further efforts should be explored
in large datasets or with other variables to develop reli-
able Douglas-fir WD prediction from resisto-
graph profiles.

Conclusion

This study confirms the first hypothesis that the
proposed deep learning method, TCN, can identify
non-thrive trees from sequences of resistance drilling
amplitude with a satisfactory predictive power.
Our comparative analysis also supports the second

Figure 5. Work flow of the TCN analysis process with training, validation, and test datasets.

Figure 6. Precision and recall on non-thrive tree classification vs. the
decision threshold.

Figure 7. Receiver operating characteristic (ROC) curve of the optimal
non-thrive classification model on the test dataset.

Figure 8. Wood density (WD, kg/m3) in test data set; actual (blue o),
predicted from TCN (green þ), predicted WD from linear regression
(red), and predicted from non-linear regression (orange) on average core
amplitude (%).
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hypothesis that TCN is superior to traditional linear
and non-linear regressions for predicting WD.
However, all WD prediction models yielded large pre-
diction errors. We recommend incorporating other
explanatory variables with resistance drilling amplitude
to improve model accuracy.

In summary, TCN used for sequences of resisto-
graph amplitude can represent the important features
through its own autonomous learning. The results are
encouraging and provide insights into the link between
deep learning methods, non-destructive technology,
and tree prognostic which can be a reference for future
research involving other species, especially those with
fast growth and those in which destructive evaluation
techniques create a loss of genetic values.

Note

1. https://github.com/philipperemy/keras-tcn
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