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Several programs of research have sought to assess the replicability of
scientific findings in different fields, including economics and psychology.
These programs attempt to replicate several findings and use the results to
say something about large-scale patterns of replicability in a field. However,
little work has been done to understand the analytic methods used to do this,
including what they are assessing and what their statistical properties are.
This article examines several methods that have been used to study patterns
of replicability in the social sciences. We describe in concrete terms how each
method operationalizes the idea of “replication” and examine various statis-
tical properties, including bias, precision and statistical power. We find that
some analytic methods rely on an operational definition of replication that
can be misleading. Other methods involve more sound definitions of repli-
cation, but most of these have limitations, such as large bias and uncertainty
or low power. The findings suggest that we should use caution interpreting
the results of such analyses and that work on more accurate methods may be
useful to future replication research efforts.

1. Introduction. The replication crisis in science, particularly in psychology, has in-
volved efforts to empirically replicate scientific findings. Though not the first such programs,
the Replication Project: Psychology (RPP) (Open Science Collaboration (2015)) and the
Replication Project: Economics (RPE) (Camerer et al. (2016)) have been among the most
prominent in this discussion. Both of these took a set of findings and attempted a single
replication of each: the RPE involved 18 findings of different phenomena, while the RPP at-
tempted to replicate 100 findings. These programs were influential in shaping how we think
about replicability, as various research programs have likewise attempted to replicate multi-
ple findings (e.g., Camerer et al. (2018); Klein et al. (2018)). The results of such programs
remain among the most commonly cited evidence of a crisis. For example, the results of the
RPP have widely been interpreted to indicate that 61% of their replication attempts failed
by both the academic literature and popular press (e.g., Yong (2016); Wood and Randall
(2018)). Similarly concerning are reports that replication studies in the social sciences tend
to find effects that are between 46% and 64% smaller than original studies (Camerer et al.
(2018)).

Yet, figures like that, 61% failure rate or 64% decrease in effect sizes, are without context:
they arise from statistical analyses, and their interpretation must take into account at least
two aspects of those analyses. First, any analysis method for replication depends on a precise
operational definition of what it means for a finding (or several findings) to “replicate.” While
the idea of “replication” might seem intuitive, it is often difficult to define it precisely (see
Bollen et al. (2015); Shapin and Shaffer (1985)). Perhaps because of this, researchers seldom
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specify a concrete definition, and often it is up to the reader to discern it. Moreover, different
analysis methods can rely on different or even conflicting definitions of replication. Second,
the results of statistical analyses are subject to error. Null hypothesis tests, for instance, can
produce type I and type II errors. Estimates may have bias, and, even if they are unbiased,
they still must be viewed in light of their statistical uncertainty. Thus, in order to understand
a statistic like that 61% failure rate, we need to know: (1) what it means for replications to
fail, and (2) how accurate the methods are that produced that statistic.

When researchers attempt replications of findings for several different phenomena, there
are at least two ways to talk about analysis methods. The first involves determining whether
a specific replication study failed (i.e., for a single finding). We call these pairwise analyses,
and programs like the RPP and RPE have used a variety of such methods. The most common
pairwise analysis concludes that a replication failed if it disagrees with the original study
in sign or statistical significance (e.g., the original study is significant, but the replication is
not). Various researchers have challenged pairwise analysis methods common in replication
research (e.g., Etz and Vandekerckhove (2016); Hartgerink, Wicherts and van Assen (2017);
van Aert and van Assen (2017); Hedges and Schauer (2019a, 2019b)). However, such chal-
lenges largely focus on proposing alternative methods rather than clarifying the properties of
existing ones.

The second class of methods is less concerned with individual replication studies but rather
on the entire group of findings. We call these groupwise methods, and they quantify the extent
to which a series of different findings were successfully replicated. For instance, inferences
are often framed in terms of whether original and replication studies involve similar effects on
average (see Open Science Collaboration (2015); Camerer et al. (2016)). Very little attention
has been paid to groupwise analysis methods. This is important, because the results of these
methods are often used to characterize the replication crisis, but their statistical properties are
seldom understood.

This article examines groupwise analysis methods that researchers have used to assess the
replicability of several findings. Our goal is to shed light on the properties of these methods
so that we can better understand the results of empirical research. We focus primarily on six
methods used in RPP, RPE and the Replication Project: Science and Nature (RPSN) (Camerer
et al. (2018)). We also consider one other method that was proposed to address some of the
shortcomings of these methods which was also used by the RPE and RPSN (Patil, Peng
and Leek (2016)). While these are not the only relevant groupwise analysis methods, they
have been used to support some prominent claims about the replication crisis in science.
Though we are less concerned with proposing a litany of alternative methods, we do discuss
potential corrections (where possible). The following sections outline the types of replication
research relevant to groupwise analysis methods and describe a relevant statistical model to
formalize analyses of replication. Then, for a variety of analytic methods that replication
research programs have used, we examine what they are attempting to assess and delineate
some of their statistical properties. These methods, displayed in Table 1, include estimating
the proportion of failed replications as well as comparisons of effect sizes and p-values from
original and replication studies. For each method we highlight its properties under plausible
sets of conditions, including with data from the RPE, RPP and RPSN. In some cases we find
that the methods focus on conceptions of “replication” that may be misleading and that many
tend to have poor statistical properties.

2. Data. It has been increasingly common for researchers to attempt replications of sev-
eral findings as part of the same program of research. The RPE, RPP and RPSN did this,
as have several other major replication research programs (e.g., Klein et al. (2014, 2019);
Schweinsberg et al. (2016)). Such programs have used a variety of group- and pairwise meth-
ods to assess replicability. The groupwise analyses involve reporting the mean relative effect



210 J. M. SCHAUER ET AL.

size (i.e., the average ratio of the replication effects to the original study effects), examining
the correlation and average difference between effects from the original and replication stud-
ies and comparing differences in the p-values from original and replication studies. These
methods, listed in Table 1, are described in detail throughout this article.

The properties of many analysis methods discussed here will depend on how precisely
effects are estimated in each experiment which will, in turn, depend on how large those
studies are. In order to demonstrate these properties under realistic conditions, we use data
from the RPE, RPP and RPSN. These research programs each used at least one (and often
more than one) of the analysis methods discussed in this article. These programs also have
publicly available datasets at the Open Science Framework (see https://osf.io). From these
data we have extracted relevant information related to how precise each study was (on the
scale of Cohen’s d). We use these not to conduct any reanalysis of the RPE, RPP or RPSN
but rather to demonstrate the properties of the analysis methods they used. All of our data
and code are available as a supplement to this article and are available at online (Schauer et
al. (2021)).

