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Abstract

Comprehensive investigations of crystalline systems often require methods
bridging atomistic and continuum scales. In this context, coarse-grained
mesoscale approaches are of particular interest as they allow the examination
of large systems and time scales while retaining some microscopic details. The
so-called phase-field crystal (PFC) model conveniently describes crystals at dif-
fusive time scales through a continuous periodic field which varies on atomic
scales and is related to the atomic number density. To go beyond the restric-
tive atomic length scales of the PFC model, a complex amplitude formulation
was first developed by Goldenfeld et al (2005 Phys. Rev. E 72 020601). While
focusing on length scales larger than the lattice parameter, this approach can
describe crystalline defects, interfaces, and lattice deformations. It has been
used to examine many phenomena including liquid/solid fronts, grain bound-
ary energies, and strained films. This topical review focuses on this amplitude
expansion of the PFC model and its developments. An overview of the deriva-
tion, connection to the continuum limit, representative applications, and exten-
sions is presented. A few practical aspects, such as suitable numerical methods
and examples, are illustrated as well. Finally, the capabilities and bounds of the
model, current challenges, and future perspectives are addressed.
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1. Introduction

The original phase-field crystal (PFC) model, introduced in 2002 [1], was developed as a sim-
ple way to incorporate elasticity and dislocations in continuum models in a manner similar to
how interface and domain boundaries are introduced in traditional phase-field (PF) models.
In the latter case, the predictions of PF models can be shown to be consistent in the asymp-
totic limit of vanishing interface widths with well-known sharp interface (SI) models [2] that
explicitly track the position of a given interface subject to various boundary conditions (BC)
(such as, e.g. the Gibbs—Thomson condition (GTC) for solidification or spinodal decomposi-
tion). PF models do not typically provide quantitative predictions on small length scales, i.e.
on the scale of interfacial widths or suitable correlation lengths. Usually, their parameters are
chosen to match the ones entering SI models [3-5] (e.g. the capillary length and coefficient of
kinetic undercooling that enter the GTC). Similarly, PFC models do not quantitatively describe
small length scale features, but in the appropriate limit they reduce to standard results. It is
straightforward to show that in the long-wavelength limit, the PFC free energy reduces to tradi-
tional continuum elasticity (CE) theory [6] and that the dynamics incorporate vacancy diffusion
[1,7]. It has been shown, numerically in two dimensions, that GBs can form spontaneously and
their energy is consistent with the Read—Shockley equation [1, 7-9], that climb and glide of dis-
locations follow the Orowan equation [10], and in three dimensions that glide (climb) mediated
sources of dislocation are consistent with Frank—Read (Bardeen—Herring) mechanisms [11].
More recently, it has been shown analytically that in PFC models the velocity of dislocations
is determined by the Peach—Koehler force as expected in pure [12] and binary systems [13]. In
addition, the predicted elastic field around a dislocation agrees quantitatively with CE theories,
encoding additional features such as anisotropies and non-linearities [14—16]. In many ways,
the connection between PF and SI approaches is analogous to the connection of PFC models
with dislocation dynamics (DD) models [17—-19], which explicitly move dislocation lines due
to Peach—Koehler forces that are generated by the elastic field of other dislocations, defects,
or externally applied forces. In particular, the coarse-grained PFC model referred to in the
literature as amplitude expansion of the PFC, complex amplitude phase-field crystal (APFC)
or simply amplitude equations, on which this review focuses, allows a description of defects
without resolving atomistic length scales, closely resembling the basic features of DD models.
The advantage of this approach over DD is that dislocations and their main phenomenology
appear naturally, following from the considered free energy functional. Therefore, no exter-
nal rules would be in principle needed to determine the interaction, annihilation, or creation
of any type of defect. At the same time, the method is not restricted to a single-crystal sam-
ple with pre-defined glide planes. However, it is worth noting that quantitative description
of specific phenomena and materials would require an extended parametrization compared to
minimal PFC-like models typically reported in the literature. Such extensions may be achieved
with later formulations [20, 21] but to date, they have not been explored extensively in this
regard.

The complex APFC model was originally derived by Goldenfeld et al [22, 23] from the
PFC model, which describes the evolution of the atomic number density during crystalliza-
tion and the related dynamic processes [1, 7, 24]. While the PFC model can access diffusive
time scales, the approach is limited by the need to incorporate density fluctuations on atomic
length scales, thus requiring resolutions smaller than the lattice spacing. The main aspect
of the APFC approach is to model the amplitude of the density fluctuations instead of the
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density itself. The idea of describing liquid/solid transitions by amplitudes that are real has
been exploited in the past [25-27]. In Goldenfeld et al formulation [22, 23], density fluctua-
tions are described by complex amplitudes, 7, ;, where hk1 are Miller indices that describe
specific crystallographic planes. The magnitude of 7),,; is finite in a crystal and zero in the lig-
uid state. Thus, it can be used to characterize a liquid—solid transition. Gradients in the phase
of 7,1 occur when the crystal state is strained, which provides information about the elas-
tic energy stored in the crystal. In addition, the phase can describe the rotation of the crystal,
allowing for the study of polycrystalline states (although, as noted in section 5, there exist
limitations). Finally, the combination of the magnitude and phase can describe dislocations in
which large gradients in the phase do not lead to huge increases in the elastic energy as the
magnitude of some 7,,; goes to zero. While the APFC model is formally derived from the
PFC model, it is in principle possible to phenomenologically write down an APFC model as
long as it has the correct long-wavelength behavior as has been done for PF models of various
phenomena.

One of the most important features of the APFC model is that it provides a natural bridge
between atomic and mesoscopic continuum length scales. In a single crystal state, the ampli-
tudes vary slowly in space (depending on the orientation) but can be used to reconstruct the
underlying atomic density fluctuations completely. On long length scales, it is straightforward
to derive standard CE through the phase of the amplitudes. Significant variations of amplitudes
occur at defects and solid—liquid interfaces, still well describing the deformation induced in the
lattice. The equations entering the APFC model, similarly to PFC, can be solved with simple
numerical approaches. For example, using a uniform grid, Smirman et al [28] studied Moiré
patterns in graphene films with the largest size system of 19.6 pm x 33.9 ;m containing more
than 25 billion unit cells (although it should be noted that these patterns contain no defects).
When dislocations, grain boundaries, and interfaces appear, i.e. when a significant local varia-
tion of amplitudes occurs, more advanced numerical approaches can be considered to optimize
the calculations. Indeed, these regions require the finest resolution, while a coarser one, typi-
cally much larger than the atomic spacing, can be used elsewhere. Adaptive meshing schemes
then allow for simulation of large mesoscopic scales and at the same time completely retaining
atomic information. Thus the APFC method allows simulations of atomistic features on con-
tinuum scales and should play an important role in understanding complex phenomena with
multiscale features.

The rest of the review is organized as follows. Section 2 describes the original PFC model
and the derivation of the APFC model. Section 3 outlines various numerical methods that
have been developed to solve the APFC on regular and adaptive meshes. This is followed by
section 4 that provides a connection of the APFC model to traditional models of CE and plastic-
ity. Section 5 outlines the limitations of the approach and some extensions aimed at overcoming
some of these constraints. Following this is section 6 which describes some applications of the
model to various physical phenomena. Finally, some conclusions and future outlooks are given
in section 7.

2. From PFC to the amplitude expansion

2.1. Origin of the PFC model

The PFC model was proposed phenomenologically [1, 7] to model elasticity and plasticity
in crystal structures and can be written in terms of a dimensionless Helmholtz free energy
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Figure 1. (a) Sample (1D) liquid/solid interface, where a is the atomic spacing and W
is the width of the interface. (b) Sample (1D) deformed lattice by displacement u = ex.
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Figure 2. Crystal structures (grey) and corresponding shortest reciprocal lattice vectors
(colored): (a) triangular, (b) square, (c) BCC, (d) FCC. Arrows represent the recipro-
cal space vectors entering equation (3) in the one- (blue) and two- (blue and red) mode
approximations. For the square lattice the additional reciprocal-space vectors consid-
ered in a three-mode approximation involving non-parallel vectors only are also shown
(green). Solid arrows indicate an explicit choice of vectors entering equation (17) (as
exploited from section 2.3.2 on).

functional, F', which is given as,
AB° B* t
F,= /dr {Tnz + 7}1((1?, + V) — §n3 + %n“ , (1)
and an equation of motion,

on ,0F,
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where n is related to the atomic number density difference and ABO?, B*, t and v are constants
that may depend on temperature [24]. Although equation (1) can be derived [24, 29, 30] from
the classical density functional theory (DFT) of Ramakrishnan and Yussouff [31], the approxi-
mations used give rise to poor atomic-scale predictions in most materials since this free energy
is minimized by an almost sinusoidal density fluctuations, while in metals for example # is
very sharply peaked Gaussians at each lattice point. Nevertheless the periodic nature of the
solutions of equation (1), which mimic a time average of microscopic atomic density [32] and
evolves over diffusive time scales [33], make it useful for studying a large variety of physical
systems such as multi-component polycrystals, liquid crystals, quasi-crystals and colloids as
well as a broad class of phenomena including crystal growth and nucleation, heteroepitaxy,
pattern formation, DD, grain boundary morphology and motion [7, 33—36]. PFC models have
been developed also for less conventional materials and systems such as, for instance, active
crystals [37—41], active colloids [42], and viral capsids [43].

The fact that the solutions are not sharply peaked means that they can be described by a few
Fourier components. In this regard the density is written in terms of complex amplitudes, 7y, 1,
as follows,

n=ngy,-+ Znhkleﬁth1~r, (3)
hkl

where § is the imaginary unit, n, is the average density, Gnx1 = hq; +kq, + 1q;
are reciprocal lattice vectors, with q, = 2m(ay x a3)/(a; - (a, x a3)) and cyclic per-
mutations of (1, 2, 3) the principal reciprocal-lattice vectors, and a; the vectors
defining the primitive cell of the crystal lattice [44]. Note that the summation
goes over both negative and positive Guxi’s with 7_mx1) = 7y, such that n is a
real field. In two dimensions (2D), one may define Gpx; as above with 1 =0,
q, =27mRa;/(a; - (Ra;j)) for i# j and R a 90° rotational matrix (clockwise or anti-
clockwise). All these definitions satisfy the condition a; - q = 2m6;;. Two illustrations of
the quantities entering equation (3) in one dimension (1D) are shown in figure 1, namely
corresponding to a solid—liquid interface and a uniformly strained 1D crystal. Since PFC
type models produce smooth solutions it is a good approximation to use the fewest number
of complex amplitudes that are needed for any given crystal symmetry (see also figure 2).
For example, only six 7,; (so three independent 7,,, ;) are needed for a 2D triangular lattice
(more explicit examples are given in section 2.3.2). Gy entering approximations with the
smallest number of modes are shown in figure 2. As discussed in the next section the goal of
the APFC model is to derive equations of motion for the amplitudes.

2.2. Derivation

There are various methods for deriving the amplitude expansion from the original PFC model.
Essentially, it requires a separation of length scales by assuming that the complex ampli-
tudes vary on length scales much larger than the atomic spacing. In general this is the same
assumption of all PF models which require that interfaces or domain walls make a smooth
transition from one phase to another. This is illustrated in figure 1 for a one dimensional lig-
uid/solid interface for a system of atomic spacing a and interface width W. The ‘PF limit’ is
such that a/W < 1. For instance, for a two-dimensional triangular lattice it can be shown [45]
that in the limit that n, = 0 and the complex amplitudes are real and identical (i.e. 9y, = ¢,
for all hk1), they are described by traveling wave solutions (with velocity V) of the form,

qS:A{l—tanh <X;VVZ>], )
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where W is the width of the liquid/solid front which can be written [45] as

Wm
W_

- s (5)

1+ \/1 — (8/9)AB"/ABY,
where AB{. = 8t?/135v is the value of AB at liquid/solid coexistence and W" is the maximum
value of W and is given by

W = 240v/30VB¥ /L. (6)

For AB” > 9/8AB}. no traveling wave solution exists as the solid is linearly unstable. Thus
the PF limit occurs when B* — oo and as such 1/B* can be used as a small parameter in
a multi-scale calculation. In light of this, it is convenient to make the following rescaling,
e = —ABY/B*, i = n(v/B")!/?, F = Fv/(B*)?, so that equation (1) can be written

_ 1 1
F= /dr {—an + 5ﬁ(qyg + Vi — %ff + Zﬁ4 , (7

where 7 = t/+/VB*. Now the limit B* — oo corresponds to € — 0.

Goldenfeld and co-workers [22, 23] report that to obtain rotationally invariant equations
using multiple-scales analysis requires going to sixth order perturbations, which is an
extremely tedious task, as to lowest order the resulting equations are not rotationally invariant.
However, they have shown that this analysis gives the same result using a simpler renormal-
ization group calculation. Other works addressed refinement and assessment of the general
renormalization group approach [46, 47].

To grasp the essence of the calculations without using these more rigorous methods, Athreya
et al [23] developed a method that was coined ‘quick and dirty’ that essentially obtains the
same result in the W — oo limit. The basic idea is to assume that the amplitudes are constant
on atomic length scales, i.e.

/ dr f (e )™ =~ f(ﬁhkl)/ dre'r, (8)

where fu'c' is an integration over a unit cell and q is a sum over various Gpx;. Since q is
periodic in the unit cell, equation (8) is zero unless q = 0. This is a considerable simplification
that reduces the number of terms that enter the free energy. For example, consider a term

/dl‘n2 = /dr ng + 2n, (Znhkleﬁchkl‘r>

hkl

() (S v ®

hkl nk'1’

Only the first and last term for hk1l = —(h'k’1’) give non-zero contributions using the approx-
imation in equation (8), since they do not contain terms multiplied by a periodic function. Thus,
in this approximation, equation (9) reduces to

/drnzz/dr

n + Zlnhkﬁ} : (10)

hkl
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As discussed in the next section, contributions that arise from higher order polynomial terms
will depend on the specific crystal symmetry under consideration. Terms containing the V2
operator are treated similarly noting that, assuming constant or slowly varying n,,

Vzn = Zeﬁthyr(vZ =+ Zﬁthl . 6 - ‘th1|2)77hk1~ (11)

hkl

Lk

Thus the Laplacian operator transforms as V2 = Lux1. While the effective operator on the
right-hand side of equation (11) appears to be anisotropic (due to the specific direction of the
Gux1's), it can be shown that the free energy is independent of the orientation of the pattern
formed in n [48]. With these steps an energy functional which depends on amplitudes, F,, can
be derived (see also section 2.3).

The dynamics of 7,,; approximating (2) can be obtained by multiplying equation (2) by
e 61T and integrating over a unit cell, i.e.

dr i, 0n _ Onma
_ r- ~ 12
]ﬁa v e ot o’ (12)

where V is the volume of a unit cell, which may be written as?

oF,
M

oF,

67’}hk1 —r (SF,I
OMr

hkl =
ot M

= (V? 4+ 2iGpyy - V — |Ghk1|?) ~ —| G |

; (13)

where the long-wavelength limit has been used in the last approximation. It is interesting to
note that the equation of motion for the amplitudes are non-conserved, implying that an initial
liquid (crystal) can completely transform in a crystal (liquid) locally.

