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Abstract

We consider a class of deterministic mean field games, where the state associated with
each player evolves according to an ODE which is linear w.r.t. the control. Existence,
uniqueness, and stability of solutions are studied from the point of view of generic theory.
Within a suitable topological space of dynamics and cost functionals, we prove that, for
“nearly all” mean field games (in the Baire category sense) the best reply map is single
valued for a.e. player. As a consequence, the mean field game admits a strong (not ran-
domized) solution. Examples are given of open sets of games admitting a single solution,
and other open sets admitting multiple solutions. Further examples show the existence
of an open set of MFG having a unique solution which is asymptotically stable w.r.t. the
best reply map, and another open set of MFG having a unique solution which is unstable.
We conclude with an example of a MFG with terminal constraints which does not have
any solution, not even in the mild sense with randomized strategies.

1 Introduction

This paper deals with a class of mean field games with a continuum of players, where the state
associated with each player evolves according to a controlled ODE. We study the existence,
uniqueness, and stability of solutions from the point of view of generic theory. Namely, we
seek properties of solutions that are satisfied either on some open set of MFG, or for “nearly
all” MFG in the topological sense [12, 20]; i.e., for all MFG in the intersection of countably
many open dense sets.

Let (92,8, 1) be a probability space. More precisely, we assume that ) is a metric space
with Borel o-algebra B, while p is an atomless probability measure on 2. Without loss of
generality, throughout the following we assume Q = [0, 1] with Lebesgue measure. We regard
& € Q as a Lagrangian variable, labelling one particular player. Accordingly, we shall denote
by t — x(t, &) a trajectory for player £. By selecting one trajectory z(-,§) € C([O, TY; JR") for



each player (depending measurably on £), one obtains an element X in the space
L1<Q; c([o,T7; ]R")). (1.1)

The space (1.1) is naturally endowed with the Banach norm

1X] = /Q (tes[%%]\w(taﬁ)o d. (1.2)

To define a (deterministic) mean field game, for each player & € Q we consider an optimal
control problem where the dynamics and the cost functions also depend on the cumulative
distribution X of all other players. To express this dependence, we consider a finite number
of smooth scalar functions ¢1,...,¢nx € C2([0,T] x IR"), and define n(t) = (n1,...,nn)(t) to
be the vector of “moments”

n(t) = /ngi(t,:n(t,g))d&, i=1... N (1.3)

The control problem for player £ takes the form

T
minimize: / L(t,z(t),u(t),n(t)) dt + ¢ (z(T)), (1.4)
0
subject to the dynamics

i(t) = f(ta(t),ult).n(0)) te[0.7), (1.5)

and with initial datum

z(§,0) = z(¢). (1.6)

Definition 1.1 In the above setting, by a strong solution to the mean field game we mean a
family of control functions t — u(t,§) € IR™ and corresponding trajectories t — x(t,€&) € IR"™,
defined for £ € Q and t € [0,T], such that the following holds.

For a.e. £ € Q, the control u(-,£) and the trajectory z(-,§) provide an optimal solution to the
optimal control problem (1.4)—(1.6) for player &, where n(t) = (n1,...,nn)(t) is the vector of
moments defined at (1.3).

A mean field game thus yields a (possibly multivalued) map n ~ ®(n) from C([0,7]; IRY)
into itself. Namely, given 7(-), for each £ € © consider an optimal trajectory z"(-,&) of the
corresponding optimal control problem (1.4)—(1.6). We then set

B(n) = 7 = (.. 7n), () = /Q b1 (t,27(2,€)) de, (L.7)

under suitable assumptions that will ensure that the integral in (1.7) is well defined. By
definition, a fixed point of this composed map

n) o~ {27(,); €€} = = B(n

(1.8)
[moments] +— [optimal trajectories] +— [moments]

yields a strong solution to the mean field game.



Remark 1.1 In general, the map ® can be multivalued. Indeed, for some 7(-), there can be
a subset V' C Q) with positive measure, such that each player £ € V has two or more optimal
trajectories. For this reason, a mean field game may not have a solution in the strong sense
considered in Definition 1.1. In order to achieve a general existence theorem one needs to relax
the concept of solution, allowing the possibility of randomized strategies [1, 6, 9]. This leads to
the problem of finding a fixed point of an upper semicontinuous convex-valued multifunction,
which exists by Kakutani’s theorem [10, 17].

Following the standard literature on fixed points of continuous or multivalued maps, we in-
troduce

Definition 1.2 A solution x = x*(t,£) to the above mean field game is stable if the corre-
sponding function n* € C°([0,T]; R™) at (1.3) is a stable fived point of the multifunction ®
at (1.7). Namely, for every e > 0 there exists § > 0 such that the following holds. For every

sequence (n(k))k>0 such that

Hn(o) —n*lco < 4, n(k) € @(n(kfl)) forall k > 1, (1.9)
one has |[n*) —n*|lco < & for all k > 1.

If, in addition, every such sequence (n(k)) converges to n*, then we say that the solution is
asymptotically stable.

If the solution is not stable, we say that it is unstable.

Next, we say that a solution of the mean field game is structurally stable if it persists under
small perturbations of the dynamics and the cost functionals. More precisely:

Definition 1.3 We say that a solution x = x(t,§) to the above mean field game (1.3—(1.6) is
structurally stable (or equivalently: essential) if, given € > 0, there exists 6 > 0 such that
the following holds. For any perturbations (T, LT,4T, ¢, Z1) satisfying

max {|f' = fllez, IL' = Lliez, 6" =z, 6! = 6le2} < 6, Jlat — alle= <6, (110)
the corresponding perturbed game has a solution zf = xT(t,f) such that
sup /‘xT(t,g) —z(t,§)]d¢ < e. (1.11)
tejo,1] /0

Throughout the following, we shall assume that the dynamics is affine w.r.t. the control vari-
able:

f(x,u,n) = fﬂ(x7n)+2fi($’n)ui’ (1'12)
=1

and all functions f, 1, L have at least C? regularity.

Since our MFG at (1.3)—(1.6) is characterized by the 5-tuple of functions (f, L, 1, ¢, ), we are
interested in properties which are satisfied either (i) for all games where (f, L, 1, ¢, T) ranges
inside an open set (in a suitable Banach space), or (ii) for generic games, i.e., for all games
where (f, L, 1, ¢, T) ranges over the intersection of countably many open dense sets. Roughly
speaking, the main results of the paper can be summarized as follows.



(i) Given a triple (f,L,$) € C3> xC3xC3, for a generic pair (v, z) € C3 x L™, the best reply
map n+— (n) in (1.8) is single valued. As a consequence, the MFG (1.3)-(1.6) admits
a strong solution.

(ii) There is an open set of mean field games with a unique solution, which is stable and
essential.

(iii) There is an open set of mean field games with a unique solution, which is unstable, and
essential.

(iv) There is an open set of mean field games with two solutions, both essential.

More precise statements of these results will be given in the following sections. The remainder
of the paper is organized as follows.

As a warm-up, in Section 2 we review the basic tools for proving generic properties. Here we
consider a family of optimal control problems where the dynamics is linear w.r.t. the control
functions. We show that, for generic dynamics f, running cost L and terminal cost v, for
a.e. initial datum z(0) = T the optimal control is unique.

Section 3 provides a simple way to construct mean field games with multiple solutions. Given
an optimal control problem and a pair (z*,u*) (not necessarily optimal) which satisfies the
Pontryagin necessary conditions, we show the existence of a mean field game where u* is the
optimal control for every player. As a consequence, for any control problem where the Pon-
tryagin equations have multiple solutions, one can construct a MFG with multiple solutions.
Under generic assumptions, all of these solutions are structurally stable.

Section 4 contains the main result of the paper. Namely, for a generic MFG of the form
(1.3)-(1.6), the best reply map n — ®(n) is single valued. Hence the MFG admits a strong
solution. Here the analysis is far more delicate than in the proof of the generic uniqueness for
the optimal control problem in Section 2. Indeed, we need to show that the statement

e The set of initial points T, for which the problem (1.4)—(1.6) has multiple solutions, has
measure zero

is true not just for one function 7(-), but simultaneously for all functions n = (n1,...,7x), in
a suitable domain.

Finally, Section 5 collects a variety of examples, where the MFG have multiple strong solutions,
Some of these are stable, in the sense of Definition 1.2, while others are unstable.

We conclude with two examples of MFG without solution. The first one is a well known case
where nonexistence is due to the fact that the best reply of each player is not unique. No
strong solution exists, but one can construct a mild solution where each player adopts a
randomized strategy. In the second example, the presence of a terminal constraint lacking a
transversality condition prevents the existence of any solution, even in the mild (randomized)
sense.

Some concluding remarks, pointing to future research directions, are given in Section 6.

