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Dynamics of uctuations and thermal buckling in graphene from a phase-eld crystal model
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We study the effects of thermal uctuations and pinned boundaries in graphene membranes by using a phase-
eld crystal model with out-of-plane deformations. For sufciently long times, the linear diffusive behavior of
height uctuations in systems with free boundaries becomes a saturation regime, while at intermediate times
the behavior is still subdiffusive as observed experimentally. Under compression, we nd mirror buckling
uctuations where the average height changes from above to below the pinned boundaries, with the average
time between uctuations diverging below a critical temperature corresponding to a thermally induced buckling
transition. Near the transition, we nd a nonlinear height response in agreement with recent renormalization-
group calculations and observed in experiments on graphene membranes under an external transverse force with
clamped boundaries.
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I. INTRODUCTION

Thermally induced uctuations in atomically thin crystals,
such as graphene, lead to striking effects on its mechanical
properties that can be eventually manipulated for techno-
logical applications [1–5]. Out-of-plane deformations, for
example, allow for a thermally rippled, but at phase, ob-
served experimentally in free-standing graphene [6–8], where
the bending rigidity and elastic modulus are strongly de-
pendent on the length scale [9,10]. They also inuence the
dynamics in a remarkable way, as shown in experiments on
free-standing graphene with scanning tunneling microscopy
[11], giving rise to an anomalous diffusive behavior of the
height uctuations and a non-Gaussian velocity distribution.

Very recently, the dynamical behavior of out-of-plane
uctuations of freestanding graphene [12] was studied by
using a phase-eld-crystal (PFC) model, which allows for
out-of-plane deformations in addition to the in-plane de-
formations included in standard PFC models [13–15]. The
model describes the system by two coupled continuous elds,
representing the particle density and the out-of-plane uctu-
ations with a small amplitude. It was found that the dynamic
scaling behavior [16] depends only on the equilibrium rough-
ening exponent ξ and the height displacement uctuations
at intermediate times behaves as h(t )2 ∝ tα with α =

ξ/(1+ ξ ). This is in good agreement with the anomalous
diffusion exponent observed experimentally [11]. At suf-
cient long times, however, the behavior is the usual linear
diffusion for systems with free boundaries. On the other
hand, in many experimental conditions the boundaries may

be clamped or pinned. Molecular-dynamics simulations of
atomistic models of graphene under compression and xed
boundaries [11,17] have revealed large uctuations corre-
sponding to local curvature inversion of the height at the
central region, or mirror-buckling uctuations, at sufcient
high temperatures and argued to be responsible for the anoma-
lous diffusive behavior. However, the origin and the effects of
such mirror-buckling uctuations on the anomalous diffusive
behavior are still not fully understood. The boundary conne-
ment could also affect the anomalous diffusive behavior even
in unstrained membranes by constraining the center-of-mass
diffusion in the long-time limit. Under compression, it can
induce elastic instabilities in the form of a buckling transition
with the spatially averaged height h̄ acting as an order parame-
ter, which is strongly affected by thermal uctuations [18,19].
The proximity to the buckling transition should also have
important inuences on the height response to an external
force applied perpendicularly to the membrane [18], which
can be accessed experimentally in graphene membranes with
clamped boundaries under an applied electric eld [5]. It is
thus of interest to investigate the effects of pinned boundaries
on the out-of-plane and mirror-buckling uctuations.

In this work, we study the effects of thermal uctua-
tions in graphene membranes using the PFC model with
out-of-plane deformations [12,20], extended to include the
effects of pinned boundaries. It is found that at sufciently
long times, the linear diffusive behavior of height uctua-
tions in systems with free boundaries becomes a saturation
regime, while at intermediate times the behavior is still sub-
diffusive as found experimentally [11]. Under compression,
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we nd mirror buckling uctuations with the average time
between uctuations diverging below a thermally induced
buckling transition. We also determine the height response to
an external transverse force near this transition and nd a non-
linear force-displacement relation f ∝ h̄δeff for small forces.
Above the transition, the exponent δeff is consistent with
3− 1/β, where β is the order-parameter critical exponent, as
predicted by a recent renormalization-group calculations [18]
and also observed in experiments on graphene membranes
with clamped boundaries [5].