Nevertheless the density is a conserved quantity in a closed system and it is often important
in liquid solid transitions since in liquid/solid coexistence the liquid and solid have different
densities. In addition, the process of dislocation climb involves the mass (or vacancy) diffusion.
In the original derivation of the APFC [22, 23] the average density was assumed to be constant.
The first inclusion of a spatially dependent density was reported by Yeon et al [49]. In this work
n, was assumed to vary on the same length scales as the complex amplitudes and equation (3)
should read

(e, ) = no(r,0) + Y N (r, )T, (14)

hkl

Unfortunately, using the so-called ‘quick and dirty’ method leads to an equation of motion for
n, (and free energy) which contains terms like (1 + V?)?n and then implies that crystal state can
be obtained from constant amplitudes or by a periodically varying n, (which of course violates
the assumption that n, varies on the same length scales as the amplitudes). To overcome this
difficulty several simpler models were proposed, which were shown to incorporate interfacial
energy associated with the density difference at liquid/solid front as well as the well known
Gibbs—Thomson effect [49]. The model can be written

#The functional derivative 6F/dz" is computed treating z and z* as independent variables.

8
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AB° t
.F:/dr [Tng—gng+§né

1
+

2
(AB° — 2tny + 3vn}) (Znhkleﬁchklﬁ

hkl

NS

15)

3 4
1 Gt v Guuer-
Ty (Znhkle”c’hkl r) T3 (Zﬁhkleuc’h“ r)

hkl hkl

BX
+ 72(‘[%1{1 + q%)nhuz] ,

hkl
with dynamics

6F on 6F
= —|Gua1|* —— S =V 16
G| M1 ot v 0ne (16)

anhkl
ot

The specific terms that emerge when averaged over a unit cell are discussed in the following
section. This approach is also discussed in Huang et al [29]. If the amplitudes are assumed to be
real (which eliminates the possibility of elastic and plastic phenomena) this reduces to model
C in the Hohenberg/Halperin [50] classification scheme that can be used to study phenomena
such as directional solidification [51] or eutectic solidification [52, 53]. Heinonen et al [54] use
a similar free energy functional, but also incorporate momentum through the Navier Stokes
equation and add the corresponding convective term to the dynamics of 7,,,; and n,. This has
the advantage of including faster relaxation of elastic fields as discussed in section 5.2.

2.3. Formulas for amplitude equations

Let us consider the free energy equation (1) with constant average density 7, and for the sake
of simplicity the generic parameters A = B*, B = AB° — 2tn, + 3vn§, C=—(t+3n,),D =
v, E = AB%12/2 — tn /3 + vn? /4. The amplitude expansion is based on the approximation
of n as from equation (3) with a finite set of M vectors Gy, reproducing a specific crystal
symmetry. This equation, exploiting that 7_wk1) = 7}, 1S here rewritten as

M
=g+ e+ e (a7)

m=1

where for simplicity Gpx1 is given a single subscript m and c.c. is the complex conjugate,
highlighting the minimal set of amplitudes to be considered to approximate n. The free energy
and the evolution law for the amplitudes can be obtained by exploiting the coarse-graining
procedure introduced in section 2.2, i.e. by integration over the unit cell of the PFC energy
density (1), with n expressed through its amplitude expansion, equation (17) [48, 55-58].

To provide a general form of the free energy, consider separately the different powers of
n entering equation (1), namely n*({n,,}, {n},}) — (k. After averaging over a unit cell the
following results emerge,
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M
G = ZZ |77m|2:q>’

M
32 {’C2m+nni77n + lcm—&-Znnm'r},% + K—Zm—&-nn;lznn

G =
n>m
M
+ K7m+2n77::1773} +6 Z {ICm+n+o77m77n770 + K mtntollmno
o>n>m

+ ]Cm—n—&-r)'r}mn;:no + ’Cm+n—()77m77n77:} + c.C.|,

M M
Go= 63 [l +243 a2l

n>m

M
42 {K3m+nnr3n77n + K73m+n77:;,377n + K7m+3nn;1772 + ICm+3n77m773}

n>m

+

M
+ 12 Z {’C2m+n+077,2n77n770 + lcm—&-2n+o77m77i770 + lcnz+n+2077m77n77§

o>n>m
+ K—Zm—&—n—&-r)"’};znnn() + ’C—m+2n+o7’};ﬂ75770 + ’C—m—&-n+2077:l77n77(%
+ K2m7n+0773177;770 + ICm72n+o77m"7;znolcmfn+2077m77;77§

+ ]C2m+n—()773177n77: + ]Cm—&-Zn—o'r}mnin; + lcm—&-n—ZonmnnnZz}

M
+ 24 Z (K —mtntot ot Nomp + Kn—n-to-+pTimT Mol

p>o>n>m
+ Kontn—o+pm Mo p + Km+n+o*p77m77n77077;
+ ]C—m—n+o+p77;177;77077p + ]Cfm+nfo+p77:z77n77;77p

+ lc—m—i—n—i—o—pn;;nn'r}on; + ’Cm+n+o+p77m77n77()77p} +c.c.|, (18)
with
1 if |iG,, + jG, + kG, +IG,| =0
’Cim+jn+kr)+lp - . P (19)
0 if [iG,, + jG, + kG, +IG,| # 0

and neglecting terms including a factor K4, with i = £1, £2 which would appear in ¢, and
(4 as G, with the same lengths are never parallel (or antiparallel), so /C;, 1, = 0. Notice that
terms as in the first sum in ¢ or the third sum in (, contributes if considering modes with two
or three times the length of others, respectively (e.g. Go and Gy in figure 2(b)).

10
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For a one-mode approximation of n through equation (17), i.e. by considering the shortest
G,,, and transformation (11), the excess term becomes

M M
/ dr (1 + V220 = 3201+ Lo S 21G a2 (20)

with G,, = V? + 2iG,, - V and £,, = G,, — |G,,|*. In the one mode approximation, the length
scales can always be re-parametrized such that |G,,| = 1.
Interestingly the term (, = ® does not depend on the lattice symmetry, while , can be writ-

ten Gu =63 [0al* + 24370, 0?1l + GG = 307 = 637, I |* + ¢3, where ¢ depends
on lattice symmetry. Therefore, the free energy as function of amplitudes may be written

M M
A B, C. D B_ 3D 3D
F, :/dr 52 20+ S G+ TG+ G HE :/dr SP+ P+ (A Gt — 7|nm|4>
= /g [2; (Gl + 3G+ 3G+ TG o |2 4 ; | 2

AU {77§,})+E] , 21

with f*({nu}. {p}) = §G + 2G-
The dynamics of the amplitudes, based on the PFC formulation in equation (2) and
according to transformation (12) are given by

M oF CaG DG
= Ly—2L ~ —|Gul* |AGp 1 + Bij + 3D(® — |1, + = - (22
|
Ofs /O
where £,, =~ —|G,,|? as in equation (13), and, from equation (18),
q q
19¢ M
A i = Z {2/C72mfn7/;,"]: + 2]C72m+n7/;,nn + K*M*Znn;:z + K“*erleny%}
3 0n;, e
M
+ 2 Z {]Cfmfnfonzn:: + K:7m+n+u7/n7/u + ]Cfm+n707/nn: + ]Cfmfrﬂ»on;nu} )
o>n#Em
19¢ M
40 L= 3K a0 4 3K sty e+ Kanny + Koy}
AR —
M
+ 3 Z {2’C—2m—n7077;,77:77; + ’C—m—Zn—anzn; + ’C—m—n—Zvn;:n;2
o>n#Em
+ 2K ot oMo + K mtans o200 4 K mtn 202
+ 2K—2m+n—a”7;177n77; + ’C—m+2n—077r2177; + ’C—m+n—2()77n77;2
+ 2K72mfn+on;:,7/n*no + ]C*M*ZnJrUrr];an + ]Cfmfn+207/n*n3}
M
+ 6 Z {’C—m+n+()+p77n77(177p + ’C—m+n—ofp77n77:77; + ’C—m—n-&-afpn;non;
p>o>nEm

+ Knot p Tl 57p + Kt ot pa o + Koot p0a11p
+ ]C—m+n+ofpnn770n; + ]C,m,n,,,,pﬁ;'f];ﬁ;} > (23)
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2.3.1. Multi-mode approximations. To model some crystal lattices, more than one mode is
required in equation (17), i.e. more length scales are set through the choice of the reciprocal
space vectors. In this case, (,, reads as reported above, but the excess term takes different forms.
However, it may be reduced to equation (20) through approximation [6, 13]. For two lengths,
Ry =2m/ki" and R, = 27 /k5?, corresponding to different lengths in the reciprocal space
ki* =1 and k5" = aki?, with a # 1 = k31/k}* = Ry /Ry, the term including the differential
operator in the dynamic would read [6]

M M
1+ RV + RV — Y a1+ L) (@ + L)l = Y D (24)
with
2 1 2 - 2 .
0474(gm)2(062 -1 + gm)2 - M(gnl)2<1 + Zg_ 1) if ‘Gm| = qu =
Dm - ’

(- ) G\’
a (1= 0 + GG = ——— G 1 = 57— if |Gn| =K' =
a?—1
(25)
and lengths have been scaled such that x — x/Ry. If 2|G,,nm| < [(@® — D1,

2
DmnmN( D g, (26)

Therefore, the coefficient A can be rescaled by a factor a* /(o — 1)? and the same energy term
as for the one mode approximation can be used. This result may be generalized for a lattice
having N, differentlength scales R, = 2 /k;? and k;* /k{* = v (noting k{* = 1). Equation (24)
would read

M Ny M
H(l +RIV Y=y [H(l +a 2 Ly)? 1 T =Y M- 27)

m l

If, V4, 2|Gunm| < [(0? — |G|?)| s One may write

G,
Mot = | |G| ™ H ( ‘ i ) Gt = TGl (28)
a/#‘Gm‘

that for Ny = 2, o = 1 and a, = «a reduces to equation (26). Then, under this approximation,
anl Mty = Zfrf I',,G> .. Notice that in the presence of more than two modes, the coeffi-
cient of g,%, cannot be taken outside the sum so it cannot be included in the coefficient A through
rescaling as in equation (26).

2.3.2. Results for specific lattice symmetries. Implementations of the APFC equations may
be performed in a general fashion by considering equations (18) and (23). This delivers a gen-
eral framework suitable for changes in lattice symmetries and the number of modes used
(eventually also different symmetries at once, see also section 6.4). However, the specific
equations corresponding to given lattice symmetries through the choice of reciprocal lattice
vectors may be useful for analytic calculations and ad-hoc implementations. In the following,

12
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= {mm}. {n,}) are reported for selected crystal symmetries used in literature, with the
length of shortest reciprocal space vectors normalized to 1 (see, e.g. [6, 59-61] and figure 2).
Triangular (TRI) symmetry (2D), one-mode approximation, N = 3:

i _ [—V/3/2 i _ |0 i _ [V3/2
S R R

F = 2Cms + ). (29)
Triangular (TRI) symmetry (2D), two-mode approximation, N = 6:

G, Gl G G _ R _ G

G"SFRI _ GgRl o G;FRI, G(TRI _ G;FRI o G"ll"Rl’

™2 =2Cmmns + ninans + mnsne + 130375 + Nansne)
+ 3D(mmami + MieTe + MM + MENs + M3 + TRN3TE)-
+ 6Dy 1576 + M1 M37MaMs + M213M476) + C-C.

(30)
Square (SQ) symmetry (2D), two-mode approximation, N = 4:
S 1 S 0 S 1 S -1
GIQ:M, GZQ:H, G3Q:H, G4Q:[1],
L2 = 2Cmam; + mnsna) + 3D + 3ming) + c.c.. 31)

Square (SQ) symmetry (2D), three-mode approximation, N = 8:

G% 6% G G
S 2 S -2 S 1 s -1
G = H Gf:{l], G = M G2 = [2]

F9% =2C (mimams + mp e+ mosns + mnne + M7 + 120475 + 137675
+nans15) + 3D (niman + mmae + My + Wi + minins + M,
M+ s R3S + g + 13msng) + 6D (nimnsn;
+ Mmnetls + MINaT; + MaNANg + MNsTeT + NiNsNeNs + M 13N40s
+ MM T6 + N5+ T3 M6M s + 131471576 + 11304175 ) + C-C.

(32)

Body centered cubic (BCC) symmetry (3D), one-mode approximation, N = 6:

13
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BCC
G

BCC
GO

BCC
Gt

BCC
GO

fBCC, 1

0 GBCC 1 GBec 1 GBCC 0
. S =19 ssecc= |1 gpc=|1]
| GgCC | GgCC GgCC 1
1 BCC —1

=1, chc =101, chc = Q’

0 Go 1 2

=2C(mmans + NiM37Me + 2134 + 1amsM6)

. (33)
+ 6D(nym2n4ans + MN3Mans + M3137576) + C.C.

BCC symmetry (3D), two-mode approximation, N = 9

BCC
Gl 5

BCC
Gy

BCC
GO

GBCC, GBCC, GBCC GBCC, gBCC
2 chc 0 chc 0
=101 . GBCC =12 GBCC =101,
0 0 0 0 2

FPEE2 =2C (mmsms + nimsne + mnans + nimane + mansna + Minem + mnens

2 k%

s 4 s + nanstie) ++ 3D (WnEm 4 WM + M + e

+ m3nsms + e + 6D (nimmsn; 4+ nimanins + minsmane + mimnane

+ Mmanans + MNsN6M + MNsNeTs + MNsNeTe + M13M576 + M27ans577

+ s nsTs + MaTaTsTe + 13NaN6T + T3NaN6TE + ManaTigo) + C.C.

(34)
Face centered cubic (FCC) symmetry (3D), two-mode approximation, N = 7:

Gllscc _—1 1 chc _ _11 chc _ i Gicc _ :i
GgCC | GgCC | GgCC 1 GgCC 1
GFee 2 Gree ~ (2) Gree ~ 8 grec ﬁ
Gree 0 GIee 0 GIee 5 3
FFEC2 =2Cmman; + mimsmg + mnans + mnsni + manane + 1304t

+ 6D (s + 1156 + 1305 7 aneTh . (3%)

+ T + TS + 13nansTe) + c.C.

Other symmetries may be considered, provided that the proper set of the reciprocal space
vectors are known and that the encoded symmetry corresponds to a global energy minimum
for some parameters (see section 2.3.3). Alternatively, stability of phases/symmetries may be
enforced with the APFC formulation outlined in section 2.4.

14
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Figure 3. (¢, ¢y) as obtained for a two-mode approximation of the triangular sym-
metry with C = —2.0 and D = 1.0 at two quenching depths: (a) B = 0.3, (b) B = 0.0.
Dashed lines show representative isolines for negative values of h(¢y, ¢y).

2.3.3. Stability of phases. In a relaxed, bulk crystal, real and constant amplitudes ¢ may be
computed by energy minimization. For instance, for one-mode approximations and n, = 0,
one gets the energy

Flo] = /Q h(@)dr
, N\, C D
_ / [Mqu \ 3DM <M— ) o'+ Saw+ Pawl e G6)
0 2 3 4

Letting ¢; = p¢° and ¢§ = q¢* where p and g where are integers, and minimizing the free
energy given in equation (18), with respect to ¢ (0F[¢]/0¢p = Oh[¢]/Dd = 0) gives the
solutions,

_ —pCE V/(pC)? — 8MBD(12M? — 6M + q)

12 2D(12M2% — 6M + q) ’

(37)

with &£ the solution for C < 0. For instance, for a triangular symmetry described by a
one mode approximation (see figure 2) where M =3,p= 12,4 =0, gives ¢, = (—C £
V/C? — 15BD)/15D. Similarly, for a BCC lattice described by a one mode approximation (see
figure 2) where M = 6, p = 48, ¢ = 144 the result is ¢, = (—2C + V4C? — 45BD) /45D.
Real solutions of equation (37) exist if (pC)?> > 8MBD(12M?* — 6M + g). Moreover, the gen-
eral stability of the solid phase described by a real amplitude ¢, , can be assessed by evaluating
the condition F[¢; ,] < F[O]. Notice that, F[0] is trivially O from equation (36), but it may have
different values for n, # 0 as a non-zero average density would enter explicitly the energy (36)
and modifies the value of the real amplitudes at equilibrium (see e.g. reference [6]). Phase dia-
grams can then be devised generally for both PFC and APFC approaches [6, 62] by evaluating
the relative stability of different phases described by ¢. Generally, for a given set of parame-
ters C and D, liquid phase results favored for values of B smaller than a critical value B¢. This
parameter phenomenologically encodes the role of the temperature. |B — B¢| is often referred
to as quenching depth. Notice that B = 0 for C = 0.