Mean field games with stochastic dynamics have been introduced by Lasry and Lions [18] and
by Huang, Malhamé and Caine [16], to model the behavior of a large number of interacting



agents. Their solution leads to a well known system of forward-backward parabolic equations.
Solutions to first order MFG (with deterministic dynamics) can be obtained as a vanishing
viscosity limit of these parabolic PDEs; i.e., as viscosity solutions to a corresponding Hamilton-
Jacobi equation [6, 7, 8, 9]. Equivalently, one can take a Lagrangian approach, describing the
optimal control and the optimal trajectory of each single agent. This is the approach followed
in the present paper. Some examples of MFG with unique or with multiple solutions can be
found in [1]. A concept of structural stability for solutions to first order MFG was proposed

in [5].

2 Generic uniqueness for optimal control problems

Consider an optimal control problem of the form

T
minimize: Ju] = /0 L(z(t), u(t)) dt + v (z(T)),

with dynamics which is affine in the control:

m

#(t) = fz),u®) = fole(®)+ D filx(®) wi(?), 2(0) = z.

i=1

(2.1)

(2.2)

Here u(t) € IR™ while z(t) € IR". To fix ideas, we shall consider the couple (f, L) satisfying

the following assumptions.

(A1) The functions f; : R" — IR™, i =0,...,m, are twice continuously differentiable. More-

over the vector fields f; satisfy the sublinear growth condition
|filz)| < e (Jz]+1)

for some constant ¢; > 0 and all x € IR".

(2.3)

(A2) The running cost L : IR™ x IR™ +— IR is twice continuously differentiable and satisfies

{ L(z,u) > cz(\u|2—1),
Loz, w)| < £(|a]) - (1+ [ul?),

(2.4)

for some constant co > 0 and some continuous function £. Moreover, L is uniformly
convex w.r.t. u. Namely, for some d;, > 0, the m x m matriz of second derivatives

w.r.t. u satisfies
Lyy(z,u) > 01 -1y for all z,u.

Here 1,,, denotes the m x m identity matrix

(2.5)

Throughout the following, the open ball centered at the origin with radius r is denoted by B, =
B(0,7), while B, denotes its closure. Under the previous assumptions, optimal controls and
optimal trajectories of the optimization problem (2.1)-(2.2) satisfy uniform a priori bounds:



Lemma 2.1 Assume that the couple (f, L) satisfies (A1)-(A2) and ¢ : IR™ — [0, 00] is twice
continuously differentiable. Then there exist continuous functions o, : [0, 00[— [0, 00[ such
that the following holds. Given any initial point T € B,, let u*(-) be an optimal control and
let z*(-) be the corresponding optimal trajectory and for the problem (2.1)-(2.2). Then

ess-sup [u* ()] < a(r), sup [o*()] < (). (2.6)
t€[0,T t€[0,T]
Proof. Fix # € B,. Calling zo(-) the solution of (2.2) with u(t) = 0, by (2.3) it follows

sup |zo(t)] < (r+1)-e?t —1.
t€[0,T]

Let (z*,u*) be a pair of optimal trajectory and optimal control of the optimization problem
(2.1)-(2.2). By the first inequality in (2.4), one has

/OT\U t)|2dt < 1 (/OTL(ggo(t),O)dt+¢($O(T))> T

C2

1 .
= —. <T. sup L(y,0) + sup |¢J(y)|) +T = Bi(r). (2.7)
“ lyl<(rt1)e1™—1 ly|<(r+1)-e1T—1

Since z* solves (2.2) with u = u*, we have

|£(t)] < c1-(Jz|+1) <1+Z|u ) < C—l (Jz| + 1) (Ju* @) > +m + 2).
Therefore, from (2.7) one obtains

sup [¢*(8)] < (r+1)-exp

(5 1810) + m+2)1]) =1 = B(r).
te[0,7T

To derive a pointwise bound on u*, for every a > 0 we consider the truncated function

u(s) — u*(s) if lu*(s)| < a
(%) {() if [u*(s)| > a.

Calling z,, the solution of (2.2) with u = u,, we have

sup |za(t)] < B(r), sup |27 (t) — za(t)] < ﬁz(r)-/I |u”(s)|ds

te[0,T) t€[0,T)

for some continuous function B2. For any constant y > 1, setting I, = {s € [0,T] : [u*(s)| > 7}
we estimate the difference in the costs:

T
0 < Juy] = J[u'] = /0 L~ (1), uy () — L™ (2), u"(8))dt + ¢p(21(T)) — (24(T))

< ((Tml(r))- sup £(s)+ sup [Vily ) Ba(r / ™ (s) ds

|sI<B(r) IyI<A(r)
+/I L(x*(t),0) — L(z*(t), u* (t))dt
< o) [ fes)lds —ez- | [u*(s)Pds < (oa(r) —c2+7)

for some continuous function «;(-). This yields the first inequality in (2.6), with «(r)

ay(r)/ca. E]



In the following, the positive cone in the Banach space C? is denoted by
CL(R") = {¢ € C*(R"); inf ¢(z) > o} . (2.8)
zeIR™
We can now state the first result.

Theorem 2.1 (Generic uniqueness for optimal control problems). Under the as-
sumptions (A1)-(A2), there exists a G5 subset M C C3(IR") such that the following holds.
For every ¥ € M, the set of initial points x € IR™, for which the optimal control problem
(2.1)-(2.2) has multiple solutions, has Lebesgue measure zero.

Proof. 1. For every ¢ € Ci(ﬂ%n) and any integer v > 1, we consider a set of initial points
yielding two distinct solutions:

Sy(y) = {JE € B, the optimization problem (2.1)-(2.2) has two solutions

1
21(+), w2(-), with the same minimum cost, and with |21(T) — z2(T)| > = }
v
(2.9)
Next, consider the set of terminal cost ¥ leading to a small set of multiple solutions:
1
M, = {¢ € C2(IR™); meas(S,(¢)) < V} : (2.10)

The theorem will be proved by showing that M, is open and dense in C_Qi_ (IR™). Indeed, if this
is the case then the set M = m M, is a G subset of C2 (IR™). Moreover, for any 1 € M,

v>1
calling S(¢) the set of initial points z € IR" for which the optimization problem (2.1)-(2.2)
has two optimal trajectories ending at distinct terminal points, we have

meas(S(¢)) < liiriscgp [meas(S,(v))] = 0. (2.11)

We now observe that, for every € IR", the Pontryagin necessary conditions [4, 11, 13] take

the form
{ T = f(xvu(va))a

(2.12)
p = _p'fx(:E’u(:E?p))_Lw($?u($3p))a

with boundary conditions

{ 70 =7 (2.13)
p(T) = Vo(=(T)). '

Here the optimal control is determined as the pointwise minimizer
u(x,p) = arg min {L(aj,w) —}—pf(x,w)}. (2.14)
welR™

By assumptions, f is affine w.r.t. w, while by (2.5) the cost function L is uniformly convex.
As a consequence, the minimizer in (2.14) is unique. Therefore, the map (z,p) — u(x,p) is
well defined and continuously differentiable, and the system of ODEs (2.12) has C! right hand
sides. We conclude that, for any y € IR", the system (2.12) with terminal conditions

o(T) =y, pT) = Vi(y), (2.15)



admits a unique solution t — (z,p)(¢;y) on [0, T]. In particular, this implies that if two optimal
trajectories starting from & have the same terminal point, then then they must coincide for
all ¢ € [0,7]. Hence (2.11) yields (ii).

2. Given v > 1, we now claim that M, is open in Ci(]R”). Indeed, thanks to the uniform
bounds on optimal controls and optimal trajectories proved in Lemma 2.6, standard arguments
show that each set S, (1) is closed and bounded. Moreover, since the minimum cost for (2.1)-
(2.2) depends continuously on z, f, L, 1, the map ¢ — S, () is upper semicontinuous.

Given any terminal cost {/; € M,, let A be an open set such that

Su(¥) C A, meas(A4) < l

1%

Based on Lemma 2.1, for any initial datum z € B, every optimal control u* and optimal
trajectory x* satisfy

ess-sup [u”(t)] < a(v), sup |z*(t)] < B(v). (2.16)

t€[0,T] t€[0,T]
By upper semicontinuity, there exists dp > 0 such that

[0 =dlez= < & = S@ CcA  nf d>0

As a consequence, ¥ € M,,, proving our claim.
3. In the remaining steps, we prove that each M, is dense in C_2F (IR™). Given any 1) € CJQr (IR™),
we shall construct a small perturbation of ¢ that lies inside M,,.

Using Lemma 2.1, we choose a radius p > 0 large enough so that the ball B, contains all
trajectories that satisfy the PMP (2.12) and start at some point Z € B,,.

