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Dynamics of fluctuations and thermal buckling in graphene from a phase-field crystal model
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We study the effects of thermal fluctuations and pinned boundaries in graphene membranes by using a phase-
field crystal model with out-of-plane deformations. For sufficiently long times, the linear diffusive behavior of
height fluctuations in systems with free boundaries becomes a saturation regime, while at intermediate times
the behavior is still subdiffusive as observed experimentally. Under compression, we find mirror buckling
fluctuations where the average height changes from above to below the pinned boundaries, with the average
time between fluctuations diverging below a critical temperature corresponding to a thermally induced buckling
transition. Near the transition, we find a nonlinear height response in agreement with recent renormalization-
group calculations and observed in experiments on graphene membranes under an external transverse force with

clamped boundaries.
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I. INTRODUCTION

Thermally induced fluctuations in atomically thin crystals,
such as graphene, lead to striking effects on its mechanical
properties that can be eventually manipulated for techno-
logical applications [1-5]. Out-of-plane deformations, for
example, allow for a thermally rippled, but flat phase, ob-
served experimentally in free-standing graphene [6—8], where
the bending rigidity and elastic modulus are strongly de-
pendent on the length scale [9,10]. They also influence the
dynamics in a remarkable way, as shown in experiments on
free-standing graphene with scanning tunneling microscopy
[11], giving rise to an anomalous diffusive behavior of the
height fluctuations and a non-Gaussian velocity distribution.

Very recently, the dynamical behavior of out-of-plane
fluctuations of freestanding graphene [12] was studied by
using a phase-field-crystal (PFC) model, which allows for
out-of-plane deformations in addition to the in-plane de-
formations included in standard PFC models [13—-15]. The
model describes the system by two coupled continuous fields,
representing the particle density and the out-of-plane fluctu-
ations with a small amplitude. It was found that the dynamic
scaling behavior [16] depends only on the equilibrium rough-
ening exponent £ and the height displacement fluctuations
at intermediate times behaves as (Ah(t)?) o<t with o =
E/(1 4+ £&). This is in good agreement with the anomalous
diffusion exponent observed experimentally [11]. At suffi-
cient long times, however, the behavior is the usual linear
diffusion for systems with free boundaries. On the other
hand, in many experimental conditions the boundaries may
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be clamped or pinned. Molecular-dynamics simulations of
atomistic models of graphene under compression and fixed
boundaries [11,17] have revealed large fluctuations corre-
sponding to local curvature inversion of the height at the
central region, or mirror-buckling fluctuations, at sufficient
high temperatures and argued to be responsible for the anoma-
lous diffusive behavior. However, the origin and the effects of
such mirror-buckling fluctuations on the anomalous diffusive
behavior are still not fully understood. The boundary confine-
ment could also affect the anomalous diffusive behavior even
in unstrained membranes by constraining the center-of-mass
diffusion in the long-time limit. Under compression, it can
induce elastic instabilities in the form of a buckling transition
with the spatially averaged height / acting as an order parame-
ter, which is strongly affected by thermal fluctuations [18,19].
The proximity to the buckling transition should also have
important influences on the height response to an external
force applied perpendicularly to the membrane [18], which
can be accessed experimentally in graphene membranes with
clamped boundaries under an applied electric field [5]. It is
thus of interest to investigate the effects of pinned boundaries
on the out-of-plane and mirror-buckling fluctuations.

In this work, we study the effects of thermal fluctua-
tions in graphene membranes using the PFC model with
out-of-plane deformations [12,20], extended to include the
effects of pinned boundaries. It is found that at sufficiently
long times, the linear diffusive behavior of height fluctua-
tions in systems with free boundaries becomes a saturation
regime, while at intermediate times the behavior is still sub-
diffusive as found experimentally [11]. Under compression,
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we find mirror buckling fluctuations with the average time
between fluctuations diverging below a thermally induced
buckling transition. We also determine the height response to
an external transverse force near this transition and find a non-
linear force-displacement relation f o< (k)% for small forces.
Above the transition, the exponent . is consistent with
3 — 1/B, where B is the order-parameter critical exponent, as
predicted by a recent renormalization-group calculations [18]
and also observed in experiments on graphene membranes
with clamped boundaries [5].

