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Abstract

We consider a class of deterministic mean field games, where the state associated with
each player evolves according to an ODE which is linear w.r.t. the control. Existence,
uniqueness, and stability of solutions are studied from the point of view of generic theory.
Within a suitable topological space of dynamics and cost functionals, we prove that, for
“nearly all” mean field games (in the Baire category sense) the best reply map is single
valued for a.e. player. As a consequence, the mean field game admits a strong (not ran-
domized) solution. Examples are given of open sets of games admitting a single solution,
and other open sets admitting multiple solutions. Further examples show the existence
of an open set of MFG having a unique solution which is asymptotically stable w.r.t. the
best reply map, and another open set of MFG having a unique solution which is unstable.
We conclude with an example of a MFG with terminal constraints which does not have
any solution, not even in the mild sense with randomized strategies.

1 Introduction

This paper deals with a class of mean field games with a continuum of players, where the state
associated with each player evolves according to a controlled ODE. We study the existence,
uniqueness, and stability of solutions from the point of view of generic theory. Namely, we
seek properties of solutions that are satisfied either on some open set of MFG, or for “nearly
all” MFG in the topological sense [12, 20]; i.e., for all MFG in the intersection of countably
many open dense sets.

Let (Ω,B, µ) be a probability space. More precisely, we assume that Ω is a metric space
with Borel σ-algebra B, while µ is an atomless probability measure on Ω. Without loss of
generality, throughout the following we assume Ω = [0, 1] with Lebesgue measure. We regard
ξ ∈ Ω as a Lagrangian variable, labelling one particular player. Accordingly, we shall denote
by t 7→ x(t, ξ) a trajectory for player ξ. By selecting one trajectory x(·, ξ) ∈ C

(
[0, T ]; IRn

)
for
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each player (depending measurably on ξ), one obtains an element X in the space

L1
(

Ω ; C
(
[0, T ]; IRn

))
. (1.1)

The space (1.1) is naturally endowed with the Banach norm

‖X‖ .
=

∫
Ω

(
sup
t∈[0,T ]

∣∣x(t, ξ)
∣∣) dξ. (1.2)

To define a (deterministic) mean field game, for each player ξ ∈ Ω we consider an optimal
control problem where the dynamics and the cost functions also depend on the cumulative
distribution X of all other players. To express this dependence, we consider a finite number
of smooth scalar functions φ1, . . . , φN ∈ C2

(
[0, T ]× IRn

)
, and define η(t) = (η1, . . . , ηN )(t) to

be the vector of “moments”

ηi(t) =

∫
Ω
φi
(
t, x(t, ξ)

)
dξ, i = 1, . . . , N. (1.3)

The control problem for player ξ takes the form

minimize:

∫ T

0
L
(
t, x(t), u(t), η(t)

)
dt+ ψ

(
x(T )

)
, (1.4)

subject to the dynamics

ẋ(t) = f
(
t, x(t), u(t), η(t)

)
t ∈ [0, T ], (1.5)

and with initial datum
x(ξ, 0) = x̄(ξ). (1.6)

Definition 1.1 In the above setting, by a strong solution to the mean field game we mean a
family of control functions t 7→ u(t, ξ) ∈ IRm and corresponding trajectories t 7→ x(t, ξ) ∈ IRn,
defined for ξ ∈ Ω and t ∈ [0, T ], such that the following holds.

For a.e. ξ ∈ Ω, the control u(·, ξ) and the trajectory x(·, ξ) provide an optimal solution to the
optimal control problem (1.4)–(1.6) for player ξ, where η(t) = (η1, . . . , ηN )(t) is the vector of
moments defined at (1.3).

A mean field game thus yields a (possibly multivalued) map η 7→ Φ(η) from C([0, T ]; IRN )
into itself. Namely, given η(·), for each ξ ∈ Ω consider an optimal trajectory xη(·, ξ) of the
corresponding optimal control problem (1.4)–(1.6). We then set

Φ(η)
.
= η̃ = (η̃1, . . . , η̃N ), η̃i(t)

.
=

∫
Ω
φi
(
t, xη(t, ξ)

)
dξ, (1.7)

under suitable assumptions that will ensure that the integral in (1.7) is well defined. By
definition, a fixed point of this composed map

η(·) 7→
{
xη(·, ξ) ; ξ ∈ Ω

}
7→ η̃ = Φ(η)

[moments] 7→ [optimal trajectories] 7→ [moments]
(1.8)

yields a strong solution to the mean field game.
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Remark 1.1 In general, the map Φ can be multivalued. Indeed, for some η(·), there can be
a subset V ⊆ Ω with positive measure, such that each player ξ ∈ V has two or more optimal
trajectories. For this reason, a mean field game may not have a solution in the strong sense
considered in Definition 1.1. In order to achieve a general existence theorem one needs to relax
the concept of solution, allowing the possibility of randomized strategies [1, 6, 9]. This leads to
the problem of finding a fixed point of an upper semicontinuous convex-valued multifunction,
which exists by Kakutani’s theorem [10, 17].

Following the standard literature on fixed points of continuous or multivalued maps, we in-
troduce

Definition 1.2 A solution x = x∗(t, ξ) to the above mean field game is stable if the corre-
sponding function η∗ ∈ C0

(
[0, T ]; IRN

)
at (1.3) is a stable fixed point of the multifunction Φ

at (1.7). Namely, for every ε > 0 there exists δ > 0 such that the following holds. For every
sequence

(
η(k)

)
k≥0

such that

‖η(0) − η∗‖C0 < δ, η(k) ∈ Φ
(
η(k−1)

)
for all k ≥ 1, (1.9)

one has ‖η(k) − η∗‖C0 < ε for all k ≥ 1.

If, in addition, every such sequence
(
η(k)

)
converges to η∗, then we say that the solution is

asymptotically stable.

If the solution is not stable, we say that it is unstable.

Next, we say that a solution of the mean field game is structurally stable if it persists under
small perturbations of the dynamics and the cost functionals. More precisely:

Definition 1.3 We say that a solution x = x(t, ξ) to the above mean field game (1.3–(1.6) is
structurally stable (or equivalently: essential) if, given ε > 0, there exists δ > 0 such that
the following holds. For any perturbations (f †, L†, ψ†, φ†, x̄†) satisfying

max
{
‖f † − f‖C2 , ‖L† −L‖C2 , ‖ψ† − ψ‖C2 , ‖φ† − φ‖C2

}
< δ, ‖x̄† − x̄‖L∞ < δ, (1.10)

the corresponding perturbed game has a solution x† = x†(t, ξ) such that

sup
t∈[0,T ]

∫
Ω

∣∣x†(t, ξ)− x(t, ξ)
∣∣ dξ < ε. (1.11)

Throughout the following, we shall assume that the dynamics is affine w.r.t. the control vari-
able:

f(x, u, η) = f0(x, η) +

m∑
i=1

fi(x, η)ui , (1.12)

and all functions f, ψ, L have at least C2 regularity.

Since our MFG at (1.3)–(1.6) is characterized by the 5-tuple of functions (f, L, ψ, φ, x̄), we are
interested in properties which are satisfied either (i) for all games where (f, L, ψ, φ, x̄) ranges
inside an open set (in a suitable Banach space), or (ii) for generic games, i.e., for all games
where (f, L, ψ, φ, x̄) ranges over the intersection of countably many open dense sets. Roughly
speaking, the main results of the paper can be summarized as follows.
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(i) Given a triple (f, L, φ) ∈ C3×C3×C3, for a generic pair (ψ, x̄) ∈ C3×L∞, the best reply
map η 7→ Φ(η) in (1.8) is single valued. As a consequence, the MFG (1.3)–(1.6) admits
a strong solution.

(ii) There is an open set of mean field games with a unique solution, which is stable and
essential.

(iii) There is an open set of mean field games with a unique solution, which is unstable, and
essential.

(iv) There is an open set of mean field games with two solutions, both essential.

More precise statements of these results will be given in the following sections. The remainder
of the paper is organized as follows.

As a warm-up, in Section 2 we review the basic tools for proving generic properties. Here we
consider a family of optimal control problems where the dynamics is linear w.r.t. the control
functions. We show that, for generic dynamics f , running cost L and terminal cost ψ, for
a.e. initial datum x(0) = x the optimal control is unique.

Section 3 provides a simple way to construct mean field games with multiple solutions. Given
an optimal control problem and a pair (x∗, u∗) (not necessarily optimal) which satisfies the
Pontryagin necessary conditions, we show the existence of a mean field game where u∗ is the
optimal control for every player. As a consequence, for any control problem where the Pon-
tryagin equations have multiple solutions, one can construct a MFG with multiple solutions.
Under generic assumptions, all of these solutions are structurally stable.

Section 4 contains the main result of the paper. Namely, for a generic MFG of the form
(1.3)–(1.6), the best reply map η 7→ Φ(η) is single valued. Hence the MFG admits a strong
solution. Here the analysis is far more delicate than in the proof of the generic uniqueness for
the optimal control problem in Section 2. Indeed, we need to show that the statement

• The set of initial points x, for which the problem (1.4)–(1.6) has multiple solutions, has
measure zero

is true not just for one function η(·), but simultaneously for all functions η = (η1, . . . , ηN ), in
a suitable domain.

Finally, Section 5 collects a variety of examples, where the MFG have multiple strong solutions,
Some of these are stable, in the sense of Definition 1.2, while others are unstable.

We conclude with two examples of MFG without solution. The first one is a well known case
where nonexistence is due to the fact that the best reply of each player is not unique. No
strong solution exists, but one can construct a mild solution where each player adopts a
randomized strategy. In the second example, the presence of a terminal constraint lacking a
transversality condition prevents the existence of any solution, even in the mild (randomized)
sense.

Some concluding remarks, pointing to future research directions, are given in Section 6.

Mean field games with stochastic dynamics have been introduced by Lasry and Lions [18] and
by Huang, Malhamé and Caine [16], to model the behavior of a large number of interacting
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agents. Their solution leads to a well known system of forward-backward parabolic equations.
Solutions to first order MFG (with deterministic dynamics) can be obtained as a vanishing
viscosity limit of these parabolic PDEs, i.e., as viscosity solutions to a corresponding Hamilton-
Jacobi equation [6, 7, 8, 9]. Equivalently, one can take a Lagrangian approach, describing the
optimal control and the optimal trajectory of each single agent. This is the approach followed
in the present paper. Some examples of MFG with unique or with multiple solutions can be
found in [1]. A concept of structural stability for solutions to first order MFG was proposed
in [5].