When considering approximations with more modes, different values of ¢ should be con-
sidered for every set of amplitudes corresponding to different lengths of G,,. Typically this task
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should be addressed numerically. Consider an approximation with K equal to the number of
the modes of different length (under approximations introduced in section 2.3.1). In this case
the following function must be minimized,

K K 2
h{g3 =) [BMm,% - %DMkasé] +3D (Z M@i)
k=1 k=1
+ %3({@}) + 26U, (38)

with My the number of reciprocal space vectors for each considered mode (the solid arrows
in figure 2). For instance, for the three-mode approximation of a cubic lattice in figure 2, we
would have M| =2, M, =2 and M5 = 4. (3({¢}), §({¢x}) are the symmetry-dependent
polynomials resulting by substituting 7; with the amplitude associated to the length of the
reciprocal space vector they correspond to. To introduce an explicit example, consider the
two mode approximation of the triangular symmetry (see figure 2(a)), i.e. {¢;} = [}, Oyl
My =My = 3, and (5(¢r, ¢n), C4(¢1, ¢n) the polynomial resulting by setting 7; = ¢; for
j=1,2,3andn = ¢y for j = 4,5,61in equation (30). Plots of A(¢y, ¢yp) for selected parame-
ters (C = —2.0 and D = 1.0) are shown in figure 3. At a value B = 0.3 (figure 3(a)), relatively
close to the solid—liquid phase transition, the free energy has a single minimum corresponding
to ¢; = 0.274 and ¢y; =~ 0.087. By increasing the quenching depths, the global minimum shifts
to ¢; = 0.215 and ¢;; = 0.086 for B = 0.0. Moreover, another relative minimum appears (see
figure 3(b)), which corresponds to a graphene-like phase. Some extended discussions on all the
possible phases which can be described in two dimensions with combination of more modes
can be found in reference [62].

2.4. Amplitude XPFC

A formulation based on the the so-called structural PFC (XPFC) [20, 21], describing more
detailed features and phenomena in crystalline systems such as, e.g. multicomponent systems,
structural transformations, anisotropies, and extended defects [11, 58, 63], has been proposed
in reference [58]. In a dimensionless form, the XPFC free energy F reads

n2 n3 }’l4
Fx = Fex - =P |
X /dr{ +2 3+Q3

Fo = —”Tr) dr'Xy(Jr — ¥/ n(r), (39)
where P and Q are parameters and X,(|r — r’|) is the direct two-point correlation function at
the reference density n,. In this approach, this function is typically expressed in the reciprocal
space, X»(|k|). Following reference [58], it may be expressed as an envelope of Gaussian peaks
associated with different modes of the periodic density or, in other words, to a family of planes
of a crystal structure [21],

2
7, (40)

pjaj

. 1
Xyj=e— ﬁ(k—kj)z -
J

where w; controls the elastic and surface energies (the width of the jth Gaussian peak), o is an
effective temperature parameter [64], p; and a; are the planar and atomic densities associated
with the family of planes corresponding to the jth mode, respectively, while k; is the inverse
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of the interplanar spacing for the jth family of planes. Then, by assuming an amplitude formu-
lation and volume average as in sections 2.2 and 2.3, the polynomial in » that enters Fy leads
to terms similar to the energy in equation (15) except for the excess term which becomes [58]

M

Fex,'r] = /dl‘ lz - 777m]:—1 {X2(|k+ Gm|)7A7m(k)}

@1
= 2 G0k | + ce.

s

where the hat symbol denotes the Fourier transform, F ~! the inverse Fourier transform, and
é v an averaging (convolution) kernel in Fourier space that restricts the wave number to small
values, approximately approaching the extension of the first Brillouin zone, which filters out
spatial variations smaller than the lattice spacing. Interestingly, this model has been proposed
with an ansatz for the amplitude expansion encoding different (two) lattice symmetries (see
section 6.4). This ansatz is expected to work with other forms of the energy and it consists just
of a different formulation for equation (17) leading to results that may be formulated in terms
of the equations reported in section 2.3.

3. Numerical methods

In this section, two standard methods (finite difference and spectral) for solving first order in
time partial differential equations (PDEs) that are applicable to APFC models are described.
Following this, a finite element approach for solving APFC models is outlined and the
description of a mesh refinement algorithm is reported.

3.1. Finite differences

In general there are many methods for solving an equations of the form

oy
5 = HW). (42)

where H(%)) is a function of . To solve it numerically it is useful to first consider integrating
the equation over time from ¢ to 7 + At to obtain,

t+ At
Pt + Ar) = (1) + / df H(y). 43)

The main question is how to approximate the integral in the above equation. In explicit methods
only prior knowledge of ¢/ and its derivatives are used, i.e.

oH
or |,

. 10°H
Tt o,

t+ At
Yt + A = P@) + / dr {H(t) +

t'2+~-~], (44)

t

where H(t) = H(1(t)). The simplest method, Euler’s method, just retains the first term in the
expansions, i.e.

Pt + Ar) = (1) + AtH(2). (45)

This approach must be supplemented by methods to evaluate spatial gradients in H, which
in (A)PFC type models are typically even order derivatives, i.e. V2, V*,.... Often these are
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evaluated using a central difference formula. For instance, in two dimensions with a five-points
stencil (quincunx), the Laplacian is given by

_ S LG+ DA G- LD+ fG 1) —4fG )
As? ’

Vi f (46)
where (x,y) = (iAs, jAs). Equation (46), in conjunction with equation (45), is quite simple
to implement for numerical integrations. Moreover, it is easy to incorporate different BC.
However, the time step At is limited by the grid spacing due to stability constraints, typically

At < aAs7F, 47)

where £ is the highest order spatial derivative (i.e. k = 6 for the PFC equation) and « is a con-
stant that is model specific. If At is too large, the solution very rapidly diverges (a pitchfork
instability). The specifics of the origin of this instability are described in detail in reference
[48]. It is possible to slightly reduce this instability by including next nearest neighbors as
done by Oono and Puri [65]. This limitation is quite severe in PFC and APFC models as k = 6
in the former case and k = 4 in the latter. This instability can be avoided using semi-implicit
approaches that are typically done in Fourier space. However, implicit or more generally semi-
implicit approaches may be exploited, evaluating terms in the integrals in equation (44) within
the range [z, + At], to have more stable numerical schemes (see also section 3.3). Also,
finite difference approaches may be combined with spatial adaptivity which may allow for
efficient simulations (see also section 3.4). A few examples of APFC numerical simulations
performed with finite differences can be found, e.g. in references [22, 49, 66—70]. Alterna-
tively, the instability mentioned above can be avoided using spectral methods, as discussed in
the next section.

3.2. Fourier spectral method

Spectral methods solve differential equations treating variables as a sum of basis functions with
coefficients to be computed, i.e. through a global representation. The so-called Fourier spec-
tral method exploits the Fourier transform, typically in its discrete formulation for numerical
integrations (therefore often referred to as pseudo-spectral, Fourier method). This method is
particularly suited for periodic BC. A key feature of this approach is that, in the
Fourier space, differential operators become algebraic expression of the wave vector, e.g.
V24(1) — — |k|[20u(r), where ¥y is the (discrete) Fourier transform of +. No finite difference
approximations are then required if solving for Jk(t), and /() may be then obtained through a
(discrete) inverse Fourier transform. Moreover, efficient algorithms exist to compute sz from
1 and vice-versa, namely exploiting the fast Fourier transform algorithm [71]. The adaptation
of such approaches to PF modeling in materials physics can be found in reference [72]. This
method generally allows for splitting off the linear term in H and solving that part exactly, i.e.

oY
= Ly + N(), (48)
1
where L is a linear operator and N is a non-linear function of 4. Indeed, in Fourier space, this

would then read

o

a L + N, (49)
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with Ny the Fourier transform of N (1) and Ly is an algebraic expression of the wave vector.
Equation (49) is an ordinary differential equation with solution

() = e P(0) + €4 / df e B Ni(). (50)
0

Typically, the numerical instability in Euler’s method occurs when £ is the most negative (i.e.
at large wavevectors). However, in this method, “' is very small in this limit so that instability
is completely avoided. To complete the picture, the non-linear term must be approximated as
was done for H(¢) in the preceding section. Considering equation (50) for @k(t + Ar) and
approximating (explicitly) Ni(?) =~ Ni(t) gives

=R =N t+ At e
Pr(t + A1) = S (1) + HITAD / df e “N(f)
t

LA (1)

e 1~
———Ni(),

~ ,CkAtA t
e () + L

while other approximations of N() may be considered as well. Equation (51) provides a rel-
atively simple method of updating the field ¢ at one time step, although it requires Fourier
transforms of ¢ and N(v) and an inverse Fourier transform of 12/( per time step. While the
method eliminates the Euler instability, the free energy will increase if the time step is too large,
which should not occur. Nevertheless, depending on the specific model, it is possible to use
time steps that are tens or hundreds of times larger than those used in the Euler algorithm. For
the amplitude expansion, this method is directly applicable as the linear pieces of the equations
of motion for 7,, are not coupled to any other amplitudes. Representative examples of APFC
numerical simulations exploiting the Fourier pseudo-spectral method can be found, e.g. in
references [9, 28, 29, 58, 59, 62, 73-76].

3.3. Finite element method

The Finite element method (FEM) emerged as a particularly suitable framework for solving the
APFC model’s equations [16, 60, 77, 78], besides being also employed in PFC studies in the
first place [79—-83]. Indeed, it conveniently discretizes PDEs while exploiting inhomogeneous
and adaptive meshes.

Within FEM, the PDEs are expressed in an integral form (weak form) over their domain of
definition (2), typically having a rectangular/cubic shape. For the discretization of the resulting
equations, a conforming triangulation 7, of the domain €2 is considered, usually with simplex
elements S € 7, (with characteristic size h). In the context of APFC simulations, linear ele-
ments have been mostly adopted. This means considering a discrete function space of local
polynomial of order 1 (), namely V} = {v € C(Q,R) : v|s € Py(S,R),S € T }. A function
y e V,} can be written in terms of a basis expansiony = ) . ¥;Z; with real coefficients ¥; and
basis {Z;} of V. To solve for complex functions, as 7, their real and imaginary part can be
considered as two (real) independent unknowns. Alternatively, complex coefficients with real
basis functions may be considered.

The FEM approach which has been used to solve APFC equations as in equation (22),
features a splitting into two second-order equations for 97,,/0t and p,, = G, (With
m=1,...,M as in section 2.3) [60, 77]:
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ars
o1’ (52)

ONm
ot

Pm = gmnm - Vznm + ZﬁGm . VT]m

- _‘Gm|2 Agmpm + Bnm + 3D((I) - |77m|2)77m +

This choice is convenient within the APFC framework as it allows the computing of relevant
quantities straightforwardly as, e.g. the stress field, which may be rewritten in terms of both
n,, and p,, and their spatial derivatives [16] (see also section 4.2). Moreover, even though it is
defined for G, p,, can be readily be used for computing £,,, for instance when considering
multi-mode approximations. From a numerical point of view, the splitting in equation (52)
allows exploiting linear elements as only second-order operators appear, which translate to
first order operators acting on elements of 1} in the weak form. With (f, g) := fQ f(r)g(r)dr
the L?(€2, R) scalar product, and considering the integral form of equation (52), the problem
to solve then reads: for ¢ € [0, T, find 1,,(¢) = a,,(¢) + ib,,,(t) and p,,,(t) = c,(?) + id,(¢), with
Ay by Cony dyy € Vhl (implying hereafter their dependence on ), such that

(‘%m’ U) — AlGu|* [(Vem, V) + 2Gyy - Vdy, v)] = (Re[H({n})], v),

8bm
( 3t s U) _A|Gm‘2 [(Vdm; VU) - Z(Gm : ch, U)] - (Im[H({T}})], U) s

(Cm, ’U) + (vam’ V’U) + 2(Gm . me’ 'U) =0,
(dma ’U) + (me’ V’U) - 2(Gm . vam’ 'U) =0,
(53)

Vo € V} subject to an initial conditions 7,,(0) = 1%, and H({n}) = 8f*/dn,, + Bn,, + 3D(® —
7,,|)7,,- The time derivatives are approximated by da,,/0t = (a},”" — aj,)/ At; and db,, /Ot =
(biF" — bi)/At;, with At; = 141 — t; the time step, and j € Ny the index labeling time steps.
The time discretization is obtained through an implicit—explicit IMEX) scheme. It consists of
evaluating all the linear (nonlinear) terms in equation (53) implicitly (explicitly), i.e. at time
1 (#) [60, 77], with aj !, b+ ¢/t1 @)+ the unknowns to solve for. Equation (53) consists
of a set of nonlinear equations due to H({n}). This term can be generally linearized and handled
through iterative approaches as Picard iterations or the Newton method. A simple but effective
approach, which can be exploited for methods introduced in previous sections too, consists of
applying a one-iteration Newton method [60], i.e. approximating H(n/*!) as

H'™ = Ho) + H (p) (T — ). (54)

To solve equation (53), basis function expansions of unknowns are considered, e.g. a/t! =
> iY,{II =, withY, ,’,,Jfl the coefficients to be computed at the jth timestep (and analogous expres-
sions and coefficients” definition for b/F!, ¢/t d/t1). These coefficients are computed by
substituting the basis function expansions into equation (53), setting basis functions as test
functions, and solving the resulting system of equations. Notice that M coupled systems (53)
must be solved concurrently, with M the number of independent amplitudes according to the
considered lattice symmetry and approximation (see section 2.3). BC such as Dirichlet, Neu-
mann, or periodic BC, may be included as in common FEM approaches. Further discussions
and explanations of standard aspects can be found in specialized textbooks.

The FEM approach outlined above proved efficient in handling relatively large systems in
both two and three dimensions, in combination with standard direct and iterative solvers within
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Figure 4. Illustration of the growth of 20 crystal seeds (with a triangular lattice, one-
mode approximation) having random orientation ranging in [—15°,15°], as obtained
by an APFC simulation with an adaptive mesh. The spatial discretization is repre-
sented by means of the mesh while colors represent: (a) & = erf \77,,,\2, (b) Re(n)),
as indexed in (29), (c) local rotation w w.r.t the reference crystal set by G,,, computed by
equation (69). (d) Magnification of two regions showing the mesh on a smaller length
scale at the solid—liquid interface (top) and at a defect (bottom). Reprinted from [77] ©
IOP Publishing Ltd. All rights reserved.

FEM toolboxes like, e.g. AMDIS [84, 85]. Further improvements may be devised to increase
the performances. An example is reported in [77] where the development of a dedicated pre-
conditioner [86, 87] allowing for fast solver convergence has been proposed and exploited for
simulations of hundreds of nanometers domains in three dimensions for some materials.

The approach described in this section is also prone to coupling with other equations.
Indeed, other variables would share spatial features with amplitudes. Coupling terms could
be considered as additional terms entering J7),,/Jt. At the same time, other equations may be
discretized readily following the main FEM features described above (linear elements, oper-
ator splitting in second-order PDEs, IMEX time discretization). This has been exploited for
instance when imposing mechanical equilibrium [16] (see section 5.2), to simulate binary sys-
tems [13] (see section 6.3), and to investigate the effect of magnetic field on small-angle grain
boundaries [88].