II. PHASE-FIELD-CRYSTAL MODEL WITH

OUT-OF-PLANE DEFORMATIONS AND BOUNDARY

POTENTIAL

We use the PFC model with out-of-plane deformations
introduced previously [12,20], here extended to include the
effects of pinned boundaries. The model is described by the
effective Hamiltonian

H
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where n(r ) is density eld, h(r ) is the height displacement
measured from a base plane with r = (x, y), and cg is an
energy-scale parameter. In Fourier space, C(k) = k4 for k <

kmax and C(k) = Cmax for k > kmax. Values of Cmax and kmax

are chosen to eliminate small scale uctuations of h(r ). The
surface Laplacian is approximated by

∇2
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xy −
(

h2x∂
2
x + h2y∂

2
y + 2hxhy∂x∂y

)

, (2)

where hx = ∂h/∂x and hy = ∂h/∂y. The rst four terms in
Eq. (1) correspond to the standard PFC model, leading to
periodic patterns of n(r ), while the next term represents the
bending energy of the membrane, controlled by the bend-
ing stiffness κ . The new last two terms favor n(r ) = ngs(r )
and h(r ) = 0 near the boundaries of the system, when the
boundary potentialsVn(r ) andVh(r ) are chosen appropriately,
where ngs is the ground-state conguration in absence of these
potentials. The introduction of a boundary potential is partic-
ularly convenient for the numerical simulations since it still
allows the use of periodic boundary conditions. The values of
the bulk parameters entering the model were chosen to repre-
sent graphene [20], with a honeycomb pattern of maxima in
the density eld n(r ), corresponding toB = −0.15, Bx = 1,
τ = 0.874 818, v = 1, κ = 0.209 726 and cg = 6.58 eV.

The time evolution is obtained from dissipative dynamics,
driving the system to the free-energy minimum. Noncon-
served dynamics is used for the height eld h,

∂h

∂t
= −δH

δh
+ ηh(r, t ), (3)

while, for the density eld n, we employ both conservative,

∂nh

∂t
= ∇2 δH

δnh
+ ηn(r, t ), (4)

and nonconservative dynamics [in which “∇2” is replaced
with “−1” in Eq. (4)], as in Eq. (3), where ηn and ηh are
white-noise terms describing the effects of thermal uctua-
tions [21,22] at temperature T , with zero mean and

ηn(r, t )ηn(r , t ) = 2T∇2δ(r − r )δ(t − t ) (5)

for conservative dynamics and

ηh(r, t )ηh(r , t ) = 2T δ(r − r )δ(t − t ) (6)

for nonconservative dynamics.
For the numerical simulations, the coupled Eqs. (3) and

(4) are solved numerically in Fourier space [20] with wave
vector k as a function of time t with time step t . A square
lattice is used of dimensions Lx and Ly with periodic
boundary conditions and mesh sizes y ≈ x. To eliminate
small-scale uctuations of n(r ), ηn(k, t ) is set to zero for
k > kmax. Typically, the mesh size x ≈ 0.5–0.72, time step
t = 0.2–0.5, and kmax = 0.5. Dimensionless units are used
in the Hamiltonian with conversion factors for temperature
and length cg/kB and 0.353 Å, respectively. In these units,
room temperature corresponds to T ≈ 0.004. In units of the
lattice spacing ax ∼ 4π/

√
3 of the periodic ground-state con-

guration [20], the system size corresponds to Lx/ax.
To reach thermal equilibrium, the numerical results de-

scribed in the following sections were restricted to small
system sizes up to L = 250 and higher temperatures.

