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Abstract

Comprehensive investigations of crystalline systems often require methods

bridging atomistic and continuum scales. In this context, coarse-grained

mesoscale approaches are of particular interest as they allow the examination

of large systems and time scales while retaining some microscopic details. The

so-called phase-field crystal (PFC)model conveniently describes crystals at dif-

fusive time scales through a continuous periodic field which varies on atomic

scales and is related to the atomic number density. To go beyond the restric-

tive atomic length scales of the PFC model, a complex amplitude formulation

was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While

focusing on length scales larger than the lattice parameter, this approach can

describe crystalline defects, interfaces, and lattice deformations. It has been

used to examine many phenomena including liquid/solid fronts, grain bound-

ary energies, and strained films. This topical review focuses on this amplitude

expansion of the PFC model and its developments. An overview of the deriva-

tion, connection to the continuum limit, representative applications, and exten-

sions is presented. A few practical aspects, such as suitable numerical methods

and examples, are illustrated as well. Finally, the capabilities and bounds of the

model, current challenges, and future perspectives are addressed.
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1. Introduction

The original phase-field crystal (PFC) model, introduced in 2002 [1], was developed as a sim-

ple way to incorporate elasticity and dislocations in continuum models in a manner similar to

how interface and domain boundaries are introduced in traditional phase-field (PF) models.

In the latter case, the predictions of PF models can be shown to be consistent in the asymp-

totic limit of vanishing interface widths with well-known sharp interface (SI) models [2] that

explicitly track the position of a given interface subject to various boundary conditions (BC)

(such as, e.g. the Gibbs–Thomson condition (GTC) for solidification or spinodal decomposi-

tion). PF models do not typically provide quantitative predictions on small length scales, i.e.

on the scale of interfacial widths or suitable correlation lengths. Usually, their parameters are

chosen to match the ones entering SI models [3–5] (e.g. the capillary length and coefficient of

kinetic undercooling that enter the GTC). Similarly, PFC models do not quantitatively describe

small length scale features, but in the appropriate limit they reduce to standard results. It is

straightforward to show that in the long-wavelength limit, the PFC free energy reduces to tradi-

tional continuumelasticity (CE) theory [6] and that the dynamics incorporatevacancy diffusion

[1, 7]. It has been shown, numerically in two dimensions, that GBs can form spontaneously and

their energy is consistentwith theRead–Shockley equation [1, 7–9], that climb and glide of dis-

locations follow the Orowan equation [10], and in three dimensions that glide (climb)mediated

sources of dislocation are consistent with Frank–Read (Bardeen–Herring) mechanisms [11].

More recently, it has been shown analytically that in PFC models the velocity of dislocations

is determined by the Peach–Koehler force as expected in pure [12] and binary systems [13]. In

addition, the predicted elastic field around a dislocation agrees quantitatively with CE theories,

encoding additional features such as anisotropies and non-linearities [14–16]. In many ways,

the connection between PF and SI approaches is analogous to the connection of PFC models

with dislocation dynamics (DD) models [17–19], which explicitly move dislocation lines due

to Peach–Koehler forces that are generated by the elastic field of other dislocations, defects,

or externally applied forces. In particular, the coarse-grained PFC model referred to in the

literature as amplitude expansion of the PFC, complex amplitude phase-field crystal (APFC)

or simply amplitude equations, on which this review focuses, allows a description of defects

without resolving atomistic length scales, closely resembling the basic features of DD models.

The advantage of this approach over DD is that dislocations and their main phenomenology

appear naturally, following from the considered free energy functional. Therefore, no exter-

nal rules would be in principle needed to determine the interaction, annihilation, or creation

of any type of defect. At the same time, the method is not restricted to a single-crystal sam-

ple with pre-defined glide planes. However, it is worth noting that quantitative description

of specific phenomena and materials would require an extended parametrization compared to

minimal PFC-like models typically reported in the literature. Such extensionsmay be achieved

with later formulations [20, 21] but to date, they have not been explored extensively in this

regard.

The complex APFC model was originally derived by Goldenfeld et al [22, 23] from the

PFC model, which describes the evolution of the atomic number density during crystalliza-

tion and the related dynamic processes [1, 7, 24]. While the PFC model can access diffusive

time scales, the approach is limited by the need to incorporate density fluctuations on atomic

length scales, thus requiring resolutions smaller than the lattice spacing. The main aspect

of the APFC approach is to model the amplitude of the density fluctuations instead of the

3
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density itself. The idea of describing liquid/solid transitions by amplitudes that are real has

been exploited in the past [25–27]. In Goldenfeld et al formulation [22, 23], density fluctua-

tions are described by complex amplitudes, η
hkl

, where hkl are Miller indices that describe

specific crystallographic planes. The magnitude of η
hkl

is finite in a crystal and zero in the liq-

uid state. Thus, it can be used to characterize a liquid–solid transition. Gradients in the phase

of η
hkl

occur when the crystal state is strained, which provides information about the elas-

tic energy stored in the crystal. In addition, the phase can describe the rotation of the crystal,

allowing for the study of polycrystalline states (although, as noted in section 5, there exist

limitations). Finally, the combination of the magnitude and phase can describe dislocations in

which large gradients in the phase do not lead to huge increases in the elastic energy as the

magnitude of some η
hkl

goes to zero. While the APFC model is formally derived from the

PFC model, it is in principle possible to phenomenologically write down an APFC model as

long as it has the correct long-wavelength behavior as has been done for PF models of various

phenomena.

One of the most important features of the APFC model is that it provides a natural bridge

between atomic and mesoscopic continuum length scales. In a single crystal state, the ampli-

tudes vary slowly in space (depending on the orientation) but can be used to reconstruct the

underlying atomic density fluctuations completely. On long length scales, it is straightforward

to derive standard CE through the phase of the amplitudes. Significant variations of amplitudes

occur at defects and solid–liquid interfaces, still well describing the deformation induced in the

lattice. The equations entering the APFC model, similarly to PFC, can be solved with simple

numerical approaches. For example, using a uniform grid, Smirman et al [28] studied Moiré

patterns in graphene films with the largest size system of 19.6 μm× 33.9 μm containing more

than 25 billion unit cells (although it should be noted that these patterns contain no defects).

When dislocations, grain boundaries, and interfaces appear, i.e. when a significant local varia-

tion of amplitudes occurs, more advanced numerical approaches can be considered to optimize

the calculations. Indeed, these regions require the finest resolution, while a coarser one, typi-

cally much larger than the atomic spacing, can be used elsewhere. Adaptive meshing schemes

then allow for simulation of large mesoscopic scales and at the same time completely retaining

atomic information. Thus the APFC method allows simulations of atomistic features on con-

tinuum scales and should play an important role in understanding complex phenomena with

multiscale features.

The rest of the review is organized as follows. Section 2 describes the original PFC model

and the derivation of the APFC model. Section 3 outlines various numerical methods that

have been developed to solve the APFC on regular and adaptive meshes. This is followed by

section 4 that provides a connection of theAPFCmodel to traditionalmodels of CE and plastic-

ity. Section 5 outlines the limitations of the approach and some extensions aimed at overcoming

some of these constraints. Following this is section 6 which describes some applications of the

model to various physical phenomena. Finally, some conclusions and future outlooks are given

in section 7.

2. From PFC to the amplitude expansion

2.1. Origin of the PFC model

The PFC model was proposed phenomenologically [1, 7] to model elasticity and plasticity

in crystal structures and can be written in terms of a dimensionless Helmholtz free energy

4
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Figure 1. (a) Sample (1D) liquid/solid interface, where a is the atomic spacing and W
is the width of the interface. (b) Sample (1D) deformed lattice by displacement u = εx.

Figure 2. Crystal structures (grey) and corresponding shortest reciprocal lattice vectors
(colored): (a) triangular, (b) square, (c) BCC, (d) FCC. Arrows represent the recipro-
cal space vectors entering equation (3) in the one- (blue) and two- (blue and red) mode
approximations. For the square lattice the additional reciprocal-space vectors consid-
ered in a three-mode approximation involving non-parallel vectors only are also shown
(green). Solid arrows indicate an explicit choice of vectors entering equation (17) (as
exploited from section 2.3.2 on).

functional, F, which is given as,

Fn =

∫
dr

[
ΔB0

2
n2 +

Bx

2
n(q20 +∇2)2n− t

3
n3 +

v

4
n4
]
, (1)

and an equation of motion,

∂n

∂t
= ∇2 δFn

δn
, (2)
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where n is related to the atomic number density difference and ΔB0, Bx, t and v are constants

that may depend on temperature [24]. Although equation (1) can be derived [24, 29, 30] from

the classical density functional theory (DFT) of Ramakrishnan and Yussouff [31], the approxi-

mations used give rise to poor atomic-scale predictions in most materials since this free energy

is minimized by an almost sinusoidal density fluctuations, while in metals for example n is

very sharply peaked Gaussians at each lattice point. Nevertheless the periodic nature of the

solutions of equation (1), which mimic a time average of microscopic atomic density [32] and

evolves over diffusive time scales [33], make it useful for studying a large variety of physical

systems such as multi-component polycrystals, liquid crystals, quasi-crystals and colloids as

well as a broad class of phenomena including crystal growth and nucleation, heteroepitaxy,

pattern formation, DD, grain boundary morphology and motion [7, 33–36]. PFC models have

been developed also for less conventional materials and systems such as, for instance, active

crystals [37–41], active colloids [42], and viral capsids [43].

The fact that the solutions are not sharply peaked means that they can be described by a few

Fourier components. In this regard the density is written in terms of complex amplitudes, η
hkl

,

as follows,

n = no +
∑

hkl

ηhkle
𝕚Ghkl·r, (3)

where 𝕚 is the imaginary unit, no is the average density, Ghkl = hq1 + kq2 + lq3
are reciprocal lattice vectors, with q1 = 2π(a2 × a3)/(a1 · (a2 × a3)) and cyclic per-

mutations of (1, 2, 3) the principal reciprocal-lattice vectors, and a j the vectors

defining the primitive cell of the crystal lattice [44]. Note that the summation

goes over both negative and positive Ghkl’s with η−(hkl) = η∗
hkl

such that n is a

real field. In two dimensions (2D), one may define Ghkl as above with l = 0,

qi = 2πRa j/(ai · (Ra j)) for i �= j and R a 90◦ rotational matrix (clockwise or anti-

clockwise). All these definitions satisfy the condition ai · q j = 2πδi j. Two illustrations of

the quantities entering equation (3) in one dimension (1D) are shown in figure 1, namely

corresponding to a solid–liquid interface and a uniformly strained 1D crystal. Since PFC

type models produce smooth solutions it is a good approximation to use the fewest number

of complex amplitudes that are needed for any given crystal symmetry (see also figure 2).

For example, only six η
hkl

(so three independent η
hkl

) are needed for a 2D triangular lattice

(more explicit examples are given in section 2.3.2). Ghkl entering approximations with the

smallest number of modes are shown in figure 2. As discussed in the next section the goal of

the APFC model is to derive equations of motion for the amplitudes.

2.2. Derivation

There are various methods for deriving the amplitude expansion from the original PFC model.

Essentially, it requires a separation of length scales by assuming that the complex ampli-

tudes vary on length scales much larger than the atomic spacing. In general this is the same

assumption of all PF models which require that interfaces or domain walls make a smooth

transition from one phase to another. This is illustrated in figure 1 for a one dimensional liq-

uid/solid interface for a system of atomic spacing a and interface width W. The ‘PF limit’ is

such that a/W ≪ 1. For instance, for a two-dimensional triangular lattice it can be shown [45]

that in the limit that no = 0 and the complex amplitudes are real and identical (i.e. η
hkl

= φ,
for all hkl), they are described by traveling wave solutions (with velocity V) of the form,

φ = A

[
1− tanh

(
x − Vt

W

)]
, (4)

6
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whereW is the width of the liquid/solid front which can be written [45] as

W =
Wm

1+

√
1− (8/9)ΔB0/ΔB0

ls

, (5)

whereΔB0
ls = 8t2/135v is the value ofΔB0 at liquid/solid coexistence andWm is themaximum

value ofW and is given by

Wm = 2q0
√
30vBx/t. (6)

For ΔB0 > 9/8ΔB0
ls no traveling wave solution exists as the solid is linearly unstable. Thus

the PF limit occurs when Bx →∞ and as such 1/Bx can be used as a small parameter in

a multi-scale calculation. In light of this, it is convenient to make the following rescaling,

ǫ = −ΔB0/Bx , n̄ = n(v/Bx)1/2, F̄ = Fv/(Bx)2, so that equation (1) can be written

F̄ =

∫
dr

[
− ǫ

2
n̄2 +

1

2
n̄(q20 +∇2)2n̄− τ

3
n̄3 +

1

4
n̄4
]
, (7)

where τ = t/
√
vBx. Now the limit Bx →∞ corresponds to ǫ→ 0.

Goldenfeld and co-workers [22, 23] report that to obtain rotationally invariant equations

using multiple-scales analysis requires going to sixth order perturbations, which is an

extremely tedious task, as to lowest order the resulting equations are not rotationally invariant.

However, they have shown that this analysis gives the same result using a simpler renormal-

ization group calculation. Other works addressed refinement and assessment of the general

renormalization group approach [46, 47].

To grasp the essence of the calculationswithout using these more rigorousmethods,Athreya

et al [23] developed a method that was coined ‘quick and dirty’ that essentially obtains the

same result in the W →∞ limit. The basic idea is to assume that the amplitudes are constant

on atomic length scales, i.e.

∫

u.c.

dr f (ηhkl)e
𝕚q·r ≈ f (ηhkl)

∫

u.c.

dr e𝕚q·r, (8)

where
∫
u.c. is an integration over a unit cell and q is a sum over various Ghkl. Since q is

periodic in the unit cell, equation (8) is zero unless q = 0. This is a considerable simplification

that reduces the number of terms that enter the free energy. For example, consider a term

∫
dr n2 =

∫
dr

[
n2o + 2no

(
∑

hkl

ηhkle
𝕚Ghkl·r

)

+

(
∑

hkl

ηhkle
𝕚Ghkl·r

)(
∑

h′k′l′
ηh′k′l′e

𝕚G
h′k′l′ ·r

)]
. (9)

Only the first and last term for hkl = −(h′
k
′
l
′) give non-zero contributions using the approx-

imation in equation (8), since they do not contain termsmultiplied by a periodic function. Thus,

in this approximation, equation (9) reduces to

∫
dr n2 ≈

∫
dr

[
n2o +

∑

hkl

|ηhkl|2
]
. (10)

7
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As discussed in the next section, contributions that arise from higher order polynomial terms

will depend on the specific crystal symmetry under consideration. Terms containing the ∇2

operator are treated similarly noting that, assuming constant or slowly varying no,

∇2n =
∑

hkl

e𝕚Ghkl·r(∇2
+ 2𝕚Ghkl · 
∇− |Ghkl|2)︸ ︷︷ ︸

Lhkl

ηhkl. (11)

Thus the Laplacian operator transforms as ∇2 →Lhkl. While the effective operator on the

right-hand side of equation (11) appears to be anisotropic (due to the specific direction of the

Ghkl’s), it can be shown that the free energy is independent of the orientation of the pattern

formed in n [48]. With these steps an energy functional which depends on amplitudes, Fη, can

be derived (see also section 2.3).

The dynamics of η
hkl

approximating (2) can be obtained by multiplying equation (2) by

e−𝕚Ghkl·r and integrating over a unit cell, i.e.

∫

u.c.

dr

V
e−𝕚Ghkl·r ∂n

∂t
≈ ∂ηhkl

∂t
, (12)

where V is the volume of a unit cell, which may be written as4

∂ηhkl
∂t

= Lhkl

δFη

δη∗
hkl

= (∇2
+ 2𝕚Ghkl · ∇ − |Ghkl|2)

δFη

δη∗
hkl

≈ −|Ghkl|2
δFη

δη∗
hkl

, (13)

where the long-wavelength limit has been used in the last approximation. It is interesting to

note that the equation of motion for the amplitudes are non-conserved, implying that an initial

liquid (crystal) can completely transform in a crystal (liquid) locally.

Nevertheless the density is a conserved quantity in a closed system and it is often important

in liquid solid transitions since in liquid/solid coexistence the liquid and solid have different

densities. In addition, the process of dislocation climb involves the mass (or vacancy) diffusion.

In the original derivation of the APFC [22, 23] the average density was assumed to be constant.