Although RPE, RPP and RPSN conducted their analyses in the metric of effect sizes trans-
formed into correlation coefficients, we conducted our analyses in the metric of standardized
mean differences for two reasons. First, most of the data arises from between-group experi-
ments, for which the standardized mean difference seems to be a more direct and mathemat-
ically natural effect size than the correlation coefficient. Second, the sampling distribution of
the standardized mean difference, when transformed to the metric of the correlation coeffi-
cient, is not the same as that of a directly computed correlation coefficient (see Borenstein
et al. (2009), pages 48—49). Therefore, the salutary properties of the Fisher z-transform (nor-
malization and variance stabilization) do not hold for these transformed “correlations.”

3. Model and notation. Analyses of replication can be understood within the frame-
work of meta-analysis which is the statistical methodology for combining information from
multiple (i.e., two or more) studies (see Borenstein et al. (2009)). The models commonly
used in meta-analysis can help clarify important aspects of analyses of replication (Hedges
and Schauer (2019b); Schauer (2018); Valentine et al. (2011)).

Suppose we are interested in the replicability of a population of N findings and that a
subset of m < N findings are selected to be replicated. The analyses considered here assume
that there are k = 2 studies per finding, an original study and a replication study. In this
article, “finding” refers to a specific phenomenon under investigation, and “study” refers to
experiments used to investigate a finding; for instance, the RPP had m = 100 findings each
with k = 2 studies (the original and replication studies). When multiple replication studies
are conducted for a finding, their results are often aggregated into a single result, such as with
the Many Labs Replication Projects (Klein et al. (2014, 2018)).

3.1. Parameters of interest. Let 0;; be the effect in study i = 1,2 for finding j =
1,..., N. We assume that 6;; is on the scale of one of the standard effect sizes used in meta-
analysis, such as standardized mean differences or z-transformed correlations (see Cooper,
Hedges and Valentine (2009)). The effect 6;; is what would be observed in study i of finding
Jj in the absence of any estimation error, such as from the sampling of experimental units.

The 6;; are the scientific estimands of interest in each study, and so replication should be
defined as some function of the 6;; (see Hedges and Schauer (2019a, 2019b)). For a single
finding j, replication failure typically involves effects that disagree in size (i.e., 6 # 0,;) or
in sign (e.g., 01; > 0 but 6>; < 0) (see Bollen et al. (2015)). It stands to reason that aggregate
definitions of replication (across N findings) ought to be somewhat compatible with these
pairwise definitions.
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Precisely defining replication across a series of N findings requires at least one additional
consideration about the 6¢;;: are they fixed or random? One reason to treat the [0}, 62;] as
random is if the m findings to be replicated are randomly selected from a population of
N findings. If we treat the [0;;,6,;] as random, one appropriate model is the multivariate
random effects model used in meta-analysis (see Hedges and Olkin (1985); Olkin and Gleser
(1994); Raudenbush et al. (1988)). This assumes [0}, 6;] are exchangeable draws from
a distribution with mean [, 7], marginal variances rlz and 122 and correlation p. Note
that u;, 7; and p are attributes of the population of N findings and vectors [0, 62;] from
which the selected findings are a sample, and so inferences about replication pertain to that
population.

In practice, it will often be difficult to generalize from the sample of m findings to the
entire population of N findings. Research programs seldom sample findings randomly but
rather select them because their findings are of interest or the source of skepticism. Even when
programs identify findings to replicate using quasi-probability sampling (e.g., Open Science
Collaboration (2015)), there are reasons to suspect that these samples are not necessarily
representative of an entire field (see Gilbert et al. (2016)).

Instead, one may treat the m findings, for which replications are conducted as the en-
tire population of interest, so that N = m. This is equivalent to treating the 6;; as fixed but
unknown constants, and inferences pertain only to the m findings. However, we can use sim-
ilar notation as the random effects model, denoting the mean of [0y}, 65;] as [u1, u2], the
marginal variances r12 and r22 and their correlation p. Here, the mean and variance are not
properties of random variables but rather are descriptive statistics of the m vectors [0, 62/ ].
In this article we will mostly treat the 6;; as fixed. While this leads to different conceptions of
analyses, Hedges and Schauer (2019b) argue that fixed- and random-effects replication anal-
yses tend to have relatively similar properties and that the parameters are analogous between
the fixed- and random-effects models. Note that the variance components tl.z represent vari-
ation in true effect sizes across findings that measure fundamentally different effects. This
differs from variance components, usually encountered in meta-analysis, where experiments
are (at some level of generality) estimating the same effects. Thus, the size of the rl.z values
in this paper depends on how findings subject to replication attempts are selected.

In this article we show that common groupwise analyses of replication often, but not al-
ways, frame replication as a function of the 8;;. An increasingly common metric for quan-
tifying replication success or failure is the mean relative effect size (MRES) which can be
expressed as

m
02j/61;
) n=) "
, m
j=1
Researchers have also examined quantities related to the distribution of ¢;;. For instance,
researchers appear interested in the correlation p between 6;; and 6,; and have examined the

differences between effects §; = 01; — 6>, including the average difference s = 1 — puo.

3.2. Statistical model and estimates. While the parameters above are used in framing the
definition of “replication,” what makes analyses difficult is that we do not actually observe
0;; directly but, instead, must estimate them; analyses of replication must also rely on these
estimates. Let T;; be the estimate of 6;;. A useful assumption is that 7;; is unbiased and
normally distributed with known variance v;;,

() Tij16;j ~ N (0, vij).

This is an accurate approximation for most effect sizes (see Cooper, Hedges and Valentine
(2009)), including standardized mean differences (Cohen’s d) which is the scale we use to



212 J. M. SCHAUER ET AL.

report results in this article. Note that §; is often estimated by D; = T1; — T3, under the
model Dj|5j ~ N(5j, vy + vzj).

Researchers have also assessed replication based on p-values from original and replication
studies. These p-values typically arise from a test that 6;; = 0. In this article we assume two-
sided p-values, so that under the model, the p-value for study i is given by

3) P =21 - @(%)}

where ®(x) is the standard normal distribution function.
The probability of a statistically significant result in study ij is given by

) 1—ﬁ~-—1—<1><cl ) — 9ij>+<l><c ) — 9”)

ij —a/ T o/ \/W s
where c, is the xth percentile of the standard normal distribution and « is the significance
level, which we assume is o = 0.05 throughout this article. Note that when 6;; # 0, then
1 — B;;j is the power of the test, and when 6;; = 0, then 1 — §;; is the significance level of the
test.

From equation (4) we can see that the power of any one study will depend on [6;;]/./Vi;,
and thus on 91-21. /vij. This is because the distribution of p;; will depend on Ql-zj /vij. Bahadur
(1960) and Lambert and Hall (1982) show that p-values are asymptotically log-normal when
the null hypothesis is false (i.e., when 6;; # 0). Based on their results, it can be shown that
when 6;; # 0, then —2log(p;;) has an asymptotic distribution that is normal,

2 g2
5) ~2log(pij) ~AN(J, 2l).

Some methods involve averages of p-values which will depend on the averages of the
91-2j/v,-j. For j =1,...,m, denote the average of the Glzj/vlj as A1 and the average of the
922j/v2j as Ap.