III. DYNAMICS OF HEIGHT FLUCTUATIONS

Height uctuations in graphene and solid membranes in
absence of topological defects can be described by an elastic-
ity theory where the in-plane and out-of-plane deformations
are coupled by a nonlinear term [7,8,10]. The combined effect
of thermal uctuations and the nonlinear coupling leads to a
at phase with scale-invariant critical uctuations, where the
mean-square out-of-the plane uctuations h2p increase with
system size L as a power law h2p ∝ L2ξ , characterized by
the roughening critical exponent ξ . For such membranes, the
effective bending stiffness κ (k) is renormalized by the thermal
uctuations [9,23], increasing with decreasing wave vector
k as κ (k) ∼ k−η, and leading to a roughening exponent ξ =

1− η/2. Simulations and analytical results for such models
give values in the range [24] ξ = 0.575–0.66.

The behavior of the mean-squared height displace-
ment, h2 = [h(r, t0 + t )− h(r, t0)]2, for free-standing
graphene in absence of a boundary potential and in-plane
strain has been studied recently [12] with the PFC model.
The behavior was found to be well described by the dynamic
nite-size scaling form [16]

h(t )2 = L2ξ(t/Lz ), (7)

with a roughening exponent ξ = 0.62(9). The dynamic ex-
ponent z is constrained to z = 2(1+ ξ ) from the requirement
that the contribution from the center-of-mass diffusion in the
long-time limit scales as h(t )2 ∼ t/L2. This scaling form
implies a power-law behavior for the time dependence of
height uctuations, h(t )2 ∼ tα , with a crossover from an
intermediate to long-time regimes with α = ξ/(1+ ξ ) and
α = 1, respectively. The subdiffusive behavior at intermediate
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FIG. 1. (a) Mean-square height displacement h(t )2 as a func-
tion of time t for different systems sizes L at T = 0.04, in presence
of a boundary potential with Vh0 = 10. Dotted line is a power-law t
for L = 250. (b) Attempt of a scaling plot of the data from Fig. 1
with ξ = 0.7. Lack of data collapse indicates that the scaling form of
Eq. (7) is not satised.

times, α < 1, is consistent with measurements of the vertical
motion of atoms in free-standing graphene [11] while the
long-time behavior, due to the center-of-mass diffusion, has
not been observed.

Here, we investigate height uctuations in graphene mem-
branes in the presence of a boundary potential but still
unstrained, where the effects of the potential prevents the
center-of-mass diffusion in the long-time limit by favoring
h(r ) = 0 while n(r ) is still unconstrained. In the experiments,
this could be due the interaction of the graphene membrane
with the support substrate acting only at the boundaries. Fig-
ure 1 shows the nite-size behavior of the mean-square height
displacement at the center of the lattice as a function of
time for Vh0 = 10 at a pair of opposite boundaries. For the
smallest systems, a crossover from an intermediate to a sat-
uration regime is clear seen. For the largest system L = 250,
the behavior at intermediate times is still subdiffusive with
α ≈ 0.4. Nevertheless, as shown in Fig. 1, data collapse on
a single curve is not observed adjusting the value of ξ . This
indicates that the simple scaling form of Eq. (7) in terms of a
scaling function of a single variable t/Lz is not satised for all
times. It suggests that another length scale besides the system
size L should be taken into account. In fact, in the presence
of the boundary potential Vh(r ) in Eq. (1), an additional

length scale Lb is set by the corresponding energy contribu-
tion of the order of kT . As a result, the scaling function in
Eq. (7) should also depend on an additional variable L/Lb,
which is size dependent. Surprisingly, however, α is compara-
ble to the value obtained without the boundary potential, α =

ξ/(1+ ξ ) ≈ 0.38. This result can still be understood from the
scaling behavior of Eq. (7) when restricted to times below
the crossover to the saturation regime for large systems. In
this case, the contribution to h(t )2 from the center-of-mass
diffusion,≈t/L2, is limited by the out-of-plane uctuations at
saturation L2ξ , corresponding to a relaxation time [16] τ ∝ Lz

with dynamic exponent z = 2(ξ + 1) and consequently the
same diffusion exponent α = 2ξ/z = ξ/(ξ + 1).

Therefore, even in the presence of pinned boundaries, the
height displacement uctuations of unstrained graphene dis-
play subdiffusive behavior at intermediate times, as observed
in the experiments [11] in free-standing graphene. However,
in the long-time limit a saturation regime appears, which
could in principle be veried in experiments with controlled
boundary potentials.