The first inclusion of a spatially dependent density was reported byYeon et al [49]. In this work

no was assumed to vary on the same length scales as the complex amplitudes and equation (3)

should read

n(r, t) = no(r, t) +
∑

hkl

ηhkl(r, t)e
𝕚Ghkl·r. (14)

Unfortunately, using the so-called ‘quick and dirty’ method leads to an equation of motion for

no (and free energy)which contains terms like (1+∇2)2n and then implies that crystal state can

be obtained from constant amplitudes or by a periodically varying no (which of course violates

the assumption that no varies on the same length scales as the amplitudes). To overcome this

difficulty several simpler models were proposed, which were shown to incorporate interfacial

energy associated with the density difference at liquid/solid front as well as the well known

Gibbs–Thomson effect [49]. The model can be written

4The functional derivative δF/δz∗ is computed treating z and z∗ as independent variables.

8
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F =

∫
dr

[
ΔB0

2
n2o −

t

3
n3o +

v

4
n4o

+
1

2

(
ΔB0 − 2tno + 3vn2o

)
(
∑

hkl

ηhkle
𝕚Ghkl·r

)2

− 1

3
(t− 3no)

(
∑

hkl

ηhkle
𝕚Ghkl·r

)3

+
v

4

(
∑

hkl

ηhkle
𝕚Ghkl·r

)4

+
Bx

2

∑

hkl

(|Lhkl + q20)ηhkl|2
]
,

(15)

with dynamics

∂ηhkl
∂t

= −|Ghkl|2
δF
δη∗

hkl

,
∂no
∂t

= ∇2 δF
δno

. (16)

The specific terms that emerge when averaged over a unit cell are discussed in the following

section. This approach is also discussed in Huang et al [29]. If the amplitudes are assumed to be

real (which eliminates the possibility of elastic and plastic phenomena) this reduces to model

C in the Hohenberg/Halperin [50] classification scheme that can be used to study phenomena

such as directional solidification [51] or eutectic solidification [52, 53]. Heinonen et al [54] use

a similar free energy functional, but also incorporate momentum through the Navier Stokes

equation and add the corresponding convective term to the dynamics of η
hkl

and no. This has

the advantage of including faster relaxation of elastic fields as discussed in section 5.2.

2.3. Formulas for amplitude equations

Let us consider the free energy equation (1) with constant average density no and for the sake

of simplicity the generic parameters A = Bx , B = ΔB0 − 2tno + 3vn2o, C = −(t+ 3no), D =

v, E = ΔB0n2o/2− tn3o/3+ vn4o/4. The amplitude expansion is based on the approximation

of n as from equation (3) with a finite set of M vectors Ghkl, reproducing a specific crystal

symmetry. This equation, exploiting that η−(hkl) = η∗
hkl

, is here rewritten as

n = no +

M∑

m=1

ηme
𝕚Gm·r + c.c. (17)

where for simplicity Ghkl is given a single subscript m and c.c. is the complex conjugate,

highlighting the minimal set of amplitudes to be considered to approximate n. The free energy

and the evolution law for the amplitudes can be obtained by exploiting the coarse-graining

procedure introduced in section 2.2, i.e. by integration over the unit cell of the PFC energy

density (1), with n expressed through its amplitude expansion, equation (17) [48, 55–58].

To provide a general form of the free energy, consider separately the different powers of

n entering equation (1), namely nk({ηm}, {η∗m})→ ζk. After averaging over a unit cell the

following results emerge,

9
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ζ2 = 2

M∑

m

|ηm|2 = Φ,

ζ3 =

[
3

M∑

n>m

{
K2m+nη

2
mηn +Km+2nηmη

2
n +K−2m+nη

∗
m
2ηn

+K−m+2nη
∗
mη

2
n

}
+ 6

M∑

o>n>m

{Km+n+oηmηnηo +K−m+n+oη
∗
mηnηo

+Km−n+oηmη
∗
nηo +Km+n−oηmηnη

∗
o}+ c.c.

]
,

ζ4 = 6

M∑

m

|ηm|4 + 24

M∑

n>m

|ηm|2|ηn|2

+

[
4

M∑

n>m

{
K3m+nη

3
mηn +K−3m+nη

∗
m
3ηn +K−m+3nη

∗
mη

3
n +Km+3nηmη

3
n

}

+ 12

M∑

o>n>m

{
K2m+n+oη

2
mηnηo +Km+2n+oηmη

2
nηo +Km+n+2oηmηnη

2
o

+K−2m+n+oη
∗
m
2ηnηo +K−m+2n+oη

∗
mη

2
nηo +K−m+n+2oη

∗
mηnη

2
o

+K2m−n+oη
2
mη

∗
nηo +Km−2n+oηmη

∗
n
2ηoKm−n+2oηmη

∗
nη

2
o

+K2m+n−oη
2
mηnη

∗
o +Km+2n−oηmη

2
nη

∗
o +Km+n−2oηmηnη

∗
o
2
}

+ 24

M∑

p>o>n>m

{K−m+n+o+pη
∗
mηnηoηp +Km−n+o+pηmη

∗
nηoηp

+Km+n−o+pηmηnη
∗
oηp +Km+n+o−pηmηnηoη

∗
p

+K−m−n+o+pη
∗
mη

∗
nηoηp +K−m+n−o+pη

∗
mηnη

∗
oηp

+K−m+n+o−pη
∗
mηnηoη

∗
p +Km+n+o+pηmηnηoηp

}
+ c.c.

]
, (18)

with

Kim+ jn+ko+lp =

{
1 if |iGm + jGn + kGo + lGp| = 0

0 if |iGm + jGn + kGo + lGp| �= 0
, (19)

and neglecting terms including a factorKim+in with i = ±1,±2 which would appear in ζ2 and
ζ4 as Gm with the same lengths are never parallel (or antiparallel), so Kim+in = 0. Notice that

terms as in the first sum in ζ3 or the third sum in ζ4 contributes if considering modes with two

or three times the length of others, respectively (e.g.G10 and G20 in figure 2(b)).

10
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For a one-mode approximation of n through equation (17), i.e. by considering the shortest

Gm, and transformation (11), the excess term becomes

∫

u.c.

dr n(1+∇2)2n =

M∑

m

2|(1+ Lm)ηm|2
|Gm|=1
=

M∑

m

2|Gmηm|2, (20)

with Gm = ∇2 + 2𝕚Gm · ∇ and Lm = Gm − |Gm|2. In the one mode approximation, the length

scales can always be re-parametrized such that |Gm| = 1.
Interestingly the term ζ2 = Φ does not depend on the lattice symmetry,while ζ4 can be writ-

ten ζ4 = 6
∑M

m |ηm|4 + 24
∑M

n>m |ηm|2|ηn|2 + ζs4 = 3Φ2 − 6
∑M

m |ηm|4 + ζs4, where ζ
s
4 depends

on lattice symmetry. Therefore, the free energy as function of amplitudes may be written

Fη =

∫

Ω

dr

[

A

2

M
∑

m

2|Gmηm|2 +
B

2
ζ2 +

C

3
ζ3 +

D

4
ζ4 + E

]

=

∫

Ω

dr

[

B

2
Φ+

3D

4
Φ

2
+

M
∑

m

(

A|Gmηm|2 −
3D

2
|ηm|4

)

+ f s({ηm}, {η∗m})+ E

]

, (21)

with f s({ηm}, {η∗m}) = C
3
ζ3 +

D
4
ζs4.

The dynamics of the amplitudes, based on the PFC formulation in equation (2) and

according to transformation (12) are given by

∂ηm
∂t

= Lm

δFη

δη∗m
≈ −|Gm|2

⎡
⎢⎢⎢⎣AG

2
mηm + Bηm + 3D(Φ− |ηm|2)ηm +

C

3

∂ζ3
∂η∗m

+
D

4

∂ζs4
∂η∗m︸ ︷︷ ︸

∂ f s/∂η∗m

⎤
⎥⎥⎥⎦ , (22)

where Lm ≈ −|Gm|2 as in equation (13), and, from equation (18),

1

3

∂ζ3
∂η∗m

=

M
∑

n�=m

{2K−2m−nη
∗
mη

∗
n + 2K−2m+nη

∗
mηn +K−m−2nη

∗
n
2
+K−m+2nη

2
n

}

+ 2

M
∑

o>n�=m

{K−m−n−oη
∗
nη

∗
o +K−m+n+oηnηo + K−m+n−oηnη

∗
o +K−m−n+oη

∗
nηo} ,

1

4

∂ζs4
∂η∗m

=

M
∑

n�=m

{

3K−3m−nη
∗
m
2η∗n + 3K−3m+nη

∗
m
2ηn + K−m+3nη

3
n + K−m−3nη

∗
n
3
}

+ 3

M
∑

o>n�=m

{

2K−2m−n−oη
∗
mη

∗
nη

∗
o +K−m−2n−oη

∗
n
2η∗o +K−m−n−2oη

∗
nη

∗
o
2

+ 2K−2m+n+oη
∗
mηnηo + K−m+2n+oη

2
nηo +K−m+n+2oηnη

2
o

+ 2K−2m+n−oη
∗
mηnη

∗
o +K−m+2n−oη

2
nη

∗
o +K−m+n−2oηnη

∗
o
2

+ 2K−2m−n+oη
∗
mη

∗
nηo +K−m−2n+oη

∗
n
2ηo +K−m−n+2oη

∗
nη

2
o

}

+ 6

M
∑

p>o>n�=m

{

K−m+n+o+pηnηoηp + K−m+n−o−pηnη
∗
oη

∗
p + K−m−n+o−pη

∗
nηoη

∗
p

+ K−m−n−o+pη
∗
nη

∗
oηp + K−m−n+o+pη

∗
nηoηp + K−m+n−o+pηnη

∗
oηp

+ K−m+n+o−pηnηoη
∗
p +K−m−n−o−pη

∗
nη

∗
oη

∗
p

}

, (23)

11
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2.3.1. Multi-mode approximations. To model some crystal lattices, more than one mode is

required in equation (17), i.e. more length scales are set through the choice of the reciprocal

space vectors. In this case, ζm reads as reported above, but the excess term takes different forms.

However, it may be reduced to equation (20) through approximation [6, 13]. For two lengths,

R1 = 2π/keq1 and R2 = 2π/keq2 , corresponding to different lengths in the reciprocal space

k
eq
1 = 1 and k

eq
2 = αkeq1 , with α �= 1 = k

eq
2 /keq1 = R1/R2, the term including the differential

operator in the dynamic would read [6]

(1+ R2
1∇2)2(1+ R2

2∇2)2n→
M∑

m

α−4(1+ Lm)
2(α2 + Lm)

2ηm =

M∑

m

Dmηm, (24)

with

Dm =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

α−4(Gm)2(α2 − 1+ Gm)2 =
(α2 − 1)2

α4
(Gm)2

(
1+

Gm
α2 − 1

)2

if |Gm| = k
eq
1 = 1

α−4(1− α2 + Gm)2(Gm)2 =
(1− α2)2

α4
(Gm)2

(
1− Gm

α2 − 1

)2

if |Gm| = k
eq
2 = α

,

(25)

and lengths have been scaled such that x→ x/R1. If 2|Gmηm| ≪ |(α2 − 1)ηm|,

Dmηm ≈ (α2 − 1)2

α4
G2
mηm. (26)

Therefore, the coefficient A can be rescaled by a factorα4/(α2 − 1)2 and the same energy term

as for the one mode approximation can be used. This result may be generalized for a lattice

havingNℓ different length scalesRℓ = 2π/keqℓ and k
eq

ℓ /keq1 = αℓ (noting k
eq
1 = 1). Equation (24)

would read

Nℓ∏

ℓ

(1+ R2
ℓ∇2)2n→

M∑

m

[
Nℓ∏

ℓ

(1+ α−2
ℓ Lm)

2

]
ηm =

M∑

m

Mmηm. (27)

If, ∀ℓ, 2|Gmηm| ≪ |(α2
ℓ − |Gm|2)|ηm, one may write

Mmηm ≈

⎡
⎢⎢⎣|Gm|−4

Nℓ∏

ℓ
αℓ �=|Gm|

(
α2
ℓ − |Gm|2

α2
ℓ

)2

⎤
⎥⎥⎦G

2
mηm = ΓmG2

mηm, (28)

that for N l = 2, α1 = 1 and α2 = α reduces to equation (26). Then, under this approximation,∑M
m Mmηm =

∑M
m ΓmG2

mηm. Notice that in the presence of more than two modes, the coeffi-

cient of G2
m cannot be taken outside the sum so it cannot be included in the coefficientA through

rescaling as in equation (26).

2.3.2. Results for specific lattice symmetries. Implementations of the APFC equations may

be performed in a general fashion by considering equations (18) and (23). This delivers a gen-

eral framework suitable for changes in lattice symmetries and the number of modes used

(eventually also different symmetries at once, see also section 6.4). However, the specific

equations corresponding to given lattice symmetries through the choice of reciprocal lattice

vectors may be useful for analytic calculations and ad-hoc implementations. In the following,

12
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f s ≡ f s({ηm}, {η∗m}) are reported for selected crystal symmetries used in literature, with the

length of shortest reciprocal space vectors normalized to 1 (see, e.g. [6, 59–61] and figure 2).

Triangular (TRI) symmetry (2D), one-mode approximation,N = 3:

GTRI
1 =

[
−
√
3/2

−1/2

]
, GTRI

2 =

[
0

1

]
, GTRI

3 =

[√
3/2

−1/2

]
,

f tri, 1 = 2C(η1η2η3 + η∗1η
∗
2η

∗
3). (29)

Triangular (TRI) symmetry (2D), two-mode approximation, N = 6:

GTRI
1 , GTRI

2 , GTRI
3 , GTRI

4 = GTRI
1 −GTRI

2 ,

GTRI
5 = GTRI

2 −GTRI
3 , GTRI

6 = GTRI
3 −GTRI

1 ,

f tri, 2 = 2C(η1η2η3 + η∗1η2η4 + η1η
∗
3η6 + η∗2η3η5 + η4η5η6)

+ 3D(η1η
2
2η

∗
5 + η21η2η6 + η21η3η

∗
4 + η1η

2
3η5 + η22η3η4 + η2η

2
3η

∗
6)

+ 6D(η1η
∗
2η5η6 + η∗1η3η4η5 + η2η

∗
3η4η6)+ c.c.

.

(30)

Square (SQ) symmetry (2D), two-mode approximation, N = 4:

G
SQ
1 =

[
1

0

]
, G

SQ
2 =

[
0

1

]
, G

SQ
3 =

[
1

1

]
, G

SQ
4 =

[
−1

1

]
,

f sq, 2 = 2C(η1η2η
∗
3 + η1η

∗
2η4)+ 3D(η21η

∗
3η4 + η22η

∗
3η

∗
4)+ c.c.. (31)

Square (SQ) symmetry (2D), three-mode approximation, N = 8:

G
SQ
1 , G

SQ
2 , G

SQ
3 , G

SQ
4 ,

G
SQ
5 =

[
2

1

]
, G

SQ
6 =

[
−2

1

]
, G

SQ
7 =

[
1

2

]
, G

SQ
8 =

[
−1

2

]
,

f sq, 3 = 2C
(
η1η2η

∗
3 + η1η

∗
2η4 + η1η3η

∗
5 + η1η

∗
4η6 + η2η3η

∗
7 + η2η4η

∗
8 + η3η6η

∗
8

+ η4η5η
∗
7

)
+ 3D

(
η21η2η

∗
5 + η21η

∗
2η6 + η1η

2
2η

∗
7 + η∗1η

2
2η

∗
8 + η21η

∗
3η4 + η∗1η

2
3η

∗
7

+ η1η
2
4η

∗
8 + η21η

∗
7η8 + η22η

∗
3η

∗
4 + η∗2η

2
3η

∗
5 + η∗2η

2
4η

∗
6 + η22η

∗
5η

∗
6

)
+ 6D

(
η∗1η2η5η

∗
7

+ η1η2η6η
∗
8 + η1η3η4η

∗
7 + η∗1η3η4η

∗
8 + η1η5η6η

∗
7 + η∗1η5η6η

∗
8 + η∗2η

∗
3η4η5

+ η∗2η3η
∗
4η6 + η∗2η5η

∗
7η8 + η∗2η6η7η

∗
8 + η∗3η

∗
4η5η6 + η∗3η4η7η

∗
8

)
+ c.c.

.

(32)

Body centered cubic (BCC) symmetry (3D), one-mode approximation, N = 6:

13
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GBCC
1

GBCC
0

=

⎡
⎣
0

1

1

⎤
⎦ , GBCC

2

GBCC
0

=

⎡
⎣
1

0

1

⎤
⎦ , GBCC

3

GBCC
0

=

⎡
⎣
1

1

0

⎤
⎦ , GBCC

4

GBCC
0

=

⎡
⎣

0

1

−1

⎤
⎦ ,

GBCC
5

GBCC
0

=

⎡
⎣

1

−1

0

⎤
⎦ , GBCC

6

GBCC
0

=

⎡
⎣
−1

0

1

⎤
⎦ , GBCC

0 =

√
2

2
,

f BCC,1 = 2C(η1η
∗
2η5 + η∗1η3η6 + η2η

∗
3η4 + η4η5η6)

+ 6D(η∗1η2η4η6 + η1η
∗
3η4η5 + η∗2η3η5η6)+ c.c.