Table 1 highlights the methods that this article examines. These are methods that research
programs, including those whose data are used in this article, have used to assess replication.
The table describes each method, highlights how it defines replication in terms of the param-
eters discussed in this section, how those definitions are assessed and any glaring strengths
or limitations (which are discussed throughout this article).

There are two different approaches to defining replication used in the methods we discuss.
One approach aggregates comparisons (e.g., ratios or differences) among 6;; and 6 ; values.
The other approach involves comparisons of the collection of 6;; values with those of the
6> values (e.g., comparisons of average properties of 01 ; values with those of 6,; values, p-
values or the correlation between the 6;; and 6, ;). Methods that aggregate the comparisons
between 61 ; and 6,; do not depend on the variation between the 61 ;’s or the variation between
the 6;’s and thus have exactly the same properties whether we consider the 6;;’s fixed or
varying randomly across values of j. On the other hand, the properties of methods that involve
the variation of the 6;;’s across values of j do depend on the distribution of the 6;;’s, a point
we try to clarify in our discussion.

4. Mean relative effect size. Replication research programs have reported the mean rel-
ative effect size which is used to show how much larger or smaller effects in the replication
studies are, on average, relative to the effects in the original studies. This method frames
replication in terms of the mean of the 6,; /6 ; and uses the mean of the 7; /T ; to estimate
it. Note that this analysis depends on ratios which can be difficult to work with statistically.
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TABLE 1

This table summarizes the methods examined in this paper. For each method the table highlights the type of
replication pattern it is attempting to assess and lists any important limitations

Method Definition Estimator

Primary limitation

Mean relative effect size
(MRES)

Estimate the average
ratio of replication study
effects to original study
effects

02 /61 /Ty
_Nm j191 _Nym YRRV
n_zjzl m H_Zj=l m

Correlation between
effects

Determine if replication
studies and original
studies produce effects
that are correlated.

p==Cor(0y;,02;) r =Cor(Tyj, Tj)

Paired tests of effects
Determine if replication
studies and original
studies produce different
effect sizes on average.

El61j —b2jl=pns=0 T

Lo =Ty NAIVRRTY,
Prediction interval T=P [M <1.96] p=3", o
1j 2j -
coverage o

Determine the
proportion of replication
studies in the 95%
prediction interval of the
original study.

Fisher’s method

Assess if nonsignificant
replication studies are
actually false negatives.

01, #0602, #0

McNemar’s test B1 =5 X%,[ = %
Determine if replication

studies are significant at

a different rate than

original studies.

Tests of p-value means B1=5 tp = 7‘:1 %

Determine if p-values
for original studies and
replications have the
same mean.

Ty :—T:
1[M<1‘96]

X3 = 2 j:1y; null —210g(p2;)

Large uncertainty:

H can be close to 0 when
replications succeed and
n=1.

Inconsistent definition of
replication:

High correlation between
effect parameters does not
mean that they are similar
in size

Bias:

Reported correlation will
be downwardly biased

Inconsistent definition of
replication:

All findings can fail to
replicate, but averaging
across findings ignores this.

Not sensitive to
replication failures:
Wide range of [01; — 6|
values lead to large values
of p

Low Power:

Requires many false
negatives that are each
highly powered in order to
achieve adequate power

Inconsistent definition of
replication:

Requires the power of the
original and replication
studies to be equal, but not
the effects

Inconsistent definition of
replication:

Requires the power of the
original and replication
studies to be equal, but not
the effects
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This section shows that, because of this, the reported mean relative effect size (i.e., the mean
of the 75/ Ti ;) can be highly inaccurate.

This analysis concerns the mean relative effect size, which refers to the average of 62 /6 ;,
denoted as n in equation (1). Two caveats are worth noting here. First, if any of the 6;; =0,
then n will not be defined. Second, 7 is different than > /1. But, assuming 6, ; # 0, then n
provides an intuitive scale on which to quantify replication. When the replications (mostly)
succeed so that 6, ; = 0y ;, then n would be near 1.0. When the original study produces a much
larger effect than the replication (i.e., 61 > 62;), then n will be closer to 0. The quantity 7 is
a summary statistic of the 6,; /61, and the 6,;/6;; may vary for each finding j. Therefore,
it is possible for their mean to be 1 even if all of the 6,;/6;; are themselves quite different
from 1.

The reported mean relative effect size has been used as an estimate of 7,
©) =y Li/N
j=t M
A key point is that H is an estimator of the actual mean relative effect size 1, and so it must
be interpreted in light of its accuracy and precision. When studies largely replicate, so that
n = 1, then we would want H to be close to 1 with high probability. But if H were, say,
very small (e.g., less than 0.1) or very large (e.g., greater than 2) with high probability, then
we would worry about the accuracy of H as an estimator for n because it would indicate
that the studies, mostly, failed to replicate. Similarly, if the effects in original studies were
typically much larger than the effects in replication studies, so that n = 0, then we would
want H to be near zero with high probability; values of H that were near 1 (i.e., greater than
0.9) would be inaccurate in this case because that would indicate that the replications were
largely successful when they were not.

The distribution of H is not known; however it will depend on the T»;/Ty;. If T5;/T;
are poor estimates of 6,; /6, then H will likely be a poor estimator of 7. Under the model,
T,/ Ty; is a ratio of normal random variables which has been studied thoroughly in the
statistical literature. The exact distribution of 75;/ T, which is quite complex, was derived
and studied by various researchers, including Geary (1930) and Fieller (1932). The shape
of this distribution, which largely depends on 6/ /U1, can be unimodal or bimodal and
asymmetric or symmetric (see Diaz-Frances and Rubio (2013)).

An important aspect of the distribution of 75;/Tj; is that its moments (i.e., its mean and
variance) do not exist since 77; has a nonzero probability of being zero. Because the mean
of T,;/Ti; does not exist, neither does the mean of H which means that H cannot be an
unbiased estimator of 7. Under certain conditions, 73;/7T;; approximately follows a normal
distribution with mean 6,;/6,; (see Diaz-Frances and Rubio (2013); Geary (1930); Hayya
et al. (1975); Marsaglia (2006)). Given those results, it can be shown that H is asymptot-
ically normal with mean 7 and a variance that depends on the 6,;/6); and each 60y;/,/v1;
and 6/, /v2j. While this would seem to imply unbiasedness, at least up to an asymptotic
approximation, simulations have found that this approximation is only accurate when both
01/ /v1j and 01/ /vz; are large so that both studies have exceptionally high power. Diaz-
Frances and Rubio (2013) found that the approximation was only “good” when each study
had over 95% power. Since studies in the social sciences are seldom that high-powered (see
Maxwell (2004); Vankov, Bowers and Munafo (2014)), this approximation will likely not be
accurate when applied to replication studies.