Denoting by ¢ — (z,p)(t;y) the unique solution of the system of ODEs (2.12) with terminal
data (2.15), we observe that the map y + z(0;y) is C'. Consider the sets

Ss, = {x((),y); y € B,, |det(Dyz(0,y))| < 50}, S5t = {ys 2(0,y) € S5} (2.17)
By choosing §y > 0 sufficiently small we obtain
1
meas(Ss,) < & -meas(B,) < % (2.18)
v

Next, consider the open subset of couples in IR" "

r, = {(yl,yz) € <Bp\5(%1) X (Bp\S(%l) polyr — el > 13}/} (2.19)

For every couple of points (71, 72) € T, let @192 € C®(IR™) be a smooth function with
compact support such that

1if jy—ml <4,
S0(?,717332)@) = —1 if |y—15ol < %’ (2.20)

0 if ly—ml>2 and |y—al> 2.

8



Covering the compact closure I',, with finitely many balls, say B ((yf, y5), 5%) for (y¥,y5) € T,

ke {l,...,N,}, we define a family of terminal costs, depending on the additional parameters
0= (017"'70Nu):
NV k , k
V) = Y@+ 0 eW)(y)  forally € R (2:21)
k=1

4. For any given € IR™, let (z%(s;%),p%(s;y)) be the solution of (2.12) with terminal
condition (z(T),p(T)) = (y, V¢’ (y)). We denote by J%(y) the cost of this trajectory:

T
J(y) = /0 L(2%(t; ), u(2®(t9), 0% (45 9)) ) dt + 4 ().

Observe that, for any & € {1,...,N,} and any y € B (y’f, 5%) UB (ylg,%y), the definition
(2.20) implies o
Vly) = Ve + Y 8 VeliE(y). (222)
Je{1,... N3\ {k}

In this case, (xe(t; y), P’ (t; y)) does not depend on 6, and

oz o.J° 8@[19 1 if yeB (y’f, 5%) ,

S0y =0, Sy = S-W) =
80k( Y) aek(y) %k(y) -1 if yeB(yh <)

5v/

(2.23)

5. Define the map ® : I',, x RM — IR"*! by setting
D(y1,y2,0) = (we(O;yﬂ — 2%(0592), S (1) — Je(yz))- (2.24)

for all (y1,y2,0) € I, x IRM. For any k € {1,2,...,N,}, by (2.23) it now follows

0P 1

aiek(ylay%e) = (07072) for all (y17y2) €B ((y]fvy];)a 51/) .

Moreover, by (2.17) and (2.21), there exists d; > 0 small enough such that

do

‘det(Dy:ce(O;yi))’ > 3 ie{L2), 0=(0,....0n,) € B, (2.25)

Therefore, rank (D‘ID(yl, Y2, 0)) =n+1 and ® is transversal to the zero manifold

{(0,0)} ¢ R" x R

on B ((y’f,y’g), 5—1V) x B(0,d1). Since these balls provide a covering, we conclude that & is
transversal to {(0,0)} on the whole domain I",, x B(0, d1).

6. Finally, by the transversality theorem [3, 14], there exists a set © C IR™», dense in the
ball B(0,d;1), such that for every § € © the map ®(-,-,0) is transversal to the zero manifold
{(0, 0)} C IR™ x IR. This means: for every couple (y1,%2) € I', such that

2%(0,71) = 2°(0, %), I () = I (),



the Jacobian Dy, ., ®(¥1, §2,0) has rank n + 1. Hence, by the implicit function theorem, the
set of couples

F(zﬁ,@z)(r) = {(9173/2) € B((gl,ﬂg),’f’) N Fl/; (I)(yhyQ?e) = (070) € Bn+1}

is contained in an (n — 1)-dimensional manifold, for some r > 0 small. The n-dimensional
measure of this set is thus

meas ({xe(()?yl) P (y1,52) € F(gl,g2>(r)}) = 0.
In turn, for every 6 € © this implies
meas({xe(o; y1) € IR"™; there exists yo € IR™ such that (y1,y2) € Ty, ®(y1,y2,0) = O}) = 0.
On the other hand, since there exists a constant C' > 0 such that
‘:cg(O,y) —z(0,y)| < C) foralld € ©, y € S(i)l,

we have

{ZL‘G(O,y); y € S(%l} C B(Sgg, C’|0|). (2.26)

Since S5, is compact, the measure of the e-neighborhood around the set Sj, satisfies

lim meas(B(SgO,a)) = meas(Ss, ).

e—0
Therefore, choosing |f| small enough, by (2.18) and (2.26) we obtain
meas(Sl,(we)) < meas({x‘g(o,y); y € 5’%1}>

1

< meas (B(S5,, Cl6])) < meas(S(;O)—l—E

1
< —.
v

Hence the terminal cost ¢ lies in M,,. This shows that M, is everywhere dense, completing
the proof. UJ

3 Non-uniqueness for mean field games

Consider again the optimal control problem (2.1)-(2.2), with f, L satisfying (A1)-(A2) and

Y eC. Let Y*(t) = <Zj* Eg) be a solution to Pontryagin’s optimality conditions (2.12)-(2.14).

Linearizing the system of ODEs in (2.12) at Y*, we obtain a system of the form

Y = A®)Y, (3.1)

describing the evolution of a first order perturbation. We shall assume that Y (¢) = <X(t)> =

0 is the only solution to the linearized system (3.1) with boundary conditions

X(0) = 0, P(T) = D*)(a*(T))  X(T). (3.2)

10



Notice that these assumptions imply that this solution is structurally stable. By the implicit
function theorem, one can slightly perturb the dynamics and the cost function, and still find
a solution to the equations (2.12)—(2.14) close to Y™*.

In this setting, it is easy to construct a MFG where z(t,£) = z*(¢) is a structurally stable
solution. Indeed, define the barycenter

1
b)) = /O o(1, ) dE. (3.3)

Consider a game where the state of each player evolves with the same dynamics
i(t) = flz(t)ut) = fox®)+)_ filz(t) w), 2(&0) =z £€[0.1, (34)
i=1
and all players share the same cost functional
r 2
J = /0 [L((0), u(t)) + wlo(t) — b(0)"] dt -+ (a(T)). (3.5)

Theorem 3.1 Assume that f, L satisfy (A1)-(A2) while ¢ € C3. Let (z*,p*) be a solution
to the Pontryagin equations (2.12)-(2.14). Then, if the constant k > 0 is large enough, the
MFG (3.5)-(3.4) admits a solution where x(t,&) = x*(t) for all £ € [0,1], t € [0,T].

If the linearized system (3.1)-(3.2) has only the zero solution, then this solution of the MFG
18 structurally stable.

Proof. 1. W.lo.g., we can assume ¢ = 0. Indeed, the above optimal control problem can
always be written as a Bolza problem, replacing the functional J at (2.1) with

T
gt = /0 [Liz,w) + Vo(a) - fla,w)] dt. (3.6)

If (x(t),p(t), u(t)) provide a solution to the equations (2.12)-(2.14) for the original problem,
one readily checks that the triple (z(t),p(t) — Vi) (z(t)), u(t)) provides a solution to the cor-
responding Pontryagin’s equations for the Bolza problem (3.6).

2. We thus assume that ¢ = 0. For every given b € C°([0,T]) with ||b — b*[jco < 1, we
claim that (3.4)-(3.5) admits a unique optimal solution for x > 0 sufficiently large. Indeed,
let (u?, 2%) be a pair of optimal control and optimal trajectory of (3.4)-(3.5). By Lemma 2.6,
it follows

T
[l [lalleo < Cri, fi-/o () = b(t)dt < Cr, (3.7)

for some C] > 0 which depends only on f, L and T'. By the necessary conditions, there exists
p® € C°(]0,T]) such that (2°, p?, u®) solves the PMP

{ r = f(l',u(l',p)),

(3.8)
p = —p- fx(xau($ap)) - Lx(x,u(x,p)) - 2'%(:5 - b) )

11



with 2(0) = z, p(T') = 0 and, recalling (2.14),

ub(t) = u(a’(t),p°(t),  te[0,T]
By (3.7) and the second equation of (3.8) we deduce
T
1P°lco < O <1+;-@-/ 2P (t) —b(t)|dt> < Gy (1+VE). (3.9)
0
3. Next, consider the Hamiltonian
H(z,u,p,t) = L(z,u)+ K|z — b(t)‘2 +p- flz,u), (3.10)
and the reduced Hamiltonian
H'(a,pt) = min {L(w,u)+nla =@ +p- f(z,)}]. (3.11)
uelR™

The the optimality condition implies
H (2%, p",t) = H(2" " p", 1), H"(x,p,t) > H'(z,u,pt),
8xflb(x,p, t) = p- fo(z,u(z,p)) + Lo(z, u(z, p)) + 26(x — b(1)), (3.12)
and
Lyu(z,u’ (2, p))up (2, p) + (f1(2), fa(x), .., fm(x)) = 0.
By the uniform convexity of L(z,u) w.r.t u and the bounds on the vector fields f;, it follows

1
||apU($,p)||Co < Cs- 5
L
Therefore, from (3.12), (3.9) and (3.7), one obtains
8mﬁb(mb(t)’pb(t)’ t) = - Z')b(t)a axxﬁb(xapb(t)a t) = 2rl + G([E, t)

with
|Gz, t)]|co < Cy-(1+ k) for all t € (0,77, |z| < C;.
In particular, for x > 0 sufficiently large, the map = H b(x,pP(t),t) is strictly convex in
B(0,Cy) for all t € [0,T] and R
6mbe(xapb(t)vt> > kl.