II. PHASE-FIELD-CRYSTAL MODEL WITH
OUT-OF-PLANE DEFORMATIONS AND BOUNDARY
POTENTIAL

We use the PFC model with out-of-plane deformations
introduced previously [12,20], here extended to include the
effects of pinned boundaries. The model is described by the
effective Hamiltonian
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where n(7) is density field, 4(7) is the height displacement
measured from a base plane with ¥ = (x,y), and ¢, is an
energy-scale parameter. In Fourier space, C(k) = k* for k <
kmax and C(k) = Cpax for k > kpax. Values of Cpax and kmax
are chosen to eliminate small scale fluctuations of 4(7 ). The
surface Laplacian is approximated by

Vi~ Ve — (307 + h30) + 2hhy,9y), 2)

where h, = 0h/dx and h, = 0h/dy. The first four terms in
Eq. (1) correspond to the standard PFC model, leading to
periodic patterns of n(7 ), while the next term represents the
bending energy of the membrane, controlled by the bend-
ing stiffness «. The new last two terms favor n(7) = ng(7)
and h(7) = 0 near the boundaries of the system, when the
boundary potentials V,,(7 ) and V},(7 ) are chosen appropriately,
where ng, is the ground-state configuration in absence of these
potentials. The introduction of a boundary potential is partic-
ularly convenient for the numerical simulations since it still
allows the use of periodic boundary conditions. The values of
the bulk parameters entering the model were chosen to repre-
sent graphene [20], with a honeycomb pattern of maxima in
the density field n(7# ), corresponding to AB = —0.15,B, =1,
7 =0.874818, v =1,k =0.209726 and ¢, = 6.58¢V.

The time evolution is obtained from dissipative dynamics,
driving the system to the free-energy minimum. Noncon-
served dynamics is used for the height field 4,

UL A— 3
= T rt),
or — oh "
while, for the density field n, we employ both conservative,
anh 2 SH
= Vi (), 4
” o1, + na(r, 1) (4)

and nonconservative dynamics [in which “V?” is replaced
with “—1” in Eq. (4)], as in Eq. (3), where 5, and 7, are
white-noise terms describing the effects of thermal fluctua-
tions [21,22] at temperature 7', with zero mean and

(7, (', 1)) = 2TV?8(F =78 —1')  (5)
for conservative dynamics and
(@, Oy (7', 1)) = 2T8(F —7)s(t — ') (6)

for nonconservative dynamics.

For the numerical simulations, the coupled Eqs. (3) and
(4) are solved numerically in Fourier space [20] with wave
vector k as a function of time 7 with time step At. A square
lattice is used of dimensions LAx and LAy with periodic
boundary conditions and mesh sizes Ay &~ Ax. To eliminate
small-scale fluctuations of n(#), n,(k,t) is set to zero for
k > kmax. Typically, the mesh size Ax =~ 0.5-0.72, time step
At = 0.2-0.5, and k. = 0.5. Dimensionless units are used
in the Hamiltonian with conversion factors for temperature
and length ¢, /kg and 0.353 A, respectively. In these units,
room temperature corresponds to 7 =~ 0.004. In units of the
lattice spacing a, ~ 47 /+/3 of the periodic ground-state con-
figuration [20], the system size corresponds to LAx/a,.

To reach thermal equilibrium, the numerical results de-
scribed in the following sections were restricted to small
system sizes up to L = 250 and higher temperatures.

III. DYNAMICS OF HEIGHT FLUCTUATIONS

Height fluctuations in graphene and solid membranes in
absence of topological defects can be described by an elastic-
ity theory where the in-plane and out-of-plane deformations
are coupled by a nonlinear term [7,8,10]. The combined effect
of thermal fluctuations and the nonlinear coupling leads to a
flat phase with scale-invariant critical fluctuations, where the
mean-square out-of-the plane fluctuations (hg) increase with
system size L as a power law (hg) o L%, characterized by
the roughening critical exponent &£. For such membranes, the
effective bending stiffness « (k) is renormalized by the thermal
fluctuations [9,23], increasing with decreasing wave vector
k as k(k) ~ k7", and leading to a roughening exponent £ =
1 — n/2. Simulations and analytical results for such models
give values in the range [24] £ = 0.575-0.66.