. (33)

BCC symmetry (3D), two-mode approximation, N = 9

GBCC
1 , GBCC

2 , GBCC
3 , GBCC

4 , GBCC
5 , GBCC

6 ,

GBCC
7

GBCC
0

=

⎡
⎣
2

0

0

⎤
⎦ , GBCC

8

GBCC
0

=

⎡
⎣
0

2

0

⎤
⎦ , GBCC

9

GBCC
0

=

⎡
⎣
0

0

2

⎤
⎦ ,

f BCC,2 = 2C
(
η1η

∗
2η5 + η∗1η3η6 + η1η4η

∗
8 + η∗1η4η9 + η2η

∗
3η4 + η∗2η6η7 + η2η6η

∗
9

+ η3η5η
∗
7 + η∗3η5η8 + η4η5η6

)
+ 3D

(
η21η

∗
8η

∗
9 + η22η

∗
7η

∗
9 + η23η

∗
7η

∗
8 + η24η

∗
8η9

+ η25η
∗
7η8 + η26η7η

∗
9

)
+ 6D

(
η∗1η2η3η

∗
7 + η∗1η2η

∗
3η8 + η∗1η

∗
2η3η9 + η∗1η2η4η6

+ η1η
∗
3η4η5 + η∗1η

∗
5η6η7 + η∗1η5η6η8 + η1η5η6η

∗
9 + η∗2η3η5η6 + η2η4η5η

∗
7

+ η∗2η
∗
4η5η8 + η∗2η4η5η9 + η∗3η4η6η7 + η3η4η6η

∗
8 + η∗3η4η

∗
6η9
)
+ c.c.

(34)

Face centered cubic (FCC) symmetry (3D), two-mode approximation, N = 7:

GFCC
1

GFCC
0

=

⎡
⎣
−1

1

1

⎤
⎦ , GFCC

2

GFCC
0

=

⎡
⎣

1

−1

1

⎤
⎦ , GFCC

3

GFCC
0

=

⎡
⎣

1

1

−1

⎤
⎦ , GFCC

4

GFCC
0

=

⎡
⎣
−1

−1

−1

⎤
⎦ ,

GFCC
5

GFCC
0

=

⎡
⎣
2

0

0

⎤
⎦ , GFCC

6

GFCC
0

=

⎡
⎣
0

2

0

⎤
⎦ , GFCC

7

GFCC
0

=

⎡
⎣
0

0

2

⎤
⎦ , GFCC

0 =

√
3

3
,

f FCC,2 = 2C(η1η2η
∗
7 + η1η3η

∗
6 + η1η4η5 + η2η3η

∗
5 + η2η4η6 + η3η4η7)

+ 6D
(
η1η2η3η4 + η∗1η2η

∗
5η6 + η∗1η3η

∗
5η7 + η∗1η4η6η7

+ η∗2η3η
∗
6η7 + η∗2η4η5η7 + η∗3η4η5η6

)
+ c.c.

, (35)

Other symmetries may be considered, provided that the proper set of the reciprocal space

vectors are known and that the encoded symmetry corresponds to a global energy minimum

for some parameters (see section 2.3.3). Alternatively, stability of phases/symmetries may be

enforced with the APFC formulation outlined in section 2.4.

14



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

Figure 3. h(φI,φII) as obtained for a two-mode approximation of the triangular sym-
metry with C = −2.0 and D = 1.0 at two quenching depths: (a) B = 0.3, (b) B = 0.0.
Dashed lines show representative isolines for negative values of h(φI,φII).

2.3.3. Stability of phases. In a relaxed, bulk crystal, real and constant amplitudes φ may be

computed by energy minimization. For instance, for one-mode approximations and no = 0,

one gets the energy

F[φ] =

∫

Ω

h(φ)dr

=

∫

Ω

[
MBφ2

+ 3DM

(
M − 1

2

)
φ4

+
C

3
ζ3(φ)+

D

4
ζs4(φ)

]
dr. (36)

Letting ζ3 = pφ3 and ζs4 = qφ4 where p and q where are integers, and minimizing the free

energy given in equation (18), with respect to φ (δF[φ]/δφ = ∂h[φ]/∂φ = 0) gives the

solutions,

φ1,2 =
−pC ±

√
(pC)2 − 8MBD(12M2 − 6M + q)

2D(12M2 − 6M + q)
, (37)

with ± the solution for C ≶ 0. For instance, for a triangular symmetry described by a

one mode approximation (see figure 2) where M = 3, p= 12, q = 0, gives φ1,2 = (−C ±√
C2 − 15BD)/15D. Similarly, for a BCC lattice described by a one mode approximation (see

figure 2) where M = 6, p= 48, q = 144 the result is φ1,2 = (−2C ±
√
4C2 − 45BD)/45D.

Real solutions of equation (37) exist if (pC)2 > 8MBD(12M2 − 6M + q). Moreover, the gen-

eral stability of the solid phase described by a real amplitude φ1,2 can be assessed by evaluating

the conditionF[φ1,2] < F[0]. Notice that, F[0] is trivially 0 from equation (36), but it may have

different values for no �= 0 as a non-zero average density would enter explicitly the energy (36)

and modifies the value of the real amplitudes at equilibrium (see e.g. reference [6]). Phase dia-

grams can then be devised generally for both PFC and APFC approaches [6, 62] by evaluating

the relative stability of different phases described by φ. Generally, for a given set of parame-

ters C and D, liquid phase results favored for values of B smaller than a critical value Bc. This

parameter phenomenologically encodes the role of the temperature. |B− Bc| is often referred
to as quenching depth. Notice that Bc = 0 for C = 0.

When considering approximations with more modes, different values of φ should be con-

sidered for every set of amplitudes corresponding to different lengths ofGm. Typically this task
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should be addressed numerically. Consider an approximation with K equal to the number of

the modes of different length (under approximations introduced in section 2.3.1). In this case

the following function must be minimized,

h[{φk}] =
K∑

k=1

[
BMkφ

2
k −

3

2
DMkφ

4
k

]
+ 3D

(
K∑

k=1

Mkφ
2
k

)2

+
C

3
ζ3({φk})+

D

4
ζs4({φk}), (38)

with Mk the number of reciprocal space vectors for each considered mode (the solid arrows

in figure 2). For instance, for the three-mode approximation of a cubic lattice in figure 2, we

would have M1 = 2, M2 = 2 and M3 = 4. ζ3({φk}), ζs4({φk}) are the symmetry-dependent

polynomials resulting by substituting η j with the amplitude associated to the length of the

reciprocal space vector they correspond to. To introduce an explicit example, consider the

two mode approximation of the triangular symmetry (see figure 2(a)), i.e. {φk} = [φI ,φII],

MI = MII = 3, and ζ3(φI,φII), ζ
s
4(φI,φII) the polynomial resulting by setting η j = φI for

j = 1, 2, 3 and η j = φII for j = 4, 5, 6 in equation (30). Plots of h(φI,φII) for selected parame-

ters (C = −2.0 andD = 1.0) are shown in figure 3. At a value B = 0.3 (figure 3(a)), relatively
close to the solid–liquid phase transition, the free energy has a single minimum corresponding

to φI ≈ 0.274 and φII ≈ 0.087. By increasing the quenching depths, the globalminimum shifts

to φI ≈ 0.215 and φII ≈ 0.086 for B = 0.0. Moreover, another relative minimum appears (see

figure 3(b)), which corresponds to a graphene-like phase. Some extended discussions on all the

possible phases which can be described in two dimensions with combination of more modes

can be found in reference [62].

2.4. Amplitude XPFC

A formulation based on the the so-called structural PFC (XPFC) [20, 21], describing more

detailed features and phenomena in crystalline systems such as, e.g. multicomponent systems,

structural transformations, anisotropies, and extended defects [11, 58, 63], has been proposed

in reference [58]. In a dimensionless form, the XPFC free energy FX reads

FX =

∫
dr

[
Fex +

n2

2
− P

n3

3
+ Q

n4

3

]
,

Fex = −n(r)

2

∫
dr′X2(|r− r′|)n(r′), (39)

where P and Q are parameters and X2(|r− r′|) is the direct two-point correlation function at

the reference density no. In this approach, this function is typically expressed in the reciprocal

space, X̂2(|k|). Following reference [58], it may be expressed as an envelope of Gaussian peaks

associated with different modes of the periodic density or, in other words, to a family of planes

of a crystal structure [21],

X̂2, j = e− 1

2w2
j

(k − k j)
2 − σ2

pja j
k2j , (40)

wherew j controls the elastic and surface energies (the width of the jth Gaussian peak), σ is an

effective temperature parameter [64], pj and a j are the planar and atomic densities associated

with the family of planes corresponding to the jth mode, respectively, while k j is the inverse
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of the interplanar spacing for the jth family of planes. Then, by assuming an amplitude formu-

lation and volume average as in sections 2.2 and 2.3, the polynomial in n that enters FX leads

to terms similar to the energy in equation (15) except for the excess term which becomes [58]

Fex,η =

∫
dr

[
M∑

m

− η∗m
2
F−1

{
X̂2(|k+Gm|)η̂m(k)

}

− no

2
F−1

{
ξ̂V (k)X̂2(|k|)n̂o(k)

}
+ c.c.

]
,

(41)

where the hat symbol denotes the Fourier transform, F−1 the inverse Fourier transform, and

ξ̂V an averaging (convolution) kernel in Fourier space that restricts the wave number to small

values, approximately approaching the extension of the first Brillouin zone, which filters out

spatial variations smaller than the lattice spacing. Interestingly, this model has been proposed

with an ansatz for the amplitude expansion encoding different (two) lattice symmetries (see

section 6.4). This ansatz is expected to work with other forms of the energy and it consists just

of a different formulation for equation (17) leading to results that may be formulated in terms

of the equations reported in section 2.3.

3. Numerical methods

In this section, two standard methods (finite difference and spectral) for solving first order in

time partial differential equations (PDEs) that are applicable to APFC models are described.

Following this, a finite element approach for solving APFC models is outlined and the

description of a mesh refinement algorithm is reported.

3.1. Finite differences

In general there are many methods for solving an equations of the form

∂ψ

∂t
= H(ψ), (42)

where H(ψ) is a function of ψ. To solve it numerically it is useful to first consider integrating

the equation over time from t to t +Δt to obtain,

ψ(t +Δt) = ψ(t)+

∫ t+∆t

t

dt′ H(ψ). (43)

Themain question is how to approximate the integral in the above equation. In explicit methods

only prior knowledge of ψ and its derivatives are used, i.e.

ψ(t +Δt) = ψ(t)+

∫ t+∆t

t

dt′
[
H(t)+

∂H

∂t′

∣∣∣∣
t

t′ +
1

2!

∂2H

∂t′2

∣∣∣∣
t

t′2 + · · ·
]
, (44)

where H(t) = H(ψ(t)). The simplest method, Euler’s method, just retains the first term in the

expansions, i.e.

ψ(t +Δt) = ψ(t)+ΔtH(t). (45)

This approach must be supplemented by methods to evaluate spatial gradients in H, which

in (A)PFC type models are typically even order derivatives, i.e. ∇2,∇4, . . . . Often these are
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evaluated using a central difference formula. For instance, in two dimensionswith a five-points

stencil (quincunx), the Laplacian is given by

∇2 f =
f (i+ 1, j)+ f (i, j+ 1)+ f (i− 1, j)+ f (i, j− 1)− 4 f (i, j)

Δs2
, (46)

where (x, y) = (iΔs, jΔs). Equation (46), in conjunction with equation (45), is quite simple

to implement for numerical integrations. Moreover, it is easy to incorporate different BC.

However, the time stepΔt is limited by the grid spacing due to stability constraints, typically

Δt < αΔs−k, (47)

where k is the highest order spatial derivative (i.e. k = 6 for the PFC equation) and α is a con-

stant that is model specific. If Δt is too large, the solution very rapidly diverges (a pitchfork

instability). The specifics of the origin of this instability are described in detail in reference

[48]. It is possible to slightly reduce this instability by including next nearest neighbors as

done by Oono and Puri [65]. This limitation is quite severe in PFC and APFC models as k = 6

in the former case and k = 4 in the latter. This instability can be avoided using semi-implicit

approaches that are typically done in Fourier space. However, implicit or more generally semi-

implicit approaches may be exploited, evaluating terms in the integrals in equation (44) within

the range [t, t +Δt], to have more stable numerical schemes (see also section 3.3). Also,

finite difference approaches may be combined with spatial adaptivity which may allow for

efficient simulations (see also section 3.4). A few examples of APFC numerical simulations

performed with finite differences can be found, e.g. in references [22, 49, 66–70]. Alterna-

tively, the instability mentioned above can be avoided using spectral methods, as discussed in

the next section.

3.2. Fourier spectral method

Spectral methods solve differential equations treating variables as a sum of basis functionswith

coefficients to be computed, i.e. through a global representation. The so-called Fourier spec-

tral method exploits the Fourier transform, typically in its discrete formulation for numerical

integrations (therefore often referred to as pseudo-spectral, Fourier method). This method is

particularly suited for periodic BC. A key feature of this approach is that, in the

Fourier space, differential operators become algebraic expression of the wave vector, e.g.

∇2ψ(t)→−|k|2ψ̂k(t), where ψ̂k is the (discrete) Fourier transform of ψ. No finite difference

approximations are then required if solving for ψ̂k(t), and ψ(t) may be then obtained through a

(discrete) inverse Fourier transform. Moreover, efficient algorithms exist to compute ψ̂k from

ψ and vice-versa, namely exploiting the fast Fourier transform algorithm [71]. The adaptation

of such approaches to PF modeling in materials physics can be found in reference [72]. This

method generally allows for splitting off the linear term in H and solving that part exactly, i.e.

∂ψ

∂t
= Lψ + N(ψ), (48)

where L is a linear operator and N is a non-linear function of ψ. Indeed, in Fourier space, this
would then read

∂ψ̂k

∂t
= Lkψ̂k + N̂k, (49)
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with N̂k the Fourier transform of N(ψ) and Lk is an algebraic expression of the wave vector.

Equation (49) is an ordinary differential equation with solution

ψ̂k(t) = eLk tψ̂k(0)+ eLkt
∫ t

0

dt′ e−Lk t′N̂k(t
′). (50)

Typically, the numerical instability in Euler’s method occurs whenLk is the most negative (i.e.

at large wavevectors). However, in this method, eLkt is very small in this limit so that instability

is completely avoided. To complete the picture, the non-linear term must be approximated as

was done for H(ψ) in the preceding section. Considering equation (50) for ψ̂k(t +Δt) and

approximating (explicitly) N̂k(t
′) ≈ N̂k(t) gives

ψ̂k(t+Δt) = eLk∆tψ̂k(t)+ eLk(t+∆t)

∫ t+∆t

t

dt′ e−Lkt′N̂k(t
′)

≈ eLk∆tψ̂k(t)+
eLk∆t − 1

Lk

N̂k(t),

(51)

while other approximations of N̂(t′) may be considered as well. Equation (51) provides a rel-

atively simple method of updating the field ψ at one time step, although it requires Fourier

transforms of ψ and N(ψ) and an inverse Fourier transform of ψ̂k per time step. While the

method eliminates the Euler instability, the free energywill increase if the time step is too large,

which should not occur. Nevertheless, depending on the specific model, it is possible to use

time steps that are tens or hundreds of times larger than those used in the Euler algorithm. For

the amplitude expansion, this method is directly applicable as the linear pieces of the equations

of motion for ηm are not coupled to any other amplitudes. Representative examples of APFC

numerical simulations exploiting the Fourier pseudo-spectral method can be found, e.g. in

references [9, 28, 29, 58, 59, 62, 73–76].

3.3. Finite element method

The Finite element method (FEM) emerged as a particularly suitable framework for solving the

APFC model’s equations [16, 60, 77, 78], besides being also employed in PFC studies in the

first place [79–83]. Indeed, it conveniently discretizes PDEs while exploiting inhomogeneous

and adaptive meshes.