In this setting, we show that x® is the unique optimal solution of (3.4)-(3.5). Indeed, let
(u1, 1) be another pair of optimal control and optimal trajectory for (3.4)-(3.5). Notice that
|z1 —b|lco < C1. Using the convexity of H in the variable x, the difference in costs is estimated

by

T
/ [L(;rl,ul) + klzy — b — L(zb,u®) — k|2’ — bﬂ dt
0

T T
[Hb(ml,ul,pbjt) — H(azb,ub,pb,t)] dt —/0 Po(t) - [f(a:l,ul) — f(xbjub)] dt

T

(Y4
S— S—

b by bbb _Tb.- b
[H (x1,p°,t) H(m,p,t)] dt ; p°(t) [ml(t) a:(t)] dt

T

T ~
/0 Oy HO (b, p°,1) - (z1(t) — l’b(t)),dt —/ P(t) - @1 (t) — i’b(t)] dt

0

Y

T

[=50) - (1(8) = @) = () - (i () — 3°(0)) |t

= p°(0)(21(0) — 2°(0)) — p*(T) (21(T) — 2*(T)) = o.

Il
S—
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Notice that if H is strictly convex, then one of the above inequality is strict whenever z(t) #
2b(t). In this case, the optimal control is unique.

4. By the same argument used in Step 3, one can show that, for k > 0 sufficiently large,
x*(+) is the unique optimal solution of (3.4)-(3.5) with b = b*. In particular, z* = b* and the
corresponding control u*(t) = u(x*(t),p*(t)) provide the one and only optimal solution for
every player. It remains to show that this solution of the MFG is structurally stable.

Consider the best reply map b(-) — ®(b), defined by

1
d(b)(t) = /O a¥(t,&)d¢  for all t € [0,T],

where 2°(¢, -) denotes the unique optimal solution of (3.4)-(3.5). In this step we show that the
linearization of this map at b = b* has eigenvalues all # 1. Fix b € C°[0, 7] with ||b||co = 1.
For any ¢ € IR sufficiently small, let 2°(¢) be the unique optimal solution (3.4)-(3.5) with
b = b* + eb. By the necessary conditions, there exists p° € C°([0,T]) such that (z¢,p®) solves
PMP (3.8) with b = b* + cb. By a linearization, one obtains

2=(t) ™ (t) Xp(t)
= . +e + o(e).
pe(t) p*(t) Pyt
Xp(t
Here, Yy (t) = is the solution to the equation obtained by linearizing (3.8) around
Py(t)

Y*, namely

with boundary conditions (3.2).

Let now (A, b) be a pair of eigenvalue and eigenfunction of D®(b*). We then have
DO(B)(b) = Xp = Ab,

and this implies that Y3(¢) solves the linear ODE

. 0
Y(t) = AQY () + 2 <1 - i) - H .

Thus, by the assumption at (3.1)-(3.2), it follows A # 1.

5. To prove the structural stability of the solution to the MFG, for § > 0 sufficiently small
we consider the perturbed problem

minimize: /OT [L(g;(t), u(t)) + k- |x(t) — b(t)|2 + 68 Ly(z,u,b)| dt, (3.13)

subject to
z(t) = f(x,u)+dg(x,u,b), z(0) =+ §Z1(€). (3.14)

13



We here assume
lgllez + 1 Lillez < 1, |Z1 |l < 1 (3.15)

By the same argument used in Step 3, for £ > 0 sufficiently large, the optimal control problem
(3.13)-(3.14) admits a unique solution for all § € [0,1] and ||b — b*||co < 1. Consider the best
reply map b(-) — ®°(b), defined by

<I>5(b)(t) = /1 xb(t €)de for all t € [0, T
o\ ) )
0

where z%(¢, -) denotes the unique optimal solution of (3.13)-(3.14). We claim that there exists
a constant Cg > 0, independent of b and 4, such that

1
|2°(0) = 2(0) o < H /0 wh( &) dg — ()| < Cg- 0. (3.16)

CO

Calling y°(¢, ) and y§(£, -) the solution to (3.14) corresponding to u = u’ and the optimal
control u = ug respectively but with initial data x(0) = Z, we have

Hyb(fv ) - xb<£7 ')HCO’ Hyg(fv ) - .’Bg(ﬁ, .)HCO S O(1> - 0. (317)

Since (2%(&,-),uf(, ")) is the optimal pair of (3.13)-(3.14), one has
T
25T Z 5 . /(] Ll (yb(fa t)v ub(t)v b(t)) - Ll (Ig(t) f)? ug(t7 5)’ b(t))dt

T
> /0 L(a§(t, €), ub(t,€)) + 1 [2h(£,€) — b()|* — Ly (1), u’(8) — - [°() — b(1) | dt,
and (3.17) implies

2

T
O (14+k)TS > /0 L(y5(t,§),ug(t,5))+n-\y5(z&7g)—b(t)]Q—L(xb(t),ub(t))—n.]xb(t)—b(t) dt.

Following the same argument in Step 3, we estimate
T R T
O(l)(l + ’Q)Td > / [H(yé(t7 6)7pb’ t) - H(xb7pb7 t)] dt — / pb(t) ’ [yé(t7€) - xb(t)]
0 0

T 2
: ot,€) — dt .
> ne [ -] a
This yields
T ) -
/0 ‘yé(t,f)—l‘b(t)‘ at < 0(1)- <T+H> .6

Notice that
15°(¢, o, NNEp(-)leo < Cs

for some constant C5 > 0 which depends only on f, L and T. We then have

1’ (&) = a( e < O(1) - 622,

and (3.17) yields (3.16).
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6. We are now ready to complete the proof. By step 4, the eigenvalues )\, of the compact
operator D®(b*) satisfy

inf |)\n— 1| > 09 > 0.

n>1

As a consequence, the inverse linear operator [D®(b*) — I]™! is bounded. We can define the
continuous operator F' on CO([O, T]) as the composition

F(b) = b* + [DOW*) —1 ' o [@(b*) + DB (b — b*) — @5(6)] .

From (3.16) it follows

IF(b) = b lleo < 5(0) (540% 4 b~ 7)) .

Therefore, for 6 > 0 sufficiently small, one has
[F(b) = b*||pe < 63 forallbec([0,7]), [|b—1b"|lg, < 6%

On the other hand, for every b € C([0,T]) with ||b — b*[|co < §'/3, the function F(b)(-) is
Lipschitz continuous with some uniform Lipschitz constant M. In particular, F' maps the
convex and compact subset

K = {b € €00, 7] : [|b — b0 < 6Y/3, Lip(b) < M}

into itself. By Schauder’s fixed point theorem, there exists bs € K such that F'(bs) = bs. This
implies that bs is a fixed point of ®° with ||bs — b*[|c, < V/d. The family of optimal :L'g‘s(', £),
£ € Q thus provide a solution to the perturbed MFG, such that

t
sup [ |af (. €)] de < 151
te[0,7] Jo

Therefore, the solution x(t,£) = z*(t) is is structurally stable. 0

Remark 3.1 An immediate consequence of the above results is the non-uniqueness of so-
lutions to mean field games. Namely, given (f, L) satisfying (A1)-(A2), let ¢ € C%(IR")
determine an optimal control problem where, for some & € IR", the system (2.12)-(2.14)
admits two distinct solutions, both satisfying the structural stability assumptions in Theo-
rem 3.1. Then, by choosing x > 0 large enough, we obtain a MFG with two solutions, both
structurally stable. In particular, non-uniqueness holds on an open set of MFG.

4 Generic single-valuedness of the best-reply map

In general, for a given 7n(-) in (1.3), there will be several players £ € Q for which the optimal
control problem (1.4)—(1.6) has multiple solutions. For this reason, the map n — 7 = ®(n)
at (1.8) can be multivalued. Lacking convexity, one cannot guarantee the existence of a fixed
point. The main result proved in this section is that, for a generic MFG, for every n(-) in
a suitable bounded subset of C? functions, the set of players & € Q having multiple optimal
controls has measure zero. Hence the best reply map (1.8) is single-valued. The existence
of a fixed point, and the existence of a strong solution to the MFG, thus follow directly
from Schauder’s theorem. Throughout this section, we consider a quadruple (z, f, L, ¢) €
L>® x C3 x C3 x C3 such that f, L, and Z satisfy the following assumptions
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(B1) The function f is affine w.r.t. the control:

m

f(x7u777) = f0($7n)+2fi(x>77)ui' (4'1)

=1

For some constant ¢ independent of ), the vector fields f; satisfy
|filz,n)| < e (Ja] +1). (4.2)

(B2) There exist constant ca > 0 and a continuous function £ independent of n such that, for
all (z,u,m) € R™ x R™ x RN, one has

L(z,u,n) > CQ(‘uP—l),
| Lo (2, u,m)| < £(|2]) - (14 [uf?).