2 Generic uniqueness for optimal control problems

Consider an optimal control problem of the form

minimize: J [u]
.
=

∫ T

0
L
(
x(t), u(t)

)
dt+ ψ

(
x(T )

)
, (2.1)

with dynamics which is affine in the control:

ẋ(t) = f
(
x(t), u(t)

)
= f0(x(t)) +

m∑
i=1

fi(x(t))ui(t), x(0) = x̄. (2.2)

Here u(t) ∈ IRm while x(t) ∈ IRn. To fix ideas, we shall consider the couple (f, L) satisfying
the following assumptions.

(A1) The functions fi : IRn 7→ IRn, i = 0, . . . ,m, are twice continuously differentiable. More-
over the vector fields fi satisfy the sublinear growth condition∣∣fi(x)

∣∣ ≤ c1

(
|x|+ 1

)
(2.3)

for some constant c1 > 0 and all x ∈ IRn.

(A2) The running cost L : IRn × IRm 7→ IR is twice continuously differentiable and satisfies{
L(x, u) ≥ c2

(
|u|2 − 1

)
,

|Lx(x, u)| ≤ `(|x|) · (1 + |u|2),
(2.4)

for some constant c2 > 0 and some continuous function `. Moreover, L is uniformly
convex w.r.t. u. Namely, for some δL > 0, the m × m matrix of second derivatives
w.r.t. u satisfies

Luu(x, u) > δL · Im for all x, u. (2.5)

Here Im denotes the m×m identity matrix

Throughout the following, the open ball centered at the origin with radius r is denoted by Br =
B(0, r), while Br denotes its closure. Under the previous assumptions, optimal controls and
optimal trajectories of the optimization problem (2.1)-(2.2) satisfy uniform a priori bounds:
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Lemma 2.1 Assume that the couple (f, L) satisfies (A1)-(A2) and ψ : IRn → [0,∞[ is twice
continuously differentiable. Then there exist continuous functions α, β : [0,∞[→ [0,∞[ such
that the following holds. Given any initial point x̄ ∈ Br, let u∗(·) be an optimal control and
let x∗(·) be the corresponding optimal trajectory and for the problem (2.1)-(2.2). Then

ess-sup
t∈[0,T ]

|u∗(t)| ≤ α(r), sup
t∈[0,T ]

|x∗(t)| ≤ β(r). (2.6)

Proof. Fix x̄ ∈ Br. Calling x0(·) the solution of (2.2) with u(t) ≡ 0, by (2.3) it follows

sup
t∈[0,T ]

|x0(t)| ≤ (r + 1) · ec1t − 1.

Let (x∗, u∗) be a pair of optimal trajectory and optimal control of the optimization problem
(2.1)-(2.2). By the first inequality in (2.4), one has∫ T

0

∣∣u∗(t)|2dt ≤ 1

c2

(∫ T

0
L(x0(t), 0)dt+ ψ(x0(T ))

)
+ T

=
1

c2
·

(
T · sup
|y|≤(r+1)·ec1T−1

L(y, 0) + sup
|y|≤(r+1)·ec1T−1

|ψ(y)|

)
+ T

.
= β1(r). (2.7)

Since x∗ solves (2.2) with u ≡ u∗, we have

|ẋ(t)| ≤ c1 · (|x|+ 1) ·

(
1 +

m∑
i=1

|u∗i (t)|

)
≤ c1

2
·
(
|x|+ 1

)(
|u∗(t)|2 +m+ 2

)
.

Therefore, from (2.7) one obtains

sup
t∈[0,T ]

|x∗(t)| ≤ (r + 1) · exp
(c1

2
· [β1(r) + (m+ 2)T ]

)
− 1

.
= β(r).

To derive a pointwise bound on u∗, for every α ≥ 0 we consider the truncated function

uα(s) =

{
u∗(s) if |u∗(s)| ≤ α,
0 if |u∗(s)| > α.

Calling xα the solution of (2.2) with u ≡ uα, we have

sup
t∈[0,T ]

|xα(t)| ≤ β(r), sup
t∈[0,T ]

|x∗(t)− xα(t)| ≤ β2(r) ·
∫
Iα

|u∗(s)|ds

for some continuous function β2. For any constant γ ≥ 1, setting Iγ
.
=
{
s ∈ [0, T ] : |u∗(s)| > γ

}
we estimate the difference in the costs:

0 ≤ J [uγ ]− J [u∗] =

∫ T

0
L(xγ(t), uγ(t))− L(x∗(t), u∗(t))dt+ ψ(xγ(T ))− ψ(x∗(T ))

≤

(
(T + β1(r)) · sup

|s|≤β(r)
`(s) + sup

|y|≤β(r)
|∇ψ(y)|

)
· β2(r) ·

∫
Iγ

|u∗(s)|ds

+

∫
Iγ

L(x∗(t), 0)− L(x∗(t), u∗(t))dt

≤ α1(r) ·
∫
Iγ

|u∗(s)|ds− c2 ·
∫
Iα

|u∗(s)|2ds ≤ (α1(r)− c2 · γ)

for some continuous function α1(·). This yields the first inequality in (2.6), with α(r) =
α1(r)/c2.

6



In the following, the positive cone in the Banach space C2 is denoted by

C2
+(IRn)

.
=

{
ψ ∈ C2(IRn) ; inf

x∈IRn
ψ(x) > 0

}
. (2.8)

We can now state the first result.

Theorem 2.1 (Generic uniqueness for optimal control problems). Under the as-
sumptions (A1)-(A2), there exists a Gδ subset M ⊂ C2

+(IRn) such that the following holds.
For every ψ ∈ M, the set of initial points x̄ ∈ IRn, for which the optimal control problem
(2.1)-(2.2) has multiple solutions, has Lebesgue measure zero.

Proof. 1. For every ψ ∈ C2
+(IRn) and any integer ν ≥ 1, we consider a set of initial points

yielding two distinct solutions:

Sν(ψ)
.
=
{
x̄ ∈ Bν , the optimization problem (2.1)-(2.2) has two solutions

x1(·), x2(·), with the same minimum cost, and with
∣∣x1(T )− x2(T )

∣∣ ≥ 1

ν

}
.

(2.9)
Next, consider the set of terminal cost ψ leading to a small set of multiple solutions:

Mν
.
=

{
ψ ∈ C2

+(IRn) ; meas
(
Sν(ψ)

)
<

1

ν

}
. (2.10)

The theorem will be proved by showing thatMν is open and dense in C2
+(IRn). Indeed, if this

is the case then the set M =
⋂
ν≥1

Mν is a Gδ subset of C2
+(IRn). Moreover, for any ψ ∈ M,

calling S(ψ) the set of initial points x̄ ∈ IRn for which the optimization problem (2.1)-(2.2)
has two optimal trajectories ending at distinct terminal points, we have

meas
(
S(ψ)

)
≤ lim sup

ν→∞

[
meas

(
Sν(ψ)

)]
= 0. (2.11)

We now observe that, for every x̄ ∈ IRn, the Pontryagin necessary conditions [4, 11, 13] take
the form {

ẋ = f
(
x, u(x, p)

)
,

ṗ = − p · fx
(
x, u(x, p)

)
− Lx(x, u(x, p)),

(2.12)

with boundary conditions {
x(0) = x̄,

p(T ) = ∇ψ
(
x(T )

)
.

(2.13)

Here the optimal control is determined as the pointwise minimizer

u(x, p) = arg min
ω∈IRm

{
L(x, ω) + p f(x, ω)

}
. (2.14)

By assumptions, f is affine w.r.t. ω, while by (2.5) the cost function L is uniformly convex.
As a consequence, the minimizer in (2.14) is unique. Therefore, the map (x, p) 7→ u(x, p) is
well defined and continuously differentiable, and the system of ODEs (2.12) has C1 right hand
sides. We conclude that, for any y ∈ IRn, the system (2.12) with terminal conditions

x(T ) = y, p(T ) = ∇ψ(y), (2.15)
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admits a unique solution t 7→ (x, p)(t; y) on [0, T ]. In particular, this implies that if two optimal
trajectories starting from x̄ have the same terminal point, then then they must coincide for
all t ∈ [0, T ]. Hence (2.11) yields (ii).

2. Given ν ≥ 1, we now claim that Mν is open in C2
+(IRn). Indeed, thanks to the uniform

bounds on optimal controls and optimal trajectories proved in Lemma 2.6, standard arguments
show that each set Sν(ψ) is closed and bounded. Moreover, since the minimum cost for (2.1)-
(2.2) depends continuously on x̄, f, L, ψ, the map ψ 7→ Sν(ψ) is upper semicontinuous.

Given any terminal cost ψ̃ ∈Mν , let A be an open set such that

Sν(ψ̃) ⊂ A, meas(A) <
1

ν
.

Based on Lemma 2.1, for any initial datum x̄ ∈ Bν , every optimal control u∗ and optimal
trajectory x∗ satisfy

ess-sup
t∈[0,T ]

|u∗(t)| ≤ α(ν), sup
t∈[0,T ]

|x∗(t)| ≤ β(ν). (2.16)

By upper semicontinuity, there exists δ0 > 0 such that

‖ψ − ψ̃‖C2 < δ0 =⇒ Sν(ψ) ⊂ A, inf
x∈IRn

ψ̃ > 0.

As a consequence, ψ ∈Mν , proving our claim.

3. In the remaining steps, we prove that eachMν is dense in C2
+(IRn). Given any ψ ∈ C2

+(IRn),
we shall construct a small perturbation of ψ that lies inside Mν .

Using Lemma 2.1, we choose a radius ρ > 0 large enough so that the ball Bρ contains all
trajectories that satisfy the PMP (2.12) and start at some point x̄ ∈ Bν .

Denoting by t 7→ (x, p)(t; y) the unique solution of the system of ODEs (2.12) with terminal
data (2.15), we observe that the map y 7→ x(0; y) is C1. Consider the sets

Sδ0
.
=
{
x(0, y) ; y ∈ Bρ,

∣∣det(Dyx(0, y))
∣∣ ≤ δ0

}
, S−1

δ0

.
=
{
y ; x(0, y) ∈ Sδ0

}
. (2.17)

By choosing δ0 > 0 sufficiently small we obtain

meas
(
Sδ0
)
≤ δ0 ·meas(Bρ) <

1

2ν
. (2.18)

Next, consider the open subset of couples in IRn+n

Γν
.
=

{
(y1, y2) ∈

(
Bρ\S−1

δ0

)
×
(
Bρ\S−1

δ0

)
; |y1 − y2| >

9

10ν

}
. (2.19)

For every couple of points (ȳ1, ȳ2) ∈ Γν , let ϕ(ȳ1,ȳ2) ∈ C∞c (IRn) be a smooth function with
compact support such that

ϕ(ȳ1,ȳ2)(y) =


1 if |y − ȳ1| ≤ 1

5ν ,

−1 if |y − ȳ2| ≤ 1
5ν ,

0 if |y − ȳ1| ≥ 2
5ν and |y − ȳ2| ≥ 2

5ν .