Within FEM, the PDEs are expressed in an integral form (weak form) over their domain of

definition (Ω), typically having a rectangular/cubic shape. For the discretization of the resulting

equations, a conforming triangulation Th of the domain Ω is considered, usually with simplex

elements S ∈ Th (with characteristic size h). In the context of APFC simulations, linear ele-

ments have been mostly adopted. This means considering a discrete function space of local

polynomial of order 1 (P1), namely V1
h = {v ∈ C(Ω,R) : v|S ∈ P1(S,R), S ∈ Th}. A function

y ∈ V1
h can be written in terms of a basis expansion y =

∑
i Y iΞi with real coefficients Y i and

basis {Ξi} of V1
h . To solve for complex functions, as ηm, their real and imaginary part can be

considered as two (real) independent unknowns. Alternatively, complex coefficients with real

basis functions may be considered.

The FEM approach which has been used to solve APFC equations as in equation (22),

features a splitting into two second-order equations for ∂ηm/∂t and ρm = Gmηm (with

m = 1, . . . ,M as in section 2.3) [60, 77]:
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∂ηm
∂t

= −|Gm|2
[
AGmρm + Bηm + 3D(Φ− |ηm|2)ηm +

∂ f s

∂η∗m

]
,

ρm = Gmηm = ∇2ηm + 2𝕚Gm · ∇ηm.

(52)

This choice is convenient within the APFC framework as it allows the computing of relevant

quantities straightforwardly as, e.g. the stress field, which may be rewritten in terms of both

ηm and ρm and their spatial derivatives [16] (see also section 4.2). Moreover, even though it is

defined for Gm, ρm can be readily be used for computing Lm, for instance when considering

multi-mode approximations. From a numerical point of view, the splitting in equation (52)

allows exploiting linear elements as only second-order operators appear, which translate to

first order operators acting on elements of V1
h in the weak form. With ( f , g) :=

∫
Ω
f (r)g(r)dr

the L2(Ω,R) scalar product, and considering the integral form of equation (52), the problem

to solve then reads: for t ∈ [0, T], find ηm(t) = am(t) + 𝕚bm(t) and ρm(t) = cm(t) + 𝕚dm(t), with

am, bm, cm, dm ∈ V1
h (implying hereafter their dependence on t), such that

(
∂am
∂t

, v

)
− A|Gm|2 [(∇cm, ∇v) + 2(Gm · ∇dm, v)] =

(
Re[H({η})], v

)
,

(
∂bm
∂t

, v

)
− A|Gm|2 [(∇dm, ∇v)− 2(Gm · ∇cm, v)] =

(
Im[H({η})], v

)
,

(cm, v)+ (∇am, ∇v)+ 2(Gm · ∇bm, v) = 0,

(dm, v)+ (∇bm, ∇v)− 2(Gm · ∇am, v) = 0,

(53)

∀v ∈ V1
h subject to an initial conditions ηm(0) = η0m, andH({η})= ∂ f s/∂ηm + Bηm + 3D(Φ−

|ηm|2)ηm. The time derivatives are approximated by ∂am/∂t = (a j+1
m − a jm)/Δt j and ∂bm/∂t =

(b j+1
m − b jm)/Δt j, withΔt j = t j+1 − t j the time step, and j ∈ N0 the index labeling time steps.

The time discretization is obtained through an implicit–explicit (IMEX) scheme. It consists of

evaluating all the linear (nonlinear) terms in equation (53) implicitly (explicitly), i.e. at time

t j+1 (t j) [60, 77], with a j+1
m , b j+1

m , c j+1
m , d j+1

m the unknowns to solve for. Equation (53) consists

of a set of nonlinear equations due toH({η}). This term can be generally linearized and handled

through iterative approaches as Picard iterations or the Newton method. A simple but effective

approach, which can be exploited for methods introduced in previous sections too, consists of

applying a one-iteration Newton method [60], i.e. approximatingH(η j+1) as

H(η j+1) = H(η j)+ H′(η j)(η j+1 − η j). (54)

To solve equation (53), basis function expansions of unknowns are considered, e.g. a j+1
m =∑

iY
j+1
m,i Ξi, with Y

j+1
m,i the coefficients to be computed at the jth timestep (and analogous expres-

sions and coefficients’ definition for b j+1
m , c j+1

m , d j+1
m ). These coefficients are computed by

substituting the basis function expansions into equation (53), setting basis functions as test

functions, and solving the resulting system of equations. Notice that M coupled systems (53)

must be solved concurrently, with M the number of independent amplitudes according to the

considered lattice symmetry and approximation (see section 2.3). BC such as Dirichlet, Neu-

mann, or periodic BC, may be included as in common FEM approaches. Further discussions

and explanations of standard aspects can be found in specialized textbooks.

The FEM approach outlined above proved efficient in handling relatively large systems in

both two and three dimensions, in combinationwith standard direct and iterative solvers within
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Figure 4. Illustration of the growth of 20 crystal seeds (with a triangular lattice, one-
mode approximation) having random orientation ranging in [−15◦, 15◦], as obtained
by an APFC simulation with an adaptive mesh. The spatial discretization is repre-

sented by means of the mesh while colors represent: (a) Φ =
∑M

m |ηm|2, (b) Re(η1),
as indexed in (29), (c) local rotation ω w.r.t the reference crystal set byGm, computed by
equation (69). (d) Magnification of two regions showing the mesh on a smaller length
scale at the solid–liquid interface (top) and at a defect (bottom). Reprinted from [77] ©

IOP Publishing Ltd. All rights reserved.

FEM toolboxes like, e.g. AMDiS [84, 85]. Further improvements may be devised to increase

the performances. An example is reported in [77] where the development of a dedicated pre-

conditioner [86, 87] allowing for fast solver convergence has been proposed and exploited for

simulations of hundreds of nanometers domains in three dimensions for some materials.

The approach described in this section is also prone to coupling with other equations.

Indeed, other variables would share spatial features with amplitudes. Coupling terms could

be considered as additional terms entering ∂ηm/∂t. At the same time, other equations may be

discretized readily following the main FEM features described above (linear elements, oper-

ator splitting in second-order PDEs, IMEX time discretization). This has been exploited for

instance when imposing mechanical equilibrium [16] (see section 5.2), to simulate binary sys-

tems [13] (see section 6.3), and to investigate the effect of magnetic field on small-angle grain

boundaries [88].

3.4. Mesh adaptivity

Exploiting spatial adaptivity is a convenient strategy for performing efficient simulations with

the APFCmodel [60, 66, 67, 77]. Indeed, amplitudes are constant for relaxed crystals, oscillate

with different periodicity according to the local distortion of the crystal with respect to the

reference one (see, e.g. figure 1) and exhibit significant variation at defects and solid–liquid

interfaces. Depending on the numerical approach and set of equations, onemay devise different

strategies to set a local refinement, e.g. based on error estimates or indicators.

An optimized local resolution based on the amplitudes oscillations has been achieved focus-

ing on phases of the complex amplitudes, arg(ηm) = θm. By looking at this quantity, it is
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possible to determine the wavelength of oscillating amplitudes λm [77]. Then for a good res-

olution of all the amplitudes, the discretization h should be a fraction of the smallest λm, i.e.
hamp = minm (λm)/n, with n � 10.

To use this criterion in practice, the deformation, strain and/or rotation fieldsmust be derived

from amplitudes. This will be discussed in detail in the following section (see section 4.2). In

addition to the oscillation of amplitudes, a refinement for the interfaces and defects controlled

by hmin where |∇Φ| is significantly larger than a relatively small threshold ς and imposed

as finest resolution in the mesh is considered [60], while a large discretization bound hmax is

defined for regions whereΦ ∼ 0 or where θm → 0 (i.e. for constant amplitudes). Summarizing

these concepts, this method ensures a local discretization, h, as

h =

⎧
⎪⎪⎨
⎪⎪⎩

hmin, if |∇Φ| � ς

min(max(hamp, hmin) , hmax ), ifΦ > 0 and |∇Φ| < ς

hmax, elsewhere.

(55)

This approach has been exploited together with the FEM approach outlined in section 3.3,

in particular within the FEM toolbox AMDiS [84, 85]. However, it is expected to work with

any real-space method readily. Further optimization of the mesh refinement can be achieved

by a polar representation [66, 67] which involves, however, some changes in the amplitude

equations, the coupling with additional fields, and other technical details to be considered. An

examples of anAPFC simulation performedwith the adaptive refinement strategy here outlined

is given in figure 4.

4. Continuum limit: elasticity and plasticity

4.1. Elasticity

The elastic properties in the amplitude expansion arise from the term A
∑M

m Γm|Gmηm|2 (see
equation (28)). Indeed, all the other terms in the free energy do not give rise to gradients in

the phase of the amplitudes and as such do not contribute to the elastic energy. To obtain the

consequences of this term it is useful to consider deformations (u ≡ u(r)) from a perfect lattice,

i.e.

ηm = φme
−𝕚θm , (56)

where θm ≡ Gm · u and φm is weakly dependent on u (see a 1D illustration in figure 1(b)). This

leads to

Gmηm = φm e
−𝕚Gm·u (−𝕚∇2θm − |∇θm|2 + 2Gm · ∇θm

)

≈ φm e
−𝕚Gm·u (−|∇θm|2 + 2Gm · ∇θm

)
,

(57)

where in the last line higher order gradients in u have been neglected. So that

M∑

m

Γm|Gmηm|2 = 4

M∑

m

Γmφ
2
mG

m
i G

m
j G

m
k G

m
l

×
(
ui jukl − ui jukoulo +

1

4
uiou joukpulp

)
, (58)
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where ui j ≡ ∂ui/∂x j, G
m
i is the ith component of Gm and the Einstein summation conven-

tion is used. Equation (58) contains linear and non-linear terms. In terms of the non-linear

Eulerian–Almanasi strain measure (U) [57, 73] with elements5,

Ui j =
1

2

(
ui j + u ji − uiku jk

)
, (59)

Equation (58) can be written as

M∑

m

Γm|Gmηm|2 = 4

M∑

m

Γmφ
2
mG

m
i G

m
j G

m
k G

m
l Ui jUkl. (60)

The elastic part of the free energy is then

Felas =
1

2

∫
dr [σi jUi j] = 4A

∫
dr

[
M∑

m

Γmφ
2
mG

m
i G

m
j G

m
k G

m
l Ui jUkl

]
. (61)

The components of the stress tensor defined as

σi j = Ci jklUkl, (62)

where Ci jkl is the elastic modulus tensor [94] are then given by

Ci jkl = 8A

M∑

m

Γmφ
2
mG

m
i G

m
j G

m
k G

m
l . (63)

Thus equation (63) provides a general formula for the elastic moduli for arbitrary crystal

symmetry. Some specific examples are given below.

Examples: for a free energy with a single mode, i.e. containing the term n(1+∇2)2n/2,
2D triangular and 3D BCC structures minimize the free energy in certain parameter ranges. At

a minimum these systems can be described by modes with the same length scale and thus

Γm = 1 and φm = φ, ∀m. Following the definition of Gm as in section 2.3.2 for these

symmetries (one-mode approximation), equation (61) gives

FTRI
elas = Aφ2

∫
dr

[
9

2

∑

i

U2
ii + 3UxxUyy + 6U2

xy

]
,

FBCC
elas = Aφ2

∫
dr

[
4
∑

i

U2
ii + 4

∑

i, j>i

UiiU j j + 8
∑

i, j>i

U2
i j

]
.

(64)

5The strain measure U belongs to the general class of strain (material, Lagrangian) called Seth–Hill tensors

εn = (1/n)(Cn − 𝟙), with C = FTF, Fi j = ∂xi/∂X j the deformation gradient and x and X the spatial (Eulerian) and

material (Lagrangian) coordinates respectively, such that dx = FdX and dX = F−1dx [89–93]. U corresponds to ε−1.

This definition mixes a Lagrangian tensor due to the dependence on FTF (an Eulerian tensor would depend on FFT ),

with an Eulerian strain measure 𝟙− F−1 (a Lagrangian strain measure would depend on F− 𝟙), see also reference

[73].
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For the FCC symmetry in the two-mode approximations (see section 2.3.2), Γm = 1/16, ∀m.6
This gives

FFCC
elas =

A

9

∫
dr

[
(φ2 + 4ψ2)

∑

i

U2
ii + 2φ2

∑

i, j>i

UiiU j j + 4φ2
∑

i, j>i

U2
i j

]
, (65)

where ηm = φe−𝕚θm for i = 1, . . . , 4 and ηm = ψe−𝕚θm for i = 5, . . . , 7.
One of the difficulties in parameterizing PFC models is that the ratio of the elastic moduli

cannot be changed in the one mode triangular and BCC cases. However, it is interesting to note

that in the FCC case, the ratio of the elastic moduli depends on ψ, which in principle can be

tuned. It suggests that adding more length scales will allow for more tuneability in the models

as shown in XPFC models [21]. However, it is important to note that if the added vectors have

the same symmetry as the original ones this will not change the ratios.

4.2. Strain and stress field from the amplitudes

When examining the results of APFC simulations, it is useful to develop methods to extract

the strain and stress fields directly from the complex amplitudes. As shown by Salvalaglio et al

[14] the displacement field, u that enters CE field can be extracted directly from the phase of

the amplitudes (θm). In two dimensions (2D), inverting equation (56), the expression is

u2Di = − ǫi j
p̂ · (Gl ×Gm)

[
Gm
j θl − Gl

jθm
]
, (66)

with (i, j) = (x, y) and cyclic permutations, ǫi j is the 2D Levi-Civita symbol, l and m label

two different amplitudes, p̂ = x̂× ŷ the normal vector of the xy-plane and θm = arg(ηm) =
arctan

[
Im(ηm)/Re(ηm)

]
. In three dimensions (3D) it can be shown that

u3Di = − 1

Gn · (Gm ×Gl)

[
θl(G

m
k G

n
j − Gm

j G
n
k)+ θm(G

n
kG

l
j − Gn

jG
l
k)

+ θn(G
l
kG

m
j − Gl

jG
m
k )
]
,

(67)

with (i, j, k) = (x, y, z) and cyclic permutations, and l,m, n, labeling three different amplitudes.

These quantities are discontinuous. However the component of the (linear) strain tensor UL

become expressions of ∂θm/∂xi with

∂θm
∂xi

=
1

|ηm|2
[
∂ Im(ηm)

∂xi
Re(ηm)−

∂ Re(ηm)

∂xi
Im(ηm)

]
, (68)

which is continuous almost everywhere in the solid phase, with a singularity for vanishing

amplitudes in correspondence of phase singularities, e.g. at the cores of defects. Then, with a

regularization for these amplitudes (see also section 4.4), elastic field can be readily computed

and conveniently exploited. In two dimensions, for UL and the rotation field ω = ∇× u we

6A factor of 1/9 appears in reference [61] as a different scaling was employed.
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then get

UL
xx = − 1

p̂ · (Gl ×Gm)

(
Gm
y

∂θl
∂x

− Gl
y

∂θm
∂x

)
,

UL
yy = − 1

p̂ · (Gl ×Gm)

(
Gl
x

∂θm
∂y

− Gm
x

∂θl
∂y

)
,

UL
xy = − 1

2p̂ · (Gl ×Gm)

(
Gm
y

∂θl
∂y

− Gl
y

∂θm
∂y

+ Gl
x

∂θm
∂x

− Gm
x

∂θl
∂x

)
,

ω = − 1

2p̂ · (Gl ×Gm)

(
Gm
y

∂θl
∂y

− Gl
y

∂θm
∂y

− Gl
x

∂θm
∂x

+ Gm
x

∂θl
∂x

)
.

(69)

Explicit expressions for 3D strain and rotation fields can be found in reference [14]. The stress

field can then be computed through the Hooke’s law (62).

In 2018 Skaugen et al [12] derived an expression for the stress tensor, σi j from the density

field using the standard definition of σi j, i.e,

σi j =
δΔF

δ(∂iu j)
, (70)

whereΔF = F(n(r+ u))− F(n(r)) and u is the displacement field. This gives

σi j = [∂iLn]∂ jn− [Ln](∂i jn)+ Pδi j, (71)

where P = f − n(δF/δn) is a pressure term summing up to the mechanical stress, with f the

integrand in equation (1), the second term arising when considering mass-conserving defor-

mations [95], and L ≡ 1+∇2. In terms of amplitudes, integrating over the a unit cell with n

expressed via equation (17) and neglecting the pressure terms gives [16]

σi j =
M∑

m

{[
(∂i + 𝕚Gm

i )(∇2 + 2𝕚Gm · ∇)ηm
] [
(∂ j − 𝕚Gm

j )η
∗
m

]

−
[
(∇2

+ 2𝕚Gm · ∇)ηm
] [
(∂i − 𝕚Gm

i )(∂ j − 𝕚Gm
j )η

∗
m + c.c.

]}
,

(72)

for one-mode approximations, while it can be generalized for more modes accounting for the

full Lm operators (see equation (20)).