Moreover, for every x,n, the map u — L(x,u,n) is uniformly convex. Namely, for some
dr, > 0, the m x m matrix of second derivatives w.r.t. u satisfies

for some 6 > 0, uniformly positive for x,u,n in bounded sets.

(B3) The initial distribution of players, i.e. the push-forward of the Lebesque measure on
[0, 1] via the map & — Z(§) € IR™, is a probability measure py with bounded support and
uniformly bounded density w.r.t. Lebesque measure on IR™.

Under the above assumptions, by Lemma 2.1 every optimal control «*(-) and optimal trajec-
tory z*(+) for the optimization problem (1.4)—(1.6) satisfy the bounds

ess-sup [u*(t)] < g = o||Z]|L=), sup [z*(t)] < Bo = B(||Z| ). (4.4)
t€[0,7) t€[0,T

As a consequence, any statistic n(-) in (1.3) will satisfy the a priori bound

N 9 1/2
<y = e . 4.5
ler = 0 (2 et Rt ) ) 49

Next, we recall that, for any given 7(-), by the optimality conditions there exists an adjoint
vector p* € C9(]0,T)) such that (z*,p*) = (2", p") solves the PMP

{ T = f(xaun(t7x¢p)777)7

(4.6)
p = —P'fw(%u”(taffap)»??)—Lz($(t)aun(ta$ap)v77),

with terminal data of the form
z(T) =y, p(T) = Vi(y). (4.7)

Here the optimal control u*(t) = u" (¢, x*, p*) is given by
u'(t,z,p) = argrrgn{L(%w,n(t)) +pf(:c,w,n(t))}~
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By the strict convexity of L, since f is affine w.r.t. u, this minimizer can be determined as the
unique solution to

Lu(z,w,n(t)) + fu(z,w,n(t)) = 0. (4.8)

Relying on the uniform bound on all optimal controls and optimal trajectories, proved in
Lemma 2.1, we now establish a uniform bound on all statistics 7(-) in (1.3).

Lemma 4.1 Under the assumptions (B1)-(B2), for any ¢ € C> and any terminal cost
W € C2, there ewists a constant 3 such that the composed map ® in (1.7)-(1.8) satisfies
the implication

Inlles <3 = [|@0)]|ps <3 (4.9)

Proof. 1. By the optimality conditions (4.4)-(4.7), the adjoint vector p* is bounded by

9 ler < (IVlens, + 1DLler s,y a o) €5 (T 1D F ety p ) = 0 (410

Therefore, setting ro = ag + Bo + Y0 + 00, we can assume that (x,u,p,n) take values inside a
fixed ball B,,.

2. Proceeding by induction, we will show the implications
Inllce < i — |2l pesr < W41 fork=0,...,2, (4.11)
for some suitable constants 7.
Indeed, assume that ||n]|cr < i for some k < 2. Since f, L, € C3 and
Lua(@,,m) = 0 - I

for all (z,u,n) € By,, the implicit function theorem implies that the solution u(z, p,n) of (4.8)

is in C* and satisfies
1 km
||u||ck(BT0) < <5T0> Co .

Here the constant aj > 0 depends on 7o, ”f”ck+1(3ro), HLucqul(Bro). Hence, the solution
(z",p") of (4.6) is in C**1 and

[2|err1 < Brt1, Iploke1 < Ot1

with Byi1,0841 > 0 depending on 7o, ||f|lcr+1(p, > 1 Lllck+1(5,,): and Yo, ..., 7k As a conse-
quence, (1.7) implies

[@(M)llckrr < Yt

where the constant 7517 > 0 can be computed in terms of rg, Hf||ck+1(Bm), HLHCkH(Bm),
18ller+1(B,,) and Yo, - -, Yk

Thus, by induction, (4.5) yields an a priori bound of 7 in (4.11). In particular, (4.9) holds.
|
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We are now ready to prove the main result of the paper.

Theorem 4.1 Consider the mean field game at (1.3)-(1.6). Assume that (Z, f, L, ¢) € L™ x
C3 x C3 x C3, with f,L,T satisfying (B1)-(B3). Then, for any constant K > 0, there erists
a Gs set M C CE(IR"™) such that for every terminal cost 1 € M, the map n — ®(n) at (1.7)
1s single-valued on the ball

Bg = {n:[0,T] = R"; [nlles < K} (4.12)

As a consequence, the MFG admits a strong solution.

Proof. By suitably choosing the family M of terminal costs, we need to show that, if ¢ € M
and [|n||lecs < K, then the set of players

P = {5 € Q; the optimal control problem (1.4)—(1.6) has multiple solutions}

has zero measure.

Toward this goal, let pg be a probability measure on IR™ with bounded support and whose
density w.r.t. Lebesgue measure is uniformly bounded. Assume that for every given ey > 0,
Wwe can prove

(G) There exists an open dense subset M., C C2(IR") such that for every 1 € M., and
n € By, the set of initial points

Sd = {SEO € IR™; the optimization problem (1.4)-(1.6) has two solutions x1(-), x2(+)

with £1(0) = 22(0) = 0,  |21(T) — 22(T)| > 50}
(4.13)

has measure
M()(Sgo) < €p. (4.14)

Then the set M = ﬂ M, is G5 subset of C2 (IR™). Moreover, for every ¢ € M., and 5 € By

eo>0
one has

meas(P7) < lim po (S%) = 0.

e0—0+

Indeed, this follows from the observation that, if two optimal trajectories have the same
terminal point, then by the necessary conditions they must coincide for all ¢ € [0, T].

In the next several steps, we thus focus on a proof of (G).

1. Given g9 > 0, we claim that the set
My = { €CL(R"); po(Sh) <eo for every n € By} (4.15)
is open. Equivalently, its complement M¢  is closed.

Indeed, consider any sequence of elements 1, € M¢  converging to 9 in C? as n — oo. For
each n > 1, let 1, € Bg C C3 be such that

po(S2) > eo. (4.16)
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By possibly taking a subsequence, we can assume that 7, converges to 77 in C?. By the upper
semicontinuity of the set of optimal solutions, one has

ST 2 limsupSh = () [ S (4.17)
n—oo n>1k>n
Therefore

1o(S2) > po(limsupS2) > limsup p(Sit) > e,

n—oo n—oo

and this yields 1) € ME,.

2. We will establish the density of the set M., in C? by constructing smooth perturba-
tions of the terminal cost v which are very small in the C? norm, but possibly large in C3.
More precisely, let pg > 0 be an upper bound for the density of the probability measure uq
w.r.t. Lebesgue measure on IR". Choose a radius rg > ||Z|1,~, so that

Supp(uo) C B(0,ro). (4.18)

Then choose Ry > 0 large enough so that, for every n € By, every optimal solution starting
at a point xo € B(0,rp) remain inside the cube [— Ry, Ro|".

Dividing [—Ro, Rp]™ into v = (L%J + 1>n smaller cubes with side smaller than ey, say

I'i,...,T,, the perturbed terminal cost ¥* will be defined separately on each cube I'y, so that
the following proper ties hold.

(i) ¥ coincides with ¢ on a neighborhood of the boundary 9T

(ii) For every k =1,2,...,v one has the bound
[4* —YPllezr,) < eo- (4.19)

(iii) There exists an open subset I') C I'y such that

€1

meas(Tx \T}) < —, (4.20)

1%
M, < ‘D%ﬁ(z)\ < 2M, forallzel, (4.21)
‘D%ﬁ(x)\ < 2M, forallz eTy. (4.22)

It is clear that, given e, €1, My, a function ¥f with the above properties does exist. Moreover,
the increasing sequence of numbers M1 will be inductively defined in Step 5 so that M1
is much larger than Mj.

3. For any given 7)(-) € Bk, we consider the map
y — 27(0,y), (4.23)

where ¢ — (2"(t,y), p(t,y)) is the solution of (4.6) with terminal data (4.7). By the assump-
tion (B3) on the absolute continuity of the measure 1 (describing the initial distribution of
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players) w.r.t. Lebesgue measure, we can choose d; > 0 such that the following holds. Calling
Dyz"(0,y) the Jacobian matrix of the map (4.23), one has

uo( {y € [—Ro, Ro]"; ‘det (Dy:r"(O, y))‘ < 51}) < %O . (4.24)

From now on, we shall thus focus on the set of points y € IR™ where ‘det (Dyac”((), y))‘ > 01,
so that the map y — 2"(0,y) is locally invertible.
I
I h

0 ¥

Xy () Il‘(

Figure 1: The terminal cost ¢ has uniformly bounded gradient. However, we can construct a pertur-
bation ¥ whose third derivatives have vastly different sizes on different cubes I';, of the partition.