In addition to bias, another issue is the variability of H. Because the variance of 15,/ T}
does not exist, neither does the variance of H, and hence its standard error is undefined.
But just because it is undefined does not mean that uncertainty in H can be ignored. A
well-known property of ratio distributions is that they are notoriously heavy-tailed. Because
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of this, even if 6,;/61; = 1, very large (i.e., greater than 2.0) or very small (i.e., less than
0.1) values of T/ T;; can occur with surprisingly high probability. As an example, suppose
01j =6, = 0.2 in Cohen’s d units so that their ratio is 1.0 and that both studies had a sample
size of 80 so that vi; = v2; ~ 4/80. Then, the probability that 7>;/T1; < 0.1 is about 33%,
and the probability that 75;/7T1; > 2.0 is about 18%. In other words, there is higher than a
50% chance that the value of 75;/T;; implies that these studies fail to replicate when they
successfully replicate.

Often in statistics, including in meta-analysis, averages of noisy estimates tend to have
better precision than the estimates themselves; however this is not necessarily the case with
ratios. Notably, when 0 ; = 6,; = 0 for each j, then, T5;/ T} ; follows a Cauchy distribution.
The average of m Cauchy random variables is itself Cauchy. This means that H follows the
same distribution as 7;/T;; and averaging does nothing to reduce noise. Thus, not only is
the distribution of each T,;/T;; heavy-tailed but taking their average does not necessarily
result in a less variable statistic.

Though the distribution of H is not known, we studied it with Monte Carlo simulations.
These simulations involve drawing m pairs of (77, T>;) at random and computing H as in
(6). Following the model, we drew T;; from normal distributions. To help tie these simu-
lations to empirical research, we use the estimation variances v;; from studies in the RPE,
RPP and RPSN. Thus, these simulations proceed by specifying a 6;; for each study in each
program. We then draw T;; ~ N (6;;, v;;) for each of the j =1, ..., m findings in a program
and compute H. This constitutes one draw of H from its distribution for that program (and
assuming the 6;; values). We repeat this procedure 100,000 times for different configurations
of ;; and estimated various quantities involving the distribution of H.

Our first simulation concerns how likely very large or very small values of H are to occur
when n = 1. Previous work (Marsaglia (2006); Diaz-Frances and Rubio (2013)) suggests
that the results of these simulations will be sensitive to the size of 6;;, particularly the effect
parameters of the original studies 6 ;. Thus, these simulations set 61 ; = 6>; = 0.2,0.5 and 0.8
which correspond with conventions of small, medium and large effects in the social sciences.

Figure 1 shows the distribution of H when n =1 and 6;; =6,; =0.2, 0.5, or 0.8. Each
panel corresponds to a value of 6;;, and each colored region shows the density of H for a
given research program. In the left panel, where effects are small (6 = 0.2), the distribution
of H is highly variable, and the probability that H is less than 0.1 is about 33% for each
program in that plot; the probability H is greater than 2.0 is about 16% for each program.

6=0.2 0=0.5 6=0.8

A f

01, T I ———— | S — —
-1 0 1 2 3 -1 0 1 2 3 -1 0 1 2 3
Mean Relative Effect Size

M RPE M RPP ' RPSN

F1G. 1. This plot shows the density of the estimated mean relative effect size H when the true mean relative
effect size is n = 1. Each panel shows the distribution of H when effects in each pair of studies are the same
size and are small (60 = 0.2), medium (6 = 0.5) or large (8 = 0.8). Within each panel the colors correspond to
the distribution of H for each replication research program. Note that an accurate estimate would correspond to
H~1.
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FIG. 2. This plot shows the density of the estimated mean relative effect size H when the true mean relative
effect size is 1 = 0. Each panel shows the distribution of H when effects in the replication study are zero (i.e.,
02 = 0) and effects in the original studies are small (1 = 0.2), medium (8; = 0.5) or large (61 = 0.8). Within
each panel the colors correspond to the distribution of H for each replication research program. Note that an
accurate estimate would correspond to H ~ 0, and an inaccurate estimate would correspond to H ~ 1 or —1.

Not only that, when effects are small (6 = 0.2), the mode of the distribution of H is smaller
than 1.0 for these research programs. For medium-sized effects (8 = 0.5, middle panel), the
distribution of H is less variable, though the probability that H is less than 0.1 is still about
15% for each program. Only when effects are large (6 = 0.8, right panel) do extreme values
of H become less probable. In other words, when all of the studies replicate exactly, so that
01; = 02 and n = 1, this method will only estimate 7 accurately when the effects for each
finding are large. But if the effects are small, the probability that H is near zero can be very
large (over 30%).

Our second simulation involves a scenario where 6,; =0 and 6;; = 0.2, 0.5, and 0.8. This
would correspond to an effect being positive in the original study and zero in the replication
study. In that case, n = 0, and we would want H to be near zero. Figure 2 plots the density of
H when 6,; =0 and 6;; = 0.2, 0.5 and 0.8 which means that n = 0. Each panel corresponds
to a value of 61; (0.2, 0.5 and 0.8), and each region corresponds to the distribution of H
for a given research program. In the right panel, when the effect of the original study is
small (01 ; = 0.2) and the replication study effect is zero, H will be particularly variable; the
probability that H is less than —0.9 is about 16%, and the probability that H is greater than
0.9 is about 16% which means that the probability that |H — 5| is greater than 0.9 is nearly
33%. However, when the original study effect parameters are large, so that ¢1; = 0.8, then
the distribution of H is less likely to be substantially different from zero.

In sum, because ratios of random variables are so noisy when effects are not large, the
following can happen: When the studies largely replicate (i.e., n = 1), H can be near zero
with high probability and when the studies largely fail to replicate (i.e., n = 0), H can be far
from zero with high probability. This means that, unless the original study effect parameters
are large for the findings considered by each research program, it will be almost impossible
to say anything conclusive about 1 on the basis of the reported mean relative effect size H.

5. Analyses of differences in effects. Though the ratio of two effect estimates can be
difficult to work with (see previous section), their difference is often much less noisy. Re-
search programs, like the RPE and RPP (though not the RPSN), have applied paired ¢- and
Wilcoxon tests to the effect-size estimates for the original and replication studies. In this sec-
tion we argue that this can provide a well-powered test of whether the original studies have
the same average effect as the replication studies (i.e., 1 = w2). However, we also point out
that the focus on means can be a little misleading; a group of original and replication studies
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can have the same average effect, even if each original-replication study pair obtains very
different effects (i.e., 1 = 2, but 61 # 6,; for all j).

Paired tests of effect sizes can be understood in terms of the parameters §; = 60;; — 6, and
their estimates D; = T1; — T»j; note Dj ~ N(§;,v1; + v2;). As discussed in the notation
section, we can think of the §; as having some distribution with mean 5, which means that
paired tests of effect sizes are formally testing,

Hy:us=0.