4.3. Plasticity and defect dynamics

As seen in previous sections, the amplitude formalism can describe the elastic behavior of crys-

tals as encoded in the PFC model. Moreover, by focusing on singularities in the corresponding

phases, the motion of defects may be connected to the evolution amplitudes [12, 13, 15, 96].

A dislocation in a crystalline lattice corresponds to a discontinuity in the phase θm. At the
same time, a dislocationwith Burgers vectorb is defined by

∮
du = b [97], thus it can be shown

that
∮
dθm = −Gm · b = −2πsm, where sm is the winding number. As discussed in reference

[12], a vortex solution for amplitudes at dislocation cores may be assumed, that reads ηm ∝ x−
𝕚smy with sm = ±1. The Burgers vector distribution of a dislocation can be defined as a local-

ized (vectorial) topological charge bδ(r− r0) with r0 the nominal position of the dislocation

core, assumed pointwise from a continuous point of view. By extension, the Burgers vector

density can be defined to be B(r) =
∑D

d=1b
dδ(r− rd0), with d indexing the dislocations and

D their total number. To connect this quantity to amplitudes, note that the position of the core

25



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

is where the amplitudes go to zero. Therefore, following the theoretical framework reported

in [98–100], a change of coordinates from the canonical one to the amplitudes’ components

can be considered. Namely, for point dislocations in two dimensions, or straight dislocations

in three dimensions, one gets

B(r) = −β

M∑

m

GmDmδ(ηm), Dm =
ǫi j
2𝕚
∂iη

∗
m∂ jηm, (73)

withDm the Jacobian determinant of the coordinates’ transformation,β ≡ βk = 2π/
∑M

m (G
m
k )

2

as βx = βy = βz (as can be verified explicitly withGm defined in section 2.3.2), ǫi j is the Levi-

Civita symbol, delta functions transforming as Dmδ(ηm) = −(2π)−1
∑D

d (qm · bd)δ(r− rd0)

[12, 98, 99], and implying the Einstein summation convention. Aiming at the velocity of dis-

locations, the dynamics of B(r) is considered. Exploiting that the determinant fields Dm have

conserved currents [100], ∂Dm/∂t = −∂iJ
m
i , with

Jmi = ǫi j Im

(
∂ηm
∂t

∂ jη
∗
m

)
, (74)

and that a similar continuity equation holds true for δ(ηm), from equation (73) the equation of

motion for Bi may be written,

∂Bi
∂t

=− ∂ jJi j = −∂ j

[
β

M∑

m

Gm
i J

m
j δ(ηm)

]

= ∂ j

[
β

2π

M∑

m

Gm
i J

m
j

D∑

d

Gm · bd
Dm

δ(r− rd0)

]
,

(75)

where the last term was obtained by transforming back the delta function to spatial coordi-

nates. For dislocations moving at a velocity vd, it also follows that Ji j =
∑D

d b
d
i v

d
j δ(r− rd0).

Therefore, by equating this latter expression with the corresponding quantity in equation (75),

the dislocation velocity can be related to the evolution of amplitudes as

vd =
β

2π

M∑

m

(Gm · bd)2
|bd|2

Jm

Dm

. (76)

At the dislocation core, a few simplifications may be considered. For the amplitudes which are

zero at the dislocation core,

∂ηm
∂t

= −|Gm|2AΓmG2
mηm ≈ −𝕚8AΓm|Gm|2(Gm · ∇φm) (Gm · ∇θm) e

𝕚θm , (77)

while others do not contribute to equation (76). The latter term in equation (77) is obtained by

imposing again a form for amplitudes as in equation (56) and retaining the lowest order only

in φm and θm. Combing all the equations reported above gives

vdi =
8βAbdj
|bd|2 ǫik

M∑

m

Γm|Gm|2Gm
j G

m
k G

m
l G

m
pUlp, (78)

where Ui j = (∂iu j + ∂ jui)/2. This equation is consistent with the classical Peach–Koehler

force [97]. For the case of a 2D triangular lattice or a 3D BCC crystal where it is possible
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to construct the lattice by retaining only one mode (with |Gm| = 1, Γm = 1), the velocity takes

the form

vdi = Mǫi j
(
σ jkb

d
k

)
, (79)

withM a mobility factor.

With this formalism, the dynamic of defects may be obtained once ∂ηm/∂t are known. This
applies independently to the specific contributions affecting the dynamics of amplitudes. See,

for instance, an application to binary systems in section 6.3. The equations presented here

apply for point dislocations in two dimensions or straight dislocations in three dimensions.

A generalization to curved dislocations in three dimensions has been recently introduced in

reference [96].

4.4. Comparisons with elasticity theories

As noted in previous sections, the APFC model may be employed to the study elasticity

and plasticity in crystalline systems. A few prototypical cases have been investigated, deliv-

ering direct comparisons with predictions from other theories [14, 16, 101]. Of particular

note is the comparison with CE results, as the coarse-grained nature of APFC may deliver

advanced/improved continuum approaches.

A representative case is the elastic field generated by dislocations atmechanical equilibrium,

which is well known in the continuum (linear) elasticity for isotropic media [97, 102]. In the

APFC model, configurations with dislocations in prescribed positions may be obtained with

different approaches. The phase of amplitudes can be initialized with singularities as discussed

in section 4.3 at given positions and then the APFC model is used to minimize the free energy.

By restricting the description to 2D crystals for the sake of simplicity, a convenient approach

consists of setting phases θm = −Gm · udislo with

udislox =
b

2π

[
arctan

( y
x

)
+

xy

2(1− ν)(x2 + y2)

]
,

udisloy = − b

2π

[
(1− 2ν)

4(1− ν)
log
(
x2 + y2

)
+

x2 − y2

4(1− ν)(x2 + y2)

]
,

(80)

the displacement field of an edge dislocation having Burgers vectorb = bx̂ and ν the Poisson’s

ratio [97]. Alternatively, an initial strain that induces the formation of dislocations can be con-

sidered. For instance, a pair of dislocations having the Burgers vectors ±b is obtained by

defining layers with initial deformation u = [Dx, 0] with D = ±b/L and allowing the sys-

tem to relax [60]. Dislocations move when Peach–Koehler force is finite assuming no barriers

exist (see section 5.4). As discussed in section 5.2, for dynamical configurations, corrections

are needed to account for mechanical equilibriumwithin (A)PFC. Special cases are the config-

urations where defects do not move, and relaxation given by dynamical equations effectively

approaches this limit. These may be represented, for example, by equally spaced arrays of dis-

locations along x̂ and ŷwith alternatingBurgers vectors, i.e. a ‘grid’where four defects with the

same Burgers vectors surround another one with opposite Burgers vector. It is worth mention-

ing that a single dislocation, in the absence of external stress, would be in principle stationery

too (as the Peach–Koehler force is zero). Still, its elastic field would inherently interact with

the boundaries of any finite simulation domain as it is long-range, with energy dependent on

the system size and diverging for an infinite medium. A possible solution would be studying a

single dislocation in a finite crystal [16], which, however, is expected to induce changes in the

elastic field [97, 103, 104].
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Figure 5. Elastic field induced by an edge dislocation in a 2D triangular lattice (one-
mode approximation) with b = a0 = 4π/

√
3. Parameters for the considered APFC

simulation: A = 0.98, B = 0.044, C = −0.5, D = 1/3. (a) Strain field UL
i j from

equation (69) with l = 1 and m = 3, i.e. the amplitudes with singular phases. (b) Stress
field from equation (72). (c) Comparison of representative isolines of the 2D stress fields
obtained by different methods and continuum theories: equation (62) withUL

i j as in panel
(a), stress fields from panel (b), classical CE from equation (81) with c = 0 (CE), NS
field theory from equation (81) with c = a0 (NS). (d) Comparison of stress fields as in
panel (c) along a line crossing the defect core, including also the stress field from the
strain gradient formulation of equation (82) (GE).

Figure 5 shows the elastic field of a dislocation belonging to a two dimensional grid with

alternating Burgers vector along x̂ and ŷ. Both strain components resulting from computing

equation (69) (figure 5(a)) and stress components from equation (72) (figure 5(b)) are shown.

These fields agree well with the field expected in classical CE [97]. The elastic field obtained

from equation (69) is to some extent easier to compute as it involves only the first derivatives

of amplitudes. Still, they are singular at the core of vanishing amplitudes, here regularized by

setting to 1/(|ηm|2 + δ), with a small δ, as prefactor in equation (68). On the other hand, the

elastic field from equation (72) does not require such a numerical regularization. This approach

involves higher-order derivatives than equation (68), which can be handled efficiently when

combined with a proper splitting of the APFC equations (see also section 3).

More insights are given in figures 5(c) and (d). Therein, a comparison of the stress field com-

ponents obtained with different continuum theories for representative isolines (panel (c)) and

along lines crossing the defect core (panel (d)) is reported. In particular, it shows the stress fields

components computed from the APFC simulation, namely equations (72) and (62) with UL
i j

from equation (69) with φ2 =
∑3

m=1|ηm|2/3. These fields are compared with the non-singular

(NS) isotropic theory reported by Cai et al in reference [102],
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σNS
xx

σ0

= −y(3c2 + 3x2 + y2)

(c2 + x2 + y2)2
,

σNS
yy

σ0

= −y(c2 − x2 + y2)

(c2 + x2 + y2)2
,

σNS
xy

σ0

=
x(c2 + x2 − y2)

(c2 + x2 + y2)2
, (81)

and σNS
zz = ν(σNS

xx + σNS
yy ), with σ0 = Ebx/(4π(1− ν)2), E the Young modulus, ν the Poisson

ratio, and c a parameter controlling the extension of the core-regularization (c = 0 reduces

to classical CE formulations σCE [97]). The triangular symmetry considered here, which

results isotropic, and under the plane strain condition, gives µ = λ = 3φ2 while E = μ(3λ+

2μ)/(λ+ μ) = (5/2)φ2, and ν = λ/(2λ+ 2μ) = 1/4.7 Another comparison with CE is pro-

vided with a regularized formulation of the stress emerging in the framework of strain-gradient

elasticity (Helmholtz type) [105, 106]

σGE
xx

σ0

= − y

r4

[
(y2 + 3x2)+

4ℓ2

r2
(y2 − 3x2)− 2y2

r

ℓ
K1(r/ℓ)− 2(y2 − 3x2)K2(r/ℓ)

]
,

σGE
yy

σ0

= − y

r4

[
(y2 − x2) − 4ℓ2

r2
(y2 − 3x2) − 2x2

r

ℓ
K1(r/ℓ)+ 2(y2 − 3x2)K2(r/ℓ)

]
,

σGE
xy

σ0

=
x

r4

[
(x2 − y2)− 4ℓ2

r2
(x2 − 3y2)− 2y2

r

ℓ
K1(r/ℓ)+ 2(x2 − 3y2)K2(r/ℓ)

]
,

(82)

and σGE
zz = ν(σGE

xx + σGE
yy ), with Kn(r/ℓ) the modified Bessel function of the second type, and

ℓ a characteristic internal length parameter of the material. The elastic field obtained from

APFC simulations encodes a smoothing similar to the NS theories in equations (81) and (82).

A good agreement is obtained with c = 2a0 and ℓ = a0. However, notice that these parameters

are expected to vary for different quench depths as they are related to the extension of the core

[102, 105] and this shrinks with decreasing the temperature. It is worth mentioning that strain

gradient terms may be indeed identified in equation (57), supporting the qualitative agreement

shown in figure 5. For isotropic materials, a more accurate description is actually given by the

so-called Mindlin’s isotropic first gradient elasticity, which feature two characteristic lengths

[107–109] and may therefore provide descriptions closer to the APFC results. Comparisons

for 3D configurations and for rotation fields from equation (69) can be found in reference [14].

Another example is offered by a recent APFC formulation [110] encoding a mechanical

deformation not caused by a defect or an external mechanical stress (namely an eigenstrain

[111]). In practice, a spatially dependent q0 ≡ q(r) is set in the free energy (1), such that

q(r) =
q0

1+ ε∗(r)
= β(r)q0, (83)

7 Plane strain setting corresponds to have Uzz = Uxz = Uyz = 0 given by uz = 0, and σzz = ν(σxx + σyy) (entering,
e.g. equations (81) and (82)). It leads to the expressions for ν and E in the text. The alternative is the plane stress setting

where σzz = 0 and thus Uzz �= 0 and uz �= 0. It leads to E = 4μ(λ+ μ)/(λ+ 2μ) = (8/3)φ2, and ν = λ/(λ+ 2μ) =
1/3.
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with ε∗ = (a(r)− a0)/a0 = q0/q(r)− 1 the eigenstrain encoding a deformation from a lattice

parameter a0 to a lattice parameter a(r). When setting β(r) ≷ 1 and constant, corresponding

to an eigenstrain ε∗ ≶ 0, within a region embedded in a medium having β(r) = 1 the resulting

elastic field matches well with the solution of the Eshelby inclusion problem [112–114] as

shown in [110].

5. Limits and extensions

5.1. Large tilts: the problem of beats

Complex amplitudes consistently describe deformations, i.e. the energy is rotationally invariant

while accounting for elastic energy associated with distortion with respect to the reference

state (see section 4.1). However, the larger the rotation with respect to the reference crystal

(described by equation (3) and the choice of Gm) is, the shorter (larger) is their wavelength

(frequency), resulting in the so-called problem of beats [66, 73, 74]. Indeed, in the presence of

a rotation Θ, the density (assuming here zero average), can be written

n =

M∑

m

ηΘm e
𝕚Gm·r =

M∑

m

φme
𝕚Gm(Θ)−Gm·re𝕚Gm·r =

M∑

m

φme
𝕚∆Gm(Θ)·re𝕚Gm·r, (84)

where Gm
i (Θ) = Gm

j Ri j(Θ) and Ri j(Θ) is the counter-clockwise rotational matrix. Therefore,

oscillations of ηΘm have a wavelength 2π/|ΔGm(Θ)|. This leads to a crucial two-fold limitation

for the APFC model. On one side, the spatial resolution required to discretize the correspond-

ing equations depends on their relative orientation with respect to the reference lattice encoded

in Gm. For large rotations this results in significant variations of the amplitudes over lengths

approaching the lattice spacing, inconsistent with the assumption in their derivation and also

requiring mesh sizes approaching the ones required in the PFC model. On the other side, while

the energy of a single crystal remains rotationally invariant, the rotational symmetry of bicrys-

tals is lost, and unphysical grain boundaries are obtained for large relative tilts corresponding to

small or no deviations in the density field n (e.g. when rotating a 2D triangular lattice by∼60◦).
An illustration of this behavior is reported in figure 6. When increasing the relative rotation of

a circular inclusion, the oscillation of amplitudes increases requiring finer mesh as illustrated

by Re(η1). Even though the fields are properly resolved, unphysical grain boundaries appear

in Φ for θ� 30◦ (e.g. according to symmetry, θ = −10◦ and θ = 50◦ should coincide, as well
as θ = 60◦ should have no defects with a Φ uniform).

An attempt to overcome this issue followed the first publications on the APFC model and

consists of a polar representation of amplitudes [66]. In practice, the complex amplitudes are

expressed in terms of the real fields φm = |ηm| and θm = arg(ηm). The resulting set of equations
for ∂φm/∂t and ∂θm/∂t derived from equation (22), have issues related to the discontinuous

nature of θm and that φm vanishes in the liquid phase, in principle requiring robust and struc-

tured regularization algorithm. Therefore, further approximations are introduced [66]: (i) a

hybrid formulation exploiting the aforementioned polar representation only for crystal bulk,

i.e. away from defects and interfaces, while solving the equations for the complex amplitudes

everywhere else; (ii) neglecting third and higher-order spatial derivatives of φm and θm in their

dynamics and (iii) assuming that gradients in the phase are zero within grains. This method has

been shown to allow for efficient inhomogenous spatial discretization for numerical methods

working in real space.