IV. MIRROR-BUCKLING FLUCTUATIONS AND PHASE

TRANSITION

In the presence of an externally applied in-plane com-
pression, thermally induced uctuations of large amplitude
have been observed in molecular-dynamics simulations of
graphene membranes [11,17], where the height congurations
spontaneously invert their curvature as a function of time with
sharp and well-separated bounces. Since the origin and the
effects of such mirror-buckling uctuations on the subdiffu-
sive behavior of the height displacement found in experiments
[11] by scanning tunneling microscopy are still not fully un-
derstood [12,25], investigating their temperature dependence
may provide useful information. Here we rst demonstrate
that this behavior can also be reproduced with the PFC model
of Eq. (1) under external compression and then determine the
effects of varying the temperature in equilibrium.

To study the system under compression and pinned bound-
aries we allow for nonzero boundary potentials for both n(r )
and h(r ) in the Hamiltonian. To pin the boundaries, Vh(r )
was initially set to zero in the central region of the simulation
cell and Vh(r ) = Vh0 = 1 in the region 10 lattice sites from
the edges. To avoid numerical anomalies, Vh(r ) was then
smoothed in Fourier space by e−k2/2. A similar process was
used for Vn(r ) except that, near the edges, Vn(r ) was set to a
one mode approximation for n, i.e.,Vn = Vh0



j e
i q j · R, where

q1 = (−
√
3,−1)/2, q2 = (0, 1), and q3 = (

√
3,−1)/2. The

parameter  is used to control the average strain, which
is given approximately by (1− )/. Vn and Vh were xed
throughout the simulation. To mimic prior studies [11,17,20],
the density was initially set to n = −φ(



j e
i q j ·r + c.c.),

where φ is the amplitude that minimizes the ground-state
energy and c.c. is the complex conjugate.

Figure 2 shows the behavior of the spatially averaged
height,

h̄(t ) =
∑

r
h(r, t )/L2, (8)
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FIG. 2. Time dependence of the average height h̄ for different
temperatures for the graphene membrane under compressive strain
of 1.8% and system size L = 160. The two gures for T = 0.025
correspond to different starting congurations

as a function of time, for different temperatures with  =

1.018 031 58. In addition to uctuations of small amplitude
at short timescales, there are sharp and large uctuations
with height inversion from values above to below the pinned
boundaries with h = 0. Such spontaneous height inversions
at the intermediate temperatures, T = 0.025 and 0.0275,
are very similar to those observed previously in molecular-
dynamics simulations of atomistic models of graphene [11,17]
as a local curvature inversion of the height at the central
region. Here we nd that the average time τB between height
inversions increases quickly with decreasing temperature as
shown in Fig. 3(a), becoming larger than the available simula-

FIG. 3. (a) Average time period between buckling uctuations
from Fig. 2 as a function of temperature. (b) Probability distribution
of the average height h̄ at T = 0.03. (c) Temperature dependence of
the free-energy barrier F for buckling uctuations.

tion time below Tc ≈ 0.025. One expects that τB is determined
by the free-energy barrierF between buckled congurations
with opposite heights. We can obtain F as

F = −T ln (pm/pM), (9)

for each temperature from the probability distribution p(h̄),
which displays a double peak structure like the one in
Fig. 3(b) with minimum pm and maximum pM. As for τB,
the free-energy barrier also increases quickly with decreasing
temperature as shown in Fig. 3(c), but below Tc it is too large
to lead to a double-peak structure in the height probability
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FIG. 4. (a) Time-averaged height h̄ as a function of tempera-
ture. (b) Temperature dependence of the height susceptibility χ .

distribution. As a result, the increase in τB is not just the
effect of decreasing temperature, as would be expected if τB
is given by the Kramers equation τB ∝ eU/kBT , where U is an
approximately constant energy barrier. Thus, using such an
equation to estimate the energy barrier for mirror buckling as
employed in the molecular-dynamics study [17], can lead to
inconsistent results.