(2.20)
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Covering the compact closure Γν with finitely many balls, say B
((
yk1 , y

k
2

)
, 1

5ν

)
for (yk1 , y

k
2 ) ∈ Γν ,

k ∈ {1, . . . , Nν}, we define a family of terminal costs, depending on the additional parameters
θ =

(
θ1, . . . , θNν

)
:

ψθ(y) = ψ(y) +

Nν∑
k=1

θk · ϕ(yk1 ,y
k
2 )(y) for all y ∈ IRn. (2.21)

4. For any given θ ∈ IRNν , let (xθ(s; y), pθ(s; y)) be the solution of (2.12) with terminal
condition (x(T ), p(T )) =

(
y,∇ψθ(y)

)
. We denote by Jθ(y) the cost of this trajectory:

Jθ(y) =

∫ T

0
L
(
xθ(t; y), u

(
xθ(t; y), pθ(t; y)

))
dt+ ψθ(y).

Observe that, for any k ∈ {1, . . . , Nν} and any y ∈ B
(
yk1 ,

1
5ν

)⋃
B
(
yk2 ,

1
5ν

)
, the definition

(2.20) implies

∇ψθ(y) = ∇ψ(y) +
∑

j∈{1,...,Nν}\{k}

θj · ∇ϕ(yj1,y
j
2)(y). (2.22)

In this case,
(
xθ(t; y), pθ(t; y)

)
does not depend on θk and

∂xθ

∂θk
(0; y) = 0,

∂Jθ

∂θk
(y) =

∂ψθ

∂θk
(y) =

 1 if y ∈ B
(
yk1 ,

1
5ν

)
,

−1 if y ∈ B
(
yk2 ,

1
5ν

)
.

(2.23)

5. Define the map Φ : Γν × IRNν → IRn+1 by setting

Φ(y1, y2, θ) =
(
xθ(0; y1)− xθ(0; y2), Jθ(y1)− Jθ(y2)

)
. (2.24)

for all (y1, y2, θ) ∈ Γν × IRNν . For any k ∈ {1, 2, . . . , Nν}, by (2.23) it now follows

∂Φ

∂θk
(y1, y2, θ) = (0, 0, 2) for all (y1, y2) ∈ B

((
yk1 , y

k
2

)
,

1

5ν

)
.

Moreover, by (2.17) and (2.21), there exists δ1 > 0 small enough such that∣∣∣det
(
Dyx

θ(0; yi)
)∣∣∣ > δ0

2
, i ∈ {1, 2}, θ = (θ1, . . . , θNν ) ∈ Bδ1 . (2.25)

Therefore, rank
(
DΦ(y1, y2, θ)

)
= n+ 1 and Φ is transversal to the zero manifold

{(0, 0)} ⊂ IRn × IR

on B
(
(yk1 , y

k
2 ), 1

5ν

)
× B(0, δ1). Since these balls provide a covering, we conclude that Φ is

transversal to {(0, 0)} on the whole domain Γν ×B(0, δ1).

6. Finally, by the transversality theorem [3, 14], there exists a set Θ ⊂ IRNν , dense in the
ball B(0, δ1), such that for every θ ∈ Θ the map Φ(·, ·, θ) is transversal to the zero manifold{

(0, 0)} ⊂ IRn × IR. This means: for every couple (ȳ1, ȳ2) ∈ Γν such that

xθ(0, ȳ1) = xθ(0, ȳ2), Jθ(ȳ1) = Jθ(ȳ2),

9



the Jacobian D(y1,y2)Φ(ȳ1, ȳ2, θ) has rank n+ 1. Hence, by the implicit function theorem, the
set of couples

Γ(ȳ1,ȳ2)(r)
.
=
{

(y1, y2) ∈ B
((
ȳ1, ȳ2

)
, r
)
∩ Γν ; Φ(y1, y2, θ) = (0, 0) ∈ IRn+1

}
is contained in an (n − 1)-dimensional manifold, for some r > 0 small. The n-dimensional
measure of this set is thus

meas
({
xθ(0; y1) ; (y1, y2) ∈ Γ(ȳ1,ȳ2)(r)

})
= 0.

In turn, for every θ ∈ Θ this implies

meas
({
xθ(0; y1) ∈ IRn; there exists y2 ∈ IRn such that (y1, y2) ∈ Γν , Φ(y1, y2, θ) = 0

})
= 0.

On the other hand, since there exists a constant C > 0 such that∣∣xθ(0, y)− x(0, y)
∣∣ ≤ C|θ| for all θ ∈ Θ, y ∈ S−1

δ0
,

we have {
xθ(0, y) ; y ∈ S−1

δ0

}
⊆ B

(
Sδ0 , C|θ|

)
. (2.26)

Since Sδ0 is compact, the measure of the ε-neighborhood around the set Sδ0 satisfies

lim
ε→0

meas
(
B(Sδ0 , ε)

)
= meas(Sδ0).

Therefore, choosing |θ| small enough, by (2.18) and (2.26) we obtain

meas
(
Sν(ψθ)

)
≤ meas

({
xθ(0, y) ; y ∈ S−1

δ0

})
≤ meas

(
B
(
Sδ0 , C|θ|

))
< meas

(
Sδ0
)

+
1

2ν
<

1

ν
.

Hence the terminal cost ψθ lies in Mν . This shows that Mν is everywhere dense, completing
the proof.

3 Non-uniqueness for mean field games

Consider again the optimal control problem (2.1)-(2.2), with f, L satisfying (A1)-(A2) and

ψ ∈ C2
+. Let Y ∗(t)

.
=

(
x∗(t)
p∗(t)

)
be a solution to Pontryagin’s optimality conditions (2.12)-(2.14).

Linearizing the system of ODEs in (2.12) at Y ∗, we obtain a system of the form

Ẏ = A(t)Y, (3.1)

describing the evolution of a first order perturbation. We shall assume that Y (t) =

(
X(t)
P (t)

)
≡

0 is the only solution to the linearized system (3.1) with boundary conditions

X(0) = 0, P (T ) = D2ψ(x∗(T )) ·X(T ). (3.2)
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Notice that these assumptions imply that this solution is structurally stable. By the implicit
function theorem, one can slightly perturb the dynamics and the cost function, and still find
a solution to the equations (2.12)–(2.14) close to Y ∗.

In this setting, it is easy to construct a MFG where x(t, ξ) = x∗(t) is a structurally stable
solution. Indeed, define the barycenter

b(t)
.
=

∫ 1

0
x(t, ξ) dξ. (3.3)

Consider a game where the state of each player evolves with the same dynamics

ẋ(t) = f
(
x(t), u(t)

)
= f0(x(t)) +

m∑
i=1

fi(x(t)) · ui(t), x(ξ, 0) = x̄, ξ ∈ [0, 1], (3.4)

and all players share the same cost functional

J
.
=

∫ T

0

[
L
(
x(t), u(t)

)
+ κ
∣∣x(t)− b(t)

∣∣2] dt+ ψ
(
x(T )

)
. (3.5)

Theorem 3.1 Assume that f, L satisfy (A1)-(A2) while ψ ∈ C2
+. Let (x∗, p∗) be a solution

to the Pontryagin equations (2.12)-(2.14). Then, if the constant κ > 0 is large enough, the
MFG (3.5)-(3.4) admits a solution where x(t, ξ) = x∗(t) for all ξ ∈ [0, 1], t ∈ [0, T ].

If the linearized system (3.1)-(3.2) has only the zero solution, then this solution of the MFG
is structurally stable.

Proof. 1. W.l.o.g., we can assume ψ = 0. Indeed, the above optimal control problem can
always be written as a Bolza problem, replacing the functional J at (2.1) with

J ]
.
=

∫ T

0

[
L(x, u) +∇ψ(x) · f(x, u)

]
dt. (3.6)

If
(
x(t), p(t), u(t)

)
provide a solution to the equations (2.12)-(2.14) for the original problem,

one readily checks that the triple
(
x(t), p(t) −∇ψ(x(t)), u(t)

)
provides a solution to the cor-

responding Pontryagin’s equations for the Bolza problem (3.6).

2. We thus assume that ψ = 0. For every given b ∈ C0([0, T ]) with ‖b − b∗‖C0 ≤ 1, we
claim that (3.4)-(3.5) admits a unique optimal solution for κ > 0 sufficiently large. Indeed,
let (ub, xb) be a pair of optimal control and optimal trajectory of (3.4)-(3.5). By Lemma 2.6,
it follows

‖ub‖L∞ , ‖xb‖C0 ≤ C1, κ ·
∫ T

0
|xb(t)− b(t)|2dt ≤ C1, (3.7)

for some C1 > 0 which depends only on f, L and T . By the necessary conditions, there exists
pb ∈ C0([0, T ]) such that (xb, pb, ub) solves the PMP{

ẋ = f
(
x, u(x, p)

)
,

ṗ = − p · fx
(
x, u(x, p)

)
− Lx(x, u(x, p))− 2κ(x− b) ,

(3.8)
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with x(0) = x̄, p(T ) = 0 and, recalling (2.14),

ub(t) = u
(
xb(t), pb(t)

)
, t ∈ [0, T ].

By (3.7) and the second equation of (3.8) we deduce

‖pb‖C0 ≤ C2

(
1 + κ ·

∫ T

0
|xb(t)− b(t)|dt

)
≤ C2

(
1 +
√
κ
)
. (3.9)

3. Next, consider the Hamiltonian

Hb(x, u, p, t)
.
= L(x, u) + κ

∣∣x− b(t)∣∣2 + p · f(x, u), (3.10)

and the reduced Hamiltonian

Ĥb(x, p, t)
.
= min

u∈IRm

{
L(x, u) + κ

∣∣x− b(t)∣∣2 + p · f(x, u)
}
. (3.11)

The the optimality condition implies

Ĥb(xb, pb, t) = H(xb, ub, pb, t), Ĥb(x, p, t) ≥ Hb(x, u, p, t),

∂xĤ
b(x, p, t) = p · fx

(
x, u(x, p)

)
+ Lx(x, u(x, p)) + 2κ(x− b(t)), (3.12)

and
Luu(x, ub(x, p))ubp(x, p) + (f1(x), f2(x), . . . , fm(x)) = 0.

By the uniform convexity of L(x, u) w.r.t u and the bounds on the vector fields fi, it follows

‖∂pu(x, p)‖C0 ≤ C3 ·
1

δL
.

Therefore, from (3.12), (3.9) and (3.7), one obtains

∂xĤ
b(xb(t), pb(t), t) = − ṗb(t), ∂xxĤ

b(x, pb(t), t) = 2κI +G(x, t)

with
‖G(x, t)‖C0 ≤ C4 · (1 +

√
κ) for all t ∈ [0, T ], |x| ≤ C1.