3.4. Mesh adaptivity

Exploiting spatial adaptivity is a convenient strategy for performing efficient simulations with
the APFC model [60, 66, 67, 77]. Indeed, amplitudes are constant for relaxed crystals, oscillate
with different periodicity according to the local distortion of the crystal with respect to the
reference one (see, e.g. figure 1) and exhibit significant variation at defects and solid—liquid
interfaces. Depending on the numerical approach and set of equations, one may devise different
strategies to set a local refinement, e.g. based on error estimates or indicators.

An optimized local resolution based on the amplitudes oscillations has been achieved focus-
ing on phases of the complex amplitudes, arg(n,,) = 6,,. By looking at this quantity, it is
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possible to determine the wavelength of oscillating amplitudes \,, [77]. Then for a good res-
olution of all the amplitudes, the discretization & should be a fraction of the smallest A, i.e.
hamp = min,, (\,,)/n, with n > 10.

To use this criterion in practice, the deformation, strain and/or rotation fields must be derived
from amplitudes. This will be discussed in detail in the following section (see section 4.2). In
addition to the oscillation of amplitudes, a refinement for the interfaces and defects controlled
by hmin where |V®| is significantly larger than a relatively small threshold ¢ and imposed
as finest resolution in the mesh is considered [60], while a large discretization bound /i, is
defined for regions where & ~ 0 or where 6,, — O (i.e. for constant amplitudes). Summarizing
these concepts, this method ensures a local discretization, £, as

hmin’ 1f|v(I)| =g
h = ¢ min(max(famp, Aimin) » Amax ) if®>0and |VP| < ¢ (55)
Nimaxs elsewhere.

This approach has been exploited together with the FEM approach outlined in section 3.3,
in particular within the FEM toolbox AMDIS [84, 85]. However, it is expected to work with
any real-space method readily. Further optimization of the mesh refinement can be achieved
by a polar representation [66, 67] which involves, however, some changes in the amplitude
equations, the coupling with additional fields, and other technical details to be considered. An
examples of an APFC simulation performed with the adaptive refinement strategy here outlined
is given in figure 4.

4. Continuum limit: elasticity and plasticity

4.1. Elasticity

The elastic properties in the amplitude expansion arise from the term A Y, T',,|Gunm|* (see
equation (28)). Indeed, all the other terms in the free energy do not give rise to gradients in
the phase of the amplitudes and as such do not contribute to the elastic energy. To obtain the
consequences of this term it is useful to consider deformations (u = u(r)) from a perfect lattice,
ie.

Tm = (bmeiﬁem’ (56)

where 0,, = G,, - uand ¢,, is weakly dependent on u (see a 1D illustration in figure 1(b)). This
leads to

Gl = b e " (=iV20,, — |VOu|* + 2Gy - V)

. (57)
~ b e iGmu (_|V9m‘2 +2G,, - V@m) ,
where in the last line higher order gradients in u have been neglected. So that
M M
> TlGunnl® =4 TudhGl'GIGLGY
1
X\ Uiy — UjjUgoUlo + Zuiou joUkpUip | » (58)

22



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

where u;; = Ou; /Ox j» G is the ith component of G,, and the Einstein summation conven-
tion is used. Equation (58) contains linear and non-linear terms. In terms of the non-linear
Eulerian—Almanasi strain measure (U) [57, 73] with elements?,

1

Uij= 3 (ij + wji — ) (59

Equation (58) can be written as
M M
> TlGunnl® =4 Tudh GG GG Uy Ui (60)
The elastic part of the free energy is then
M
1 2 M M I N
Feiws = 5 /dr [07,Uij] = 4A / dr | TwépGl'GIGIGlUiiUu| . (61)

The components of the stress tensor defined as
0ij = CijuUn, (62)

where C;j; is the elastic modulus tensor [94] are then given by
M
Ciju = 8AY T, GI'G GG (63)

Thus equation (63) provides a general formula for the elastic moduli for arbitrary crystal
symmetry. Some specific examples are given below.

Examples: for a free energy with a single mode, i.e. containing the term n(1 + V?)?n/2,
2D triangular and 3D BCC structures minimize the free energy in certain parameter ranges. At
a minimum these systems can be described by modes with the same length scale and thus
I'y=1 and ¢,, = ¢, Vm. Following the definition of G,, as in section 2.3.2 for these
symmetries (one-mode approximation), equation (61) gives

9
F;SESI:Ad)z/dr EZUIZI+3UXXUM’+6U%) 5
’ (64)

FBCC :A¢2/dr AN U +4) Uiy +8> U

i,j>i i,j>i

5The strain measure U belongs to the general class of strain (material, Lagrangian) called Seth—Hill tensors
g, = (1/n)(C" — 1), with C = F'F, F; j = 0x;/0X ; the deformation gradient and x and X the spatial (Eulerian) and
material (Lagrangian) coordinates respectively, such that dx = FdX and dX = F~'dx [89-93]. U corresponds to _.
This definition mixes a Lagrangian tensor due to the dependence on F”F (an Eulerian tensor would depend on FF),
with an Eulerian strain measure 1 — F~' (a Lagrangian strain measure would depend on F — 1), see also reference
[73].
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For the FCC symmetry in the two-mode approximations (see section 2.3.2), T',, = 1/16, Vm.°
This gives

A
FFCC _ / d
elas 9 r

(@ + 4N > UL +2¢° Y Uil +4¢° Y Ui, (65)

i,j>i i,j>i

where 7, = qﬁe‘ﬁem fori=1,...,4andn, = we‘ﬁem fori=5,...,7.

One of the difficulties in parameterizing PFC models is that the ratio of the elastic moduli
cannot be changed in the one mode triangular and BCC cases. However, it is interesting to note
that in the FCC case, the ratio of the elastic moduli depends on ¢/, which in principle can be
tuned. It suggests that adding more length scales will allow for more tuneability in the models
as shown in XPFC models [21]. However, it is important to note that if the added vectors have
the same symmetry as the original ones this will not change the ratios.

4.2. Strain and stress field from the amplitudes

When examining the results of APFC simulations, it is useful to develop methods to extract
the strain and stress fields directly from the complex amplitudes. As shown by Salvalaglio et al
[14] the displacement field, u that enters CE field can be extracted directly from the phase of
the amplitudes (6,,). In two dimensions (2D), inverting equation (56), the expression is

2D _ €ij mg il
W = G X G (G0, — G'6,] , (66)

with (i, j) = (x,y) and cyclic permutations, ¢;; is the 2D Levi-Civita symbol, / and m label
two different amplitudes, p = X X y the normal vector of the xy-plane and 6,, = arg(n,,) =
arctan [Im(nm) / Re(nm)] . In three dimensions (3D) it can be shown that

1
S~ [9(G"G" — GG + 0,,(GIG. — GG
Ui Gn~(Gm><G1)[’( €0) — G/ GO + nl(GLG, = G0 (67)

+ 0.(G.G} — GG

with (i, j, k) = (x,y, z) and cyclic permutations, and [, m, n, labeling three different amplitudes.
These quantities are discontinuous. However the component of the (linear) strain tensor U-
become expressions of 96,,/dx; with

00, 1 0 Im(n,,) ORe(n,)

= ————Re(y) — ——F——Im(n,,) |,
I E . e(Mm) o, m(7),,) (68)

which is continuous almost everywhere in the solid phase, with a singularity for vanishing
amplitudes in correspondence of phase singularities, e.g. at the cores of defects. Then, with a
regularization for these amplitudes (see also section 4.4), elastic field can be readily computed
and conveniently exploited. In two dimensions, for U™ and the rotation field w = V x u we

6 A factor of 1/9 appears in reference [61] as a different scaling was employed.
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then get

1 o0, 00
L ___ - m [ YYm
Use = p-(G; xG,) (G G—Vm)’

Y ox
v b (e 90m 00
U= "5@ren G %)

1 00 00, 00, 00 ©9)
L _ m YVl ] 1 YYm i YY1
Us = 2p - (G; x Gy) (Gy dy oy By TGy ~ O 8x>
B 1 w00 00 00 00
“o 2f»-<G1><Gm>(-Vay Gay "% or Gxa)

Explicit expressions for 3D strain and rotation fields can be found in reference [14]. The stress
field can then be computed through the Hooke’s law (62).

In 2018 Skaugen et al [12] derived an expression for the stress tensor, o;; from the density
field using the standard definition of ;;, i.e,

OAF
Oij = (S(B—iuj)’ (70)
where AF = F(n(r 4+ u)) — F(n(r)) and u is the displacement field. This gives
oij = [0;Ln]0n — [Ln](0;n) + Pdjj, (71)

where P = f — n(dF/dn) is a pressure term summing up to the mechanical stress, with f the
integrand in equation (1), the second term arising when considering mass-conserving defor-
mations [95], and £ = 1 + V2. In terms of amplitudes, integrating over the a unit cell with n
expressed via equation (17) and neglecting the pressure terms gives [16]

M
=" {[@ +iG)(V? + 2G,, - V] [9; — iG] m},] )

— [(V? 421G, - V)] [0 = 1GI)0; = iGmy, + ce] |,

for one-mode approximations, while it can be generalized for more modes accounting for the
full £, operators (see equation (20)).

4.3. Plasticity and defect dynamics

As seen in previous sections, the amplitude formalism can describe the elastic behavior of crys-
tals as encoded in the PFC model. Moreover, by focusing on singularities in the corresponding
phases, the motion of defects may be connected to the evolution amplitudes [12, 13, 15, 96].
A dislocation in a crystalline lattice corresponds to a discontinuity in the phase 6,,. At the
same time, a dislocation with Burgers vector b is defined by 55 du = b [97], thus it can be shown
that 55 dé,, = —G,, - b = —2ms,,, where s,, is the winding number. As discussed in reference
[12], a vortex solution for amplitudes at dislocation cores may be assumed, that reads 77,, o< x—
is,y with s,, = £=1. The Burgers vector distribution of a dislocation can be defined as a local-
ized (vectorial) topological charge bd(r — r() with ry the nominal position of the dislocation
core, assumed pointwise from a continuous point of view. By extension, the Burgers vector
density can be defined to be B(r) = Zlebdé(r — rg), with d indexing the dislocations and
D their total number. To connect this quantity to amplitudes, note that the position of the core
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is where the amplitudes go to zero. Therefore, following the theoretical framework reported
in [98-100], a change of coordinates from the canonical one to the amplitudes’ components
can be considered. Namely, for point dislocations in two dimensions, or straight dislocations
in three dimensions, one gets

M
B(r) = =8 GuDudltin). Do = 320,071, (73)

with D,, the Jacobian determinant of the coordinates’ transformation, 8 = S = 27/ Z%(Gzl)z
as 3, = 8, = B, (as can be verified explicitly with G, defined in section 2.3.2), €;; is the Levi-
Civita symbol, delta functions transforming as D,,6(n,,) = —(27‘(‘)_125((]”1 - bd)é(r — rg)
[12, 98, 99], and implying the Einstein summation convention. Aiming at the velocity of dis-
locations, the dynamics of B(r) is considered. Exploiting that the determinant fields D,, have
conserved currents [100], 9D,,/0t = —9,J1", with

m O *
Ji = e,-jIm (atﬁjnnl) R (74)

and that a similar continuity equation holds true for §(7,,), from equation (73) the equation of
motion for B; may be written,

0B
or

- 0,Jij = =9

M
BY G:-’UT&(nm)]
D

ﬂ M
-0\ 2y ey
m d

where the last term was obtained by transforming back the delta function to spatial coordi-
nates. For dislocations moving at a velocity v¥, it also follows that 7;; = >_7 bfv?d6(r — rd).
Therefore, by equating this latter expression with the corresponding quantity in equation (75),
the dislocation velocity can be related to the evolution of amplitudes as

(75)

d
G -b S(r — rg)l ,

m

d (Gm b) Jm

At the dislocation core, a few simplifications may be considered. For the amplitudes which are
zero at the dislocation core,

O
or
while others do not contribute to equation (76). The latter term in equation (77) is obtained by

imposing again a form for amplitudes as in equation (56) and retaining the lowest order only
in ¢,, and 6,,. Combing all the equations reported above gives

_‘Gm|2AFmg,%,nm ~ _ESAFm|Gm‘2(Gm ° V(Zsm) (Gm : Vem) eﬁ‘)m, (77)

88Ab! &
o = i TG GGG U )

where U;; = (Qju; + Oju;)/2. This equation is consistent with the classical Peach—Koehler
force [97]. For the case of a 2D triangular lattice or a 3D BCC crystal where it is possible
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to construct the lattice by retaining only one mode (with |G,,| = 1, T, = 1), the velocity takes
the form

1}:»1 = M6ij (O'jka) . (79)

with M a mobility factor.

With this formalism, the dynamic of defects may be obtained once 97, /0t are known. This
applies independently to the specific contributions affecting the dynamics of amplitudes. See,
for instance, an application to binary systems in section 6.3. The equations presented here
apply for point dislocations in two dimensions or straight dislocations in three dimensions.
A generalization to curved dislocations in three dimensions has been recently introduced in
reference [96].

4.4. Comparisons with elasticity theories

As noted in previous sections, the APFC model may be employed to the study elasticity
and plasticity in crystalline systems. A few prototypical cases have been investigated, deliv-
ering direct comparisons with predictions from other theories [14, 16, 101]. Of particular
note is the comparison with CE results, as the coarse-grained nature of APFC may deliver
advanced/improved continuum approaches.

A representative case is the elastic field generated by dislocations at mechanical equilibrium,
which is well known in the continuum (linear) elasticity for isotropic media [97, 102]. In the
APFC model, configurations with dislocations in prescribed positions may be obtained with
different approaches. The phase of amplitudes can be initialized with singularities as discussed
in section 4.3 at given positions and then the APFC model is used to minimize the free energy.
By restricting the description to 2D crystals for the sake of simplicity, a convenient approach
consists of setting phases 6,, = —G,, - u™° with

. b y Xy
dislo
= “arctan (=) 4+ |,
u, o [arc an (x) + 2(1—1/)(x2+y2)}

dislo b {(1 —2v) x> —y? ]

__2 b= 2,2y, Xy
e T L R Ty wo oy

(80)

the displacement field of an edge dislocation having Burgers vector b = bx and v the Poisson’s
ratio [97]. Alternatively, an initial strain that induces the formation of dislocations can be con-
sidered. For instance, a pair of dislocations having the Burgers vectors b is obtained by
defining layers with initial deformation uw = [Dx, 0] with D = +b/L and allowing the sys-
tem to relax [60]. Dislocations move when Peach—Koehler force is finite assuming no barriers
exist (see section 5.4). As discussed in section 5.2, for dynamical configurations, corrections
are needed to account for mechanical equilibrium within (A)PFC. Special cases are the config-
urations where defects do not move, and relaxation given by dynamical equations effectively
approaches this limit. These may be represented, for example, by equally spaced arrays of dis-
locations along X and y with alternating Burgers vectors, i.e. a ‘grid” where four defects with the
same Burgers vectors surround another one with opposite Burgers vector. It is worth mention-
ing that a single dislocation, in the absence of external stress, would be in principle stationery
too (as the Peach—Koehler force is zero). Still, its elastic field would inherently interact with
the boundaries of any finite simulation domain as it is long-range, with energy dependent on
the system size and diverging for an infinite medium. A possible solution would be studying a
single dislocation in a finite crystal [16], which, however, is expected to induce changes in the
elastic field [97, 103, 104].
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Figure 5. FElastic field induced by an edge dislocation in a 2D triangular lattice (one-
mode approximation) with b = ay = 47/+/3. Parameters for the considered APFC
simulation: A =0.98, B=0.044, C = —0.5, D =1/3. (a) Strain field U}j from
equation (69) with / = 1 and m = 3, i.e. the amplitudes with singular phases. (b) Stress
field from equation (72). (c) Comparison of representative isolines of the 2D stress fields
obtained by different methods and continuum theories: equation (62) with UiLj as in panel
(a), stress fields from panel (b), classical CE from equation (81) with ¢ = 0 (CE), NS
field theory from equation (81) with ¢ = g (NS). (d) Comparison of stress fields as in
panel (c) along a line crossing the defect core, including also the stress field from the
strain gradient formulation of equation (82) (GE).