Rejecting H) is taken as a sign of poor replicability. If the §; are approximately normally
distributed, then one can just compute the paired ¢-statistic ignoring the v;;, as was done
by the RPP. A more powerful version of that test uses a precision-weighted mean of the
differences rather than the unweighted mean (see Hedges and Olkin (1985)). Alternatively, if
the §; are not normally distributed, one can use the Wilcoxon test.

Hedges and Pigott (2001) derive the power of the test that uses a precision-weighted aver-
age which will be at least as powerful as the other tests that have been used. They find that
with large numbers of studies (or smaller numbers of large studies) that the power of this
test will be high. Using their results, the RPP would have had 80% power to detect a differ-
ence of us = 0.05, and the RPE would have had 80% power to detect a difference of about
s = 0.15.

While this test helps pool information across studies, it only provides part of the picture.
This is because the mean difference between original and replication effects ws is just one
summary statistic of an entire distribution; pus = 0 does not imply that any of the studies
replicate successfully. It is possible for s = 0, even if |§;| is large for all j: that is, it is
possible for all of the replications to have failed dramatically but for the mean difference
between effect parameters of original and replication studies to be zero. Moreover, if the
distribution of the §; has a large variance tsz, then, even if us = 0, large values of [§;| may
be probable which would be a sign of poor replicability. Perhaps a more complete analysis
would examine the full distribution of §;. If the 6;; are treated as random, then so are the §;,
and hence common methods used with random-effects meta-analyses can provide inference
for the mean s and variance r52 or produce prediction intervals for the distribution of the
d; (see, e.g., Borenstein et al. (2009); Cooper, Hedges and Valentine (2009); Hedges and
Vevea (1998); Riley, Higgins and Deeks (2011); Veroniki et al. (2016)). Not only would this
provide a more complete understanding about replication across findings, it may prove to be
a more statistically precise approach than examining ratios of effect estimates for the reasons
described in the previous section.

6. Prediction intervals. A different strategy for comparing original and replicated stud-
ies is to evaluate the proportion 7 of effect sizes of the replicated studies are contained in the
100 x (1 — o) % prediction interval of the original study. A prediction interval, as proposed by
Patil, Peng and Leek (2016), is T1; & c(1—a/2)+/V1; + V2 Where c(1_q/2) is the 1 —a/2 per-
centile of the standard normal distribution. Most prediction interval analyses involve a 95%
prediction interval which would mean a = 0.05 and ¢(1—q/2) &~ 1.96. “Successful” replica-
tion occurs when T3; is contained in that interval. A groupwise aggregation of this approach
is equivalent to asking how frequently the difference between T7; and T3; is statistically sig-
nificant, and the proportion 7 is the average acceptance rate for the tests (across the m pairs).
This strategy has the virtue that, when 6y; =6, forall j =1, ..., m, exactly 95% of the T>;
values will lie in the prediction interval.

The weakness of this method is that the acceptance rate of tests between two effect sizes
can be relatively large when 0 ; # 6>, even if 6 j — 6, is not negligible. When 6;; # 6, , the
acceptance rate is one minus the power of the tests, and the power of the test for differences
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between effects is often rather small, unless the studies have unusually large sample sizes
(see Hedges and Schauer (2019a)). For example, suppose that that both studies had a sample
size of 80 so that vi; = vy; ~ 4/80. Then, if 6;; = 6>; for all j, then the probability that
T is in the 95% prediction interval of T7; is 95%, but if 61; — 6,; = 0.2 for all j, then the
probability that 7 ; is in the 95% prediction interval of 77 ; is 90%, and if 6y ; — 6> ; = 0.4 for
all j, then the probability that T3; is in the 95% prediction interval of T} is 76%. This latter
figure matches closely the 77% of T;; values that were in the 95% prediction interval based
on T ; that Patil, Peng and Leek (2016) computed in their analysis of the RPP studies. Thus,
the analysis they conducted is consistent with differences between effect sizes of as much as
0.4 for every finding—a difference that is closer to Cohen’s benchmark for a “medium-sized”
effect (d = 0.5) than a “small effect” (d = 0.2). Despite a 77% coverage probability, it seems
unlikely that researchers would characterize a difference between a pair of effects as large as
0.4 as a successful replication, let alone a difference that size between every pair of effects.

7. Correlation between effects. Replication has been assessed in terms of the linear re-
lationship between effect estimates 77; and 73}, including numerically with the Pearson or
Spearman correlation as well as visually with scatterplots of (77, T2;) (e.g., Open Science
Collaboration (2015)). This can be seen as assessing replication via the correlation between
effect parameters p = Cor (6, , 6> ;) which is estimated with the correlation of the effect esti-
mates r = Cor(T7;, T2;). The idea behind this is that if pairs of studies successfully replicate,
their effects should be similar, and hence their correlation should be close to 1.0. However,
there are two limitations to such analyses. First, even if p = 1, this does not necessarily mean
that 61 ; = 6 for instance, if 61 ; = 100 x 6, so that each original effect is 100 times larger
than the replication effect, the correlation is still p = 1. Second, as detailed below, the sample
correlation » can have a substantial downward bias.

Because the estimation errors of 77; and T3; are independent, r will tend to underestimate
p. When the 6;; are treated as fixed, the expectation of r can be written as

1T
J@E+ )@+ )

where v; = Z’j’?:l v;j/m is the mean within study variance for the original (i = 1) and repli-

<p,

7 E[r|6;j1~p

cation (i = 2) studies and riz is the variance of the effect parameters for the original (i = 1)
and replication (i = 2) studies, as described in the notation section. Given equation (7), we
would expect r to be smaller than p, and its bias will increase as a function of v;;/ rl-z. Fig-
ure 3 shows the expected value of r on the y-axis as a function of p (x-axis) for each research
program. The expected values in the figure are computed using meta-analytic estimates of rl-z
for each program and the reported estimation error variance v;;. The light gray line in the
figure indicates an unbiased estimate of p. Figure 3 shows that, even if all of the studies
replicated exactly, these programs would be expected to report a correlation of r less than
0.8, and possibly even below 0.6.

To gain some intuition about the bias of r, suppose that riz = av; for some constant a.
Then, the bias of r can be written as
(8) Bias(r|6;) ~ ——.

14+a

When a is very small (i.e., near zero), then the bias will be —p; that is, when tiz <L vjj, we
would expect r to be near zero, regardless of the value of p. However, the bias decreases
as a increases which means that, when rl-z > v;;, the bias will be smaller. For instance, if
a > 20, then the bias will be less than 0.05. This is consistent with the fixed-effects logic: if
the studies are really large so that v;; — 0 and a — 00, then we would observe the 6;; with
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FI1G. 3. This figure shows the approximate expectation of the correlation between effect estimates r (y-axis) as
a function of the correlation between effect parameters p (x-axis) for the RPE, RPP and RPSN. The light gray
line indicates an unbiased estimate, and values below that line mean that r understates p.

almost no error and hence be able to compute p without bias. In other words, what is driving
the bias of the fixed-effects correlation estimate is that the 6;; are estimated with error by the
T;;. Viewed this way, (7) is analogous to the attenuation formula for measurement error and
correcting this attenuation has long been studied in the statistical literature (e.g., Muchinsky
(1996); Spearman (1904, 1910)).