In particular, for κ > 0 sufficiently large, the map x 7→ Ĥb(x, pb(t), t) is strictly convex in
B(0, C1) for all t ∈ [0, T ] and

∂xxĤ
b(x, pb(t), t) ≥ κI .

In this setting, we show that xb is the unique optimal solution of (3.4)-(3.5). Indeed, let
(u1, x1) be another pair of optimal control and optimal trajectory for (3.4)-(3.5). Notice that
‖x1−b‖C0 ≤ C1. Using the convexity of Ĥ in the variable x, the difference in costs is estimated
by ∫ T

0

[
L(x1, u1) + κ|x1 − b|2 − L(xb, ub)− κ|xb − b|2

]
dt

=

∫ T

0

[
Hb(x1, u1, p

b, t)−H(xb, ub, pb, t)
]
dt−

∫ T

0
pb(t) ·

[
f(x1, u1)− f(xb, ub)

]
dt

≥
∫ T

0

[
Ĥb(x1, p

b, t)− Ĥb(xb, pb, t)
]
dt−

∫ T

0
pb(t) ·

[
ẋ1(t)− ẋb(t)

]
dt

≥
∫ T

0
∂xĤ

b(xb, pb, t) ·
(
x1(t)− xb(t)

)
, dt−

∫ T

0
pb(t) ·

[
ẋ1(t)− ẋb(t)

]
dt

=

∫ T

0

[
− ṗb(t) ·

(
x1(t)− xb(t)

)
− pb(t) ·

(
ẋ1(t)− ẋb(t)

) ]
, dt

= pb(0)
(
x1(0)− xb(0)

)
− pb(T )

(
x1(T )− xb(T )

)
= 0.
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Notice that if H is strictly convex, then one of the above inequality is strict whenever x1(t) 6=
xb(t). In this case, the optimal control is unique.

4. By the same argument used in Step 3, one can show that, for κ > 0 sufficiently large,
x∗(·) is the unique optimal solution of (3.4)-(3.5) with b = b∗. In particular, x∗ = b∗ and the
corresponding control u∗(t) = u(x∗(t), p∗(t)) provide the one and only optimal solution for
every player. It remains to show that this solution of the MFG is structurally stable.

Consider the best reply map b(·) 7→ Φ(b), defined by

Φ(b)(t) =

∫ 1

0
xb(t, ξ)dξ for all t ∈ [0, T ],

where xb(ξ, ·) denotes the unique optimal solution of (3.4)-(3.5). In this step we show that the
linearization of this map at b = b∗ has eigenvalues all 6= 1. Fix b ∈ C0[0, T ] with ‖b‖C0 = 1.
For any ε ∈ IR sufficiently small, let xε(t) be the unique optimal solution (3.4)-(3.5) with
b = b∗ + εb. By the necessary conditions, there exists pε ∈ C0([0, T ]) such that (xε, pε) solves
PMP (3.8) with b = b∗ + εb. By a linearization, one obtains[

xε(t)

pε(t)

]
=

[
x∗(t)

p∗(t)

]
+ ε

[
Xb(t)

Pb(t)

]
+ o(ε).

Here, Yb(t) =

[
Xb(t)

Pb(t)

]
is the solution to the equation obtained by linearizing (3.8) around

Y ∗, namely

Ẏ (t) = A(t)Y (t) + 2κ ·

[
0

X − b

]
with boundary conditions (3.2).

Let now (λ,b) be a pair of eigenvalue and eigenfunction of DΦ(b∗). We then have

DΦ(b)(b) = Xb = λb,

and this implies that Yb(t) solves the linear ODE

Ẏ (t) = A(t)Y (t) + 2κ

(
1− 1

λ

)
·

[
0

b

]
.

Thus, by the assumption at (3.1)-(3.2), it follows λ 6= 1.

5. To prove the structural stability of the solution to the MFG, for δ > 0 sufficiently small
we consider the perturbed problem

minimize:

∫ T

0

[
L
(
x(t), u(t)

)
+ κ ·

∣∣x(t)− b(t)
∣∣2 + δ · L1(x, u, b)

]
dt, (3.13)

subject to
ẋ(t) = f(x, u) + δ g(x, u, b), x(0) = x̄+ δ x̄1(ξ). (3.14)
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We here assume
‖g‖C2 + ‖L1‖C2 ≤ 1, ‖x̄1‖L∞ ≤ 1. (3.15)

By the same argument used in Step 3, for κ > 0 sufficiently large, the optimal control problem
(3.13)-(3.14) admits a unique solution for all δ ∈ [0, 1] and ‖b− b∗‖C0 ≤ 1. Consider the best
reply map b(·) 7→ Φδ(b), defined by

Φδ(b)(t) =

∫ 1

0
xbδ(t, ξ)dξ for all t ∈ [0, T ],

where xbδ(ξ, ·) denotes the unique optimal solution of (3.13)-(3.14). We claim that there exists
a constant C6 > 0, independent of b and δ, such that

∥∥Φδ(b)− Φ(b)
∥∥
C0 ≤

∥∥∥∥∫ 1

0
xbδ(·, ξ) dξ − xb(·)

∥∥∥∥
C0
≤ C6 · δ2/3. (3.16)

Calling yb(ξ, ·) and ybδ(ξ, ·) the solution to (3.14) corresponding to u = ub and the optimal
control u = ubδ respectively but with initial data x(0) = x̄, we have∥∥yb(ξ, ·)− xb(ξ, ·)∥∥C0 ,∥∥ybδ(ξ, ·)− xbδ(ξ, ·)∥∥C0 ≤ O(1) · δ. (3.17)

Since
(
xbδ(ξ, ·), ubδ(ξ, ·)

)
is the optimal pair of (3.13)-(3.14), one has

2δT ≥ δ ·
∫ T

0
L1

(
yb(ξ, t), ub(t), b(t)

)
− L1

(
xbδ(t, ξ), u

b
δ(t, ξ), b(t)

)
dt

≥
∫ T

0
L
(
xbδ(t, ξ), u

b
δ(t, ξ)

)
+ κ ·

∣∣xbδ(t, ξ)− b(t)∣∣2 − L(yb(t), ub(t))− κ · ∣∣yb(t)− b(t)∣∣2 dt,
and (3.17) implies

O(1)(1+κ)Tδ ≥
∫ T

0
L
(
yδ(t, ξ), ubδ(t, ξ)

)
+κ·

∣∣yδ(t, ξ)−b(t)∣∣2−L(xb(t), ub(t))−κ·∣∣xb(t)−b(t)∣∣2 dt.
Following the same argument in Step 3, we estimate

O(1)(1 + κ)Tδ ≥
∫ T

0

[
Ĥ(yδ(t, ξ), pb, t)− Ĥ(xb, pb, t)

]
dt−

∫ T

0
pb(t) ·

[
ẏδ(t, ξ)− ẋb(t)

]
≥ κ ·

∫ T

0

∣∣∣yδ(t, ξ)− xb(t)∣∣∣2 dt .
This yields ∫ T

0

∣∣∣yδ(t, ξ)− xb(t)∣∣∣2 dt ≤ O(1) ·
(
T +

T

κ

)
· δ.

Notice that
‖ẏδ(ξ, ·)‖C0 , ‖ẋb(·)‖C0 ≤ C5

for some constant C5 > 0 which depends only on f, L and T . We then have

‖yδ(ξ, ·)− xb(·)‖C0 ≤ O(1) · δ2/3,

and (3.17) yields (3.16).
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6. We are now ready to complete the proof. By step 4, the eigenvalues λn of the compact
operator DΦ(b∗) satisfy

inf
n≥1
|λn − 1| ≥ δ0 > 0.

As a consequence, the inverse linear operator [DΦ(b∗)− I]−1 is bounded. We can define the
continuous operator F on C0

(
[0, T ]

)
as the composition

F (b)
.
= b∗ + [DΦ(b∗)− I]−1 ◦

[
Φ(b∗) +DΦ(b∗)(b− b∗)− Φδ(b)

]
.

From (3.16) it follows

‖F (b)− b∗‖C0 ≤
O(1)

δ0
·
(
δ + δ2/3 + ‖b− b∗‖2C0

)
.

Therefore, for δ > 0 sufficiently small, one has∥∥F (b)− b∗
∥∥
C0 ≤ δ1/3 for all b ∈ C

(
[0, T ]

)
, ‖b− b∗‖C0 ≤ δ1/3.

On the other hand, for every b ∈ C([0, T ]) with ‖b − b∗‖C0 ≤ δ1/3, the function F (b)(·) is
Lipschitz continuous with some uniform Lipschitz constant M . In particular, F maps the
convex and compact subset

K =
{
b ∈ C0[0, T ] : ‖b− b∗‖C0 ≤ δ1/3, Lip(b) ≤M

}
into itself. By Schauder’s fixed point theorem, there exists bδ ∈ K such that F (bδ) = bδ. This
implies that bδ is a fixed point of Φδ with ‖bδ − b∗‖C0 ≤

√
δ. The family of optimal xbδδ (·, ξ),

ξ ∈ Ω thus provide a solution to the perturbed MFG, such that

sup
t∈[0,T ]

∫ t

0

∣∣xbδδ (·, ξ)
∣∣ dξ ≤ T · δ1/3.

Therefore, the solution x(t, ξ) ≡ x∗(t) is is structurally stable.

Remark 3.1 An immediate consequence of the above results is the non-uniqueness of so-
lutions to mean field games. Namely, given (f, L) satisfying (A1)-(A2), let ψ ∈ C2

+(IRn)
determine an optimal control problem where, for some x̄ ∈ IRn, the system (2.12)-(2.14)
admits two distinct solutions, both satisfying the structural stability assumptions in Theo-
rem 3.1. Then, by choosing κ > 0 large enough, we obtain a MFG with two solutions, both
structurally stable. In particular, non-uniqueness holds on an open set of MFG.

4 Generic single-valuedness of the best-reply map

In general, for a given η(·) in (1.3), there will be several players ξ ∈ Ω for which the optimal
control problem (1.4)–(1.6) has multiple solutions. For this reason, the map η 7→ η̃ = Φ(η)
at (1.8) can be multivalued. Lacking convexity, one cannot guarantee the existence of a fixed
point. The main result proved in this section is that, for a generic MFG, for every η(·) in
a suitable bounded subset of C2 functions, the set of players ξ ∈ Ω having multiple optimal
controls has measure zero. Hence the best reply map (1.8) is single-valued. The existence
of a fixed point, and the existence of a strong solution to the MFG, thus follow directly
from Schauder’s theorem. Throughout this section, we consider a quadruple (x̄, f, L, φ) ∈
L∞ × C3 × C3 × C3 such that f, L, and x̄ satisfy the following assumptions
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(B1) The function f is affine w.r.t. the control:

f(x, u, η) = f0(x, η) +
m∑
i=1

fi(x, η)ui . (4.1)

For some constant c1 independent of η, the vector fields fi satisfy∣∣fi(x, η)
∣∣ ≤ c1

(
|x|+ 1

)
. (4.2)

(B2) There exist constant c2 > 0 and a continuous function ` independent of η such that, for
all (x, u, η) ∈ IRn × IRm × IRN , one has

L(x, u, η) ≥ c2

(
|u|2 − 1

)
,∣∣Lx(x, u, η)

∣∣ ≤ `(|x|) · (1 + |u|2).