Figure 5 shows the elastic field of a dislocation belonging to a two dimensional grid with
alternating Burgers vector along X and y. Both strain components resulting from computing
equation (69) (figure 5(a)) and stress components from equation (72) (figure 5(b)) are shown.
These fields agree well with the field expected in classical CE [97]. The elastic field obtained
from equation (69) is to some extent easier to compute as it involves only the first derivatives
of amplitudes. Still, they are singular at the core of vanishing amplitudes, here regularized by
setting to 1/(|n,,|* + &), with a small §, as prefactor in equation (68). On the other hand, the
elastic field from equation (72) does not require such a numerical regularization. This approach
involves higher-order derivatives than equation (68), which can be handled efficiently when
combined with a proper splitting of the APFC equations (see also section 3).

More insights are given in figures 5(c) and (d). Therein, a comparison of the stress field com-
ponents obtained with different continuum theories for representative isolines (panel (c)) and
along lines crossing the defect core (panel (d)) is reported. In particular, it shows the stress fields
components computed from the APFC simulation, namely equations (72) and (62) with UiLj

from equation (69) with ¢> = anzl |7 |?/3. These fields are compared with the non-singular
(NS) isotropic theory reported by Cai et al in reference [102],
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81)

and o° = v(o} + o))°), with og = Eb, /(4n(1 — 1)), E the Young modulus, v the Poisson
ratio, and ¢ a parameter controlling the extension of the core-regularization (¢ = 0 reduces
to classical CE formulations oF [97]). The triangular symmetry considered here, which
results isotropic, and under the plane strain condition, gives it = A = 3¢’ while E = pu(3\ +
2u)/( A+ p) = (5/2)gz52, and v = \/(2\ + 2u) = 1/4.7 Another comparison with CE is pro-
vided with a regularized formulation of the stress emerging in the framework of strain-gradient
elasticity (Helmholtz type) [105, 106]

JGE 402 r
= {(y +30%) 4+ 507 = 38 = 2K (/) = 207 - 3x2)1<2<r/£)] :
o0
JGE y r
2 e = (y —3x%) = 2x2 - K (r/0) + 2 — 3xDKa(r/0) | ,
(o)) 7’4 Y4
oCE X 402 r
g _ X | 2 oy A o a0 4 of 2 42
oo {(X ) P (X7 —=3y7) — 2y €K1("/£) +2(x" — 3y )Kz("/f)] ;
(82)
and 03F = v(0SF + 0JF), with K,,(r/¢) the modified Bessel function of the second type, and

{ a characteristic 1nternal length parameter of the material. The elastic field obtained from
APFC simulations encodes a smoothing similar to the NS theories in equations (81) and (82).
A good agreement is obtained with ¢ = 2a and ¢ = ay. However, notice that these parameters
are expected to vary for different quench depths as they are related to the extension of the core
[102, 105] and this shrinks with decreasing the temperature. It is worth mentioning that strain
gradient terms may be indeed identified in equation (57), supporting the qualitative agreement
shown in figure 5. For isotropic materials, a more accurate description is actually given by the
so-called Mindlin’s isotropic first gradient elasticity, which feature two characteristic lengths
[107-109] and may therefore provide descriptions closer to the APFC results. Comparisons
for 3D configurations and for rotation fields from equation (69) can be found in reference [14].
Another example is offered by a recent APFC formulation [110] encoding a mechanical
deformation not caused by a defect or an external mechanical stress (namely an eigenstrain
[111]). In practice, a spatially dependent g, = ¢(r) is set in the free energy (1), such that

90

Trem ~ M0 (83)

q(r) =

7 Plane strain setting corresponds to have U.. = U,. = U,. = 0 given by u. = 0, and 0. = v(0 + 0,,) (entering,
e.g. equations (81) and (82)). It leads to the expressions for v and E in the text. The alternative is the plane stress setting
where 0, = 0 and thus U, # 0 and u, # 0. Itleads to E = 4p(\ + p)/(\ 4+ 2u) = (8/3)¢2, and v = N/(\ + 2p) =
1/3.
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with * = (a(r) — ap)/ap = q,/q(r) — 1 the eigenstrain encoding a deformation from a lattice
parameter ao to a lattice parameter a(r). When setting 3(r) 2 1 and constant, corresponding
to an eigenstrain " < 0, within a region embedded in a medium having 3(r) = 1 the resulting
elastic field matches well with the solution of the Eshelby inclusion problem [112—114] as
shown in [110].

5. Limits and extensions

5.1 Large tilts: the problem of beats

Complex amplitudes consistently describe deformations, i.e. the energy is rotationally invariant
while accounting for elastic energy associated with distortion with respect to the reference
state (see section 4.1). However, the larger the rotation with respect to the reference crystal
(described by equation (3) and the choice of G,,) is, the shorter (larger) is their wavelength
(frequency), resulting in the so-called problem of beats [66, 73, 74]. Indeed, in the presence of
a rotation ©, the density (assuming here zero average), can be written

M M M
n—= 2 :nn(?eﬁGmr _ § (bmeﬁGm(@)me»reﬁGm»r _ 2 /‘¢meﬁAGm(®)»reﬁGm<r’ (84)
m m m

where G'(©) = G}'R;j(©) and R;{(©) is the counter-clockwise rotational matrix. Therefore,
oscillations of 9 have a wavelength 27 /| AG,,(©)|. This leads to a crucial two-fold limitation
for the APFC model. On one side, the spatial resolution required to discretize the correspond-
ing equations depends on their relative orientation with respect to the reference lattice encoded
in G,,. For large rotations this results in significant variations of the amplitudes over lengths
approaching the lattice spacing, inconsistent with the assumption in their derivation and also
requiring mesh sizes approaching the ones required in the PFC model. On the other side, while
the energy of a single crystal remains rotationally invariant, the rotational symmetry of bicrys-
tals is lost, and unphysical grain boundaries are obtained for large relative tilts corresponding to
small or no deviations in the density field n (e.g. when rotating a 2D triangular lattice by ~60°).
An illustration of this behavior is reported in figure 6. When increasing the relative rotation of
a circular inclusion, the oscillation of amplitudes increases requiring finer mesh as illustrated
by Re(n;). Even though the fields are properly resolved, unphysical grain boundaries appear
in ® for 6 2 30° (e.g. according to symmetry, § = —10° and # = 50° should coincide, as well
as # = 60° should have no defects with a ® uniform).

An attempt to overcome this issue followed the first publications on the APFC model and
consists of a polar representation of amplitudes [66]. In practice, the complex amplitudes are
expressed in terms of the real fields ¢,, = |n,,| and ,, = arg(n,,). The resulting set of equations
for d¢,, /0t and 06,,/0t derived from equation (22), have issues related to the discontinuous
nature of #,, and that ¢,, vanishes in the liquid phase, in principle requiring robust and struc-
tured regularization algorithm. Therefore, further approximations are introduced [66]: (i) a
hybrid formulation exploiting the aforementioned polar representation only for crystal bulk,
i.e. away from defects and interfaces, while solving the equations for the complex amplitudes
everywhere else; (ii) neglecting third and higher-order spatial derivatives of ¢,, and 8, in their
dynamics and (iii) assuming that gradients in the phase are zero within grains. This method has
been shown to allow for efficient inhomogenous spatial discretization for numerical methods
working in real space.

Recently the same issue has been addressed by exploiting a Cartesian representation of the
amplitudes and allowing for local rotation of the basis vector G,, [67, 68]. This model considers
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6= -10° # = 10° 6 =20° # = 30° 6 = 40° 6 = 50° # = 60°

$¥z,
‘bm

Figure 6. APFC description of (small) circular rotated inclusion in a 2D crystal with
triangular symmetry (one-mode approximation), for different tilts with respect to the
surrounding matrix. Different rows show: the reconstructed density n(r), the real part of
7, and .

a set of locally rotated amplitudes 7j,, such as 7,, = 7,,e "26n(®T_A rotation field © is then
computed such that 7,, have vanishing oscillation, i.e. satisfying the condition

Vilm = (Ve BEOT i AG,,(Q)e 126 — ¢, (85)
thus

Vi

m

A(;m(@) - Gm(e) -G

(86)

The local rotation field may be explicitly extracted from amplitudes, e.g. exploiting the results
reported in [14]. Then, it may be shown [67, 68] that operators defined in the rotated system,
O°, applied to rotated fields, £©, transform as O° f© = e 26O TOFf as e.g. IS /Ot =
e ACn® gy Jotor GO = e 1AGnOITG pn The evolution for 1® is evaluated while com-
puting G,,(©) everywhere. This approach still requires a proper numerical implementation
[67], but has been proved successful in describing crystal structures through the ‘rotated’
amplitudes avoiding beats due to crystal rotation, exploiting efficient mesh refinement (see
section 3.4), and matching the dynamics obtained by the original amplitude expansion. Impor-
tantly, this approach has also been combined with an algorithm selecting the closest refer-
ence crystal for a given local orientation [68] which avoids the presence of unphysical grain
boundaries, at least in two dimensions for triangular lattices.

5.2. Elastic relaxation and mechanical equilibrium

The dynamics of the PFC model and, in turn, its amplitude-expansion approximation, was ini-
tially assumed to be overdamped, i.e. driven by minimization of the corresponding free-energy
functional through a gradient flow [1, 7]. Although this setting can be justified in some circum-
stances, it constrains the dynamic to diffusive timescales. This may lead to some issues for the
description of elastic relaxation, which usually occurs on faster timescales with respect to the
diffusive dynamics of the density field. A few investigations addressed these issues, delivering
either a framework able to ensure mechanical equilibrium at every time, describing the limit
of instantaneous elastic relaxation [15, 16, 75], or modeling explicitly elastic excitations [54].
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In the work of Heinonen er al [75, 115], the amplitudes are expressed similarly to
equation (56), assuming small displacements in u. Then a formal separation of the timescales of
the field ¢,, from the field 6,,, is considered. Imposing mechanical equilibrium, i.e. V - o = 0,
it is then demonstrated to be equivalent to solving

M M M
do 1 0F 1 OF,
Hll:_ mI - iU - — X miy]: 5
zm;c " Zm:G m(nman:;) 22”1:G o 87)

at every step after solving for d1,,/0t. In [75], a factor ¢, > appears in the second-last term in
(87). However, as discussed in [115], this expression allows for a more formal connection to
the displacement u. Moreover, equilibrating equation (87) would corresponds to a real energy
minimization problem.

A different approach, which computes the deformation at mechanical equilibrium from the
incompatible one, fully accounting for the singular distortion of defects as conveyed by n and/or
7,,» has been proposed in reference [15] for PFC and then translated to APFC in reference [16].
Therein, the smooth distortion uf required to fulfill mechanical equilibrium is determined, and

then the amplitudes are corrected as 7ME = 7,,e 6n"In brief, the smooth stress, o)), to be
added to the stress field computed from the amplitudes, U;} (see also section 4.2), is obtained

through the Airy function () formalism:

§ __ _me. T — e e. 7
oy =0 — ol = €€idux — o},
(88)

(1 — I/)V4X = Zuei]@iBj(r) = (6,'](61‘18,']‘0';(71 — VVZU,’Zk .

where B(r) the Burgers vector density, and v, A and p as in section 4.4, while u’ is then
computed exploiting a Helmholtz decomposition into curl- and divergence-free parts,

u! = dp + €0, VZp = Tr(U0°), Via = —2¢;;0,U%. (89)

Once u! is calculated, correction to the amplitudes can be imposed. This approach has been
shown to work well in two dimensions for isotropic materials, while its generalization to three
dimensions is non-trivial due to the Airy function formalism. A more general method to correct
n by computing u’ in three dimensions has been recently proposed in reference [96] for PFC,
and it is expected to work for the APFC model.

In reference [54], a model accounting explicitly for elastic relaxation has been considered
by coupling the mesoscale description of the microscopic structure of the materials achieved
by amplitudes to a hydrodynamic velocity field. It recovers the instantaneous relaxation as a
limit of the model. It consists of describing the crystal lattice through 7,, and a slowly varying
density field, n,, via the energy (15). The evolution laws are then derived accounting for mass
density and momentum density conservation and read

M

Dv 0F w ~ OF
nOE = —}’lové—no — g {anm% + C.C.:|
+ sV + (ug — ps)V(V - V),
(90)
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Figure 7. Representative results for extensions of the APFC model. (a) Shrinkage of a
circular small-angle grain boundary (2D, triangular lattice) in terms of its radius R(f)
with the model illustrated in equation (90) (for different 1), instantaneous mechanical
equilibrium (ME) as from equation (87), and classical (overdamped) APFC dynamics
(OD). Reconstructed from reference [54]. (b) (Symmetric) grain-boundary energy per
unit length ESB /L (2D, triangular bicrystal) as a function of the tilt angle 6 for different
3 values in equation (91). Reconstructed from reference [60]. (c) Sample growth of a
one dimensional front for two driving forces A. Reconstructed from reference [118].

with v the velocity field, Dv/Dt = 9v/0t + v - Vv, Q,, = V +iG,,, and s Mns Hps fs are
parameters. Previous attempts to include fast time scales in the dynamics introduced an
explicit second order time derivative in the equation of motion for the PFC mass density field
[116, 117]. This approach gives rise to short wavelength oscillations accelerating relax-
ation processes, but fails to describe large scale vibrations [55]. The model described
by equation (90) gives the correct long wavelength elastic wave dispersion relationship
(w ~ k).

A key test case for all the approaches reported in this section is the shrinkage of rotated
grains (see figure 7). Their results consistently show a faster dynamic in the limit of instanta-
neous mechanical equilibrium [12, 16, 75] while tuning of parameters in the model reported
in equation (90) allows for the investigation of intermediate regimes [54].

5.3. Control of interface and defect energy

The original APFC (or PFC) model contains a small set of parameters which limits quantitative
fitting to match experimental measures or theoretical calculations. In reference [60], it has been
shown that the addition of a single term to the free energy functional can be used to control the
solid-liquid interface and defect energies in a well-controlled fashion, without affecting the
crystal structure. Exploiting the information conveyed by ® = 25|, |2, which is a measure
of the crystalline order, and in analogy with the gradient term of order parameters in interfacial
free energies [119], an additional energy contribution can be phenomenologically introduced
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in equation (21), reading
o [ Broop
5= [ ~|V®|dr, 1)
Q4
where [ is a free parameter. This leads to an additional term to equation (22) as

OF;
J = BN, V0. 92)
ony,

For small 3, this additional contribution is found to change the interface and defect energy
linearly with (3, while deviations are observed for large values. Figure 7(b) shows the tuning of
symmetric tilt grain boundary energies by 3 due to the local change in the defect-core energies
[60]. Notice that, due to the issues discussed in section 5.1, it is not possible to compute the
whole range of 6 only by increasing the relative angle (see also [9]). In this case, energy values
for # = 30° are obtained with two different simulation settings. The framework reported in
[68] would allow addressing these calculations without considering such different settings.