If the 6;; are treated as random, there is an additional source of bias. It has long been known
that, unless the correlation between two random variables is —1, 0, or 1, the sample correla-
tion will be a downward-biased estimate of their true correlation (see Fisher (1915, 1921)).
If the 6;; are normally distributed, this bias is largely a function of sample size and will be
negligible if a larger number of findings (i.e., m > 20) are replicated. However, if the 6;;
are not normally distributed, the bias can be larger (Bishara and Hittner (2015)). This means
that, even if v;; — 0, the sample correlation r would still be a downward-biased estimate
of p in the random-effects model, particularly when m is small or the ¢;; are not normally
distributed. Thus, there is bias due to the fact that we estimate 6;; with error (as described in
the previous paragraphs) and also from using the sample of m findings to estimate p in the
population. We would note that it is possible to estimate p without bias, including methods
described by Olkin and Pratt (1958) or Garren (1998).

8. Fisher’s method. The use of Fisher’s method in replication research is tied to the
idea that pairwise “replication failure” is often concluded when an original study has a sta-
tistically significant effect but the replication study does not. Various researchers, including
the RPP, have pointed out that a null result in a replication study is not evidence that 6,; =0,
and so some “replication failures” may arise from “false negatives,” replication studies that
failed to detect a true nonzero effect due to low power. To evaluate the existence of false neg-
atives, the RPP applied a post hoc adaptation of Fisher’s method that was later formalized by
Hartgerink, Wicherts and van Assen (2017), who concluded that this could generally be seen
as a well-powered test. Here, we reconsider these findings with asymptotic statistical theory
and simulations and determine that this method is unlikely to have high power. Moreover,
even when it has high power, it cannot tell which or how many of the null replication studies
are false negatives.

Suppose that for findings j =1, ..., s < m that Ty; is statistically significant, but 7>; is
not. This means that py; > « for j =1,...,s; in this article we assume « = 0.05. This
method tests the null hypothesis

) Hy:01 =---=0p,=0.
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Traditionally, Fisher’s method would use the test statistic

(10) —2> "log(p2)).

j=1

However, this conditional application of Fisher’s method uses p-values that are necessarily
on the interval [0.05, 1] and hence adapts this statistic as follows:

S [—
(11) X%:Z—ﬂog(u).
=1

l—«

Under the null hypothesis, X 129 will have a chi-squared distribution with 2s degrees of free-
dom. Thus, we reject Hy in (9) when X2F exceeds c¢(1—q)(s), the 1 — o percentile of that
distribution.

There are two key limitations to this procedure. First, this test is relatively uninformative.
Failure to reject Hp is inherently ambiguous, and, even if we do reject Hp, that does not
tell us which or how many 6,; are nonzero or whether those nonzero effects are positive or
negative. Second, contrary to the reporting by Hartgerink et al., this method is likely to be
underpowered to detect false negatives. This is because the power will depend on how many
of the 6,; are nonzero and how large they are (see below), and power will only be high if
several of 0; are nonzero and large.

The power of this test will depend on the nonnull sampling distribution of X 12, which, in
turn, depends on the distribution of the p,; when 6,; # 0. Equation (5) gives the uncondi-
tional asymptotic distribution of p;; (i.e., p;; € [0, 1]), but the p-values used by this method
are conditional: they are only used if p>; > «. The relevant asymptotic distribution of the con-
ditional p-value is much more complex which means that the asymptotic distribution of X %
in (11) is not known exactly. However, it will be closely related to the traditional test statistic
(11), and the properties of the conditional test will be similar to that of the unconditional test.

Given the result in (5), it follows that the asymptotic power of the unconditional test is

C—a)(8) — 25 922j/U2j)

\/2Z;=1 922,'/”21'

To gain some intuition about (12), suppose that u < s of the studies involve 6; # 0 and that
they all have roughly the same power so that 922]‘/ vy = A for those u studies. Then, (12)
reduces to

(13) - ¢(M).

[2505

From (13) we can see that the power of the unconditional Fisher’s method will increase with:
(a) the number of null replication studies s, (b) the proportion that are false negatives u/s
and (c) how powerful those false negative studies were A. For reference, if u = 30 of s = 100
null replications were false negatives and they each had 80% power to detect 6 # 0 (so that
A &2 7.85), the power of Fisher’s method would be about 50%.

Similar factors would seem to govern the power of the conditional test. Though the dis-
tribution of X 12; is not known exactly, we can approximate it with simulations based on the
model in equation (2) (described further in the Appendix). In these simulations, sets of effect
estimates 7; are drawn from normal distributions with mean 6; and variance v, and their
two-sided p-values are computed as in (3). Only statistically significant (o« = 0.05) values of

(12) l—CID(



STATISTICAL METHODS FOR AGGREGATE PATTERNS OF REPLICATION FAILURE 221

s = 10 Null Findings

s = 50 Null Findings

sy
-

N

© 2 o 9o o -
L L L

Power of
Non—Null
Studies
— 40%
- 60%
-- 80%

Power of Fisher's Method

s = 100 Null Findings

1.0- —

0% 25% 50% 75% 100%
Proportion of False Negatives

FI1G. 4. This figure shows the power of the conditional application Fisher’s method to detect at false negatives
as a function of the number of null findings (s), the proportion of null findings that are false negatives (x-axis)
and the power of those studies involving false negatives (linetype).

T are retained in the sample, and their p-values are then used to compute X 12; Each simula-
tion involves specifying different values of 6;, v; and s and hence different values of s, u/s
and X.

The first set of simulations uses values of 6; and v; so that the false negatives have a given
statistical power. Figure 4 shows the results of these simulations: it plots the power of this test
as a function of s, u/s and A. For instance, the first panel shows the power of Fisher’s method
when there are s = 10 experiments with nonsignificant results: the x-axis corresponds to the
proportion of those findings that are nonzero u/s, and the linetype corresponds to the power
of the u nonnull experiments (which depends on A). These graphs show that the power is only
high when s, u/s and A are large. For example, in the second panel we see that, for s = 50
nonsignificant findings, the conditional test would only have high power if nearly a quarter
(u > 12) of those studies were false negatives that all had 80% power.