Moreover, for every x, η, the map u 7→ L(x, u, η) is uniformly convex. Namely, for some
δL > 0, the m×m matrix of second derivatives w.r.t. u satisfies

Luu(x, u, η) > δ · Im , (4.3)

for some δ > 0, uniformly positive for x, u, η in bounded sets.

(B3) The initial distribution of players, i.e. the push-forward of the Lebesgue measure on
[0, 1] via the map ξ 7→ x̄(ξ) ∈ IRn, is a probability measure µ0 with bounded support and
uniformly bounded density w.r.t. Lebesgue measure on IRn.

Under the above assumptions, by Lemma 2.1 every optimal control u∗(·) and optimal trajec-
tory x∗(·) for the optimization problem (1.4)–(1.6) satisfy the bounds

ess-sup
t∈[0,T ]

|u∗(t)| ≤ α0
.
= α

(
‖x̄‖L∞

)
, sup

t∈[0,T ]
|x∗(t)| ≤ β0

.
= β

(
‖x̄‖L∞

)
. (4.4)

As a consequence, any statistic η(·) in (1.3) will satisfy the a priori bound

‖η‖C0 ≤ γ0
.
=

(
N∑
i=1

∣∣∣∣ max
t∈[0,T ],|x|≤β(‖x̄‖L∞ )

φi(t, x)

∣∣∣∣2
)1/2

. (4.5)

Next, we recall that, for any given η(·), by the optimality conditions there exists an adjoint
vector p∗ ∈ C0([0, T ]) such that (x∗, p∗) = (xη, pη) solves the PMP{

ẋ = f(x, uη(t, x, p), η),

ṗ = − p · fx(x, uη(t, x, p), η)− Lx
(
x(t), uη(t, x, p), η

)
,

(4.6)

with terminal data of the form

x(T ) = y, p(T ) = ∇ψ(y). (4.7)

Here the optimal control u∗(t) = uη(t, x∗, p∗) is given by

uη(t, x, p) = argmin
ω

{
L
(
x, ω, η(t)

)
+ p f

(
x, ω, η(t)

)}
.
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By the strict convexity of L, since f is affine w.r.t. u, this minimizer can be determined as the
unique solution to

Lu
(
x, ω, η(t)

)
+ fu

(
x, ω, η(t)

)
= 0. (4.8)

Relying on the uniform bound on all optimal controls and optimal trajectories, proved in
Lemma 2.1, we now establish a uniform bound on all statistics η(·) in (1.3).

Lemma 4.1 Under the assumptions (B1)-(B2), for any φ ∈ C3 and any terminal cost
ψ ∈ C2

+, there exists a constant γ3 such that the composed map Φ in (1.7)-(1.8) satisfies
the implication

‖η‖C3 ≤ γ3 =⇒
∥∥Φ(η)

∥∥
C3 ≤ γ3 . (4.9)

Proof. 1. By the optimality conditions (4.4)-(4.7), the adjoint vector p∗ is bounded by

‖p∗‖C0 ≤
(
‖∇ψ‖C0(Bβ0)

+ ‖DxL‖C0(Bα0+β0+γ0 )

)
· exp

(
T · ‖Dxf‖C0(Bα0+β0+γ0 )

)
.
= σ0. (4.10)

Therefore, setting r0
.
= α0 + β0 + γ0 + σ0, we can assume that (x, u, p, η) take values inside a

fixed ball Br0 .

2. Proceeding by induction, we will show the implications

‖η‖Ck ≤ γk =⇒
∥∥Φ(η)

∥∥
Ck+1 ≤ γk+1 for k = 0, . . . , 2 , (4.11)

for some suitable constants γk.

Indeed, assume that ‖η‖Ck ≤ γk for some k ≤ 2. Since f, Lu ∈ C3 and

Luu(x, u, η) ≥ δr0 · Im

for all (x, u, η) ∈ Br0 , the implicit function theorem implies that the solution u(x, p, η) of (4.8)
is in Ck and satisfies

‖u‖Ck(Br0 ) ≤
(

1

δr0

)km
· αk .

Here the constant αk > 0 depends on r0, ‖f‖Ck+1(Br0 ), ‖L‖Ck+1(Br0 ). Hence, the solution

(xη, pη) of (4.6) is in Ck+1 and

‖xη‖Ck+1 ≤ βk+1, ‖pη‖Ck+1 ≤ σk+1

with βk+1, σk+1 > 0 depending on r0, ‖f‖Ck+1(Br0 ), ‖L‖Ck+1(Br0 ), and γ0, . . . , γk. As a conse-

quence, (1.7) implies

‖Φ(η)‖Ck+1 ≤ γk+1

where the constant γk+1 > 0 can be computed in terms of r0, ‖f‖Ck+1(Br0 ), ‖L‖Ck+1(Br0 ),

‖φ‖Ck+1(Br0 ), and γ0, . . . , γk.

Thus, by induction, (4.5) yields an a priori bound of η in (4.11). In particular, (4.9) holds.
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We are now ready to prove the main result of the paper.

Theorem 4.1 Consider the mean field game at (1.3)–(1.6). Assume that (x̄, f, L, φ) ∈ L∞×
C3 × C3 × C3, with f, L, x̄ satisfying (B1)-(B3). Then, for any constant K > 0, there exists
a Gδ set M ⊂ C2

+(IRn) such that for every terminal cost ψ ∈ M, the map η 7→ Φ(η) at (1.7)
is single-valued on the ball

BK
.
=
{
η : [0, T ] 7→ IRN ; ‖η‖C3 ≤ K

}
. (4.12)

As a consequence, the MFG admits a strong solution.

Proof. By suitably choosing the familyM of terminal costs, we need to show that, if ψ ∈M
and ‖η‖C3 ≤ K, then the set of players

P η =
{
ξ ∈ Ω ; the optimal control problem (1.4)–(1.6) has multiple solutions

}
has zero measure.

Toward this goal, let µ0 be a probability measure on IRn with bounded support and whose
density w.r.t. Lebesgue measure is uniformly bounded. Assume that for every given ε0 > 0,
we can prove

(G) There exists an open dense subset Mε0 ⊂ C2
+(IRn) such that for every ψ ∈ Mε0 and

η ∈ BK , the set of initial points

Sηε0
.
=
{
x0 ∈ IRn ; the optimization problem (1.4)–(1.6) has two solutions x1(·), x2(·)

with x1(0) = x2(0) = x0 , |x1(T )− x2(T )| ≥ ε0

}
(4.13)

has measure
µ0(Sηε0) < ε0 . (4.14)

Then the setM =
⋂
ε0>0

Mε0 is Gδ subset of C2
+(IRn). Moreover, for every ψ ∈Mε0 and η ∈ BK

one has
meas(P η) ≤ lim

ε0→0+
µ0

(
Sηε0
)

= 0 .

Indeed, this follows from the observation that, if two optimal trajectories have the same
terminal point, then by the necessary conditions they must coincide for all t ∈ [0, T ].

In the next several steps, we thus focus on a proof of (G).

1. Given ε0 > 0, we claim that the set

Mε0
.
=
{
ψ ∈ C2

+(IRn) ; µ0

(
Sηε0
)
< ε0 for every η ∈ BK

}
(4.15)

is open. Equivalently, its complement Mc
ε0 is closed.

Indeed, consider any sequence of elements ψn ∈ Mc
ε0 converging to ψ in C2 as n → ∞. For

each n ≥ 1, let ηn ∈ BK ⊂ C3 be such that

µ0

(
Sηnε0
)
≥ ε0. (4.16)
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By possibly taking a subsequence, we can assume that ηn converges to η in C2. By the upper
semicontinuity of the set of optimal solutions, one has

Sηε0 ⊇ lim sup
n→∞

Sηnε0
.
=

⋂
n≥1

⋃
k≥n
Sηkε0 . (4.17)

Therefore
µ0

(
Sηε0
)
≥ µ0

(
lim sup
n→∞

Sηnε0
)
≥ lim sup

n→∞
µ
(
Sηnε0
)
≥ ε0,

and this yields ψ ∈Mc
ε0 .

2. We will establish the density of the set Mε0 in C2 by constructing smooth perturba-
tions of the terminal cost ψ which are very small in the C2 norm, but possibly large in C3.
More precisely, let ρ0 > 0 be an upper bound for the density of the probability measure µ0

w.r.t. Lebesgue measure on IRn. Choose a radius r0 > ‖x̄‖L∞ , so that

Supp(µ0) ⊂ B(0, r0). (4.18)

Then choose R0 > 0 large enough so that, for every η ∈ BK , every optimal solution starting
at a point x0 ∈ B(0, r0) remain inside the cube [−R0, R0]n.

Dividing [−R0, R0]n into ν =
(
b2R0
ε0
c+ 1

)n
smaller cubes with side smaller than ε0, say

Γ1, . . . ,Γν , the perturbed terminal cost ψ] will be defined separately on each cube Γk, so that
the following proper ties hold.

(i) ψ] coincides with ψ on a neighborhood of the boundary ∂Γk.

(ii) For every k = 1, 2, . . . , ν one has the bound

‖ψ] − ψ‖C2(Γk) < ε0 . (4.19)

(iii) There exists an open subset Γ′k ⊂ Γk such that

meas(Γk \ Γ′k) <
ε1

ν
, (4.20)

Mk <
∣∣∣D3ψ](x)

∣∣ < 2Mk for all x ∈ Γ′k , (4.21)∣∣∣D3ψ](x)
∣∣ < 2Mk for all x ∈ Γk . (4.22)

It is clear that, given ε0, ε1,Mk, a function ψ] with the above properties does exist. Moreover,
the increasing sequence of numbers Mk+1 will be inductively defined in Step 5 so that Mk+1

is much larger than Mk.