It is worth mentioning that formulations allowing for tunable energies at defects and inter-
faces similar to the one discussed here can be devised from microscopic length scales exploiting
smoothing kernels in Fourier space [120, 121].

5.4. Lack of barriers

In the derivation of the amplitude equations it was implicitly assumed that the atomic- and
meso-scales (interface widths, etc) completely decouple. It appears that this approximation
eliminates barriers for defect or grain boundary motion. Huang has shown that incorporating
the first-order coupling of the atomic and mesoscales leads to interface pinning [118]. Consider
multiplying the equation of motion by e ™" and integrating over a unit cell while keeping terms
previously assumed to be zero. This leads to additional terms in equation (22). For instance,
for a triangular lattice:

O OF afs
1 m m (93)
b [ e ~>] ,
ALLC. u.c.
where A, .. is the area of a unit cell and
For =362 [(6no + 20 + 3vCri + 5 n3)] ©4)

with (- - -) implying six other similar terms that contain a e 4 'term (see reference [118] for
details). The last term(s) in equation (93) implicitly couple atomic (e~'%”) and slow scales
(n,,) terms. The equation for the average density becomes

on, , OF), 1

o = m Aue / dr’ f, e VAR (o, (95)

To understand the consequences of this coupling, Huang derived an equation of motion for
a liquid/solid front moving in the y direction with slow variations in the x direction using the
projection operator method of Elder ef al [5]. In this method a coordinate transformation from
(x,y) to (u, s) is made where u is a coordinate normal to the interface position and s is parallel.
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Equation (93) (in the limit £,, ~ —|G,,|* = —1) is multiplied by 97,,/0u and equation (95)
by dn,/0u and integrated over u in the inner region. In the outer regime the equations (93) and
(95) are linearized around a liquid state and then solved using Green’s functions. The inner
and outer solutions are then matched such that the chemical potential is continuous across the
interface.

One main result of these calculations is the equation for the interface normal velocity, v,
given by

CcoUp = X\ — Yk — po sin(qoh + @), (96)

where ¢ is the kinetic coefficient, A oc Anddu(0, s), An is the difference in liquid/solid den-

sity, 044(0, s) is the chemical potential difference from equilibrium along the interface, v is the

surface tension, & is the curvature, p, is the pinning strength, / is the distance from the front and

¢ is the phase. Expressions for each of these terms is given in Huang [118]. This equation cou-

pled with mass diffusion in the outer regions (7,, at equilibrium liquid values) and the usually

matching condition v, And = 96p/duly- — O/ Ouly+ constitutes a free boundary problem.
If gradients in /4 are assumed to be small, equation (96) reduces to

— =\ =
Co + +2 ax

Oh 8_2h A [ Oh
ot 78)62

2
) — po sin(qoh + ¢). o7

In the limit of non-conserved dynamics (fixed \) this is a driven sine-Gordon equation intro-
duced by Hwa er al [122] to study, when thermal fluctuations are included, the interface
roughening during crystal growth. Huang showed that the pinning term can lead to step by
step growth of the interface as is observed in experiments and even completely arresting the
growth if the driving force (\) is too small, as illustrated in figure 7(c). It is also shown that the
pinning strength increases as temperature (controlled by B = AB) or the elastic moduli (con-
trolled by A = B") are lowered as both have the effect of decreasing the width of the liquid/solid
domain wall. Later, Huang [123] extended this work to a binary system with a eutectic phase
diagram and derived more general expressions for the surface energy and barrier strength as
a function of concentration, temperature, and crystallographic orientation of the liquid/solid
front.

6. Applications

6.1. Solid-liquid interfaces and the phase field limit

Solid-liquid interfaces are regions where n may vary over length scales larger than the atomic
spacing. Therefore, the APFC model may be exploited to focus on these regions while neglect-
ing the fine details at the atomic scale elsewhere [124]. Real amplitudes have been first consid-
ered to address the modeling of solid—liquid interfaces in the seminal works by Khachaturyan
[25, 26]. Therein, the order parameters resemble the ones entering classical PF approaches
[48, 125-127] and they may be linked to atomistic descriptions. They can be used, for instance,
to account for bridging-scale descriptions of elasticity effects by means of additional contri-
butions as, e.g. in the presence of precipitates, alloys, or point defects [128—132]. However,
this approach does not directly encode rotational invariance and elasticity associated with the
deformations of the crystal lattice.

In references [45, 61, 133], traveling waves characterized by the ansatz (4) have been shown
to describe the solid—liquid interfaces within PFC quite well near melting. Real amplitudes
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Figure 8. Examples of crystal growth and defects networks as obtained by APFC sim-
ulations. (a) Growth of 200 seeds with orientations ranging in (—15°, 15°), forming
straight sub-boundaries at later stages in a growing polycrystal. Reproduced from [77].
© IOP Publishing Ltd. All rights reserved. (b) Sub-boundaries and orientational gra-
dients in thin aluminum films by APFC. Reproduced from [76]. CC BY 4.0., under a
creative commons attribution (CC BY) license. (c) Evolution of the defect network form-
ing between an FCC crystal and spherical inclusion with the same structure tilted by 5°
about the [111] direction. Views aligned (top) and perpendicular (bottom) to the rotation
axis are shown (see also the orientation of ¥). The network shrinks anisotropically with
LH > LyL ~ L’i Reprinted figure with permission from [138], Copyright 2018 by the
American Physical Society. (d) Network forming after the growth and impingement of
thirty crystals with random tilt € (—10°, 10°) about the [111] direction. Defects (yel-
low network) are shown within a spherical region at the center of the growing polycrystal.
Reproduced from [14]. CC BY 4.0.

result in a classical PF model. Indeed, it is shown that a general form for the free energy can
be obtained by considering real amplitudes,

Fy= /dr [a¢® + bg® + co* +d|Vo|*], (98)
Q

where the parameters a, b, ¢, d depend on the lattice symmetry and the number of modes
considered. Different crystalline cubic lattices, and their effect on growth dynamics are still
retained [61]. In addition, the framework is consistent with atomistic simulations and can be
used for matching parameters to specific materials.

In references [124, 134] similar underlying ideas led to a PF model connecting anisotropic
surface energy and corresponding Wulff shapes to the lattice symmetry of various crystals
through the choice of reciprocal lattice vectors. The model remarkably encodes a regulariza-
tion term leading to corner rounding of faceted shapes similarly to diffuse interface theories
[135-137]. Amplitudes are assumed to be real, but they are still considered separate variables.

36



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

In the notation adopted in this review from equation (21), and assuming zero average density,

this gives
Fy, = / dr
Q

+ gcb + %@2 +fs({¢m})1 : 99)

M

> (A[V2¢m]2 +4AIG,, - Vo,]* — ?dﬁ)

m

with @ = 2572 and £*({¢,,}) the polynomial as in section 2.3 but as function of the real
amplitudes only. Equation (99) is similar to Ginzburg—Landau free energies entering multi-
order-parameter PF models. The higher-order gradient contribution [V2<25m]2 enforces the
rounding of corners appearing among facets. A coefficient may be also introduced to tune
its influence [134].

6.2. Grain growth with dislocation networks and small-angle grain boundaries

The PFC model has been exploited to investigate rather small systems due to the atomic-scale
resolution. According to the features described in sections 4 and 5, the APFC is especially
suited to describe systems with small deformation and rotation while including isolated defects
such as dislocations. Examples include small-angle GBs in graphene structures [9], GBs pre-
melting and shearing in BCC iron [139], and the dynamics of small-angle GBs in general
[73]. In two dimensions, it is possible to examine systems on the micrometer scale [28, 77]
(see, e.g. figure 8(a)). A recent, remarkable application at this length scale is the simulation
of sub-boundaries formation due to orientational gradients in thin aluminum films [76, 140]
(figure 8(b)).

The limitation in size for PFC becomes even more evident in three dimensions, requiring
advanced numerical methods to simulate rather small systems [10, 87]. The APFC model has
been proved powerful in addressing the study of defects in crystalline systems in three dimen-
sions [14, 77, 138]. In particular, small-angle grain boundaries can be well captured and also
characterized thanks to the advanced description of elasticity as described in section 4. Rep-
resentative cases are the shrinkage of dislocation networks forming at the boundaries between
rotated inclusions and unrotated surrounding matrix (see figure 8(c)), also in combination with
additional effects (see also section 6.3), and the growth of slightly misoriented crystal seeds
(see figure 8(d)). Interestingly, the shrinkage or rotated inclusions and the resulting dislocation
networks have been proposed directly using a classical PFC approach [10]. This investiga-
tion delivered very similar results to the ones obtained by APFC, as reported for instance in
figure 8(c), thus assessing the coarse-graining achieved by the APFC model in an applied case.

The shrinkage of grains is generally associated with their rotation. A fingerprint of this
process emerges in APFC, as shown in reference [14] where rotations are tracked thanks to
equation (69). Therein it is shown that when defects at the boundary of a grain get closer, their
deformation fields superpose, increasing the effective orientation of the grain.

6.3. Binary systems

Coarse-grained approaches are often required in multiphase systems and alloys to handle
simultaneously the deformation induced in the lattice, the resulting phase separations leading
to Cottrell atmospheres [141-143], and effects on dislocation motion. The APFC model has
been proved powerful in describing these effects at the mesoscale for binary systems, beyond
results achieved by focusing on either atomistic or continuum length scales [144—149]. Also,
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it can be used to study these systems comprehensively, without focusing on concentration pro-
files, stress distribution around dislocations, and the force-velocity curves for defect motion
separately.

The original binary PFC model [24] is formulated in terms of the dimensionless atomic
number density variation field and a solute concentration field ¢. In the APFC model, the
expansion equation (17) is considered and a Vegard’s law for the lattice spacing R = Ry(1 +
) is assumed with « the solute expansion coefficient. This results in an energy [6, 13]

,ll)Z

K
Foy = F, +/ {<w+ Y®) L+ ot VP
0 2 "4 2

y (100)
- 2AQZ |G > (G, + c.c )| dr,

with definitions as in previous sections and w, u, Y, K, are additional model parameters as
described in reference [24]. Dynamics in terms of d7),,/0t is then described by equation (13)
with energy (100) and 8¢ /0t = V>6F /51, similarly to equation (16). It can be shown that,
given G, the basic wave vectors corresponding to a pure system, the equilibrium wave vectors
for binary systems read G,.' = G,,v/1 — 2a¢) [29].

This approach allows the study of solute segregation and migration at grain boundaries,
eutectic solidification, and quantum dot formation on nanomembranes [6, 13, 74, 150]. A sim-
ilar approach has been exploited to accurately describe the interactions among grain boundaries
and precipitates in two-phase solids [59, 69].

By applying the framework illustrated in section 4.3 to this model, the velocity of dislo-
cations including effects of the solute segregation has been also derived. By retaining only
one mode (with |G,| = 1) and using the expression for d7,,/0¢ for binary systems into
equations (74)—(76) one gets

88AbY M
4 — L) |Gul*GIGY (GG Ul — |Gl adt)) . (101)

T P

Equation (101) is consistent with the classical Peach—Koehler force similarly to equation (78).
For the case of a 2D triangular lattice or a 3D BCC crystal, the velocity takes the form

M
v = Me;; <a kb — 2Ag50a00b Y G;”ij’) : (102)

with a mobility M = 23/(¢Z[b?|?). The last term in equations (101) and (102) accounts for the
contribution from the compositionally generated stress, as a result of the compositional strain
(~ o) arising from local concentration variations, i.e. from solute preferential segregation
(Cottrell atmospheres) around defects. The stress field may be written as

(9fzw
oU;;’

M
0ij = 8AUWY _ 6LGI'G GG} + (103)
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with

f(w‘) - _ZAaZ|GHl‘2 (nmg;;n;; + C~C') ¢

M
~ 8AaY 04 |Gu[*Gl'GOus, (104)

neglecting higher order terms in the last approximation obtained with 7,, = d)me‘ﬁG'"‘“ [13].

Results predicted by these equations are the deflection of dislocation glide paths, the vari-
ation of climb speed and direction, and the change or prevention of defect annihilation [13].
Simulations exploiting the FEM approach outlined in section 3.3 also enable the advanced
description of these effects in three dimensions, in particular for small-angle grain boundaries
[13].

6.4. Multi-phase systems

Most of the APFC literature focuses on systems with a single solid phase. In a seminal work
by Kubstrup et al [151], studying pinning effects between different phases, namely crystalline
systems having triangular/hexagonal and square lattices, a construction has been proposed han-
dling variable phases through a single density expansion. Extending this idea, in reference [58]
an ansatz for the atomic density has been proposed to include more symmetries at once

7 M
n=n,+ Z njeEGf'r + Z Ame' T+ cc., (105)

J m

with {n;} and {,, } representing different set of amplitudes associated to reciprocal lattice vec-
tors G; and Q,,, respectively. These two sets were chosen to account for the first and second
modes necessary for reproducing triangular and square symmetry together, namely correspond-
ing toJ = 6 and M = 6 amplitudes. However, they can be arranged differently among the two
sums, and, importantly, a reduced set of amplitudes can be exploited (see specific choices of
G; and Q,, in reference [58]). Amplitude equations would simply follow from the general
equations reported in section 2.3. Simulations performed with this approach, combined with
the formulation illustrated in section 2.4 for the excess term, showed the ability to study solid-
ification, coarsening, peritectic growth, and the emergence of the second square phase from
grain boundaries and triple junctions in a triangular polycrystalline system. See an example
in figure 9. So far, this has been shown only for the lattice symmetry mentioned above in two
dimensions. The same applies to extensions of the APFC to account for additional degrees
of complexity in the crystal structure, such as for the amplitude expansion of the so-called
anisotropic PFC model [124, 152].

6.5. Heteroepitaxial growth

An ideal application of the APFC model is heteroepitaxial growth, where a substrate provides
a single crystallographic basis for layers growing on top. In such processes, the growing film
typically has similar crystal symmetry and lattice constant. The amplitudes vary on long length
scales for these systems, so a relatively large computational grid spacing can be used. In this
context, the large angle issue discussed in section 5.1 is not present. Therefore, this would be
an ideal application for using an adaptive mesh since the amplitudes in many cases vary on very
large length scales. To the authors’ knowledge this has not been done to date. Nevertheless,
even uniform lattices can be used to study relatively large systems.
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Figure 9. Example of peritectic solidification. (a) Average density n, (white to black
greyscale). (b) Reconstructed n (white to black greyscale). (¢c) Magnitude of an amplitude
7, which is nonzero in both solid structures; areas of larger magnitudes are depicted in red
and zero magnitudes are blue. (d) Magnitude of an amplitude x, which is only nonzero
in the square phase. Color scheme is the same as in (c). Reprinted figure with permission
from [58], Copyright 2013 by the American Physical Society.

An example application is a single or small number of mismatched layers grown on a sub-
strate. The mismatch leads to interesting strain-induced Moiré patterns that have been observed
in experimental systems [153—155]. In these cases, it is possible to model the film as a single
two-dimensional layer with amplitudes. To the authors” knowledge, the largest APFC simula-
tion of such systems was on the study of Moiré in graphene films in which the large simulation
size was 19.6 um x 34.0 pm which corresponded to roughly twenty-five billion carbon atoms.
Some sample works are reviewed in the next subsection. Similarly, the amplitude expansion
can also effectively be used to study the growth of many layers in two and three dimensions, i.e.
to examine the Asaro—Tiller—Grinfeld (ATG) [156—158] instability and the subsequent nucle-
ation of dislocations. This aspect will be also illustrated in the following. This section shows
the APFC model in an applied context, reproducing experimental results and outlining general
properties of mismatched, multilayered systems.