4. To help the reader, we first explain the heart of the matter, with the aid of Fig. 1. Let
1 € Bk be given. Assume that xg is an initial point from which two optimal trajectories z1(+),
x9(-) originate. To fix ideas, assume

Y1 = a:l(T) (S F/ s Yo = $2(T) c F/ R

with h < k. On I'}, the terminal cost function ¥f has a much larger third derivative than on
I'},. We observe that the Jacobian matrix of the map y — z"(0,y) is uniformly invertible in
a neighborhood of y; and y,. By the implicit function theorem, for all x € B(xg,d2), on a
ball centered at zo with sufficiently small radius o > 0, we can thus define the cost functions
@, (x), Po(x), corresponding to trajectories z1(-), z2(-) that start at x, satisfy the PMP, and
terminate in a neighborhood of y1, y2, respectively. Since the terminal costs 1) (%(T)) of these
trajectories have very different third order derivatives, we will show that the cost functions
®1, &9 also have different third order derivatives in a neighborhood of xy. Therefore, the set
of points where ®;(x) = ®o(x) must be very small, regardless of the particular function n(-).
A proof of these claims will be worked out with the aid of

Lemma 4.2 Consider a system of n+n ODEs on the interval [0,T],

{ i(t) = F(t,z(t),p(t)),

4.25
p(t) = G(t,x(t),p(t)). (42

Assume that all coefficients are uniformly bounded in C2.
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(i) Consider a family of solutions (x,p)(t,y) with initial data

2(0) =y,  p(0) =¢(y). (4.26)

Assume that ¢ € C? and the map y — x(T,vy) is uniformly invertible. More precisely,
the norm of its n x n Jacobian matriz satisfies

‘Dyx(T, y)‘ <, “Dya:(T,y)]_l‘ < C. (4.27)
Then the second derivatives D2p of the map x(T,y) — p(T,y) satisfy a uniform bound,
depending on the C? norms of the functions F,G, @, and on the constant C in (4.27).

(11) Similarly, consider a family of solutions (x,p)(t,y) with terminal data

o(T)=y,  p(T)=¢y). (4.28)

Assume that o € C? and the map y — x(0,y) is uniformly invertible. More precisely,
the norm of its n x n Jacobian matriz satisfies

‘Dy$(0,y)‘ <, ‘[Dy:n(O,y)]_l‘ <c. (4.29)

Then the second derivatives D2p of the map x(0,y) — p(0,y) satisfy a uniform bound,
depending on the C? norms of the functions F,G, ¢, and on the constant C in (4.29).

Proof. Part (ii) is entirely similar to part (i), after reversing the direction of time. We thus
focus on a proof of (i).

Standard results on the higher order differentiability of solutions to ODEs, see for example
Theorem 4.1 in [15], p.100, imply that the maps

y = 2(T,y), y = p(T,y) (4.30)
are twice continuously differentiable, and satisfy bounds of the form

for some constant C; depending only on the C? norms of F,G, . By assumption, the first
map in (4.30) is invertible because of (4.27). As a consequence, the inverse function = — y(x)
is well defined, and has a bounded second derivatives, depending on the constants C, Cf.

This implies that the composed map = — p(T , y(x)) is C2, and its second derivatives can be
bounded in terms of the constants C, Cj. L]

We now resume the proof of Theorem 4.1.
5. We finalize the construction of the perturbed terminal cost 1! by assigning the increasing
sequence of numbers M.

We start by choosing My > ||1||cs. By induction, assume now that Mj, ..., Mj_; have been
chosen.
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Consider any trajectory satisfying the PMP, starting at some point x € B and ending inside
some I'; with j < k — 1. We shall apply Lemma 4.2 in the special case where (4.25) is given
by (4.6).

Calling t ~— (;,p;)(t,y) the solution to (4.6) with terminal condition (z(T), p(T)) = (y,¥*(y))
for y € I';. For z = x;(0,y), we define

T
By(0) = [ Lyt s 0 9). 1))+ 05,

Recalling (4.6) and (4.8), the derivative of the cost w.r.t. the terminal point of the trajectory
is computed by

T
d
D®;(x)Dyz;(0,y) = / Ly (zj,u",n)D.x; + Ly (zj,u", n)d—yundt + Dy (y)
0

T
_ /0 —%[pj(t7y)Dz.%'j(t,y)]dt+D¢ﬁ(y) = p;(0,y)D.z,(0,y).

This implies
Doj(z) = D®;(z;(0,y)) = p;i(0,y).

By part (ii) of Lemma 4.2, the a priori bound on (4.22) on the third derivative of ¥ yields
an a priori bound on the third derivative of the value function D3®;(z), for any = = z;(0,y)
with y € I';. Say,

|D?®;(x)| < Mj. (4.31)

We now apply part (i) Lemma 4.2. This implies that, for any initial data (4.26), with
|1 D%¢||c2 < M;, the solution to (4.25) satisfies a bound of the form

|D2p(T,z)| < MJ. (4.32)
The constant M, is now chosen so that
My > max{M{,...,M; }. (4.33)
We observe the above construction achieves the following:

Consider two families of trajectories satisfying the PMP, starting in a neighborhood of the
same point xg, and ending in different cubes, say F;- and I}, with j < k. By the choice of M},
at (4.33) and the bounds (4.31), at all initial points y such that x4 (T, y) € I'},, we have

|D3®;(z)| < Mj, | D@y ()| > Mj.

Indeed, if the second inequality did not hold, then we would have the bound (4.32), contrary
to the construction of 1.

Thus, the third derivatives D3®;(x) and D3®(x) are strictly different in a neighborhood of
ZQ-

6. Based on the previous analysis, we give a bound on the Lebesgue measure of the set of
initial points zg from which two distinct optimal trajectories initiate, ending in different cubes
I';,T'y. This set contains:
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e Points xg = z"(0,y) with y € B(0, Ro) such that the determinant of the Jacobian matrix
Dyx"(0,y) is small:
‘det (Dy:c"((),y))‘ < 41.
The Lebesgue measure of this set is < §; - meas (B (0, RD)). Choosing 41 small enough,
since the probability measure pg is absolutely continuous, we achieve (4.24).

e Points zg € B(0, Ry) such that zg = 2"(0,y) for some y € T'; \ I'}.. By (4.20) it follows

meas <U T\ F;)) < €1.

k=1
Again, since pg is absolutely continuous, by choosing 1 > 0 sufficiently small, we achieve

€0

110 ({x”(O,y); y e JTx \H)}) < 5 (4.34)
k

Toward (4.34), it is important to observe that the determinant of the Jacobian matrix
Dyx"(0,y) satisfies a uniform bound, depending on the second derivatives D2y, By
(4.19) these remain bounded, even when the third derivatives are changed.

e The remaining set S of all points zy € B(0, Rg) which lie outside the previous two
sets. We claim that S has measure zero. Indeed, if zg € S is the initial point for two
trajectories satisfying the PMP and terminating inside two distinct sets I‘;, I, then the
corresponding value functions ®;, ®;, has distinct third derivative at x¢. Therefore, zg
cannot be a Lebesgue point of the coincidence set {z; ®;(z) = ®(x)}. Since the set
has no Lebesgue points, it has measure zero. By the absolute continuity of ug, we obtain

po(S) = 0. (4.35)

Combining the three bounds (4.24), (4.34), and (4.35), this achieves the proof. O

5 Examples of structurally stable solutions

In this section we give some examples of first order mean field games with one or more solutions,
and discuss their stability.

To motivate the examples concerning differential games, we first consider two maps of the unit
disc By C IR? onto itself, in polar coordinates (r, ).

b1(r,0) = ( 2r 9+00>, do(r,0) = ( - e), (5.1)

1+ r2 ’ 1+ r2 )
where the rotation angle satisfies 0 < 8y < 27. Notice that the origin is the unique fixed point
of both ¢; and ¢9. However, this fixed point is asymptotically stable for the map ¢, but
unstable for ¢;. Indeed, for every 7 > 0, the sequence of radii

Tn _
Tn+l = W, o = T,
is decreasing and converges to 0. On the other hand, for 0 < ¥ < 1, the sequence
2ry, _
Tn41 = 1+ 7’%’ o = T,

is increasing and converges to 1.
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5.1 Games with a unique solution, stable or unstable.
In the following examples of mean field games, as probability space labeling the various players
we simply take 2 = [0,1]. Motivated by (5.1), we begin by constructing mean field games

with a unique solution, which is unstable in the first example, and stable in the second.