3. For any given η(·) ∈ BK , we consider the map

y 7→ xη(0, y), (4.23)

where t 7→
(
xη(t, y), pη(t, y)

)
is the solution of (4.6) with terminal data (4.7). By the assump-

tion (B3) on the absolute continuity of the measure µ0 (describing the initial distribution of
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players) w.r.t. Lebesgue measure, we can choose δ1 > 0 such that the following holds. Calling
Dyx

η(0, y) the Jacobian matrix of the map (4.23), one has

µ0

({
y ∈ [−R0, R0]n ;

∣∣det
(
Dyx

η(0, y)
)∣∣ ≤ δ1

})
<

ε0

2
. (4.24)

From now on, we shall thus focus on the set of points y ∈ IRn where
∣∣det

(
Dyx

η(0, y)
)∣∣ > δ1,

so that the map y 7→ xη(0, y) is locally invertible.

1

2x  (t)

x (t)

x
0

Γ
k

Γ
h

y
1

y
2

Figure 1: The terminal cost ψ has uniformly bounded gradient. However, we can construct a pertur-
bation ψ] whose third derivatives have vastly different sizes on different cubes Γk of the partition.

4. To help the reader, we first explain the heart of the matter, with the aid of Fig. 1. Let
η ∈ BK be given. Assume that x0 is an initial point from which two optimal trajectories x1(·),
x2(·) originate. To fix ideas, assume

y1 = x1(T ) ∈ Γ′h , y2 = x2(T ) ∈ Γ′k ,

with h < k. On Γ′k the terminal cost function ψ] has a much larger third derivative than on
Γ′h. We observe that the Jacobian matrix of the map y 7→ xη(0, y) is uniformly invertible in
a neighborhood of y1 and y2. By the implicit function theorem, for all x ∈ B(x0, δ2), on a
ball centered at x0 with sufficiently small radius δ2 > 0, we can thus define the cost functions
Φ1(x), Φ2(x), corresponding to trajectories x1(·), x2(·) that start at x, satisfy the PMP, and
terminate in a neighborhood of y1, y2, respectively. Since the terminal costs ψ]

(
xi(T )

)
of these

trajectories have very different third order derivatives, we will show that the cost functions
Φ1,Φ2 also have different third order derivatives in a neighborhood of x0. Therefore, the set
of points where Φ1(x) = Φ2(x) must be very small, regardless of the particular function η(·).
A proof of these claims will be worked out with the aid of

Lemma 4.2 Consider a system of n+ n ODEs on the interval [0, T ],{
ẋ(t) = F

(
t, x(t), p(t)

)
,

ṗ(t) = G
(
t, x(t), p(t)

)
.

(4.25)

Assume that all coefficients are uniformly bounded in C2.
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(i) Consider a family of solutions (x, p)(t, y) with initial data

x(0) = y, p(0) = ϕ(y). (4.26)

Assume that ϕ ∈ C2 and the map y 7→ x(T, y) is uniformly invertible. More precisely,
the norm of its n× n Jacobian matrix satisfies∣∣∣Dyx(T, y)

∣∣∣ ≤ C,
∣∣∣[Dyx(T, y)

]−1
∣∣∣ ≤ C. (4.27)

Then the second derivatives D2
xp of the map x(T, y) 7→ p(T, y) satisfy a uniform bound,

depending on the C2 norms of the functions F,G, ϕ, and on the constant C in (4.27).

(ii) Similarly, consider a family of solutions (x, p)(t, y) with terminal data

x(T ) = y, p(T ) = ϕ(y). (4.28)

Assume that ϕ ∈ C2 and the map y 7→ x(0, y) is uniformly invertible. More precisely,
the norm of its n× n Jacobian matrix satisfies∣∣∣Dyx(0, y)

∣∣∣ ≤ C,
∣∣∣[Dyx(0, y)

]−1
∣∣∣ ≤ C. (4.29)

Then the second derivatives D2
xp of the map x(0, y) 7→ p(0, y) satisfy a uniform bound,

depending on the C2 norms of the functions F,G, ϕ, and on the constant C in (4.29).

Proof. Part (ii) is entirely similar to part (i), after reversing the direction of time. We thus
focus on a proof of (i).

Standard results on the higher order differentiability of solutions to ODEs, see for example
Theorem 4.1 in [15], p.100, imply that the maps

y 7→ x(T, y), y 7→ p(T, y) (4.30)

are twice continuously differentiable, and satisfy bounds of the form∣∣D2
yx(T, y)

∣∣ ≤ C1,
∣∣D2

yp(T, y)
∣∣ ≤ C1,

for some constant C1 depending only on the C2 norms of F,G, ϕ. By assumption, the first
map in (4.30) is invertible because of (4.27). As a consequence, the inverse function x 7→ y(x)
is well defined, and has a bounded second derivatives, depending on the constants C,C1.

This implies that the composed map x 7→ p
(
T, y(x)

)
is C2, and its second derivatives can be

bounded in terms of the constants C,C1.

We now resume the proof of Theorem 4.1.

5. We finalize the construction of the perturbed terminal cost ψ] by assigning the increasing
sequence of numbers Mk.

We start by choosing M1 > ‖ψ‖C3 . By induction, assume now that M1, . . . ,Mk−1 have been
chosen.
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Consider any trajectory satisfying the PMP, starting at some point x ∈ BR and ending inside
some Γj with j ≤ k − 1. We shall apply Lemma 4.2 in the special case where (4.25) is given
by (4.6).

Calling t 7→ (xj , pj)(t, y) the solution to (4.6) with terminal condition (x(T ), p(T )) = (y, ψ](y))
for y ∈ Γj . For x = xj(0, y), we define

Φj(x)
.
=

∫ T

0
L
(
xj(t, y), uη(t, xj(t, y), pj(t, y)), η(t)

)
dt+ ψ](y).

Recalling (4.6) and (4.8), the derivative of the cost w.r.t. the terminal point of the trajectory
is computed by

DΦj(x)Dyxj(0, y) =

∫ T

0
Lx
(
xj , u

η, η
)
Dzxj + Lu

(
xj , u

η, η
) d
dy
uηdt+Dψ](y)

=

∫ T

0
− d

dt
[pj(t, y)Dzxj(t, y)] dt+Dψ](y) = pj(0, y)Dzxy(0, y).

This implies
DΦj(x) = DΦj(xj(0, y)) = pj(0, y) .

By part (ii) of Lemma 4.2, the a priori bound on (4.22) on the third derivative of ψ] yields
an a priori bound on the third derivative of the value function D3Φj(x), for any x = xj(0, y)
with y ∈ Γj . Say, ∣∣D3Φj(x)

∣∣ ≤ M ′j . (4.31)

We now apply part (i) Lemma 4.2. This implies that, for any initial data (4.26), with
‖D2ϕ‖C2 ≤M ′j , the solution to (4.25) satisfies a bound of the form∣∣D2

xp(T, x)
∣∣ ≤ M ′′j . (4.32)

The constant Mk is now chosen so that

Mk > max{M ′′1 , . . . ,M ′′k−1}. (4.33)

We observe the above construction achieves the following:

Consider two families of trajectories satisfying the PMP, starting in a neighborhood of the
same point x0, and ending in different cubes, say Γ′j and Γ′k, with j < k. By the choice of Mk

at (4.33) and the bounds (4.31), at all initial points y such that xk(T, y) ∈ Γ′k, we have∣∣D3Φj(x)
∣∣ ≤ M ′j ,

∣∣D3Φk(x)
∣∣ > M ′j .

Indeed, if the second inequality did not hold, then we would have the bound (4.32), contrary
to the construction of ψ].

Thus, the third derivatives D3Φj(x) and D3Φk(x) are strictly different in a neighborhood of
x0.

6. Based on the previous analysis, we give a bound on the Lebesgue measure of the set of
initial points x0 from which two distinct optimal trajectories initiate, ending in different cubes
Γj ,Γk. This set contains:
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• Points x0 = xη(0, y) with y ∈ B(0, R0) such that the determinant of the Jacobian matrix
Dyx

η(0, y) is small: ∣∣det
(
Dyx

η(0, y)
)∣∣ ≤ δ1 .

The Lebesgue measure of this set is < δ1 ·meas
(
B(0, R0)

)
. Choosing δ1 small enough,

since the probability measure µ0 is absolutely continuous, we achieve (4.24).

• Points x0 ∈ B(0, R0) such that x0 = xη(0, y) for some y ∈ Γk \ Γ′k. By (4.20) it follows

meas

(
ν⋃
k=1

(Γk \ Γ′k)

)
< ε1 .

Again, since µ0 is absolutely continuous, by choosing ε1 > 0 sufficiently small, we achieve

µ0

({
xη(0, y) ; y ∈

⋃
k

(Γk \ Γ′k)
})

<
ε0

2
. (4.34)

Toward (4.34), it is important to observe that the determinant of the Jacobian matrix
Dyx

η(0, y) satisfies a uniform bound, depending on the second derivatives D2ψ]. By
(4.19) these remain bounded, even when the third derivatives are changed.

• The remaining set S of all points x0 ∈ B(0, R0) which lie outside the previous two
sets. We claim that S has measure zero. Indeed, if x0 ∈ S is the initial point for two
trajectories satisfying the PMP and terminating inside two distinct sets Γ′j ,Γ

′
k, then the

corresponding value functions Φj ,Φk has distinct third derivative at x0. Therefore, x0

cannot be a Lebesgue point of the coincidence set {x ; Φj(x) = Φk(x)}. Since the set
has no Lebesgue points, it has measure zero. By the absolute continuity of µ0, we obtain

µ0(S) = 0. (4.35)

Combining the three bounds (4.24), (4.34), and (4.35), this achieves the proof.

5 Examples of structurally stable solutions

In this section we give some examples of first order mean field games with one or more solutions,
and discuss their stability.

To motivate the examples concerning differential games, we first consider two maps of the unit
disc B1 ⊂ IR2 onto itself, in polar coordinates (r, θ).

φ1(r, θ) =

(
2r

1 + r2
, θ + θ0

)
, φ2(r, θ) =

(
r

1 + r2
, θ

)
, (5.1)

where the rotation angle satisfies 0 < θ0 < 2π. Notice that the origin is the unique fixed point
of both φ1 and φ2. However, this fixed point is asymptotically stable for the map φ2, but
unstable for φ1. Indeed, for every r̄ ≥ 0, the sequence of radii

rn+1 =
rn

1 + r2
n

, r0 = r̄,

is decreasing and converges to 0. On the other hand, for 0 < r̄ < 1, the sequence

rn+1 =
2rn

1 + r2
n

, r0 = r̄,

is increasing and converges to 1.
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5.1 Games with a unique solution, stable or unstable.

In the following examples of mean field games, as probability space labeling the various players
we simply take Ω = [0, 1]. Motivated by (5.1), we begin by constructing mean field games
with a unique solution, which is unstable in the first example, and stable in the second.