6.5.1. Ultrathin films: strain induced ordering. When a monolayer (or several layers) of one
material are grown on a substrate, the lattice mismatch can lead to interesting strain induced
patterns [159, 160] and the APFC model is ideally suited to model such patterns [28, 161-165].
Their nature depends on the misfit strain, ;,, = (a*® — ah) /a*, where a® and a' are the substrate
and film lattice constants, the relative crystal symmetry of the layer/substrate system and the
film/substrate coupling strength. For example, when layers of Cu are grown on a Ru(0001)
substrate, the substrate potential provides a triangular (honeycomb) array of potential max-
ima (minima) for the Cu atoms. Since the lattice constants of Cu and Ru(0001) are similar
(em = 5.5%), a 1 x 1 ordering occurs as depicted by the red dots in figure 10(a). For larger
mismatches other orders can occur as shown in this figure 10 for the ordering of triangu-
lar film on a triangular substrate (TT) in (a) and a honeycomb film on a triangular substrate
(HT) in (b). By symmetry a (TT) system is equivalent to a (HH) system and a (HT) system
is equivalent to a (TH) system. These patterns can be characterized by two integers (k, j) or
equivalently a length and angle (L, ) as depicted in figure 10(a). The relationship between
them is L = jas(/(2k + 1)2 + 3)/2 and tan 6 = /3/(2k + 1).

In figure 10(a) the 1 x 1 state could occupy two equivalent separate sublattices, while in
(b) this state has only one sublattice. In general, the degeneracy (Ns = number of equivalent
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Figure 10. Ordering of a triangular (honeycomb) lattice on a substrate with a trian-
gular array of potential maxima is depicted as green dots. In (a) the red, blue, pink,
orange and purple dots correspond to 1 x 1 (e.g. Cu/Ru(0001) or Cu/Pd(111)), 2 x 2
(e.g. O/N(111)), v/3 x /3 R30° (e.g. Xe/graphite), 2(v/3 x v/3), (V7 x V/T) R19.1°
(e.g. S/Pd(111)) and (W7 x VT)R19.1° respectively. In (b) the pink, red and blue atoms
correspond to 1 x 1 (e.g. graphene/Cu(111)), 2 x 2 and (V3 x V/3) R30°.
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Figure 11. (a) Illustration of the six equivalent degenerate sublattices for a TT v/3 x /3
R30° system. The green dots are potential maxima due to the substrate and the other
colored dots correspond to the sublattices. (b) Depiction of Moiré pattern for a 1 x 1
system in the limit Vy = 0.

sublattices) is given by,
_7
2

for the TT system and half of equation (106) for the HT system. Figure 11(a) illustrates the
different sublattices for a TT v/3 x v/3 R30° system.

The nature of the patterns that form depend on the degeneracy of sublattices, Ng, the mis-
match strain, €, and the strength of the coupling, V, between the film and substrate. In
the limit Vy = 0, a 2D Moiré pattern forms in terms of a honeycomb array of commensu-
rate regions bounded by a triangular network of domain walls for the TT system, with length

Ns (Qk+ 1 +3), (106)
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Figure 12. Sample patterns and phase diagrams for v/3 x v/3 R30° system for TT
(a)—(d) and HT (e)—(g) systems. For the TT system, the stripe, twisted honeycomb and
honeycomb patterns are illustrated in (a), (b) and (c) respectively, and the phase diagram
is shown in (d). Stripe and triangular patterns for the HT system are shown in (e) and (f)
respectively and (g) shows the HT phase diagram. Each color in the patterns corresponds
to a different sublattice. In (d) and (g) the dashed line is the analytic prediction for the
stripe/commensurate transition given by equation (114). The figures were reconstructed
from [161].

scale A = a /e, This is illustrated in figure 11(b) for a 1 x 1 system with a mismatch con-
sistent with a Cu/Ru(0001). As V| increases, the commensurate regions increase in size, and
the domain walls and junctions decrease in size but increase in energy. For the TT system,
the displacement across a junction is larger than the displacement across a domain wall. Thus
for the TT system at a certain V) it becomes energetically favorable to eliminate the junctions
and form stripes. At even larger values of V the film becomes commensurate with the sub-
strate. A peculiar state in the TT arises for some values of (V, ey) in between the stripe and
honeycomb patterns in which the junction energy is lowered by twisting the domain walls and
moving the junction to a lower energy location. Sample patterns for the TT system are shown
in figures 12(a), (b) and (c). In the case of the 1 x 1 the junction energy is so high that it can
create dislocation pairs and lead to zig-zag type patterns [164, 165].

The HT system is considerably different since the domain wall energy is higher than the
junction energy and of course the symmetry is different. At very low V), a triangular network of
commensurate regions forms. At a Vy much higher than in the TT case, a stripe phase emerges.
At a slightly larger Vj, the commensurate state appears. There appears to be no equivalent
twisted state in this system. Sample stripe and triangular patterns are shown if figures 12(e)
and (f).

To model these patterns within a PFC approach and corresponding APFC it useful to con-
sider adding an additional coupling term, F*, to the free energy functional given in equation (1)
of the form,

F= / dr [Va/ D] (107)

where

(108)

M
V=V, (Z G 4 c.c> .

V. is the coupling strength, the summation is over lowest order modes needed to reconstruct the
symmetry of the substrate and G;, corresponds to the reciprocal lattice vectors of the substrate
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(which will have a different magnitude that the film). The coupling factor n/**+1 is needed since
orders greater that 1 x 1, a coupling Vr would give no contribution in the amplitude expansion,
since V and n would have different lattice spacings. In principle, higher order harmonics of V
(or n) could be included, even though this would lead more computational expensive models.

In the amplitude expansion this term leads to a coupling term F7, of the form

J
F = VoDy, ({ [(ni‘)knz} + cyclic permutations} + c.c.) , (109)

where Dy = ((k+ D)!/((kj)!j)). This term would be added to the free energy given in
equation (30) for a triangular two-dimensional system. In addition, to account for the misfit
strain, the operator G, that enters equation (21) becomes

n = V2 +2iG,, -V +1—a? (110)

where o = 1 — ¢p.
Insight into the model can be obtained in the small deformation (u) limit, 7,, = ¢e 6=,
The total free energy function reduces to a two dimensional sine-Gordon model, i.e.

Fgf,:/dr
M

+ Cio(Uyy — em)(Uss — £m) + 2VoDgid* 7> cos(Gy, - u)} :

m

C
711 ((Ux.x - Em)2 + (Uyy — Em)z) + 2C44U3y

(111)

where Cq| = 9Agi>2 and Cyy = Cp = 3A¢2. Unfortunately this is difficult to solve for the
boundary condition of a two dimensional triangular pattern. In one dimension this reduces to a
sine-Gordon model that can be solved exactly [166]. In this model the stripe to commensurate
state transition occurs when

2
P ™ 5

P T 112
K2 16°™ (112)

where P is a measure of the potential between the film and substrate and Ka? is a measure of
the elastic energy in the film. These parameters are given by

P /2 TT
N i (113)
Dyt ViV, 4 TH
and
K Cii+Cu/3) ' TT
; _ ( 1+ 44/ ) ) (114)
(Ci+Ci2) cy! TH

Details of these calculations can be found in Elder et al [161].

The full phase diagram as a function of ,, and the ratio of potential/elastic energy, P/Ka’,
can be obtained through numerical simulation. Sample phase diagrams are given for the v/3 x
V/3 R30° system for the TT and HT cases in figures 12(d) and (g) respectively. As can been
seen in these figures for small e, the analytic predictions (this is true for all (, j) systems) for
the stripe/commensurate transition are quite accurate and very good for the HT case for all €.
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Figure 13. Comparison of simulated and experimental patterns in Cu/Ru(0001) system.
The figures correspond to twisted or zig-zag, honeycomb and stripe in (a), (b) and (c)
respectively. The experimental results are from Giinther ez al [159]. Figure (d) compares
the patterns in an experimentally partially filled layer with a simulation showing the
ordering of a commensurate layer. The experimental image is taken from Schmid et al
[160]. Reprinted figure with permission from [161], Copyright 2017 by the American
Physical Society.

An interesting comparison with experiments is the Cu layers on a Ru(0001) substrate which
isa 1l x 1 TT system. In this case, varying the number of Cu layers increases the film’s elas-
tic energy and the potential between the substrate and film. Essentially, adding more layers
corresponds to reducing the ratio P/Ka®. One layer forms a completely commensurate state,
two layers form a striped state, three layers form a twisted honeycomb (or zig-zag state), and
four layers form a honeycomb state. To compare with the non-equilibrium patterns observed in
experiments, simulations starting from random fluctuations were conducted. The comparison
of the experiments and simulations depicted in figures 13(a)—(c) shows a very good agreement
for various patterns. In another experiment by Schmid er al [160] patterns of partially filled
layers are reported. These patterns are remarkably similar to simulations of non-equilibrium
patterns observed with the APFC model in the commensurate state as shown in figure 13(d).

Studies of the HT 1 x 1 lead to a phase diagram similar to that shown for the v/3 x v/3 in
figure 12. To compare with experiments, DFT calculations were conducted by Smirman et al
[28] to calculate the value of the dimensionless quantity P/Ka? for various 1 x 1 film/substrate
systems. The phase diagram accurately predicted commensurate state for twenty-five system
mostly corresponding to films consisting of monolayers of InN or GaN on various substrates.
In addition, the phase diagram accurately predicted a commensurate state for graphene (G)
on N, and triangular patterns for G on Cu, Pd, Pt, Al, Ag, and Au. Work was also conducted
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to predict the wavelength of the patterns as a function of misorientation with respect to the
substrate in G/Cu(111) and G/Pt(111) systems. In the absence of coupling two dimensional
patterns arise with wavelength \ = a'/ \/ g2 + 2(1 — e)(1 — cos(h)), where @ is the misori-
entation angle. The study showed that as the coupling increases, the wavelength increases and
interestingly the lowest energy states were not at zero degree misorientation (0.88° and 3.22°
for G/Cu(111) and G/Pt(111) respectively), which is unfortunately difficult to measure experi-
mentally. However, the predicted wavelengths were consistent with the experiments of Merino
et al [153] for G/Cu(111).

Other predictions of the APFC model involve the influence of defects and edges on pattern
formation in the v/3 x /3 R30° which corresponds to systems such as Xe/Pt(111) or Xe and
Kr on graphite.

6.5.2. Epitaxial growth: island formation and defect nucleation. When a material is grown
epitaxially on a substrate with a mismatch strain, £, the film will tend to buckle and form
islands or mounds as it grows due to the so-called linear ATG instability [156—158]. Recall
that the APFC model is ideal for examining these phenomena, featuring relatively uniform
amplitudes suited for adaptive meshing. In addition, it is possible to reduce the study of an ATG
instability in a 2D film to a 1D problem [167, 168]. Consider expanding about the strained film
such that 7, = 71,,e 9™ where dq,, is responsible for the mismatch strain imposed by the
substrate. For a triangular lattice with a strain imposed in the x direction (y being the growth
direction) 6q, - r = —8,x — 6,9/2,8q, - ¥ = 8,,0¢q; - ¥ = 0, x — 0,y/2, 8, = /3/2ey and 5,
is determined by lattice relaxation. The strained amplitudes can now be expanded about a one
dimensional profile, 79(y) as follows

M, 0) = 100) + Y _0(qe v, e, (115)
qx

and similarly for the average density about n%(y)

no(x,y,1) = nY) + Y _fio(qu, y, D (116)

qx

The profiles 77? (v) and n2(y) must be determined numerically. The linearized equation of motion
for the perturbed quantities 7); and 71, are quite complex but are easily solved numerically to
obtain a dispersion relation (w(g,)) for the position of the liquid/solid front, i.e. the results can
be fit to the form |7);|, 1, ~ ¢*’. Dispersion relations are shown in the inset of figure 14(a).
Various analytic studies have lead to different forms of the dispersion relation depending
on what physical mechanisms are included. Surface diffusion leads to w ~ a3q3 — auqt
[158, 169, 170], wetting to w = —a2q> + asq> — auq’ [171, 172], evaporation—condensation
o w = a1qy — aaq> [173, 174] and bulk diffusion to w = azq> — a3q> [175]. In the APFC
simulations, w can be fit to a fourth order polynomial in g, however none of the fits are consis-
tent with any of the prior results. This is due to the fact that the APFC model cannot separate
each of the mechanisms individually.

From these studies the most unstable ¢,, Q*, can be extracted as a function of misfit strain
and interface width (W) as shown in figure 14(a). The width, in the notation of equation (4),
was altered through the variable B* since W ~ /B*/|AB?| [45]. For small values of &, it was
found that Q* ~ €2, and for larger values Q* ~ &, for all interface widths. ATG theory gives
Q* ~ (E/v)e2, where E = B*¢* /2 is Young’s modulus, ¢ is the magnitude of the amplitudes
in equilibrium, ~y is the surface energy which can be calculated numerically. The numerical
results fit the small e, to Q* = 4E¢2 /3. The linear behavior at large &,, can be understood
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Figure 14. (a) Most unstable wavevector (Q") is shown as a function of misfit strain (£,)
for various interface widths. In the inset, dispersion relations are shown for e, = 4%
(red) and 3% (blue). (b) The Q* and em are rescaled to give rise to a universal curve
as described in the text. In the inset Q is shown as a function of 22. Details of the
calculations can be found in reference [168]. Reconstructed from [167, 168].
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Figure 15. In this figure the magnitude of the sum of the amplitudes is shown for an
island of one material grown on another. In (a)—(c) the time evolution of one island
is shown. Similarly in (d)—(f) an island growth is illustrated for a thicker ribbon. In
(g)—(1) the time evolution of island growth and nucleation is shown. In (a)—(f) a flux of
material only came from the top, while in (g)—(1) it came from both sides of the ribbon.
Reconstructed from [6].

by considering the wavelength at which the insertion of a dislocation would lead to perfect
relaxation (i.e. the addition or subtraction of a lattice point every A returns the lattice constant
of the film to its equilibrium value). This occurs when Q* = 27 /X = g, |en|. It is interest-
ing to note that this linear relationship was observed in experiments on SiGe/Si(001) growth
[176, 177] although other explanations may exist as this is a binary system [178].

The continuum (ATG) calculation fails when the most unstable wavelength (27/Q")
becomes comparable with the interfacial thickness. If one supposes that the crossover occurs at
e, when4EsS /3y = g,&¢, then &, = 37q,/4E and Q° = 374> /4E. Defining the scaled quan-
tities &, = em /5, Q = Q*/Q° gives rise to the universal behavior shown in figure 14(b). That
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is, the relationship between &, and Q is independent of the interfacial thickness. It was found
numerically that 1/Q° ~ B¥ ~ W2,

An APFC study of the growth of islands of one material on a ribbon of another was con-
ducted by Elder er al [6, 150]. Several experiments [179—181] had to be undertaken to examine
whether the growth of islands (or quantum dots) on thin ribbons may be exploited for better
control of island sizes and correlations. When an island of one material grows on an island
of another material, the misfit strain will eventually lead to the nucleation of dislocation at
the island/film/vapor junction. On very thin ribbons, the strain in the island can be somewhat
reduced by bending the ribbons, leading to the possibility of growing larger defect-free islands.
An example is shown in figure 15. Figures (a)—(c) and (d)—(f) show the growth of an island for
two different ribbon thicknesses. In (c) and (f), the final island size (L¢) at which dislocations
appear indicates that L¢ is larger for the thinner ribbons. Depending on conditions it was shown
in reference [150] that decreasing the ribbon size could almost double L. Another interesting
feature emerges when the island starts to grow. It bends the ribbon such that preferential regions
for island nucleation appear on the other side near the triple junctions, leading to correlated
growth as shown in figures 15(g)—(1). This correlation could potentially be exploited to create
uniform arrays of islands.