Example 5.1 Consider a game where each player £ € [0, 1] minimizes the same cost

T ) )
T = [ O i+ fa(m) = o) (5.2
subject to the trivial dynamics
i(t) = u(?), (5.3)
with initial data
z(€,0) = z(&) =0 for all € € [0, 1]. (5.4)

Here u(t),z(t) € IR? while, as in (3.3), b(T) € IR? denotes the barycenter of the terminal
positions of all players. Two cases will be considered.

1 - An unstable game. Let the terminal cost be
1+T
U@) = (o),
where ¢ is the first map defined at (5.1), using polar coordinates. In this case, z(t,&) = 0 for

all (t,€) € [0,T] x [0, 1] provides the unique solution to the mean field game. Indeed, given a
barycenter b(7T'), the PMP

[ _p 7 z(0) =0,
2 with (5.5)
p =0, p(T) = 2(=(T) — 4 (b(T))),
has a unique solution .
z(t) = i »(b(T)) t €[0,T]. (5.6)

All the optimal trajectories x(-, ) of the mean field game are the same. In particular, if z*(¢, &)
is a solution to the game then

! T
() = [t = (1 = oI = G,

Notice that ¢; has a unique fixed point, i.e. the origin, we have b*(T) = 0 and (5.6) yields
z*(-,€) = 0 for all £ € [0,1]. On the other hand, for any sequence b*) such that b*+1) =
®(b*)), one has that
kT
T = (bR (7).
() = o)

Since 0 is an unstable equilibrium of ¢, the zero solution of game is unstable.

b(kJrl) (T) —

2 - A stable game. Similarly, if the terminal cost v is given by
14T
Ya) = —— o)
with ¢9 being the first map in (5.1) then z*(¢,-) = 0 for all £ € [0,1] is again the unique
solution of the MFG. Moreover, since 0 is asymptotically stable for the map ¢s, the solution
x* is stable.
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5.2 Games with multiple solutions.

Next, we give an example of a mean field game which admits both stable and unstable (but
structurally stable) solutions.

Example 5.2 Here all controls and trajectories are scalar functions. The objective of every
player is

T
1
minimize: /0 [|u(7§)|2 + T 220 + K- ’:x(t) - b(t)l2 dt, (5.7)
subject to
T = u, xz(0,€) = 0 for all £ € [0, 1]. (5.8)
Here b denotes the barycenter of the distribution of players as in (3.3).

Proposition 5.1 For the MFG (5.7)-(5.8), the following holds.

(i) For all k > 1 and T > 2, the mean field game has at least three solutions. These have
the form

with yo(t) = 0, while y1 is monotone increasing, and ya(t) = —y1(t) fort € [0,T].
(i) The zero solution is unstable. However, assuming that T' # w for everyn > 1, this
solution is structurally stable.

(iii) Both solutions x1,xo are stable, and structurally stable.

Proof. 1. Given a function b(-), the reduced Hamiltonian of (5.7)-(5.8) is computed by

Assume that k > 1. For every p € IR,t > 0, we have

1 N 422
(1+22)2 " (1+a2)3

ﬁim(m,p,t) = 2- </1— > >0 for all x € IR,

hence the map x — PAIb(x,p, t) is strictly convex. Thus, by the same argument in Step 2 of the
proof of Theorem 3.1, the optimal control problem (5.7)—(5.4) has a unique optimal solution
and all the optimal trajectories z(,¢) of the mean field game coincide. As a consequence,
x(-,&) = b(+) is an optimal solution to the optimization problem

T ’$|2 1
minimize: — 4+ ————| dt, subjectto x(0) = 0. 5.10
/0 [ 2 2(1+:c2(t))] ! ©) (5.10)
Here, we can think of
i 1
K(:L') = ?7 V(ZL‘) = - 2(1+$2)
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respectively as kinetic and potential energy. The solution is a motion governed by the Euler-
Lagrange equations

y(t)
[1+42(0)]>

It is clear that y = 0 is a solution of (5.11) and this provides the first solution of the mean
field game

§(t) = =Vyly) = — y(0) =0, y(T) = 0. (5.11)

2(t,€) = 0 forall¢ €[0,1], te€0,T). (5.12)

To complete this step, we claim that (5.11) admits at least two additional solutions ¥ (-), y2(+),
such that y; is strictly increasing in [0, 7], and y2(t) = —y1(¢) . The mean field game has two
more solutions 1, x2, as in (5.9).

Observe that solutions to the Euler-Lagrange equations conserve the total energy

1
2(1+y%)
Level sets where E is constant are plotted in Fig. 2. Solutions to the boundary value problem

(5.11) correspond to trajectories that start at time ¢ = 0 on the vertical axis where y = 0, and
end at time ¢ = T on the horizontal axis where ¢ = 0.

-2
E(y.4) = K@) +V(y) = 5 - (5.13)

1

-2 -1.5 =1 0.5 a 0.5 1 1.5 2

Figure 2: The level sets where the energy E(y,y) at (5.13) is constant.

We thus seek an increasing solution of

i) = V R e TEL y(0) = 0, (514)

for some constant M such that M = y(T'). Calling y = y(¢,c) the solution to (5.14) with
M = ¢, we have

Ve Ve ) < i) < (g Ve )

1+
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By a comparison argument, we obtain for all 0 < ¢ < 1/2(1 + ¢?) that

t 2 t ’
c—c~<1—2(1+62)> < y(t,e) < c—c-<1—2(1+02)> . (5.15)

In particular, assume that 7' > v/2. For every ¢ > \/¥, the solution y(-,c) is defined on

[0,T] and satisfies
1\2
c- <1— <1—T) > < y(T,¢) < e

Calling M = inf {c > /=2 (T, ) < c} > 0, we claim that y(T, M) = M. Indeed, assume

2
that M — y(T, M) = 6y > 0. Then, by (5.15), one has

2
M—3é = y(IT'M) < M-|1- o
2(1+ M?)

T2 -2
Hence, M — 5

0 < &€ < g9. Moreover, by the monotone increasing property of ¢ — y(T, ¢), we have

= g9 > 0 and the map ¢t — y(t, M — ¢) is defined on [0,7] for all

y(IT'M —¢) < y(I M) = M -6y < M—¢
for all 0 < & < min{ep, dp}. This yields a contradiction.

In the next steps we will show that all three solutions are essential, the zero solution is unstable,
and the two non-zero solutions are stable.

2. We begin by showing that the null solution z(t,£) = 0 is unstable but essential. In the
present case, the map b+ b= ®(b) at (1.7)-(1.8) takes the form

D(b)(t) = mp(t) for all ¢ € [0,T],

where (zp, pp) denotes the unique solution of the PMP

. _p
& = u(x,p) = Ty z(0) = 0,
; A b (T) =0 (210
p = m =2k (z =), p =Y
where the optimal control is
_ : 2 _ _Pb
u(z,p) = argmin {w —i—pw} 5

Linearizing the system (5.16) at b = 0 we obtain an expression for the differential D®(0),
namely

D®(0)b = b,
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where b(t) = X (t) is the function obtained by solving the linear system
X(t) 0 —1/2] [X() 0
' = + 2kb(t) , X(0) = P(T) = 0. (5.17)
P(t) 2-2k 0 P(t) 1
Eliminating the variable P = —2X, one is led to the second order ODE
—2Y = (2—2kK)Y + 2kb.

To determine eigenvalues A and eigenfunctions Y, we need to solve

. 2 .
oV = (2 - 20)Y + ; Y, Y(0) = Y(T) = 0.
Y+ (1 — Kt ;) Y = o, Y(0) = Y(T) = 0. (5.18)
The eigenvalues and eigenfunctions of D®(0) are thus found to be
K . ((2n—1)7
An = G 12 , Y,(t) = sin Tt , n=12.... (5.19)

In particular, if T' > g and k > 1, computing the first eigenvalue of D®(0) one finds A\; > 1.
This implies that the null solution z(t,£) = 0 is unstable.

On the other hand, we observe that, by (5.19), if

(2n —1)m

T #

for every n > 1, (5.20)
then 1 is not an eigenvalue of D®(0). In this case, using the same argument as in Step 4 of
the proof of Theorem 3.1, we conclude that y; is essential.