To further characterize the temperature dependence of the
buckling uctuations, we show in Fig. 4(b) the behavior of the
time-averaged height h̄ and corresponding susceptibility

χ = L2
(

h̄2 − h̄2
)/

T . (10)

The susceptibility displays a maximum at approximately
the same temperature Tc where the average height becomes
signicantly different from zero and τB is larger. The behavior
described above for h̄ and χ signals a buckling phase transi-
tion at Tc, below which the inversion height symmetry of the
model of Eq. (1) is spontaneously broken and the graphene
membrane is buckled with h̄ = 0, while above Tc it is at
with h̄ = 0. In the thermodynamic limit, χ should diverge if
the transition is continuous. As shown in Fig. 5, the transition
temperature depends on the compression. It vanishes at the
critical compression corresponding to the zero-temperature
long-wavelength elastic instability of the graphene membrane
[18], which depends on the system size. For the PFC model,
it can be estimated approximately as [20] Q2κ/9Bxφ

2, where
φ is the amplitude of phase eld n(r ) and Q = 2π/L is the

FIG. 5. Critical temperature of the buckling transition as a func-
tion of compressive strain parametrized by .

smallest wave vector. At nite temperatures, the buckling
threshold increases due to an enhancement of the effective
bending stiffness κ (k) by long-wavelength thermal uctua-
tions [9]. Figure 6 illustrates two typical height congurations
just above and below the transition while Fig. 7 shows the
same data combining height and density eld congurations.

FIG. 6. Sample height congurations for just below (a) T = 0.02
and above (b) T = 0.03 the buckling transition.
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FIG. 7. Same as Fig. 6 but combining height and density eld
congurations. (a) T = 0.02 and (b) T = 0.03. Filled circles repre-
sent the density eld maxima.

Recently, the buckling transition in thermalized mem-
branes with clamped boundaries and driven by compressive
strain has been studied analytically by renormalization-group
methods [18], revealing universal critical scaling exponents
and nonlinear height response that should be independent of
the microscopic details of the model. Our results from the
PFC model of Eq. (1) with pinned boundaries and xed com-
pression provide evidence of such transition driven by thermal
uctuations. It also indicates that the well time separated and
sharp mirror-buckling uctuations in Fig. 2 are a signature of
the nearby thermal buckling transition.

V. NONLINEAR HEIGHT RESPONSE NEAR THE

BUCKLING TRANSITION

The proximity to the buckling transition presented in the
previous section has also important effects on the height re-
sponse to an external force applied perpendicularly to the
membrane [18]. Such force-displacement relations have re-
cently been measured in experiments on graphene membranes
with clamped boundaries [5] under an applied electric eld.

To study the height response to an external transverse force
f , an additional term is included in the effective Hamiltonian
of Eq. (1) describing the linear coupling of the height to the

FIG. 8. Height response behavior under externally applied force
f for different temperatures T near the buckling transition of Fig. 4.
The dashed line corresponds to the power-law behavior with expo-
nent 3 expected at the transition.

force, − f
∫

d2r h(r ). The relation between the external force
and the average height has recently been obtained from a
renormalization-group study of compressed membranes [18].
In our case, where the compression is xed and the tempera-
ture is the tuning parameter, this relation can be rewritten as
[18]

f = c1T h̄3−1/β
+ c2h̄3, (11)

where β is the critical exponent describing the vanishing of
the average height near the transition, h̄ ∝ T β , in absence
of the force, with T = T − Tc. The critical temperature Tc
and the constants c1 and c2 depend on the system size in addi-
tion to the elastic constants, a peculiar feature of the buckling
transition. Here, we will consider a xed system size with L =

160. A notable result from this renormalization-group study
is the value of critical exponent for membranes with clamped
boundaries, β = 0.718, which leads to a signicant difference
of the exponent 3− 1/β = 1.607 of the rst term in this equa-
tion from the expected linear term from mean-eld theory, for
which β = 1/2. At the transition, the height response behaves
as a power law, h̄ ∝ f 1/δ , with the critical exponent δ = 3.