The behavior of the mean-squared height displace-
ment, (AR?) = ([h(r,ty + 1) — h(r, to)]?), for free-standing
graphene in absence of a boundary potential and in-plane
strain has been studied recently [12] with the PFC model.
The behavior was found to be well described by the dynamic
finite-size scaling form [16]

(AR(t)*) = L¥®(t/L7), (7

with a roughening exponent £ = 0.62(9). The dynamic ex-
ponent z is constrained to z = 2(1 + &) from the requirement
that the contribution from the center-of-mass diffusion in the
long-time limit scales as (Ah(t)?) ~ t/L*. This scaling form
implies a power-law behavior for the time dependence of
height fluctuations, (AR(1)?) ~ t*, with a crossover from an
intermediate to long-time regimes with « = &/(1 4+ &) and
a = 1, respectively. The subdiffusive behavior at intermediate

035428-2



DYNAMICS OF FLUCTUATIONS AND THERMAL BUCKLING ..

PHYSICAL REVIEW B 107, 035428 (2023)

5| @ L=50 (a) ‘xtﬂ-‘m’,«‘: .
¥ 3
y L=70 g v?"fﬁ 'S S
 L=100 , ou t
; - . o
b 4 L=160 oy
= 2 Sy 1
g v L=250 g';'r%
‘ir iy
v 1 'ivﬁeoncaoo.ooonooi
g
i
05fp .- & 4
4’ |Y 2 L
1000 10° 10° 108
t
0.010} o L=50 (b) ot®
L=70 o JRORg0000 00000000
w 0005} o =100 R e
N-.E .\Oy‘vv'
A A L=160 P
o~
= v L=250 _IX
< 0.002} X
g X
v vx
0.001} o
i
v
104 0.001 0.010 0.100 1
tfL2(1+8)

FIG. 1. (a) Mean-square height displacement {Ah(t)?) as a func-
tion of time ¢ for different systems sizes L at T = 0.04, in presence
of a boundary potential with V,o = 10. Dotted line is a power-law fit
for L = 250. (b) Attempt of a scaling plot of the data from Fig. 1
with & = 0.7. Lack of data collapse indicates that the scaling form of
Eq. (7) is not satisfied.

times, o < 1, is consistent with measurements of the vertical
motion of atoms in free-standing graphene [11] while the
long-time behavior, due to the center-of-mass diffusion, has
not been observed.

Here, we investigate height fluctuations in graphene mem-
branes in the presence of a boundary potential but still
unstrained, where the effects of the potential prevents the
center-of-mass diffusion in the long-time limit by favoring
h(7) = 0 while n(7#) is still unconstrained. In the experiments,
this could be due the interaction of the graphene membrane
with the support substrate acting only at the boundaries. Fig-
ure 1 shows the finite-size behavior of the mean-square height
displacement at the center of the lattice as a function of
time for Vj,o = 10 at a pair of opposite boundaries. For the
smallest systems, a crossover from an intermediate to a sat-
uration regime is clear seen. For the largest system L = 250,
the behavior at intermediate times is still subdiffusive with
o =~ 0.4. Nevertheless, as shown in Fig. 1, data collapse on
a single curve is not observed adjusting the value of &. This
indicates that the simple scaling form of Eq. (7) in terms of a
scaling function of a single variable 7 /L* is not satisfied for all
times. It suggests that another length scale besides the system
size L should be taken into account. In fact, in the presence
of the boundary potential V,(7) in Eq. (1), an additional

length scale L, is set by the corresponding energy contribu-
tion of the order of k7. As a result, the scaling function in
Eq. (7) should also depend on an additional variable L/Ly,
which is size dependent. Surprisingly, however, « is compara-
ble to the value obtained without the boundary potential, o =
&/(1 4+ &) ~ 0.38. This result can still be understood from the
scaling behavior of Eq. (7) when restricted to times below
the crossover to the saturation regime for large systems. In
this case, the contribution to (Ah(z)?) from the center-of-mass
diffusion, ~t /L2, is limited by the out-of-plane fluctuations at
saturation L, corresponding to a relaxation time [16] T o< L?
with dynamic exponent z = 2(¢£ + 1) and consequently the
same diffusion exponent « = 2&/z =§/(§ + 1).