This presents something of a paradox. In order for this test to have high power, there would
need to be a large number of false negatives, each with high power. However, the higher the
power of each individual study, the less likely it is that they all fail to detect an effect. Thus, it
would seem that Fisher’s method is unlikely to have high power. For the s = 50 example, the
probability that 12 studies each powered at 80% all fail to detect an effect is less than 1075,

Empirically, we can get a sense of the best-case scenarios for the power of the conditional
test based on data from the RPE, RPP and RPSN. From (13), it is clear that the most powerful
this test could be would involve a scenario where all of the false negatives (i.e., 05 # 0) were
from the largest and hence, potentially, more powerful experiments. In simulations this means
ordering studies from smallest v to largest and then iteratively setting effects for the first u < s
effects to be nonzero.
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FIG. 5. This figure shows the power of Fisher’s method using the estimation error variances vy of the RPE,
RPP, and RPSN experiments. The x-axis indicates the proportion of the s null findings that are false negatives,
and the linetype corresponds to various magnitudes of the true effect sizes (0) for those false negatives.

Figure 5 shows the best-case power of Fisher’s method for the RPE, RPP and RPSN. For
the RPE the conditional test will only have high power if at least half of the null findings
involved moderate (0.5) or large effects (0.8). For the RPP the test will be well powered if
about 10 of the null findings involved moderate or large effects or if most (>65%) involved
small effects. For the RPSN this test would only have high power if more than four of the
nine null findings actually had medium or large effects. While it may be worth conducting
this test post hoc, the fact that it will only be well powered in certain (unlikely) scenarios
means that any failure to reject Hy in (9) should be interpreted with caution.

9. Analyses of significance patterns and p-values. Comparisons of p-values have
played a prominent role in groupwise analyses of replication, including the RPP’s use of
a few different paired tests of p-values. In this section we show how such tests implicitly
define replication in a way that is misleading. Specifically, we show that these tests concern
whether the within-study power to detect a nonnull effect is about the same for original and
replication studies. However, substantial pairwise differences in effects (i.e., 01; # 62;,V))
can exist even when original and replication studies have the same power. Conversely, differ-
ences in power between the original and replication studies can mask the fact that effects are
actually quite similar. In other words, because these analyses rely on a misleading definition
of replication, their conclusions about replication are difficult to interpret.

Groupwise analyses of p-values have compared the distributions of p-values from the
original studies pi; and replication studies p;;. The RPP used McNemar’s test to conclude
that original effect estimates were more likely to be statistically significant than replication
effect estimates (p < 0.001), and they also tested whether the original and replication studies
had the same average p-values.
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McNemar’s test of p-values concerns the proportion of original and replication studies
that are statistically significant (p;; < 0.05). This can be summarized in the following 2 x 2
table:

Replication Studies

Original Studies Significant Nonsignificant

Significant Tl 710
Nonsignificant o1 00

where my; are marginal probabilities of significant patterns: kK = 1 indicates a significant orig-
inal study, and [ = 1 indicates a significant replication study (e.g., 71 is the probability that
both the original and replication studies are significant). The null hypothesis of McNemar’s
test is

(14) Hy : 1 + mo1 =m0 + 711

In addition, the RPP conducted paired - and Wilcoxon tests of p-values. This formally tests
whether the average of the original study p-values ) is equal to the average of the replica-
tion study p-values i p7; it can be written

(15) HO:,U«pl = MUp2.

For the sake of simplicity, we focus on the 7-tests.

Note that Hy in both (14) and (15) concern the distribution of p-values, and by equations
(5) and (4) can be expressed in terms the Hl.zj /vij. For (14) the probability that a study chosen
at random from a group of studies results in a statistically significant effect is just the average
of 1 — B;; of the studies in that group (i.e., their average power). Thus, (14) will only be true
when the average of the —f;; is equal to the average of the 1 — 8,; which, in turn, will be
true when A (the mean of the lej/vlj) is equal to A, (the mean of the 622j/v2j). For (15) the

arguments of equation (5) show that the mean of a single p-value is determined by 91.2]. /Vij,
and so the mean of a group of p-values is determined by A;. Thus, both (14) and (15) can be
written as

(16) HO3)\1 :)\.2.

Viewed this way, both tests are a comparison of the within-study power between a set of
original and replication studies.

The null hypotheses in (14)—(15) can be a misleading definition of replication because
they focus on statistical power and not effects. Similarity in power does not imply that effect
parameters are the same size or direction. For instance, suppose 01 ; = —6>; and v{; = v S0
that each replication got the opposite effect as the original study. However, this implies that
9121' Jvij = 922/./ v2; and Ay = Ap. Thus, for these tests, scenarios where all studies disagree
qualitatively can correspond to Hy being true, and the probability of rejecting it is only o =
0.05. Conversely, suppose 01 ; = 6 so that all of the replication attempts succeeded. If vy ; #
v2, then the power of the original studies will be different than the power of the replications.
This means that the null hypothesis will be false, and both tests will be more likely to reject it.
In other words, there are conditions under which studies clearly fail to replicate that these tests
would be unlikely to detect as well as conditions under which studies successfully replicate,
but these tests would be more likely to indicate otherwise.

Understanding how probable these tests are to result in misleading conclusions requires
some knowledge of the nonnull sampling distributions of their test statistics X %4 and 1,
respectively. Both X %,I and 7, depend on Ql.zj /vij. The exact nonnull sampling distributions
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TABLE 2
This table shows the rejection rate for McNemar'’s test and the t-test of p-values as a function of the power of the
original and replication studies and the number of findings m. Cells report the simulated probability and Monte
Carlo standard error. This table assumes that all findings successfully replicate, so that 0 j = 0, j, which means
that rejecting the null hypothesis and concluding replication failure is an error

Rejection rate

Test Power 40%/60% Power 60%/80% Power 40%/80%
m =25 McNemar 0.267 (0.015) 0.304 (0.01) 0.819 (0.013)
t-test 0.289 (0.012) 0.304 (0.01) 0.822 (0.011)
m =50 McNemar 0.522 (0.016) 0.599 (0.016) 0.988 (0.003)
t-test 0.529 (0.016) 0.561 (0.015) 0.985 (0.004)
m =100 McNemar 0.801 (0.01) 0.873 (0.01) 0.999 (0.0003)
t-test 0.849 (0.01) 0.825 (0.01) 0.999 (0.0002)

are not known, but we can use Monte Carlo simulations to closely approximate them. These
simulations, discussed in further detail in the Appendix, follow the same approach as the
simulations for the mean relative effect sizes. Since the distributions of 7, and X %,[ depend on
the power of each individual study (via Ql-zj /vij) as well as the number of findings subject to
replication attempts m, our simulations involved different numbers of findings (m = 25, 50,
100), and different power levels for the original and replication studies (40%, 60%, 80%).
For simplicity, these simulations assume that each original study has power 1 — f1, and each
replication has power 1 — B5.