Recently the same issue has been addressed by exploiting a Cartesian representation of the

amplitudes and allowing for local rotation of the basis vectorGm [67, 68]. Thismodel considers
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Figure 6. APFC description of (small) circular rotated inclusion in a 2D crystal with
triangular symmetry (one-mode approximation), for different tilts with respect to the
surrounding matrix. Different rows show: the reconstructed density n(r), the real part of
η1 and Φ.

a set of locally rotated amplitudes η̃m such as ηm = η̃me
−𝕚∆Gm(Θ)·r. A rotation field Θ is then

computed such that ηm have vanishing oscillation, i.e. satisfying the condition

∇η̃m = (∇ηm)e
−𝕚∆Gm(Θ)·r − 𝕚ηmΔGm(Θ)e−𝕚∆Gm(Θ)·r

= 0, (85)

thus

ΔGm(Θ) = Gm(Θ)−Gm =
∇ηm
𝕚ηm

. (86)

The local rotation field may be explicitly extracted from amplitudes, e.g. exploiting the results

reported in [14]. Then, it may be shown [67, 68] that operators defined in the rotated system,

OΘ, applied to rotated fields, fΘ, transform as OΘ fΘ = e−𝕚∆Gm(Θ)·rO f , as e.g. ∂ηΘm /∂t =
e−𝕚∆Gm(Θ)·r∂ηm/∂t or GΘ

m η
Θ
m = e−𝕚∆Gm(Θ)·rGmηm. The evolution for ηΘ is evaluatedwhile com-

puting Gm(Θ) everywhere. This approach still requires a proper numerical implementation

[67], but has been proved successful in describing crystal structures through the ‘rotated’

amplitudes avoiding beats due to crystal rotation, exploiting efficient mesh refinement (see

section 3.4), and matching the dynamics obtained by the original amplitude expansion. Impor-

tantly, this approach has also been combined with an algorithm selecting the closest refer-

ence crystal for a given local orientation [68] which avoids the presence of unphysical grain

boundaries, at least in two dimensions for triangular lattices.

5.2. Elastic relaxation and mechanical equilibrium

The dynamics of the PFC model and, in turn, its amplitude-expansion approximation, was ini-

tially assumed to be overdamped, i.e. driven by minimization of the corresponding free-energy

functional through a gradient flow [1, 7]. Although this setting can be justified in some circum-

stances, it constrains the dynamic to diffusive timescales. This may lead to some issues for the

description of elastic relaxation, which usually occurs on faster timescales with respect to the

diffusive dynamics of the density field. A few investigations addressed these issues, delivering

either a framework able to ensure mechanical equilibrium at every time, describing the limit

of instantaneous elastic relaxation [15, 16, 75], or modeling explicitly elastic excitations [54].
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In the work of Heinonen et al [75, 115], the amplitudes are expressed similarly to

equation (56), assuming small displacements in u. Then a formal separation of the timescales of

the field φm from the field θm, is considered. Imposing mechanical equilibrium, i.e.∇ · σ = 0,

it is then demonstrated to be equivalent to solving

M∑

m

Gm

dθm
dt

= −
M∑

m

Gm Im

(
1

ηm

δFη

δη∗m

)
= −1

2

M∑

m

Gm

δFη

δθm
= 0, (87)

at every step after solving for ∂ηm/∂t. In [75], a factor φ−2
m appears in the second-last term in

(87). However, as discussed in [115], this expression allows for a more formal connection to

the displacement u. Moreover, equilibrating equation (87) would corresponds to a real energy

minimization problem.

A different approach, which computes the deformation at mechanical equilibrium from the

incompatible one, fully accounting for the singular distortion of defects as conveyedby n and/or

ηm, has been proposed in reference [15] for PFC and then translated to APFC in reference [16].

Therein, the smooth distortion uδi required to fulfill mechanical equilibrium is determined, and

then the amplitudes are corrected as ηME
m = ηme

−iGm·uδ . In brief, the smooth stress, σδ
i j, to be

added to the stress field computed from the amplitudes, ση
i j (see also section 4.2), is obtained

through the Airy function (χ) formalism:

σδ
i j = σm.e.

i j − ση
i j = ǫikǫ jl∂klχ− ση

i j,

(1− ν)∇4χ = 2μǫi j∂iB j(r) = (ǫikǫ jl∂i jσ
η
kl − ν∇2ση

kk),
(88)

where B(r) the Burgers vector density, and ν, λ and μ as in section 4.4, while uδ is then

computed exploiting a Helmholtz decomposition into curl- and divergence-free parts,

uδi = ∂iϕ+ ǫi j∂ jα, ∇2ϕ = Tr(Uδ), ∇4α = −2ǫi j∂ikU
δ
jk. (89)

Once uδi is calculated, correction to the amplitudes can be imposed. This approach has been

shown to work well in two dimensions for isotropic materials, while its generalization to three

dimensions is non-trivial due to the Airy function formalism. Amore generalmethod to correct

n by computing uδ in three dimensions has been recently proposed in reference [96] for PFC,

and it is expected to work for the APFC model.

In reference [54], a model accounting explicitly for elastic relaxation has been considered

by coupling the mesoscale description of the microscopic structure of the materials achieved

by amplitudes to a hydrodynamic velocity field. It recovers the instantaneous relaxation as a

limit of the model. It consists of describing the crystal lattice through ηm and a slowly varying

density field, no, via the energy (15). The evolution laws are then derived accounting for mass

density and momentum density conservation and read

no
Dv

Dt
= −no∇

δF
δno

−
M∑

m

[
η∗mQm

δF
δη∗m

+ c.c.

]

+ μS∇2v+ (μB − μS)∇(∇ · v),
∂no
∂t

= −∇ · (nov) + μn∇2 δF
δno

+
1

2
μn∇2(|v|2),

∂ηm
∂t

= −Qm · (ηmv)− μη|Gm|2
δF
δη∗m

,

(90)
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Figure 7. Representative results for extensions of the APFC model. (a) Shrinkage of a
circular small-angle grain boundary (2D, triangular lattice) in terms of its radius R(t)
with the model illustrated in equation (90) (for different μS), instantaneous mechanical
equilibrium (ME) as from equation (87), and classical (overdamped) APFC dynamics
(OD). Reconstructed from reference [54]. (b) (Symmetric) grain-boundary energy per
unit length EGB/L (2D, triangular bicrystal) as a function of the tilt angle θ for different
β values in equation (91). Reconstructed from reference [60]. (c) Sample growth of a
one dimensional front for two driving forces λ. Reconstructed from reference [118].

with v the velocity field, Dv/Dt = ∂v/∂t+ v · ∇v, Qm = ∇+ 𝕚Gm, and μη , μn, μB, μS are
parameters. Previous attempts to include fast time scales in the dynamics introduced an

explicit second order time derivative in the equation of motion for the PFC mass density field

[116, 117]. This approach gives rise to short wavelength oscillations accelerating relax-

ation processes, but fails to describe large scale vibrations [55]. The model described

by equation (90) gives the correct long wavelength elastic wave dispersion relationship

(ω ∼ k).

A key test case for all the approaches reported in this section is the shrinkage of rotated

grains (see figure 7). Their results consistently show a faster dynamic in the limit of instanta-

neous mechanical equilibrium [12, 16, 75] while tuning of parameters in the model reported

in equation (90) allows for the investigation of intermediate regimes [54].

5.3. Control of interface and defect energy

The original APFC (or PFC) model contains a small set of parameters which limits quantitative

fitting to match experimentalmeasures or theoretical calculations. In reference [60], it has been

shown that the addition of a single term to the free energy functional can be used to control the

solid–liquid interface and defect energies in a well-controlled fashion, without affecting the

crystal structure. Exploiting the information conveyed by Φ = 2
∑M

m |ηm|2, which is a measure

of the crystalline order, and in analogy with the gradient term of order parameters in interfacial

free energies [119], an additional energy contribution can be phenomenologically introduced
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in equation (21), reading

Fβ =

∫

Ω

β

4
|∇Φ|2dr, (91)

where β is a free parameter. This leads to an additional term to equation (22) as

δFβ

δη∗m
= −βηm∇2Φ. (92)

For small β, this additional contribution is found to change the interface and defect energy

linearly with β, while deviations are observed for large values. Figure 7(b) shows the tuning of
symmetric tilt grain boundary energies by β due to the local change in the defect-core energies

[60]. Notice that, due to the issues discussed in section 5.1, it is not possible to compute the

whole range of θ only by increasing the relative angle (see also [9]). In this case, energy values
for θ ≷ 30◦ are obtained with two different simulation settings. The framework reported in

[68] would allow addressing these calculations without considering such different settings.

It is worth mentioning that formulations allowing for tunable energies at defects and inter-

faces similar to the one discussed here can be devised frommicroscopic length scales exploiting

smoothing kernels in Fourier space [120, 121].

5.4. Lack of barriers

In the derivation of the amplitude equations it was implicitly assumed that the atomic- and

meso-scales (interface widths, etc) completely decouple. It appears that this approximation

eliminates barriers for defect or grain boundary motion. Huang has shown that incorporating

the first-order coupling of the atomic andmesoscales leads to interface pinning [118]. Consider

multiplying the equation ofmotion by e−𝕚q·r and integrating over a unit cell while keeping terms

previously assumed to be zero. This leads to additional terms in equation (22). For instance,

for a triangular lattice:

∂ηm
∂t

= Lm

δFη

δη∗m
≈ −|Gm|2

[
AG2

mηm + Bηm + 3D(Φ− |ηm|2) ) ηm +
∂ f s

∂η∗m

+
1

Au.c.

∫

u.c.

dr ′ f p1e
−𝕚qoy′ + (· · · )

]
,

(93)

where Au.c. is the area of a unit cell and

f p1 = 3q2o

[
(6no + 2C)η1η

∗
2 + 3v(η21η3 + η∗

2

2 η∗3)
]
, (94)

with (· · ·) implying six other similar terms that contain a e−𝕚q·r’term (see reference [118] for

details). The last term(s) in equation (93) implicitly couple atomic (e−𝕚q0y
′
) and slow scales

(ηm) terms. The equation for the average density becomes

∂no
∂t

= ∇2 δFη

δno
− 1

Au.c.

∫

u.c.

dr ′ f ∗p1e
−𝕚q0(

√
3/2x′+3/2y′) + (· · · ). (95)

To understand the consequences of this coupling, Huang derived an equation of motion for

a liquid/solid front moving in the y direction with slow variations in the x direction using the

projection operator method of Elder et al [5]. In this method a coordinate transformation from

(x, y) to (u, s) is made where u is a coordinate normal to the interface position and s is parallel.
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Equation (93) (in the limit Lm ≈ −|Gm|2 = −1) is multiplied by ∂ηm/∂u and equation (95)

by ∂no/∂u and integrated over u in the inner region. In the outer regime the equations (93) and

(95) are linearized around a liquid state and then solved using Green’s functions. The inner

and outer solutions are then matched such that the chemical potential is continuous across the

interface.

One main result of these calculations is the equation for the interface normal velocity, vn,
given by

c0vn = λ− γκ− p0 sin(q0h+ φ), (96)

where c0 is the kinetic coefficient, λ ∝ Δn00δμ(0, s),Δn
0
0 is the difference in liquid/solid den-

sity, δμ(0, s) is the chemical potential difference from equilibrium along the interface, γ is the

surface tension,κ is the curvature, p0 is the pinning strength, h is the distance from the front and

φ is the phase. Expressions for each of these terms is given in Huang [118]. This equation cou-

pled with mass diffusion in the outer regions (ηm at equilibrium liquid values) and the usually

matching condition vnΔn
0
0 = ∂δμ/∂u|0− − ∂δμ/∂u|0+ constitutes a free boundary problem.

If gradients in h are assumed to be small, equation (96) reduces to

c0
∂h

∂t
= λ+ γ

∂2h

∂x2
+

λ

2

(
∂h

∂x

)2

− p0 sin(q0h+ φ). (97)

In the limit of non-conserved dynamics (fixed λ) this is a driven sine-Gordon equation intro-

duced by Hwa et al [122] to study, when thermal fluctuations are included, the interface

roughening during crystal growth. Huang showed that the pinning term can lead to step by

step growth of the interface as is observed in experiments and even completely arresting the

growth if the driving force (λ) is too small, as illustrated in figure 7(c). It is also shown that the

pinning strength increases as temperature (controlled by B = ΔB0) or the elastic moduli (con-

trolled byA = B
x) are lowered as both have the effect of decreasing thewidth of the liquid/solid

domain wall. Later, Huang [123] extended this work to a binary system with a eutectic phase

diagram and derived more general expressions for the surface energy and barrier strength as

a function of concentration, temperature, and crystallographic orientation of the liquid/solid

front.

6. Applications

6.1. Solid–liquid interfaces and the phase field limit

Solid–liquid interfaces are regions where n may vary over length scales larger than the atomic

spacing. Therefore, the APFC model may be exploited to focus on these regions while neglect-

ing the fine details at the atomic scale elsewhere [124]. Real amplitudes have been first consid-

ered to address the modeling of solid–liquid interfaces in the seminal works by Khachaturyan

[25, 26]. Therein, the order parameters resemble the ones entering classical PF approaches

[48, 125–127] and theymay be linked to atomistic descriptions. They can be used, for instance,

to account for bridging-scale descriptions of elasticity effects by means of additional contri-

butions as, e.g. in the presence of precipitates, alloys, or point defects [128–132]. However,

this approach does not directly encode rotational invariance and elasticity associated with the

deformations of the crystal lattice.

In references [45, 61, 133], travelingwaves characterized by the ansatz (4) have been shown

to describe the solid–liquid interfaces within PFC quite well near melting. Real amplitudes
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Figure 8. Examples of crystal growth and defects networks as obtained by APFC sim-
ulations. (a) Growth of 200 seeds with orientations ranging in (−15◦, 15◦), forming
straight sub-boundaries at later stages in a growing polycrystal. Reproduced from [77].
© IOP Publishing Ltd. All rights reserved. (b) Sub-boundaries and orientational gra-
dients in thin aluminum films by APFC. Reproduced from [76]. CC BY 4.0., under a
creative commons attribution (CCBY) license. (c) Evolution of the defect network form-
ing between an FCC crystal and spherical inclusion with the same structure tilted by 5◦

about the [111] direction. Views aligned (top) and perpendicular (bottom) to the rotation
axis are shown (see also the orientation of v̂). The network shrinks anisotropically with

L̇‖ > L̇
ŷ
⊥ ∼ L̇x̂⊥. Reprinted figure with permission from [138], Copyright 2018 by the

American Physical Society. (d) Network forming after the growth and impingement of
thirty crystals with random tilt θ ∈ (−10◦, 10◦) about the [111] direction. Defects (yel-
low network) are shownwithin a spherical region at the center of the growing polycrystal.
Reproduced from [14]. CC BY 4.0.

result in a classical PF model. Indeed, it is shown that a general form for the free energy can

be obtained by considering real amplitudes,

Fφ =

∫

Ω

dr
[
aφ2 + bφ3 + cφ4 + d|∇φ|2

]
, (98)

where the parameters a, b, c, d depend on the lattice symmetry and the number of modes

considered. Different crystalline cubic lattices, and their effect on growth dynamics are still

retained [61]. In addition, the framework is consistent with atomistic simulations and can be

used for matching parameters to specific materials.

In references [124, 134] similar underlying ideas led to a PF model connecting anisotropic

surface energy and corresponding Wulff shapes to the lattice symmetry of various crystals

through the choice of reciprocal lattice vectors. The model remarkably encodes a regulariza-

tion term leading to corner rounding of faceted shapes similarly to diffuse interface theories

[135–137]. Amplitudes are assumed to be real, but they are still considered separate variables.

36



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

In the notation adopted in this review from equation (21), and assuming zero average density,

this gives

Fφm =

∫

Ω

dr

[
M∑

m

(
A[∇2φm]

2 + 4A[Gm · ∇φm]
2 − 3D

2
φ4
m

)

+
B

2
Φ+

3D

4
Φ

2
+ f s({φm})

]
, (99)

with Φ = 2
∑M

mφ
2
m and f s({φm}) the polynomial as in section 2.3 but as function of the real

amplitudes only. Equation (99) is similar to Ginzburg–Landau free energies entering multi-

order-parameter PF models. The higher-order gradient contribution [∇2φm]
2 enforces the

rounding of corners appearing among facets. A coefficient may be also introduced to tune

its influence [134].

6.2. Grain growth with dislocation networks and small-angle grain boundaries

The PFC model has been exploited to investigate rather small systems due to the atomic-scale

resolution. According to the features described in sections 4 and 5, the APFC is especially

suited to describe systems with small deformation and rotationwhile including isolated defects

such as dislocations. Examples include small-angle GBs in graphene structures [9], GBs pre-

melting and shearing in BCC iron [139], and the dynamics of small-angle GBs in general

[73]. In two dimensions, it is possible to examine systems on the micrometer scale [28, 77]

(see, e.g. figure 8(a)). A recent, remarkable application at this length scale is the simulation

of sub-boundaries formation due to orientational gradients in thin aluminum films [76, 140]

(figure 8(b)).