Therefore, even in the presence of pinned boundaries, the
height displacement fluctuations of unstrained graphene dis-
play subdiffusive behavior at intermediate times, as observed
in the experiments [11] in free-standing graphene. However,
in the long-time limit a saturation regime appears, which
could in principle be verified in experiments with controlled
boundary potentials.

IV. MIRROR-BUCKLING FLUCTUATIONS AND PHASE
TRANSITION

In the presence of an externally applied in-plane com-
pression, thermally induced fluctuations of large amplitude
have been observed in molecular-dynamics simulations of
graphene membranes [11,17], where the height configurations
spontaneously invert their curvature as a function of time with
sharp and well-separated bounces. Since the origin and the
effects of such mirror-buckling fluctuations on the subdiffu-
sive behavior of the height displacement found in experiments
[11] by scanning tunneling microscopy are still not fully un-
derstood [12,25], investigating their temperature dependence
may provide useful information. Here we first demonstrate
that this behavior can also be reproduced with the PFC model
of Eq. (1) under external compression and then determine the
effects of varying the temperature in equilibrium.

To study the system under compression and pinned bound-
aries we allow for nonzero boundary potentials for both n(#)
and A(7) in the Hamiltonian. To pin the boundaries, V,,(7)
was initially set to zero in the central region of the simulation
cell and Vj,(7) = Vjo = 1 in the region 10 lattice sites from
the edges. To avoid numerical anomalies, V,(7) was then
smoothed in Fourier space by e F/2 A similar process was
used for V,,(¥) except that, near the edges, V,,(¥) was set to a

one mode approximation for n, i.e., V, = Vio )_; €9’k where
41 = (=3, -1)/2, § = (0, 1), and §; = (/3, —1)/2. The
parameter € is used to control the average strain, which
is given approximately by (1 —€)/€. V, and V), were fixed
throughout the simulation. To mimic prior studies [11,17,20],
the density was initially set to n = —¢(Zj el 4 c.c.),
where ¢ is the amplitude that minimizes the ground-state
energy and c.c. is the complex conjugate.

Figure 2 shows the behavior of the spatially averaged
height,

h(t) =Y h(#1)/L?, ®)
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FIG. 2. Time dependence of the average height / for different
temperatures for the graphene membrane under compressive strain
of 1.8% and system size L = 160. The two figures for 7 = 0.025
correspond to different starting configurations

as a function of time, for different temperatures with € =
1.018031 58. In addition to fluctuations of small amplitude
at short timescales, there are sharp and large fluctuations
with height inversion from values above to below the pinned
boundaries with & = 0. Such spontaneous height inversions
at the intermediate temperatures, 7 = 0.025 and 0.0275,
are very similar to those observed previously in molecular-
dynamics simulations of atomistic models of graphene [11,17]
as a local curvature inversion of the height at the central
region. Here we find that the average time g between height
inversions increases quickly with decreasing temperature as
shown in Fig. 3(a), becoming larger than the available simula-
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FIG. 3. (a) Average time period between buckling fluctuations
from Fig. 2 as a function of temperature. (b) Probability distribution
of the average height & at T = 0.03. (c) Temperature dependence of
the free-energy barrier AF' for buckling fluctuations.

tion time below 7; &~ 0.025. One expects that tg is determined
by the free-energy barrier AF between buckled configurations
with opposite heights. We can obtain AF as

AF = =T In(pm/pm), )

for each temperature from the probability distribution p(h),
which displays a double peak structure like the one in
Fig. 3(b) with minimum p,, and maximum py. As for 3,
the free-energy barrier also increases quickly with decreasing
temperature as shown in Fig. 3(c), but below T it is too large
to lead to a double-peak structure in the height probability
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FIG. 4. (a) Time-averaged height (%) as a function of tempera-
ture. (b) Temperature dependence of the height susceptibility x.

distribution. As a result, the increase in tg is not just the
effect of decreasing temperature, as would be expected if tg
is given by the Kramers equation g oc e//*T, where U is an
approximately constant energy barrier. Thus, using such an
equation to estimate the energy barrier for mirror buckling as
employed in the molecular-dynamics study [17], can lead to
inconsistent results.