Suppose that all of the studies replicate exactly so that 6;; = 6,;,Vj, but, because the
original and replication studies have different sample sizes, they have different average power.
Table 2 shows the rejection rate of both methods under this assumption. The rejection rate is
shown for different discrepancies between the original and replication study power (1 — 81 vs.
1 — B>) and numbers of findings m. In this table, rejecting the null hypothesis and concluding
that the replications failed would be an error. The table shows that the power of both tests
increases as a function of the discrepancy in within-study power 8> — 81 and the number of
findings m. For instance, if all of the original studies have 40% power and the replications
have 60% power, then McNemar’s test will have a rejection rate of 27% when there are only
m = 25 findings and 80% when m = 100. However, for larger power discrepancies, such as
when original studies have 40% power and the replications have 80% power, McNemar’s test
will reject the null hypothesis with over 98% probability for m = 50 findings.

This highlights the importance of basing analyses on valid definitions of replication. When
there are large differences between the within-study power of original and replication studies,
these tests have high power. On its own, this sounds like a desirable feature, but, because of
the way these tests define replication, their high power means that they are very likely to
conclude studies fail to replicate, even when all of them replicate successfully.

This dynamic can be demonstrated on the RPE, RPP and RPSN; each of which designed
replication studies to be larger than the original studies. Suppose that 6;; = 6,; = 0.5 (in
Cohen’s d units) for j = 1,...,m so that all the studies successfully replicated. Given the
v1; and vy; in each program, we would expect McNemar’s test to reject Hy with nearly
100% probability for all three programs. The ¢-test would reject Hy with probability greater
than 41% in the RPE and over 98% for the RPP and RPSN. Thus, if all of the replications in
these programs succeeded, these tests would be almost certain to indicate otherwise.
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10. Conclusions. This article has examined the properties of groupwise analysis meth-
ods that have been used to assess replication and found that most methods we considered
had serious limitations. The mean relative effect size can have substantial uncertainty which
can lead to misleading conclusions with surprising frequency. Estimates of the correlation
between original and replication studies can greatly understate the actual correlation between
effects in those studies. Fisher’s method, which has been used to detect false negative repli-
cation studies, is bound to have low power in this context. Finally, comparisons of p-values
frame replication as a comparison of power between original and replication studies which
can be a misleading definition of replication.

Because many of these analysis methods have poor statistical properties under seemingly
plausible conditions, it is, therefore, difficult to interpret the results of such methods with
much confidence. For instance, a reported mean relative effect size near zero may imply
that the actual ratio of replication study effects to original study effects is near zero, but this
also has a reasonable chance of happening even when their ratio is one. Our focus here is
not to criticize the results of prior replication research but to emphasize that the methods
producing those results (and the results of future efforts) have statistical properties that must
be considered.

Perhaps the most important consideration for assessing replication is its operational defini-
tion. Methods that rely on a flawed definition of replication will necessarily be flawed, and, in
some sense, discussion of their properties becomes somewhat irrelevant: if such an analysis
method has good statistical properties, it will simply be more certain about the wrong thing.
Greater effort should be devoted to ensuring that any proposed analysis method aligns with
clear and justifiable definitions of replication. We have argued that such definitions should
depend on effect parameters. As scientific and statistical fields increasingly emphasize the
interpretation of experiments in terms of effect sizes, it seems only natural to extend this em-
phasis to interpretations of replication (see Wasserstein and Lazar (2016); Cooper (2011)).
Further, patterns used to describe replication across multiple findings should be somewhat
consistent with the definitions used to define replication for a single finding.

Additional work is also needed on design and analysis methods. Estimators of important
quantities pertaining to replication should be accurate; large and unpredictable biases should
be avoided, as should tests with uncontrolled or poor error rates. However, the properties of
analysis methods are closely tied to design. The same principles used to design a single study
to ensure high power or precision can be adapted for ensembles of studies. In this way we
can ensure that the results of replication studies are accurate and conclusive.

Finally, throughout this article we have advocated for a meta-analytic framework for as-
sessing replication. While it is not the only way to think about replication, we find that meta-
analysis offers a few important advantages. The model that underpins most meta-analyses
distinguishes between the effect parameters and estimation errors and allows for a more
clear-cut approach to defining replication. Inferential procedures based on this model have
been studied in the meta-analytic literature for decades, and such procedures may possibly be
adapted to the study of replication (see Hedges and Schauer (2019b); Schauer (2018)). In par-
ticular, standard meta-analytic methods can be used to explore the distribution of differences
between original and replication study results, which we described in this article.

APPENDIX: SIMULATIONS

This article used simulations to approximate the sampling distribution of three different
test statistics. The first is the test statistic for Fisher’s method, X 12; given in equation (11). The
second is the test statistic for McNemar’s test of the null hypothesis defined in (14),

_ (m1o—mo1)?

(17) X2
M mio + moi
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where my; is the number of experiments that exhibit a given statistical significance pattern,
k =1 indicates a significant original study and / = 1 indicates a significant replication study;
for instance, m1; is the number of experiments for which both the original and replication
studies are significant.

The third is the test statistic for tests of p-values for null hypothesis (15). The test statistic
for this test is

Pd

(18) "? = SDIpal/m’

where pg is the average of the p;; — p2; and SD[p] is their standard deviation,

m

- p2j) — ﬁd]z-

19)  pa= Z(m, p2j);  SD[p]l=

All tables and graphlcs in this paper are based on 100,000 simulations which are described in
greater detail below. Each of these sampling distributions depend on 6;; and v;;; thus, a given
simulation consisted of drawing m pairs of studies from normal distributions as in equation
(2) and computing the relevant test statistic. What varied between simulations were the values
OfQij and Vijj.

For the simulations of X %/1 and ¢, in Table 2, the sampling distribution of each statistic
depends on the power of each null hypothesis test described by equations (14)—(15). The
power of these tests depends on the value 92 /vij. In Table 2, we assumed that studies had

40%, 60% and 80% power. Thus, we set the Values of 9 i/ vij to be 2.91, 4.90 and 7.85. For

instance, in the “Power = 40%/60%” column, we set 9 i/v1j =2.91 and 92 Jv2; =4.90
for all j. Further, to obtain the potential error rates in the RPP, RPE and RPSN data, we set
01j = 62; = 0.5 and used the v;; from the RPP, RPE and RPSN data that were converted to
be on the scale of Cohen’s d.

For Fisher’s method the nonnull sampling distribution of X % also depends on 91-2]- /vij, and
hence we used the same values as above. To obtain an upper bound of the power for the RPP,
RPE and RPSN, we assumed the largest studies were the false negatives. To do this, we sorted
the s nonsignificant replication studies in each program by v;; in ascending order. We then
iteratively set the first u effect parameters 6 to be equal to a given value (0.2, 0.5 and 0.8)
and ran the simulations.
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SUPPLEMENTARY MATERIAL

Aggregate patterns of replication code and data (DOI: 10.1214/20-AOAS1387SUPP;
.zip). This supplement contains a repository of data, code, and output (including graphics)
used to obtain the results reported in this article. This repository contains a directory for
data (including raw and cleaned data). It also contains a directory of analysis and simula-
tion scripts, as well as results from simulations. Finally, the graphics directory contains the
graphics produced for this article.
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