FIG. 9. Scaling plot of the height response near the buckling
transition with T = T − Tc for Tc = 0.029 and β = 0.5.
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FIG. 10. Effective exponent δeff from a power-law t, f ∝ h̄δeff ,
as a function of temperature. The dashed line corresponds to the
exponent 3− 1/β = 1.607 predicted by the renormalization-group
calculations of Ref. [18].

Near the transition, the height response should also satisfy the
scaling form

h̄ = T β±( f /T 3β ), (12)

where ± correspond to temperatures above and below Tc.
Figure 8 shows behavior of the force as a function of the

height near the transition, for the PFC model under compres-
sion and pinned boundaries presented in the previous section.
The dashed line corresponds to the power-law behavior f ∝
hδ with exponent δ = 3 expected at the transition, which is
consistent with a critical temperature Tc ≈ 0.03. In Fig. 9,
we show a scaling plot of the height response according to
Eq. (12), obtained by adjusting the parameters Tc and β. The
data collapse onto two different curves, supporting the scaling
theory and providing an estimate of β. Although a reasonable
data collapse is obtained for β = 0.5(2), the large error bar
and the neglect of nite-size effects does not allow us to rule
out the mean-eld behavior from this scaling plot. On the
hand, away from the transition, nite-size effects are expected
to be negligible as the correlation length becomes smaller than
the system size. Then, dening an effective critical exponent
δeff from a power-law t f ∝ h̄δeff for data at different tem-
peratures, we can follow the crossover from its value equals
three at the transition to a smaller value at higher temperatures
as T increases, when the rst term in Eq. (11) dominates
over the second term for small forces. As shown in Fig. 10, it
approaches an exponent consistent with the value 3− 1/β =

1.607 predicted by the renormalization-group calculations. As
argued in Ref. [18] this critical exponent describes the anoma-
lous nonlinear response observed in experiments on graphene
membranes with clamped boundaries [5].

VI. SUMMARY AND CONCLUSIONS

Using the PFC model with out-of-plane deformations in-
troduced previously [20] and extended to include the effects
of boundary potentials, we have investigated the effects of
thermal uctuations in graphene membranes with pinned
boundaries. It is found that, at sufciently long times, the lin-
ear diffusive behavior of height uctuations observed recently
with the same model for systems with free boundaries [12] be-
comes a saturation regime in presence of pinned boundaries,
while at intermediate times the behavior remains subdiffu-
sive, as observed experimentally [11]. Under compression
with pinned boundaries, we nd mirror buckling uctuations
similar to the behavior observed by molecular-dynamics sim-
ulations of atomistic models [11,17], which has been argued
to also be responsible for the non-Gaussian velocity distribu-
tion observed in the experiments [11]. Interestingly, we nd
that the average time between uctuations diverges below
a critical temperature corresponding to a thermal buckling
transition. Below the transition, the graphene membrane is
buckled while above the transition it is at but with small
uctuations. Recently, this transition has been studied ana-
lytically by renormalization-group methods [18], revealing
critical exponents and nonlinear height response depending
in a nontrivial way on the boundary constraints at constant
strain or stress. In addition to providing numerical evidence
of such transition driven by thermal uctuations, our results
also indicate that the well time separated and sharp mirror-
buckling uctuations are a signature of the nearby thermal
buckling transition, thereby suggesting a possible origin of the
anomalous velocity distribution observed experimentally [11].
The proximity to this buckling transition also has important
effects on the height response to an external force applied
perpendicularly to the membrane, as measured in experiments
on graphene membranes with clamped boundaries [5]. We
nd a nonlinear force-displacement relation with an exponent
consistent with the value 3− 1/β = 1.607 as predicted by
renormalization-group calculations [18] and observed in these
experiments as an anomalous height response. Our results
demonstrate the importance of boundary constraints in the ef-
fects of thermal uctuations on the long-wavelength behavior
and buckling of graphene membranes [18,19] and show that
the PFC model with out-of-plane deformations can provide a
useful framework for further investigations.
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