To further characterize the temperature dependence of the
buckling fluctuations, we show in Fig. 4(b) the behavior of the

time-averaged height (/) and corresponding susceptibility

x = L*((h*) — (h)*)/ T. (10)

The susceptibility displays a maximum at approximately
the same temperature 7. where the average height becomes
significantly different from zero and tp is larger. The behavior
described above for 4 and x signals a buckling phase transi-
tion at T, below which the inversion height symmetry of the
model of Eq. (1) is spontaneously broken and the graphene
membrane is buckled with (%) # 0, while above T, it is flat
with (h) = 0. In the thermodynamic limit, y should diverge if
the transition is continuous. As shown in Fig. 5, the transition
temperature depends on the compression. It vanishes at the
critical compression corresponding to the zero-temperature
long-wavelength elastic instability of the graphene membrane
[18], which depends on the system size. For the PFC model,
it can be estimated approximately as [20] Q%*« /9B, ¢>, where
¢ is the amplitude of phase field n(¥) and Q = 27 /L is the
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0.01F Buckled 1

0.00
0.000

0.010 0.015

(1-€)/e|

0.005 0.020

FIG. 5. Critical temperature of the buckling transition as a func-
tion of compressive strain parametrized by €.

smallest wave vector. At finite temperatures, the buckling
threshold increases due to an enhancement of the effective
bending stiffness « (k) by long-wavelength thermal fluctua-
tions [9]. Figure 6 illustrates two typical height configurations
just above and below the transition while Fig. 7 shows the
same data combining height and density field configurations.
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FIG. 6. Sample height configurations for just below (a) 7 = 0.02
and above (b) T = 0.03 the buckling transition.
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FIG. 7. Same as Fig. 6 but combining height and density field
configurations. (a) 7 = 0.02 and (b) T = 0.03. Filled circles repre-
sent the density field maxima.

Recently, the buckling transition in thermalized mem-
branes with clamped boundaries and driven by compressive
strain has been studied analytically by renormalization-group
methods [18], revealing universal critical scaling exponents
and nonlinear height response that should be independent of
the microscopic details of the model. Our results from the
PFC model of Eq. (1) with pinned boundaries and fixed com-
pression provide evidence of such transition driven by thermal
fluctuations. It also indicates that the well time separated and
sharp mirror-buckling fluctuations in Fig. 2 are a signature of
the nearby thermal buckling transition.

V. NONLINEAR HEIGHT RESPONSE NEAR THE
BUCKLING TRANSITION

The proximity to the buckling transition presented in the
previous section has also important effects on the height re-
sponse to an external force applied perpendicularly to the
membrane [18]. Such force-displacement relations have re-
cently been measured in experiments on graphene membranes
with clamped boundaries [5] under an applied electric field.

To study the height response to an external transverse force
f, an additional term is included in the effective Hamiltonian
of Eq. (1) describing the linear coupling of the height to the
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| & T=0.035 o .’,’.695
[ ] H @AV O
£12 A T=0.030 ® m eLvo O
g e ®m e4LvOo D
ool v T=0.025 . ik sxaen
2y '
o T=0.020 = T & i vo B
o T=0.010 !
0.1} e = & 4 WO A
0.5 1 2
<h>

FIG. 8. Height response behavior under externally applied force
f for different temperatures 7' near the buckling transition of Fig. 4.
The dashed line corresponds to the power-law behavior with expo-
nent 3 expected at the transition.

force, — f f d?7 h(#). The relation between the external force
and the average height has recently been obtained from a
renormalization-group study of compressed membranes [18].
In our case, where the compression is fixed and the tempera-
ture is the tuning parameter, this relation can be rewritten as
(18]

f=aAT RV 4 ey (h), Y

where S is the critical exponent describing the vanishing of
the average height near the transition, (h) o« AT#, in absence
of the force, with AT =T — T.. The critical temperature 7,
and the constants ¢ and ¢, depend on the system size in addi-
tion to the elastic constants, a peculiar feature of the buckling
transition. Here, we will consider a fixed system size with L =
160. A notable result from this renormalization-group study
is the value of critical exponent for membranes with clamped
boundaries, 8 = 0.718, which leads to a significant difference
of the exponent 3 — 1/8 = 1.607 of the first term in this equa-
tion from the expected linear term from mean-field theory, for
which 8 = 1/2. At the transition, the height response behaves
as a power law, (h) o f!/%, with the critical exponent § = 3.
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FIG. 9. Scaling plot of the height response near the buckling
transition with AT =T — T, for T, = 0.029 and 8 = 0.5.
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FIG. 10. Effective exponent 8. from a power-law fit, f oc (h)%f
as a function of temperature. The dashed line corresponds to the
exponent 3 — 1/8 = 1.607 predicted by the renormalization-group
calculations of Ref. [18].