The limitation in size for PFC becomes even more evident in three dimensions, requiring

advanced numerical methods to simulate rather small systems [10, 87]. The APFC model has

been proved powerful in addressing the study of defects in crystalline systems in three dimen-

sions [14, 77, 138]. In particular, small-angle grain boundaries can be well captured and also

characterized thanks to the advanced description of elasticity as described in section 4. Rep-

resentative cases are the shrinkage of dislocation networks forming at the boundaries between

rotated inclusions and unrotated surroundingmatrix (see figure 8(c)), also in combination with

additional effects (see also section 6.3), and the growth of slightly misoriented crystal seeds

(see figure 8(d)). Interestingly, the shrinkage or rotated inclusions and the resulting dislocation

networks have been proposed directly using a classical PFC approach [10]. This investiga-

tion delivered very similar results to the ones obtained by APFC, as reported for instance in

figure 8(c), thus assessing the coarse-graining achieved by the APFC model in an applied case.

The shrinkage of grains is generally associated with their rotation. A fingerprint of this

process emerges in APFC, as shown in reference [14] where rotations are tracked thanks to

equation (69). Therein it is shown that when defects at the boundary of a grain get closer, their

deformation fields superpose, increasing the effective orientation of the grain.

6.3. Binary systems

Coarse-grained approaches are often required in multiphase systems and alloys to handle

simultaneously the deformation induced in the lattice, the resulting phase separations leading

to Cottrell atmospheres [141–143], and effects on dislocation motion. The APFC model has

been proved powerful in describing these effects at the mesoscale for binary systems, beyond

results achieved by focusing on either atomistic or continuum length scales [144–149]. Also,
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it can be used to study these systems comprehensively, without focusing on concentration pro-

files, stress distribution around dislocations, and the force-velocity curves for defect motion

separately.

The original binary PFC model [24] is formulated in terms of the dimensionless atomic

number density variation field and a solute concentration field ψ. In the APFC model, the

expansion equation (17) is considered and a Vegard’s law for the lattice spacing R = R0(1+

αψ) is assumed with α the solute expansion coefficient. This results in an energy [6, 13]

Fαψ = Fη +

∫

Ω

[
(w+ YΦ)

ψ2

2
+
u

4
ψ4 +

K

2
|∇ψ|2

− 2Aα

M∑

m

|Gm|2(ηmG∗
mη

∗
m + c.c.)ψ

]
dr,

(100)

with definitions as in previous sections and w, u, Y, K, are additional model parameters as

described in reference [24]. Dynamics in terms of ∂ηm/∂t is then described by equation (13)

with energy (100) and ∂ψ/∂t = ∇2δFαψ/δψ, similarly to equation (16). It can be shown that,

givenGm the basic wave vectors corresponding to a pure system, the equilibrium wave vectors

for binary systems read G eq
m = Gm

√
1− 2αψ [29].

This approach allows the study of solute segregation and migration at grain boundaries,

eutectic solidification, and quantum dot formation on nanomembranes [6, 13, 74, 150]. A sim-

ilar approach has been exploited to accurately describe the interactions among grain boundaries

and precipitates in two-phase solids [59, 69].

By applying the framework illustrated in section 4.3 to this model, the velocity of dislo-

cations including effects of the solute segregation has been also derived. By retaining only

one mode (with |Gm| = 1) and using the expression for ∂ηm/∂t for binary systems into

equations (74)–(76) one gets

vdi =
8βAbdj
|bd|2 ǫik

M∑

m

|Gm|2Gm
j G

m
k

(
Gm
l G

m
pUlp − |Gm|2αδψ

)
. (101)

Equation (101) is consistent with the classical Peach–Koehler force similarly to equation (78).

For the case of a 2D triangular lattice or a 3D BCC crystal, the velocity takes the form

vdi = Mǫi j

(
σ jkb

d
k − 2Aφ2

0αδψb
d
k

M∑

m

Gm
k G

m
j

)
, (102)

with a mobilityM = 2β/(φ2
0|bd|2). The last term in equations (101) and (102) accounts for the

contribution from the compositionally generated stress, as a result of the compositional strain

(∼ αψ) arising from local concentration variations, i.e. from solute preferential segregation

(Cottrell atmospheres) around defects. The stress field may be written as

σi j = 8AUkl

M∑

m

φ2
mG

m
i G

m
j G

m
k G

m
l +

∂ fαψ
∂Ui j

, (103)
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with

fαψ = −2Aα
∑

m

|Gm|2
(
ηmG∗

mη
∗
m + c.c.

)
ψ

≈ 8Aαψ

M∑

m

φ2
m|Gm|2Gm

i G
m
j ∂ jui, (104)

neglecting higher order terms in the last approximation obtained with ηm = φme
−𝕚Gm·u [13].

Results predicted by these equations are the deflection of dislocation glide paths, the vari-

ation of climb speed and direction, and the change or prevention of defect annihilation [13].

Simulations exploiting the FEM approach outlined in section 3.3 also enable the advanced

description of these effects in three dimensions, in particular for small-angle grain boundaries

[13].

6.4. Multi-phase systems

Most of the APFC literature focuses on systems with a single solid phase. In a seminal work

by Kubstrup et al [151], studying pinning effects between different phases, namely crystalline

systems having triangular/hexagonaland square lattices, a construction has been proposed han-

dling variable phases through a single density expansion. Extending this idea, in reference [58]

an ansatz for the atomic density has been proposed to include more symmetries at once

n = no +

J∑

j

η je
𝕚G j·r +

M∑

m

χme
𝕚Qm·r + c.c., (105)

with {η j} and {χm} representing different set of amplitudes associated to reciprocal lattice vec-

tors G j and Qm, respectively. These two sets were chosen to account for the first and second

modes necessary for reproducing triangular and square symmetry together, namely correspond-

ing to J = 6 andM = 6 amplitudes. However, they can be arranged differently among the two

sums, and, importantly, a reduced set of amplitudes can be exploited (see specific choices of

G j and Qm in reference [58]). Amplitude equations would simply follow from the general

equations reported in section 2.3. Simulations performed with this approach, combined with

the formulation illustrated in section 2.4 for the excess term, showed the ability to study solid-

ification, coarsening, peritectic growth, and the emergence of the second square phase from

grain boundaries and triple junctions in a triangular polycrystalline system. See an example

in figure 9. So far, this has been shown only for the lattice symmetry mentioned above in two

dimensions. The same applies to extensions of the APFC to account for additional degrees

of complexity in the crystal structure, such as for the amplitude expansion of the so-called

anisotropic PFC model [124, 152].

6.5. Heteroepitaxial growth

An ideal application of the APFC model is heteroepitaxial growth, where a substrate provides

a single crystallographic basis for layers growing on top. In such processes, the growing film

typically has similar crystal symmetry and lattice constant. The amplitudes vary on long length

scales for these systems, so a relatively large computational grid spacing can be used. In this

context, the large angle issue discussed in section 5.1 is not present. Therefore, this would be

an ideal application for using an adaptivemesh since the amplitudes in many cases vary on very

large length scales. To the authors’ knowledge this has not been done to date. Nevertheless,

even uniform lattices can be used to study relatively large systems.

39



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

Figure 9. Example of peritectic solidification. (a) Average density no (white to black
greyscale). (b) Reconstructed n (white to black greyscale). (c)Magnitude of an amplitude
η, which is nonzero in both solid structures; areas of larger magnitudes are depicted in red
and zero magnitudes are blue. (d) Magnitude of an amplitude χ, which is only nonzero
in the square phase. Color scheme is the same as in (c). Reprinted figure with permission
from [58], Copyright 2013 by the American Physical Society.

An example application is a single or small number of mismatched layers grown on a sub-

strate. Themismatch leads to interesting strain-inducedMoiré patterns that have been observed

in experimental systems [153–155]. In these cases, it is possible to model the film as a single

two-dimensional layer with amplitudes. To the authors’ knowledge, the largest APFC simula-

tion of such systems was on the study of Moiré in graphene films in which the large simulation

size was 19.6 μm× 34.0 μmwhich corresponded to roughly twenty-five billion carbon atoms.

Some sample works are reviewed in the next subsection. Similarly, the amplitude expansion

can also effectively be used to study the growth of many layers in two and three dimensions, i.e.

to examine the Asaro–Tiller–Grinfeld (ATG) [156–158] instability and the subsequent nucle-

ation of dislocations. This aspect will be also illustrated in the following. This section shows

the APFC model in an applied context, reproducing experimental results and outlining general

properties of mismatched, multilayered systems.

6.5.1. Ultrathin films: strain induced ordering. When a monolayer (or several layers) of one

material are grown on a substrate, the lattice mismatch can lead to interesting strain induced

patterns [159, 160] and the APFCmodel is ideally suited to model such patterns [28, 161–165].

Their nature depends on the misfit strain, εm = (as − af)/as, where as and af are the substrate
and film lattice constants, the relative crystal symmetry of the layer/substrate system and the

film/substrate coupling strength. For example, when layers of Cu are grown on a Ru(0001)

substrate, the substrate potential provides a triangular (honeycomb) array of potential max-

ima (minima) for the Cu atoms. Since the lattice constants of Cu and Ru(0001) are similar

(εm = 5.5%), a 1× 1 ordering occurs as depicted by the red dots in figure 10(a). For larger

mismatches other orders can occur as shown in this figure 10 for the ordering of triangu-

lar film on a triangular substrate (TT) in (a) and a honeycomb film on a triangular substrate

(HT) in (b). By symmetry a (TT) system is equivalent to a (HH) system and a (HT) system

is equivalent to a (TH) system. These patterns can be characterized by two integers (k, j) or

equivalently a length and angle (L, θ) as depicted in figure 10(a). The relationship between

them is L = jasx(
√
(2k+ 1)2 + 3)/2 and tan θ =

√
3/(2k+ 1).

In figure 10(a) the 1× 1 state could occupy two equivalent separate sublattices, while in

(b) this state has only one sublattice. In general, the degeneracy (NS = number of equivalent
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Figure 10. Ordering of a triangular (honeycomb) lattice on a substrate with a trian-
gular array of potential maxima is depicted as green dots. In (a) the red, blue, pink,
orange and purple dots correspond to 1× 1 (e.g. Cu/Ru(0001) or Cu/Pd(111)), 2× 2
(e.g. O/N(111)),

√
3×

√
3 R30◦ (e.g. Xe/graphite), 2(

√
3×

√
3), (

√
7×

√
7) R19.1◦

(e.g. S/Pd(111)) and (
√
7×

√
7) R19.1◦ respectively. In (b) the pink, red and blue atoms

correspond to 1× 1 (e.g. graphene/Cu(111)), 2× 2 and (
√
3×

√
3) R30◦.

Figure 11. (a) Illustration of the six equivalent degenerate sublattices for a TT
√
3×

√
3

R30◦ system. The green dots are potential maxima due to the substrate and the other
colored dots correspond to the sublattices. (b) Depiction of Moiré pattern for a 1× 1
system in the limit V0 = 0.

sublattices) is given by,

NS =
j 2

2

(
(2k + 1)2 + 3

)
, (106)

for the TT system and half of equation (106) for the HT system. Figure 11(a) illustrates the

different sublattices for a TT
√
3×

√
3 R30◦ system.

The nature of the patterns that form depend on the degeneracy of sublattices, NS, the mis-

match strain, εm, and the strength of the coupling, V0, between the film and substrate. In

the limit V0 = 0, a 2D Moiré pattern forms in terms of a honeycomb array of commensu-

rate regions bounded by a triangular network of domain walls for the TT system, with length
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Figure 12. Sample patterns and phase diagrams for
√
3×

√
3 R30◦ system for TT

(a)–(d) and HT (e)–(g) systems. For the TT system, the stripe, twisted honeycomb and
honeycomb patterns are illustrated in (a), (b) and (c) respectively, and the phase diagram
is shown in (d). Stripe and triangular patterns for the HT system are shown in (e) and (f)
respectively and (g) shows the HT phase diagram. Each color in the patterns corresponds
to a different sublattice. In (d) and (g) the dashed line is the analytic prediction for the
stripe/commensurate transition given by equation (114). The figures were reconstructed
from [161].

scale λ = af/εm. This is illustrated in figure 11(b) for a 1× 1 system with a mismatch con-

sistent with a Cu/Ru(0001). As V0 increases, the commensurate regions increase in size, and

the domain walls and junctions decrease in size but increase in energy. For the TT system,

the displacement across a junction is larger than the displacement across a domain wall. Thus

for the TT system at a certain V0 it becomes energetically favorable to eliminate the junctions

and form stripes. At even larger values of V0 the film becomes commensurate with the sub-

strate. A peculiar state in the TT arises for some values of (V0, εm) in between the stripe and

honeycomb patterns in which the junction energy is lowered by twisting the domain walls and

moving the junction to a lower energy location. Sample patterns for the TT system are shown

in figures 12(a), (b) and (c). In the case of the 1× 1 the junction energy is so high that it can

create dislocation pairs and lead to zig-zag type patterns [164, 165].

The HT system is considerably different since the domain wall energy is higher than the

junction energy and of course the symmetry is different.At very lowV0, a triangular network of

commensurate regions forms. At a V0 much higher than in the TT case, a stripe phase emerges.

At a slightly larger V0, the commensurate state appears. There appears to be no equivalent

twisted state in this system. Sample stripe and triangular patterns are shown if figures 12(e)

and (f).

To model these patterns within a PFC approach and corresponding APFC it useful to con-

sider adding an additional coupling term, Fc, to the free energy functional given in equation (1)

of the form,

Fc =

∫
dr
[
Vn j(k+1)

]
, (107)

where

V = V0

(
M∑

m

e𝕚G
s
m·r + c.c

)
. (108)

V0 is the coupling strength, the summation is over lowest ordermodes needed to reconstruct the

symmetry of the substrate andGs
m corresponds to the reciprocal lattice vectors of the substrate
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(whichwill have a differentmagnitude that the film). The coupling factor n j(k+1) is needed since

orders greater that 1× 1, a couplingVnwould give no contribution in the amplitude expansion,

since V and n would have different lattice spacings. In principle, higher order harmonics of V

(or n) could be included, even though this would lead more computational expensive models.

In the amplitude expansion this term leads to a coupling term Fc
η , of the form

Fc
η = V0Dk j

({[(
η∗1
)k
η2

] j
+ cyclic permutations

}
+ c.c.

)
, (109)

where Dk j = ((k+ 1) j)!/((k j)! j!). This term would be added to the free energy given in

equation (30) for a triangular two-dimensional system. In addition, to account for the misfit

strain, the operator Gm that enters equation (21) becomes

Gm ≡ ∇2 + 2𝕚Gm · ∇+ 1− α2, (110)

where α = 1− εm.
Insight into the model can be obtained in the small deformation (u) limit, ηm = φe−𝕚Gm·u.

The total free energy function reduces to a two dimensional sine-Gordon model, i.e.

F
sg
2d =

∫
dr

[
C11

2

(
(Uxx − εm)

2 + (Uyy − εm)
2
)
+ 2C44U

2
yy

+ C12(Uyy − εm)(Uxx − εm)+ 2V0Dk jφ
(k+1) j

M∑

m

cos(Gm · u)
]
,

(111)

where C11 = 9Aφ2 and C44 = C12 = 3Aφ2. Unfortunately this is difficult to solve for the

boundary condition of a two dimensional triangular pattern. In one dimension this reduces to a

sine-Gordon model that can be solved exactly [166]. In this model the stripe to commensurate

state transition occurs when

P

Ka2
=

π2

16
ε2m, (112)

where P is a measure of the potential between the film and substrate and Ka2 is a measure of

the elastic energy in the film. These parameters are given by

P

Dk jφ(k+1) jV0

=

{
1/2 TT

4 TH
, (113)

and

K

(C11 + C12)2
=

{
(C11 + C44/3)

−1 TT

C−1
11 TH

. (114)

Details of these calculations can be found in Elder et al [161].

The full phase diagram as a function of εm and the ratio of potential/elastic energy, P/Ka2,
can be obtained through numerical simulation. Sample phase diagrams are given for the

√
3×√

3 R30◦ system for the TT and HT cases in figures 12(d) and (g) respectively. As can been

seen in these figures for small εm, the analytic predictions (this is true for all (k, j) systems) for

the stripe/commensurate transition are quite accurate and very good for the HT case for all εm.
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Figure 13. Comparison of simulated and experimental patterns in Cu/Ru(0001) system.
The figures correspond to twisted or zig-zag, honeycomb and stripe in (a), (b) and (c)
respectively. The experimental results are from Günther et al [159]. Figure (d) compares
the patterns in an experimentally partially filled layer with a simulation showing the
ordering of a commensurate layer. The experimental image is taken from Schmid et al
[160]. Reprinted figure with permission from [161], Copyright 2017 by the American
Physical Society.