Example 5.1 Consider a game where each player ξ ∈ [0, 1] minimizes the same cost

J(u) =

∫ T

0
|u(t)|2 dt+

∣∣x(T )− ψ(b(T ))
∣∣2, (5.2)

subject to the trivial dynamics
ẋ(t) = u(t), (5.3)

with initial data
x(ξ, 0) = x̄(ξ) = 0 for all ξ ∈ [0, 1]. (5.4)

Here u(t), x(t) ∈ IR2 while, as in (3.3), b(T ) ∈ IR2 denotes the barycenter of the terminal
positions of all players. Two cases will be considered.

1 - An unstable game. Let the terminal cost be

ψ(x) =
1 + T

T
· φ1(x),

where φ1 is the first map defined at (5.1), using polar coordinates. In this case, x(t, ξ) ≡ 0 for
all (t, ξ) ∈ [0, T ]× [0, 1] provides the unique solution to the mean field game. Indeed, given a
barycenter b(T ), the PMP ẋ = −p

2
,

ṗ = 0,
with

x(0) = 0 ,

p(T ) = 2(x(T )− ψ(b(T ))),
(5.5)

has a unique solution

x(t) =
t

1 + T
· ψ(b(T )) t ∈ [0, T ]. (5.6)

All the optimal trajectories x(·, ξ) of the mean field game are the same. In particular, if x∗(t, ξ)
is a solution to the game then

b∗(T ) =

∫ 1

0
x∗(T, ξ)dξ = x∗(T, ξ) =

T

1 + T
· ψ(b∗(T )) = φ1(b∗(T )).

Notice that φ1 has a unique fixed point, i.e. the origin, we have b∗(T ) = 0 and (5.6) yields
x∗(·, ξ) ≡ 0 for all ξ ∈ [0, 1]. On the other hand, for any sequence b(k) such that b(k+1) =
Φ(b(k)), one has that

b(k+1)(T ) =
κT

1 + κT
· ψ
(
b(k)(T )

)
= φ

(
b(k)(T )

)
.

Since 0 is an unstable equilibrium of φ, the zero solution of game is unstable.

2 - A stable game. Similarly, if the terminal cost ψ is given by

ψ(x) =
1 + T

T
· φ2(x)

with φ2 being the first map in (5.1) then x∗(ξ, ·) ≡ 0 for all ξ ∈ [0, 1] is again the unique
solution of the MFG. Moreover, since 0 is asymptotically stable for the map φ2, the solution
x∗ is stable.
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5.2 Games with multiple solutions.

Next, we give an example of a mean field game which admits both stable and unstable (but
structurally stable) solutions.

Example 5.2 Here all controls and trajectories are scalar functions. The objective of every
player is

minimize:

∫ T

0

[
|u(t)|2 +

1

1 + x2(t)
+ κ ·

∣∣x(t)− b(t)
∣∣2] dt, (5.7)

subject to
ẋ = u, x(0, ξ) = 0 for all ξ ∈ [0, 1]. (5.8)

Here b denotes the barycenter of the distribution of players as in (3.3).

Proposition 5.1 For the MFG (5.7)–(5.8), the following holds.

(i) For all κ > 1 and T > 2, the mean field game has at least three solutions. These have
the form

xi(t, ξ) = yi(t), i = 0, 1, 2, (5.9)

with y0(t) = 0, while y1 is monotone increasing, and y2(t) = −y1(t) for t ∈ [0, T ].

(ii) The zero solution is unstable. However, assuming that T 6= (2n−1)π
2 for every n ≥ 1, this

solution is structurally stable.

(iii) Both solutions x1, x2 are stable, and structurally stable.

Proof. 1. Given a function b(·), the reduced Hamiltonian of (5.7)-(5.8) is computed by

Ĥb(x, p, t) =
1

1 + x2
+ κ ·

∣∣x− b(t)∣∣2 − p2

2
.

Assume that κ > 1. For every p ∈ IR, t ≥ 0, we have

Ĥb
xx(x, p, t) = 2 ·

(
κ− 1

(1 + x2)2
+

4x2

(1 + x2)3

)
> 0 for all x ∈ IR,

hence the map x 7→ Ĥb(x, p, t) is strictly convex. Thus, by the same argument in Step 2 of the
proof of Theorem 3.1, the optimal control problem (5.7)–(5.4) has a unique optimal solution
and all the optimal trajectories x(·, ξ) of the mean field game coincide. As a consequence,
x(·, ξ) = b(·) is an optimal solution to the optimization problem

minimize:

∫ T

0

[
|ẋ|2

2
+

1

2
(
1 + x2(t)

)] dt, subject to x(0) = 0. (5.10)

Here, we can think of

K(ẋ) =
ẋ2

2
, V (x) = − 1

2(1 + x2)
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respectively as kinetic and potential energy. The solution is a motion governed by the Euler-
Lagrange equations

ÿ(t) = −Vy(y) = − y(t)[
1 + y2(t)

]2 , y(0) = 0, ẏ(T ) = 0. (5.11)

It is clear that y ≡ 0 is a solution of (5.11) and this provides the first solution of the mean
field game

x(t, ξ) = 0 for all ξ ∈ [0, 1], t ∈ [0, T ]. (5.12)

To complete this step, we claim that (5.11) admits at least two additional solutions y1(·), y2(·),
such that y1 is strictly increasing in [0, T ], and y2(t) = −y1(t) . The mean field game has two
more solutions x1, x2, as in (5.9).

Observe that solutions to the Euler-Lagrange equations conserve the total energy

E(y, ẏ) = K(ẏ) + V (y) =
ẏ2

2
− 1

2(1 + y2)
. (5.13)

Level sets where E is constant are plotted in Fig. 2. Solutions to the boundary value problem
(5.11) correspond to trajectories that start at time t = 0 on the vertical axis where y = 0, and
end at time t = T on the horizontal axis where ẏ = 0.

Figure 2: The level sets where the energy E(y, ẏ) at (5.13) is constant.

We thus seek an increasing solution of

ẏ(t) =

√
1

1 + y2(t)
− 1

1 +M2
, y(0) = 0, (5.14)

for some constant M such that M = y(T ). Calling y = y(t, c) the solution to (5.14) with
M = c, we have

√
c

1 + c2
·
√
c− y(t, c)) ≤ ẏ(t, c) ≤

√
2c

1 + c2
·
√
c− y(t, c)).
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By a comparison argument, we obtain for all 0 ≤ t ≤
√

2(1 + c2) that

c− c ·
(

1− t

2(1 + c2)

)2

≤ y(t, c) ≤ c− c ·

(
1− t√

2(1 + c2)

)2

. (5.15)

In particular, assume that T >
√

2. For every c ≥
√

T 2−2
2 , the solution y(·, c) is defined on

[0, T ] and satisfies

c ·

(
1−

(
1− 1

T

)2
)
≤ y(T, c) ≤ c.

Calling M
.
= inf

{
c ≥

√
T 2−2

2 : y(T, c) ≤ c
}
> 0, we claim that y(T,M) = M . Indeed, assume

that M − y(T,M) = δ0 > 0. Then, by (5.15), one has

M − δ0 = y(T,M) ≤ M ·

1−

(
1− T√

2(1 +M2)

)2
 .

Hence, M −
√
T 2 − 2

2
= ε0 > 0 and the map t 7→ y(t,M − ε) is defined on [0, T ] for all

0 < ε < ε0. Moreover, by the monotone increasing property of c 7→ y(T, c), we have

y(T,M − ε) ≤ y(T,M) = M − δ0 ≤ M − ε

for all 0 < ε < min{ε0, δ0}. This yields a contradiction.

In the next steps we will show that all three solutions are essential, the zero solution is unstable,
and the two non-zero solutions are stable.

2. We begin by showing that the null solution x(t, ξ) ≡ 0 is unstable but essential. In the
present case, the map b 7→ b̃ = Φ(b) at (1.7)-(1.8) takes the form

Φ(b)(t) = xb(t) for all t ∈ [0, T ],

where (xb, pb) denotes the unique solution of the PMP
ẋ = u(x, p) = − p

2
,

ṗ =
2x

(1 + x2)2
− 2κ · (x− b),

{
x(0) = 0,

p(T ) = 0,
(5.16)

where the optimal control is

u(x, p) = argmin
ω∈IR

{
ω2 + pω

}
= − p

2
.

Linearizing the system (5.16) at b ≡ 0 we obtain an expression for the differential DΦ(0),
namely

DΦ(0) b = b̂,
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where b̂(t) = X(t) is the function obtained by solving the linear systemẊ(t)

Ṗ (t)

 =

 0 −1/2

2− 2κ 0

X(t)

P (t)

+ 2κb(t)

0

1

 , X(0) = P (T ) = 0. (5.17)

Eliminating the variable P = −2Ẋ, one is led to the second order ODE

−2Ÿ = (2− 2κ)Y + 2κb.

To determine eigenvalues λ and eigenfunctions Y , we need to solve

−2Ÿ = (2− 2κ)Y +
2κ

λ
Y, Y (0) = Ẏ (T ) = 0.

Ÿ +
(

1− κ+
κ

λ

)
Y = 0, Y (0) = Ẏ (T ) = 0. (5.18)

The eigenvalues and eigenfunctions of DΦ(0) are thus found to be

λn =
κ

κ+ (2n−1)2π2

4T 2 − 1
, Yn(t) = sin

(
(2n− 1)π

2T
t

)
, n = 1, 2, . . . . (5.19)

In particular, if T >
π

2
and κ > 1, computing the first eigenvalue of DΦ(0) one finds λ1 > 1.

This implies that the null solution x(t, ξ) ≡ 0 is unstable.

On the other hand, we observe that, by (5.19), if

T 6= (2n− 1)π

2
for every n ≥ 1, (5.20)

then 1 is not an eigenvalue of DΦ(0). In this case, using the same argument as in Step 4 of
the proof of Theorem 3.1, we conclude that y1 is essential.

3. We now prove that y1 is stable. Given any b ∈ C([0, T ]), we first compute DΦ(y1)(b̄). As
in step 2, for every ε ∈ IR, let (xε(t), pε(t)) be the solution of (5.16) with b = y1 + εb̄. By the
linearization, it holds xε(t)

pε(t)

 =

y1(t)

p1(t)

+ ε

xb̄(t)

pb̄(t)

+ o(ε).

Here

[
xb̄(t)
pb̄(t)

]
is the solution to the equation obtained linearizing (5.16) around y1, namely


ẋ(t) = − p(t)

2
,

ṗ(t) = 2

(
1− 3y2

1

(1 + y2
1)3
− κ
)

x + 2κb̄ ,

x(0) = 0,

p(T ) = 0.
(5.21)

Let the pair (γ, b̄) denote an eigenvalue and an eigenfunction of DΦ(y1). As in Step 2, we
have

DΦ(y1)(b̄) = xb̄ = γb̄,
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and xb̄ solves the two point boundary problem

ÿ(t) =

[
κ ·
(

1− 1

γ

)
+

3y2
1 − 1

(1 + y2
1)3

]
· y(t), y(0) = ẏ(T ) = 0. (5.22)

To verify the stability of y1, we will show that all eigenvalues of DΦ(y1) are contained
within the open interval ]0, 1[. Assume by a contradiction that DΦ(y1) has an eigenvalue
γ ∈ IR\ ]0, 1[ , so that the equation (5.22) has a nonzero solution y2. Recalling that t 7→
y1(t) ∈ [0,+∞[ is strictly increasing with y1(0) = 0, we define

t1
.
= min

{
t ∈ [0, T ] : κ ·

(
1− 1

γ

)
+

3y2
1(t)− 1

(1 + y2
1)3(t)

≥ 0

}
.