Near the transition, the height response should also satisfy the
scaling form

(hy = ATPO*(f/ AT, (12)

where & correspond to temperatures above and below T..

Figure 8 shows behavior of the force as a function of the
height near the transition, for the PFC model under compres-
sion and pinned boundaries presented in the previous section.
The dashed line corresponds to the power-law behavior f o
h? with exponent § = 3 expected at the transition, which is
consistent with a critical temperature 7, ~ 0.03. In Fig. 9,
we show a scaling plot of the height response according to
Eq. (12), obtained by adjusting the parameters 7, and §. The
data collapse onto two different curves, supporting the scaling
theory and providing an estimate of 8. Although a reasonable
data collapse is obtained for 8 = 0.5(2), the large error bar
and the neglect of finite-size effects does not allow us to rule
out the mean-field behavior from this scaling plot. On the
hand, away from the transition, finite-size effects are expected
to be negligible as the correlation length becomes smaller than
the system size. Then, defining an effective critical exponent
8efr from a power-law fit f (hY% for data at different tem-
peratures, we can follow the crossover from its value equals
three at the transition to a smaller value at higher temperatures
as AT increases, when the first term in Eq. (11) dominates
over the second term for small forces. As shown in Fig. 10, it
approaches an exponent consistent with the value 3 — 1/8 =
1.607 predicted by the renormalization-group calculations. As
argued in Ref. [18] this critical exponent describes the anoma-
lous nonlinear response observed in experiments on graphene
membranes with clamped boundaries [5].

VI. SUMMARY AND CONCLUSIONS

Using the PFC model with out-of-plane deformations in-
troduced previously [20] and extended to include the effects
of boundary potentials, we have investigated the effects of
thermal fluctuations in graphene membranes with pinned
boundaries. It is found that, at sufficiently long times, the lin-
ear diffusive behavior of height fluctuations observed recently
with the same model for systems with free boundaries [12] be-
comes a saturation regime in presence of pinned boundaries,
while at intermediate times the behavior remains subdiffu-
sive, as observed experimentally [11]. Under compression
with pinned boundaries, we find mirror buckling fluctuations
similar to the behavior observed by molecular-dynamics sim-
ulations of atomistic models [11,17], which has been argued
to also be responsible for the non-Gaussian velocity distribu-
tion observed in the experiments [11]. Interestingly, we find
that the average time between fluctuations diverges below
a critical temperature corresponding to a thermal buckling
transition. Below the transition, the graphene membrane is
buckled while above the transition it is flat but with small
fluctuations. Recently, this transition has been studied ana-
Iytically by renormalization-group methods [18], revealing
critical exponents and nonlinear height response depending
in a nontrivial way on the boundary constraints at constant
strain or stress. In addition to providing numerical evidence
of such transition driven by thermal fluctuations, our results
also indicate that the well time separated and sharp mirror-
buckling fluctuations are a signature of the nearby thermal
buckling transition, thereby suggesting a possible origin of the
anomalous velocity distribution observed experimentally [11].
The proximity to this buckling transition also has important
effects on the height response to an external force applied
perpendicularly to the membrane, as measured in experiments
on graphene membranes with clamped boundaries [5]. We
find a nonlinear force-displacement relation with an exponent
consistent with the value 3 — 1/8 = 1.607 as predicted by
renormalization-group calculations [18] and observed in these
experiments as an anomalous height response. Our results
demonstrate the importance of boundary constraints in the ef-
fects of thermal fluctuations on the long-wavelength behavior
and buckling of graphene membranes [18,19] and show that
the PFC model with out-of-plane deformations can provide a
useful framework for further investigations.
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