3. We now prove that y; is stable. Given any b € C([0,77), we first compute D®(y1)(b). As
in step 2, for every ¢ € IR, let (2°(¢),p?(t)) be the solution of (5.16) with b = y; + ¢b. By the
linearization, it holds

z=(t) y1(t) x(t)
= +e + o(e).
pe(t) pi(t) p;(t)
Here [Eﬁgg] is the solution to the equation obtained linearizing (5.16) around y;, namely
b
p(t)
x(t) = - R x(0) = 0,
p(t) 2< L= 3y ) + 26D p(T) = 0 2
= —— — K | X+ 2k, = 0.
(1+97)3

Let the pair (,b) denote an eigenvalue and an eigenfunction of D®(y;). As in Step 2, we
have

Do(y1)(b) = x5 = b,
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and xj solves the two point boundary problem

A A AN e _ T —
i) = |e (1-3)+ o | v w0 = i) =0 G2

To verify the stability of y;, we will show that all eigenvalues of D®(y;) are contained
within the open interval |0,1[. Assume by a contradiction that D®(y;) has an eigenvalue
v € IR\]0,1[, so that the equation (5.22) has a nonzero solution y2. Recalling that ¢ —
y1(t) € [0, 400 is strictly increasing with y;(0) = 0, we define

. 1) | 3yi(t) -1
ty = mln{te 0,7]: k- (1—)—1—20 .
o7 7)o
For every 7 € [t1,T], from (5.22) it follows

Ty'2(t)dt+/Tﬁ <1—1> +3y%7_1y2(t)dt > 0
? . v) T+ ‘

w(ie) = [

T

Therefore, both y and ¢ do not change sign in [t;,7]. Without loss of generality, we can
assume that y is positive in [t1,T]. Set

ty = max{te [0,t1] : yo(t) = ()}.
We then have
yh(ta2) > 0, ya(te) = 0, and  ya(t) > 0  forall t € [t, T].

On the other hand, since y; is an increasing solution of (5.11), the function z; = y; solves the

equation
. 3y7 — 1
(1+y7)

Thus, for all ¢t € [tg,T], one has

2(b), 20) = 2(T) = 0.

()] = [ (Ow)] + (1—i) O > EOwO],

and this yields

Ua(t)z1(t) — ga(ta)z1(ta) > Z1(t)y2(2). (5.23)
Equivalently,
d (ya(t) . 1
i <Z1<t)) > 1po(t2)z1(t2) - 2 for all t € [t2, T].
This implies t
ya(t) > y2(t2)21(t2)'/tQ z%l(t)dt'
Therefore, by (5.23) one has
, . I 1
Jo(t) = a(t2)z(te) - |:Zl(t)+21(t)'/0 Z%(S)ds]. (5.24)
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To obtain a contradiction, we will show that

0 = 52(T) = ga2(t2)z1(t2) - lim Lll(t)jtzl(t)./o 21(8)ds] > 0. (5.25)

—T— 2
Assume that y;(0) = vg and 8 = y1(T"). We then have
2 1/2 2
. yi(t) ) 2 p
1) = 1(t) = 2 _J1NT , = - _
z1(t) = n(t) (’Uo T+ 2(0) W= T

and
y1(t)

z21(t) = () = —W-

By a change of variable, (5.25) is equivalent to

I = lim
y—pB—

(14 B2)V2(1 4 y2)1/2 y / 2 i (s e I
B+ PG -2~ A+122 Jo (B+2)PRB— 232 '

Notice that for g > 0 sufficiently large, we have

lim (1 +62)1/2(1+y2)1/2 B 1 +52 .
y— (,3+y)1/2(6—y)1/2 \/%(ﬂ—y)lﬂ )
and
y v (1 +52)3/2(1 +22)3/2 y(1 _1_52)3/2 y \o
(1+y2)? /0 (B+ 2)3/2(8 — 2)3/2 dz < (11 42)12(B + )32 /0 (B —2)""dz

2y(1 + B2)3/2 1 1
(1+ )2 (B+y)” [(6 —y)i2 B2

In particular, this implies

1462 2
I > 53 +(1+59) yl_lfél_

This shows that all eigenvalues of D®(y;) are contained in the open interval ]0,1[, and y; is
a stable solution of the MFG. By symmetry, z2(t,§) = y2(t) = —y1(t) for t € [0,7] and all
¢ €[0,1], is also a stable solution of the MFG. O

= >0.

By BV?2

1 2y(1 4 p*)'/2 1 1+ 32
V2B (L+y?) 2 (B +y)3?

5.3 Examples of games with no solutions.

Example 5.3 Consider the mean field game on the time interval ¢ € [0,7], where player
¢ € Q =10,1] has dynamics

i =wue [-1,1, 20 = 0. (5.26)

The goal of player £ is to optimize his terminal position relative to the distribution of the
other players, namely
maximize: |z (T, &) — b(&) 2,

(5.27)
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where

1
b(E) = /OeCEQ-x(T,g)dg. (5.28)

We claim that this game has no strong solution. Indeed, if b(§) = 0, then every player has
two equally good strategies:

u(t) =1, xo(t) =t or u(t) = -1, xo(t) = —t. (5.29)

This cannot be a solution, because §{ — z(T,§) € {—T,T} is a measurable map, and the
integral in (5.28) cannot be identically zero.

On the other hand, if b(¢) is not identically zero, then

1 1 1
/ b(E) (T, €) dE — / b(é) - (~Tsignb(e)) de = — T / b(©)| de < 0.
0 0 0

However, the definition of b implies

/01 b(&) x(T, &) dé = /1 </Ola;2(T’ Oefmf&l2 dC) (T, €) de

0
1

= / e o1 ¢) a(T ) dCde > 0,
0

0

reaching a contradiction.! Notice that here the unique mild solution is a measure, where each
player uses the two controls in (5.29) with equal probability.

Example 5.4 Consider the mean field game on the time interval ¢ € [0, 7], where all players
have the same dynamics and the same cost functional:

T
minimize: / u?(t) dt + Y(z(T)), (5.30)
0
subject to

&= u—0 Ju(t)]

IN
—

z(0,€) = 0 for all £ € Q, (5.31)
and with terminal constraint
o(T)) = (T —x(T))-z(T) = 0. (5.32)

Here

b(t) = /Q o(t,€) de (5.33)

'Indeed, if the kernel can be written as the convolution ¢ ¢, for some even function o(z), rapidly decreasing
as |z| — oo, then (replacing z with z — y as variable of integration and using the fact that ¢(s) = ¢(—s))

[[exoe-ni@iwsay = [ [[ oy 201610 dsdzay
= [[[ et =10t~ wi@s@dzasty =[x 1)@ @x HEd= = 0
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denotes the barycenter of the distribution of players at time ¢, while the terminal cost is a
smooth function that satisfies

o0 = { ar .ot (534

Notice that the terminal constraint (5.32) is equivalent to

#(T) € {0,T}. (5.35)

We claim that this mean field game has no solution. Namely, the “best reply map” X — ¥(X)
from L! <Q; C ([0, T]; ]R”)) into itself does not have any fixed point. To prove this, consider

first the case where X = 0 € L! (Q; C([O, TY; IR")) That means:

z(t,§) = 0 forall ¢€[0,7] and p-a.e. €. (5.36)

In this case, b(t) = 0 for all t € [0,T]. Hence the optimal strategy for every player is to choose
u(t,€) = 1. The corresponding trajectory x(t,£) = t satisfies the terminal constraint (5.32)
and achieves minimum cost

T
Jinin = / ldt+¢(T) = T—2T = —T.
0

On the other hand, if (5.36) fails, then b(t) is not identically zero and the solution to (5.31)
cannot attain the value x(7") = T'. Hence the best strategy for every player is to take u(t,§) =
0, which yields the trajectory z(t,£) = 0, with zero cost.

We have thus shown that
0 ¢ ¥(0), while ¥(X) = {0} forall X #0,
hence ¥ cannot have a fixed point.

Notice that in this example the mean field game does not even admit mild solutions, in the
randomized sense.

We observe that in this example, the minimum cost does not depend continuously on the
parameter b(-). Namely, it jumps from 0 down to —7" as b becomes the zero function. This is
due to a lack of transversality in connection with the terminal constraint.

6 Concluding remarks

In this paper we considered a class of first order mean field games, characterized by 5-tuples
(f,L,v, ¢, ) specifying the dynamics, cost functionals, averaging kernels, and initial distri-
bution of players.

The main results show that, generically, for every given 7(-) a.e. player has a unique optimal
control ¢ — u"(t,€). As a consequence, the “best reply” map n — ®(n) at (1.8) is single
valued, and the MFG has a strong solution. Moreover, there are open sets of games with
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unique solutions, and open sets of games with multiple solutions. These can be stable, or
unstable, in the sense of Definition 1.2.

It would be of interest to analyze whether similar results remain valid in a more general setting.
Namely:

(i) Systems with fully nonlinear dynamics, i.e. where the function f(x,u,n) in (1.5) is not
necessarily affine w..r.t. the control.

(ii) Optimal control problems in the presence of terminal constraints, say

9i(z(T,¢)) = 0, i=1,...,N.

In all our previous examples, the mean field games had structurally stable solutions. We thus
conclude the paper with a natural conjecture:

Conjecture 6.1 For a generic 5-tuple (f,L,vY,$,x) € X, the MFG (1.3)—(1.6) has finitely
many solutions, all of which are structurally stable.
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