For every τ ∈ [t1, T ], from (5.22) it follows

−y2(τ)ẏ2(τ) =

∫ T

τ
ẏ2

2(t)dt+

∫ T

τ
κ ·
(

1− 1

γ

)
+

3y2
1 − 1

(1 + y2
1)3

y2
2(t)dt > 0.

Therefore, both y and ẏ do not change sign in [t1, T ]. Without loss of generality, we can
assume that y is positive in [t1, T ]. Set

t2
.
= max

{
t ∈ [0, t1] : y2(t) = 0

}
.

We then have

y′2(t2) > 0, y2(t2) = 0, and y2(t) ≥ 0 for all t ∈ [t2, T ].

On the other hand, since y1 is an increasing solution of (5.11), the function z1
.
= ẏ1 solves the

equation

z̈(t) =
3y2

1 − 1

(1 + y2
1)3
· z(t), ż(0) = z(T ) = 0.

Thus, for all t ∈ [t2, T ], one has

[ẏ2(t)z1(t)]′ = [ż1(t)y2(t)]′ +

(
1− 1

γ

)
y2(t)z2(t) ≥ [ż1(t)y2(t)]′,

and this yields
ẏ2(t)z1(t)− ẏ2(t2)z1(t2) ≥ ż1(t)y2(t). (5.23)

Equivalently,
d

dt

(
y2(t)

z1(t)

)
≥ ẏ2(t2)z1(t2) · 1

z2
1(t)

for all t ∈ [t2, T ].

This implies

y2(t) ≥ ẏ2(t2)z1(t2) ·
∫ t

t2

1

z2
1(t)

dt.

Therefore, by (5.23) one has

ẏ2(t) ≥ ẏ2(t2)z1(t2) ·
[

1

z1(t)
+ ż1(t) ·

∫ t

0

1

z2
1(s)

ds

]
. (5.24)
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To obtain a contradiction, we will show that

0 = ẏ2(T ) = ẏ2(t2)z1(t2) · lim
t→T−

[
1

z1(t)
+ ż1(t) ·

∫ t

0

1

z2
1(s)

ds

]
> 0. (5.25)

Assume that y1(0) = v0 and β = y1(T ). We then have

z1(t) = ẏ1(t) =

(
v2

0 −
y2

1(t)

1 + y2
1(t)

)1/2

, v2
0 =

β2

1 + β2
,

and

ż1(t) = ÿ1(t) = − y1(t)

(1 + y2
1(t))2

.

By a change of variable, (5.25) is equivalent to

I
.
= lim

y→β−

[
(1 + β2)1/2(1 + y2)1/2

(β + y)1/2(β − y)1/2
− y

(1 + y2)2
·
∫ y

0

(1 + β2)3/2(1 + z2)3/2

(β + z)3/2(β − z)3/2
dz

]
> 0.

Notice that for β > 0 sufficiently large, we have

lim
y→β

[
(1 + β2)1/2(1 + y2)1/2

(β + y)1/2(β − y)1/2
− 1 + β2

√
2β(β − y)1/2

]
= 0 ,

and

y

(1 + y2)2
·
∫ y

0

(1 + β2)3/2(1 + z2)3/2

(β + z)3/2(β − z)3/2
dz ≤ y(1 + β2)3/2

(1 + y2)1/2(β + y)3/2

∫ y

0
(β − z)3/2dz

=
2y(1 + β2)3/2

(1 + y2)1/2(β + y)3/2
·
[

1

(β − y)1/2
− 1

β1/2

]
.

In particular, this implies

I ≥ 1 + β2

β
√

2
+ (1 + β2) · lim

y→β−

(
1√
2β
− 2y(1 + β2)1/2

(1 + y2)1/2(β + y)3/2

)
· 1

β − y
=

1 + β2

β
√

2
> 0 .

This shows that all eigenvalues of DΦ(y1) are contained in the open interval ]0, 1[ , and y1 is
a stable solution of the MFG. By symmetry, x2(t, ξ) = y2(t)

.
= −y1(t) for t ∈ [0, T ] and all

ξ ∈ [0, 1], is also a stable solution of the MFG.

5.3 Examples of games with no solutions.

Example 5.3 Consider the mean field game on the time interval t ∈ [0, T ], where player
ξ ∈ Ω = [0, 1] has dynamics

ẋ = u ∈ [−1, 1], x(0, ξ) = 0. (5.26)

The goal of player ξ is to optimize his terminal position relative to the distribution of the
other players, namely

maximize:
∣∣x(T, ξ)− b(ξ)

∣∣2, (5.27)
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where

b(ξ) =

∫ 1

0
e−|ζ−ξ|

2 · x(T, ζ) dζ. (5.28)

We claim that this game has no strong solution. Indeed, if b(ξ) ≡ 0, then every player has
two equally good strategies:

u(t) ≡ 1, x2(t) = t or u(t) ≡ −1, x2(t) = −t. (5.29)

This cannot be a solution, because ξ 7→ x(T, ξ) ∈ {−T, T} is a measurable map, and the
integral in (5.28) cannot be identically zero.

On the other hand, if b(ξ) is not identically zero, then∫ 1

0
b(ξ)x(T, ξ) dξ =

∫ 1

0
b(ξ) · (−T sign b(ξ)

)
dξ = − T

∫ 1

0

∣∣b(ξ)∣∣ dξ < 0.

However, the definition of b implies∫ 1

0
b(ξ)x(T, ξ) dξ =

∫ 1

0

(∫ 1

0
x2(T, ζ)e−|ζ−ξ|

2
dζ

)
x(T, ξ) dξ

=

∫ 1

0

∫ 1

0
e−|ζ−ξ|

2
x(T, ζ)x(T, ξ) dζdξ ≥ 0,

reaching a contradiction.1 Notice that here the unique mild solution is a measure, where each
player uses the two controls in (5.29) with equal probability.

Example 5.4 Consider the mean field game on the time interval t ∈ [0, T ], where all players
have the same dynamics and the same cost functional:

minimize:

∫ T

0
u2(t) dt+ ψ

(
x(T )

)
, (5.30)

subject to

ẋ = u− b2, |u(t)| ≤ 1, x(0, ξ) = 0 for all ξ ∈ Ω , (5.31)

and with terminal constraint

ϕ(x(T )
) .

=
(
T − x(T )

)
· x(T ) = 0. (5.32)

Here

b(t)
.
=

∫
Ω
x(t, ξ) dξ (5.33)

1Indeed, if the kernel can be written as the convolution ϕ∗ϕ, for some even function ϕ(z), rapidly decreasing
as |z| → ∞, then (replacing z with z − y as variable of integration and using the fact that ϕ(s) = ϕ(−s))∫∫

(ϕ ∗ ϕ)(x− y)f(x)f(y) dxdy =

∫ ∫ ∫
ϕ(x− y − z)ϕ(z)f(x)f(y) dzdxdy

=

∫ ∫ ∫
ϕ(z − x)ϕ(z − y)f(x)f(y) dzdxdy =

∫
(ϕ ∗ f)(z) · (ϕ ∗ f)(z) dz ≥ 0.
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denotes the barycenter of the distribution of players at time t, while the terminal cost is a
smooth function that satisfies

ψ(x) =

{
0 if x = 0,
−2T if x = T.

(5.34)

Notice that the terminal constraint (5.32) is equivalent to

x(T ) ∈ {0, T}. (5.35)

We claim that this mean field game has no solution. Namely, the “best reply map” X 7→ Ψ(X)

from L1
(

Ω ; C
(
[0, T ]; IRn

))
into itself does not have any fixed point. To prove this, consider

first the case where X = 0 ∈ L1
(

Ω ; C
(
[0, T ]; IRn

))
. That means:

x(t, ξ) = 0 for all t ∈ [0, T ] and µ-a.e. ξ ∈ Ω. (5.36)

In this case, b(t) = 0 for all t ∈ [0, T ]. Hence the optimal strategy for every player is to choose
u(t, ξ) = 1. The corresponding trajectory x(t, ξ) = t satisfies the terminal constraint (5.32)
and achieves minimum cost

Jmin =

∫ T

0
1 dt+ ψ(T ) = T − 2T = − T.

On the other hand, if (5.36) fails, then b(t) is not identically zero and the solution to (5.31)
cannot attain the value x(T ) = T . Hence the best strategy for every player is to take u(t, ξ) ≡
0, which yields the trajectory x(t, ξ) = 0, with zero cost.

We have thus shown that

0 /∈ Ψ(0), while Ψ(X) = {0} for all X 6= 0,

hence Ψ cannot have a fixed point.

Notice that in this example the mean field game does not even admit mild solutions, in the
randomized sense.

We observe that in this example, the minimum cost does not depend continuously on the
parameter b(·). Namely, it jumps from 0 down to −T as b becomes the zero function. This is
due to a lack of transversality in connection with the terminal constraint.

6 Concluding remarks

In this paper we considered a class of first order mean field games, characterized by 5-tuples
(f, L, ψ, φ, x̄) specifying the dynamics, cost functionals, averaging kernels, and initial distri-
bution of players.

The main results show that, generically, for every given η(·) a.e. player has a unique optimal
control t 7→ uη(t, ξ). As a consequence, the “best reply” map η 7→ Φ(η) at (1.8) is single
valued, and the MFG has a strong solution. Moreover, there are open sets of games with
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unique solutions, and open sets of games with multiple solutions. These can be stable, or
unstable, in the sense of Definition 1.2.

It would be of interest to analyze whether similar results remain valid in a more general setting.
Namely:

(i) Systems with fully nonlinear dynamics, i.e. where the function f(x, u, η) in (1.5) is not
necessarily affine w..r.t. the control.

(ii) Optimal control problems in the presence of terminal constraints, say

gi
(
x(T, ξ)

)
= 0, i = 1, . . . , N.

In all our previous examples, the mean field games had structurally stable solutions. We thus
conclude the paper with a natural conjecture:

Conjecture 6.1 For a generic 5-tuple (f, L, ψ, φ, x̄) ∈ X , the MFG (1.3)–(1.6) has finitely
many solutions, all of which are structurally stable.
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