An interesting comparison with experiments is the Cu layers on a Ru(0001) substrate which

is a 1× 1 TT system. In this case, varying the number of Cu layers increases the film’s elas-

tic energy and the potential between the substrate and film. Essentially, adding more layers

corresponds to reducing the ratio P/Ka2. One layer forms a completely commensurate state,

two layers form a striped state, three layers form a twisted honeycomb (or zig-zag state), and

four layers form a honeycomb state. To comparewith the non-equilibriumpatterns observed in

experiments, simulations starting from random fluctuations were conducted. The comparison

of the experiments and simulations depicted in figures 13(a)–(c) shows a very good agreement

for various patterns. In another experiment by Schmid et al [160] patterns of partially filled

layers are reported. These patterns are remarkably similar to simulations of non-equilibrium

patterns observed with the APFC model in the commensurate state as shown in figure 13(d).

Studies of the HT 1× 1 lead to a phase diagram similar to that shown for the
√
3×

√
3 in

figure 12. To compare with experiments, DFT calculations were conducted by Smirman et al

[28] to calculate the value of the dimensionless quantity P/Ka2 for various 1× 1 film/substrate

systems. The phase diagram accurately predicted commensurate state for twenty-five system

mostly corresponding to films consisting of monolayers of InN or GaN on various substrates.

In addition, the phase diagram accurately predicted a commensurate state for graphene (G)

on N, and triangular patterns for G on Cu, Pd, Pt, Al, Ag, and Au. Work was also conducted
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to predict the wavelength of the patterns as a function of misorientation with respect to the

substrate in G/Cu(111) and G/Pt(111) systems. In the absence of coupling two dimensional

patterns arise with wavelength λ = af/
√
ε2m + 2(1− εm)(1− cos(θ)), where θ is the misori-

entation angle. The study showed that as the coupling increases, the wavelength increases and

interestingly the lowest energy states were not at zero degree misorientation (0.88◦ and 3.22◦

for G/Cu(111) and G/Pt(111) respectively), which is unfortunately difficult to measure experi-

mentally. However, the predicted wavelengths were consistent with the experiments of Merino

et al [153] for G/Cu(111).

Other predictions of the APFC model involve the influence of defects and edges on pattern

formation in the
√
3×

√
3 R30◦ which corresponds to systems such as Xe/Pt(111) or Xe and

Kr on graphite.

6.5.2. Epitaxial growth: island formation and defect nucleation. When a material is grown

epitaxially on a substrate with a mismatch strain, εm, the film will tend to buckle and form

islands or mounds as it grows due to the so-called linear ATG instability [156–158]. Recall

that the APFC model is ideal for examining these phenomena, featuring relatively uniform

amplitudes suited for adaptivemeshing. In addition, it is possible to reduce the study of an ATG

instability in a 2D film to a 1D problem [167, 168]. Consider expanding about the strained film

such that η′m = ηme
−𝕚δqm·r where δqm is responsible for the mismatch strain imposed by the

substrate. For a triangular lattice with a strain imposed in the x direction (y being the growth

direction) δq1 · r = −δxx − δyy/2, δq2 · r = δyy, δq3 · r = δxx − δyy/2, δx =
√
3/2εm and δy

is determined by lattice relaxation. The strained amplitudes can now be expanded about a one

dimensional profile, η0j (y) as follows

η′j(x, y, t) = η0j (y)+
∑

qx

η̂ j(qx, y, t)e
iqxx , (115)

and similarly for the average density about n0o(y)

no(x, y, t) = n0o(y)+
∑

qx

n̂o(qx, y, t)e
iqx x. (116)

The profiles η0j (y) and n
0
o(y) must be determined numerically. The linearized equation ofmotion

for the perturbed quantities η̂ j and n̂o are quite complex but are easily solved numerically to

obtain a dispersion relation (ω(qx)) for the position of the liquid/solid front, i.e. the results can
be fit to the form |η̂ j|, n̂o ∼ eωt. Dispersion relations are shown in the inset of figure 14(a).

Various analytic studies have lead to different forms of the dispersion relation depending

on what physical mechanisms are included. Surface diffusion leads to ω ≈ α3q
3
x − α4q

4
x

[158, 169, 170], wetting to ω = −α2q
2
x + α3q

3
x − α4q

4
x [171, 172], evaporation–condensation

to ω = α1qx − α2q
2
x [173, 174] and bulk diffusion to ω = α2q

2
x − α3q

3
x [175]. In the APFC

simulations, ω can be fit to a fourth order polynomial in qx however none of the fits are consis-

tent with any of the prior results. This is due to the fact that the APFC model cannot separate

each of the mechanisms individually.

From these studies the most unstable qx , Q
∗, can be extracted as a function of misfit strain

and interface width (W ) as shown in figure 14(a). The width, in the notation of equation (4),

was altered through the variable Bx sinceW ∼
√
Bx/|ΔB0| [45]. For small values of εm it was

found that Q∗ ∼ ε2m and for larger values Q∗ ∼ εm for all interface widths. ATG theory gives

Q∗ ≈ (E/γ)ε2m, where E = B
xφ2/2 is Young’s modulus, φ is the magnitude of the amplitudes

in equilibrium, γ is the surface energy which can be calculated numerically. The numerical

results fit the small εm to Q∗ = 4Eε2m/3γ. The linear behavior at large εm can be understood
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Figure 14. (a) Most unstable wavevector (Q∗) is shown as a function of misfit strain (εm)
for various interface widths. In the inset, dispersion relations are shown for εm = 4%
(red) and 3% (blue). (b) The Q∗ and εm are rescaled to give rise to a universal curve

as described in the text. In the inset Q̂ is shown as a function of ε̂2m. Details of the
calculations can be found in reference [168]. Reconstructed from [167, 168].

Figure 15. In this figure the magnitude of the sum of the amplitudes is shown for an
island of one material grown on another. In (a)–(c) the time evolution of one island
is shown. Similarly in (d)–(f) an island growth is illustrated for a thicker ribbon. In
(g)–(l) the time evolution of island growth and nucleation is shown. In (a)–(f) a flux of
material only came from the top, while in (g)–(l) it came from both sides of the ribbon.
Reconstructed from [6].

by considering the wavelength at which the insertion of a dislocation would lead to perfect

relaxation (i.e. the addition or subtraction of a lattice point every λ returns the lattice constant

of the film to its equilibrium value). This occurs when Q∗ = 2π/λ = qx|εm|. It is interest-
ing to note that this linear relationship was observed in experiments on SiGe/Si(001) growth

[176, 177] although other explanations may exist as this is a binary system [178].

The continuum (ATG) calculation fails when the most unstable wavelength (2π/Q∗)
becomes comparable with the interfacial thickness. If one supposes that the crossover occurs at

εcm when 4Eεcm/3γ = qxε
c
m then εcm = 3γqx/4E andQc = 3γq2x/4E. Defining the scaled quan-

tities ε̂m = εm/ε
c
m Q̂ = Q∗/Qc gives rise to the universal behavior shown in figure 14(b). That
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is, the relationship between ε̂m and Q̂ is independent of the interfacial thickness. It was found

numerically that 1/Qc ∼ B
x ∼ W2.

An APFC study of the growth of islands of one material on a ribbon of another was con-

ducted by Elder et al [6, 150]. Several experiments [179–181] had to be undertaken to examine

whether the growth of islands (or quantum dots) on thin ribbons may be exploited for better

control of island sizes and correlations. When an island of one material grows on an island

of another material, the misfit strain will eventually lead to the nucleation of dislocation at

the island/film/vapor junction. On very thin ribbons, the strain in the island can be somewhat

reduced by bending the ribbons, leading to the possibility of growing larger defect-free islands.

An example is shown in figure 15. Figures (a)–(c) and (d)–(f) show the growth of an island for

two different ribbon thicknesses. In (c) and (f), the final island size (Lf) at which dislocations

appear indicates that Lf is larger for the thinner ribbons. Depending on conditions it was shown

in reference [150] that decreasing the ribbon size could almost double Lf . Another interesting

feature emergeswhen the island starts to grow. It bends the ribbon such that preferential regions

for island nucleation appear on the other side near the triple junctions, leading to correlated

growth as shown in figures 15(g)–(l). This correlation could potentially be exploited to create

uniform arrays of islands.

In summary, the binary and pure APFC models provide an excellent platform for studying

heteroepitaxial growth. Coupled with adaptive mesh schemes as illustrated in section 3, very

large simulations should be possible in both two and three dimensions.

7. Conclusions and outlook

In recent years, bridging-scale modeling has become crucial to comprehensively investigate

crystalline systems, explore macroscopic effects of microscopic details, and unveil general

properties and behaviors for further scale-specific characterizations. Here, an overview is pro-

vided of the model(s) obtained through the amplitude expansion of the PFC (APFC), which

combines the description of crystals on relatively large (diffusive) time scales, conveyed by the

PFC model [1, 7, 33], with a spatial coarse-graining. The concepts underlying its derivation

have been illustrated, focusing on practical aspects such as explicit formulas, generalizations,

and examples, along with presenting different formulations.

Computational aspects have also been outlined. The fields (amplitudes) to solve for within

the APFC model are suited for inhomogeneous spatial discretizations, a feature that motivated

its development in the first place [23]. Recently, a few optimizedmethods have been developed

to allow for large-scale calculations and, in particular, paving the way for extensive three-

dimensional calculations.

The APFC model emerges as one of a kind among mesoscale approaches: it handles the

description of crystalline systems through slowly varying continuous fields, so without resolv-

ing atoms, but retains details of the crystal structure such as anisotropies and lattice defects.

Namely, it merges different aspects addressed by micro- and macroscopic approaches within

a single model rather than coupling models working at different time- and length scales (like

other remarkable approaches as, e.g. the quasi-continuum approach [182, 183]). Among its

key aspects, special attention has been given to the mesoscale description of elasticity and

plasticity, being the primary goal of many coarse-grained descriptions (as the PFC itself

[1, 7]). As a pivotal example, the elastic field generated by dislocations within the APFC

model matches classical continuous descriptions and encodes a core regularization related to

the lattice parameter. Moreover, it is expected to be affected by lattice symmetry and encodes
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nonlinearities. Amplitudes also allow for characterizing plasticity and defect dynamics. This

description can be exploited within the broader context of PFC models as amplitudes fully

characterize deformations therein [75].

Like every othermodel, APFC has its range of applicability, strengths, and weaknesses. One

weakness is the ability to accurately predict the precise structure of atomic-scale structures such

as dislocations and interfaces, similar to the drawbacks of traditional PF models. However, it

may be employed to investigate long-range effects for such systems, and extensions have been

provided to improve the mesoscale descriptions with respect to the standard formulation (see,

e.g. the control of energies for defects and interfaces and the modeling of Peierls barriers). Like

PFC, the variational, overdamped formulation of the APFCmodel conveys a lack of separation

among different timescales, affecting the competition among diffusion mechanisms and elas-

tic relaxation. This issue, however, has been solved by a few different extensions, which are

expected to become the standard approaches for phenomenawhen the separation of timescales

is relevant. The most critical aspect for applications of the APFC model remains the limita-

tion to small rotations with respect to a reference crystal orientation (see the problem of beats

[66, 73, 74]). It prevents the thorough investigation of high-angle grain boundaries and poly-

crystalline systems. Therefore, providing a solution for this issue is a crucial challenge for

achieving a general mesoscale description of crystals. To date, this aspect has been only par-

tially addressed through a covariant formulation with respect to rotation of the crystals, which

still needs to be assessed for the description of elasticity and plasticity and its compatibility

with other extensions.

It is worth mentioning that in light of the limitation(s) mentioned above, the currently

available APFC models should be considered valid for relatively small deformation and

rotation only, de-facto for every crystalline system where defects as dislocations can be

described as separated objects. However, systems featuring such conditions are common,

widely studied, and exploited in several technology-relevant applications, such as single crys-

tals, alloys, and homo-/heteroepitaxial systems, besides small angle-grain boundaries. The

overview and discussion of the main applications addressed so far in the literature illustrate this

aspect.

In conclusion, this review has attempted to collect the basics and the recent developments

of the APFC model. While it has been used to study several physical phenomena, its potential

still has not been fully exploited. Potential applications include the investigation of three-

dimensional mesoscale tracking of defects and interfaces (e.g. for heteroepitaxial systems).

Moreover, besides the challenges already mentioned above, a few aspects can be identified

which will improve the approach further: (i) direct connections with advanced continuum the-

ory for elasticity and plasticity, closing the gap with methods such as DD; (ii) description of

complex crystal symmetries beyond simple ones to broaden the application to technology-

relevant systems; (iii) extending the parametrization to include physical parameters extracted

from experiments and/or other methods; (iv) connections and coupling to both microscopic,

fully atomistic (e.g. PFC or molecular dynamics) and macroscopic (e.g. PF, CE) models;

(v) extended BC to enable investigations beyond bulk-like systems and simple geometries;

(vi) further development of numerical methods, keeping up with state-of-the-art numerical

techniques.

Acknowledgments

MS acknowledges support from the EmmyNoether Programmeof the GermanResearch Foun-

dation (DFG) under Grant No. SA4032/2-1. KRE acknowledges support from the National

Science Foundation (NSF) under Grant No. DMR-MPS-2006456. Computing resources have

48



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

been providedby the Center for InformationServices andHigh-PerformanceComputing (ZIH)

at TU Dresden. The authors also acknowledge useful discussions with Zhi-Feng Huang, Axel

Voigt, Rainer Backofen, Simon Praetorius, Lucas Benoit-Marechal, Luiza Angheluta, Vidar

Skogvoll, and Jorge Viñals.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the

authors.

ORCID iDs

Marco Salvalaglio https://orcid.org/0000-0002-4217-0951

Ken R Elder https://orcid.org/0000-0001-9265-2476

References

[1] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701
[2] Langer J S 1980 Rev. Mod. Phys. 52 1
[3] Karma A and Rappel W J 1996 Phys. Rev. E 53 3017
[4] Karma A and Rappel W-J 1998 Phys. Rev. E 57 4323
[5] Elder K R, Grant M, Provatas N and Kosterlitz J M 2001 Phys. Rev. E 64 021604
[6] Elder K R, Huang Z F and Provatas N 2010 Phys. Rev. E 81 011602
[7] Elder K R and Grant M 2004 Phys. Rev. E 70 051605
[8] Wu K-A and Voorhees P W 2012 Acta Mater. 60 407–19
[9] Hirvonen P et al 2016 Phys. Rev. B 94 035414

[10] Yamanaka A, McReynolds K and Voorhees P W 2017 Acta Mater. 133 160–71
[11] Berry J, Provatas N, Rottler J and Sinclair C W 2012 Phys. Rev. B 86 224112
[12] Skaugen A, Angheluta L and Viñals J 2018 Phys. Rev. B 97 054113
[13] Salvalaglio M, Voigt A, Huang Z-F and Elder K R 2021 Phys. Rev. Lett. 126 185502
[14] Salvalaglio M, Voigt A and Elder K R 2019 npj Comput. Mater. 5 48
[15] Skaugen A, Angheluta L and Viñals J 2018 Phys. Rev. Lett. 121 255501
[16] Salvalaglio M, Angheluta L, Huang Z-F, Voigt A, Elder K R and Viñals J 2020 J. Mech. Phys.

Solids 137 103856
[17] Amodeo R J and Ghoniem N M 1990 Phys. Rev. B 41 6958
[18] Ghoniem N M, Tong S-H and Sun L Z 2000 Phys. Rev. B 61 913
[19] Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce T G and Bulatov V V 2007

Modelling Simul. Mater. Sci. Eng. 15 553
[20] Greenwood M, Provatas N and Rottler J 2010 Phys. Rev. Lett. 105 045702
[21] Greenwood M, Rottler J and Provatas N 2011 Phys. Rev. E 83 031601
[22] Goldenfeld N, Athreya B P and Dantzig J A 2005 Phys. Rev. E 72 020601
[23] Athreya B P, Nigel G and Dantzig J A 2006 Phys. Rev. E 74 011601
[24] Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phys. Rev. B 75 064107
[25] Khachaturyan A G 1983 The Theory of Structural Transformation in Solids (New York: Wiley)
[26] Khachaturyan A G 1996 Phil. Mag. A 74 3–14
[27] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[28] Smirman M, Taha D, Singh A K, Huang Z F and Elder K R 2017 Phys. Rev. B 95 085407
[29] Huang Z F, Elder K R and Provatas N 2010 Phys. Rev. E 82 021605
[30] van Teeffelen S, Backofen R, Voigt A and Löwen H 2009 Phys. Rev. E 79 051404
[31] Ramakrishnan T V and Yussouff M 1979 Phys. Rev. B 19 2775
[32] Tupper P F and Grant M 2008 Europhys. Lett. 81 40007
[33] Emmerich H, Löwen H,Wittkowski R, Gruhn T, Tóth G I, Tegze G and Gránásy L 2012 Adv. Phys.
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