In summary, the binary and pure APFC models provide an excellent platform for studying
heteroepitaxial growth. Coupled with adaptive mesh schemes as illustrated in section 3, very
large simulations should be possible in both two and three dimensions.

7. Conclusions and outlook

In recent years, bridging-scale modeling has become crucial to comprehensively investigate
crystalline systems, explore macroscopic effects of microscopic details, and unveil general
properties and behaviors for further scale-specific characterizations. Here, an overview is pro-
vided of the model(s) obtained through the amplitude expansion of the PFC (APFC), which
combines the description of crystals on relatively large (diffusive) time scales, conveyed by the
PFC model [1, 7, 33], with a spatial coarse-graining. The concepts underlying its derivation
have been illustrated, focusing on practical aspects such as explicit formulas, generalizations,
and examples, along with presenting different formulations.

Computational aspects have also been outlined. The fields (amplitudes) to solve for within
the APFC model are suited for inhomogeneous spatial discretizations, a feature that motivated
its development in the first place [23]. Recently, a few optimized methods have been developed
to allow for large-scale calculations and, in particular, paving the way for extensive three-
dimensional calculations.

The APFC model emerges as one of a kind among mesoscale approaches: it handles the
description of crystalline systems through slowly varying continuous fields, so without resolv-
ing atoms, but retains details of the crystal structure such as anisotropies and lattice defects.
Namely, it merges different aspects addressed by micro- and macroscopic approaches within
a single model rather than coupling models working at different time- and length scales (like
other remarkable approaches as, e.g. the quasi-continuum approach [182, 183]). Among its
key aspects, special attention has been given to the mesoscale description of elasticity and
plasticity, being the primary goal of many coarse-grained descriptions (as the PFC itself
[1, 7]). As a pivotal example, the elastic field generated by dislocations within the APFC
model matches classical continuous descriptions and encodes a core regularization related to
the lattice parameter. Moreover, it is expected to be affected by lattice symmetry and encodes
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nonlinearities. Amplitudes also allow for characterizing plasticity and defect dynamics. This
description can be exploited within the broader context of PFC models as amplitudes fully
characterize deformations therein [75].

Like every other model, APFC has its range of applicability, strengths, and weaknesses. One
weakness is the ability to accurately predict the precise structure of atomic-scale structures such
as dislocations and interfaces, similar to the drawbacks of traditional PF models. However, it
may be employed to investigate long-range effects for such systems, and extensions have been
provided to improve the mesoscale descriptions with respect to the standard formulation (see,
e.g. the control of energies for defects and interfaces and the modeling of Peierls barriers). Like
PFC, the variational, overdamped formulation of the APFC model conveys a lack of separation
among different timescales, affecting the competition among diffusion mechanisms and elas-
tic relaxation. This issue, however, has been solved by a few different extensions, which are
expected to become the standard approaches for phenomena when the separation of timescales
is relevant. The most critical aspect for applications of the APFC model remains the limita-
tion to small rotations with respect to a reference crystal orientation (see the problem of beats
[66, 73, 74]). It prevents the thorough investigation of high-angle grain boundaries and poly-
crystalline systems. Therefore, providing a solution for this issue is a crucial challenge for
achieving a general mesoscale description of crystals. To date, this aspect has been only par-
tially addressed through a covariant formulation with respect to rotation of the crystals, which
still needs to be assessed for the description of elasticity and plasticity and its compatibility
with other extensions.

It is worth mentioning that in light of the limitation(s) mentioned above, the currently
available APFC models should be considered valid for relatively small deformation and
rotation only, de-facto for every crystalline system where defects as dislocations can be
described as separated objects. However, systems featuring such conditions are common,
widely studied, and exploited in several technology-relevant applications, such as single crys-
tals, alloys, and homo-/heteroepitaxial systems, besides small angle-grain boundaries. The
overview and discussion of the main applications addressed so far in the literature illustrate this
aspect.

In conclusion, this review has attempted to collect the basics and the recent developments
of the APFC model. While it has been used to study several physical phenomena, its potential
still has not been fully exploited. Potential applications include the investigation of three-
dimensional mesoscale tracking of defects and interfaces (e.g. for heteroepitaxial systems).
Moreover, besides the challenges already mentioned above, a few aspects can be identified
which will improve the approach further: (i) direct connections with advanced continuum the-
ory for elasticity and plasticity, closing the gap with methods such as DD; (ii) description of
complex crystal symmetries beyond simple ones to broaden the application to technology-
relevant systems; (iii) extending the parametrization to include physical parameters extracted
from experiments and/or other methods; (iv) connections and coupling to both microscopic,
fully atomistic (e.g. PFC or molecular dynamics) and macroscopic (e.g. PF, CE) models;
(v) extended BC to enable investigations beyond bulk-like systems and simple geometries;
(vi) further development of numerical methods, keeping up with state-of-the-art numerical
techniques.

Acknowledgments

MS acknowledges support from the Emmy Noether Programme of the German Research Foun-
dation (DFG) under Grant No. SA4032/2-1. KRE acknowledges support from the National
Science Foundation (NSF) under Grant No. DMR-MPS-2006456. Computing resources have

48



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

been provided by the Center for Information Services and High-Performance Computing (ZIH)
at TU Dresden. The authors also acknowledge useful discussions with Zhi-Feng Huang, Axel
Voigt, Rainer Backofen, Simon Praetorius, Lucas Benoit-Marechal, Luiza Angheluta, Vidar
Skogvoll, and Jorge Vifials.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the
authors.

ORCID iDs

Marco Salvalaglio ‘' https://orcid.org/0000-0002-4217-0951
Ken R Elder @ https://orcid.org/0000-0001-9265-2476

References

[1] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rev. Lett. 88 245701
[2] Langer J S 1980 Rev. Mod. Phys. 52 1
[3] Karma A and Rappel W J 1996 Phys. Rev. E 53 3017
[4] Karma A and Rappel W-J 1998 Phys. Rev. E 57 4323
[5] Elder K R, Grant M, Provatas N and Kosterlitz J M 2001 Phys. Rev. E 64 021604
[6] Elder K R, Huang Z F and Provatas N 2010 Phys. Rev. E 81 011602
[7] Elder K R and Grant M 2004 Phys. Rev. E 70 051605
[8] Wu K-A and Voorhees P W 2012 Acta Mater. 60 407—19
[9] Hirvonen P et al 2016 Phys. Rev. B 94 035414
[10] Yamanaka A, McReynolds K and Voorhees P W 2017 Acta Mater. 133 160-71
[11] Berry J, Provatas N, Rottler J and Sinclair C W 2012 Phys. Rev. B 86 224112
[12] Skaugen A, Angheluta L and Vifals J 2018 Phys. Rev. B 97 054113
[13] Salvalaglio M, Voigt A, Huang Z-F and Elder K R 2021 Phys. Rev. Lett. 126 185502
[14] Salvalaglio M, Voigt A and Elder K R 2019 npj Comput. Mater. § 48
[15] Skaugen A, Angheluta L and Vifials J 2018 Phys. Rev. Lett. 121 255501
[16] Salvalaglio M, Angheluta L, Huang Z-F, Voigt A, Elder K R and Vifals J 2020 J. Mech. Phys.
Solids 137 103856
[17] Amodeo R J and Ghoniem N M 1990 Phys. Rev. B 41 6958
[18] Ghoniem N M, Tong S-H and Sun L Z 2000 Phys. Rev. B 61 913
[19] Arsenlis A, Cai W, Tang M, Rhee M, Oppelstrup T, Hommes G, Pierce T G and Bulatov V V 2007
Modelling Simul. Mater. Sci. Eng. 15 553
[20] Greenwood M, Provatas N and Rottler J 2010 Phys. Rev. Lett. 105 045702
[21] Greenwood M, Rottler J and Provatas N 2011 Phys. Rev. E 83 031601
[22] Goldenfeld N, Athreya B P and Dantzig J A 2005 Phys. Rev. E 72 020601
[23] Athreya B P, Nigel G and Dantzig J A 2006 Phys. Rev. E 74 011601
[24] Elder K R, Provatas N, Berry J, Stefanovic P and Grant M 2007 Phys. Rev. B 75 064107
[25] Khachaturyan A G 1983 The Theory of Structural Transformation in Solids (New York: Wiley)
[26] Khachaturyan A G 1996 Phil. Mag. A 74 3—14
[27] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[28] Smirman M, Taha D, Singh A K, Huang Z F and Elder K R 2017 Phys. Rev. B 95 085407
[29] Huang Z F, Elder K R and Provatas N 2010 Phys. Rev. E 82 021605
[30] van Teeffelen S, Backofen R, Voigt A and Lowen H 2009 Phys. Rev. E 79 051404
[31] Ramakrishnan T V and Yussouff M 1979 Phys. Rev. B 19 2775
[32] Tupper P F and Grant M 2008 Europhys. Lett. 81 40007
[33] Emmerich H, Léwen H, Wittkowski R, Gruhn T, Téth G 1, Tegze G and Grandsy L 2012 Adv. Phys.
61 665-743
[34] Berry J, Provatas N, Rottler J and Sinclair C W 2014 Phys. Rev. B 89 214117

—_—

49



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

[35] Backofen R, Barmak K, Elder K E and Voigt A 2014 Acta Mater. 64 72—7

[36] Granasy L, Téth G I, Warren J A, Podmaniczky F, Tegze G, Ratkai L and Pusztai T 2019 Prog.
Mater. Sci. 106 100569

[37] Alaimo F, Praetorius S and Voigt A 2016 New J. Phys. 18 083008

[38] Alaimo F and Voigt A 2018 Phys. Rev. E 98 032605

[39] Huang Z-F, Menzel A M and Lowen H 2020 Phys. Rev. Lett. 125 218002

[40] Menzel A M and Léwen H 2013 Phys. Rev. Lett. 110 055702

[41] Menzel A M, Ohta T and Lowen H 2014 Phys. Rev. E 89 022301

[42] Praetorius S and Voigt A 2015 J. Chem. Phys. 142 154904

[43] Aland S, Rétz A, Roger M and Voigt A 2012 Multiscale Model. Simul. 10 82—110

[44] Ashcroft N W and Mermin N D 1976 Solid State Physics (New York: Holt, Rinehart and Winston)

[45] Galenko P K, Sanches F I and Elder K R 2015 Physica D 308 1-10

[46] Shiwa Y 2011 Prog. Theor. Phys. 125 871-8

[47] Oono Y and Shiwa Y 2012 Phys. Rev. E 86 061138

[48] Provatas N and Elder K 2010 Phase-Field Methods in Materials Science and Engineering (New
York: Wiley)

[49] Yeon D-H, Huang Z-F, Elder K R and Thornton K 2010 Phil. Mag. 90 237-63

[50] Hohenberg P C and Halperin B 1 1977 Rev. Mod. Phys. 49 435

[51] Grossmann B, Elder K R, Grant M and Kosterlitz J M 1993 Phys. Rev. Lett. 71 3323

[52] Drolet F, Elder K R, Grant M and Kosterlitz J M 2000 Phys. Rev. E 61 6705

[53] Elder K R, Drolet F, Kosterlitz ] M and Grant M 1994 Phys. Rev. Lett. 72 677

[54] Heinonen V, Achim C V, Kosterlitz J M, Ying S C, Lowengrub J and Ala-Nissila T 2016 Phys.
Rev. Lett. 116 024303

[55] Majaniemi S and Grant M 2007 Phys. Rev. B 75 054301

[56] Majaniemi S and Provatas N 2009 Phys. Rev. E 79 011607

[57] Chan P Y and Goldenfeld N 2009 Phys. Rev. E 80 065105

[58] Ofori-Opoku N, Stolle J, Huang Z-F and Provatas N 2013 Phys. Rev. B 88 104106

[59] Xu Y-C, Geslin P-A and Karma A 2016 Phys. Rev. B 94 144106

[60] Salvalaglio M, Backofen R, Voigt A and Elder K R 2017 Phys. Rev. E 96 023301

[61] Ankudinov V, Elder K R and Galenko P K 2020 Phys. Rev. E 102 062802

[62] Mkhonta S K, Elder K R and Huang Z F 2013 Phys. Rev. Lett. 111 035501

[63] Greenwood M, Ofori-Opoku N, Rottler J and Provatas N 2011 Phys. Rev. B 84 064104

[64] Alster E, Elder K R, Hoyt J J and Voorhees P W 2017 Phys. Rev. E 95 022105

[65] Oono Y and Puri S 1987 Phys. Rev. Lett. 58 836

[66] Athreya B P, Goldenfeld N, Dantzig J A, Greenwood M and Provatas N 2007 Phys. Rev. E 76
056706

[67] Berc¢ic M and Kugler G 2018 Phys. Rev. E 98 033303

[68] Berc¢i¢ M and Kugler G 2020 Phys. Rev. E 101 043309

[69] Geslin P-A, Xu Y and Karma A 2015 Phys. Rev. Lett. 114 105501

[70] Guan Z, Heinonen V, Lowengrub J, Wang C and Wise S M 2016 J. Comput. Phys. 321 1026

[71] Cooley J W and Tukey J W 1965 Math. Comp. 19 297-301

[72] Chen L Q and Shen J 1998 Comput. Phys. Commun. 108 147

[73] Hiiter C, Neugebauer J, Boussinot G, Svendsen B, Prahl U and Spatschek R 2017 Contin. Mech.
Thermodyn. 29 895-911

[74] Spatschek R and Karma A 2010 Phys. Rev. B 81 214201

[75] Heinonen V, Achim C V, Elder K R, Buyukdagli S and Ala-Nissila T 2014 Phys. Rev. E 89 032411

[76] Jreidini P, Pinomaa T, Wiezorek J M K, McKeown J T, Laukkanen A and Provatas N 2021 Phys.
Rev. Lett. 127 205701

[77] Praetorius S, Salvalaglio M and Voigt A 2019 Modelling Simul. Mater. Sci. Eng. 27 044004

[78] Luo X, Huang Z, Wang S, Xiao M, Meng Y, Yan H, Li Q and Wang G 2022 Electronics 11 221

[79] Backofen R, Rtz A and Voigt A 2007 Phil. Mag. Lett. 87 813-20

[80] Gomez H and Nogueira X 2012 Comput. Methods Appl. Mech. Eng. 249-252 5261

[81] Vignal P, Dalcin L, Brown D L, Collier N and Calo V M 2015 Comput. Struct. 158 355-68

[82] Guo R and Xu Y 2016 SIAM J. Sci. Comput. 38 A105-27

[83] Wang L, Huang Y and Jiang K 2020 Numer. Math. Theory Methods Appl. 13 372—99

[84] Vey S and Voigt A 2007 Comput. Visual Sci. 10 57-67

[85] Witkowski T, Ling S, Praetorius S and Voigt A 2015 Adv. Comput. Math. 41 1145-77

[86] Praetorius S and Voigt A 2015 SIAM J. Sci. Comput. 37 B425-51

50



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

[87] Praetorius S 2015 Efficient solvers for the phase-field crystal equation—development and analysis
of a block-preconditioner PhD Thesis Technische Universitit Dresden, Germany
[88] Backofen R, Salvalaglio M and Voigt A 2022 arXiv:2202.06654
[89] Seth B 1961 Generalized strain measure with applications to physical problems Tech. Rep
Wisconsin Univ-Madison Mathematics Research Center
[90] Hill R 1968 J. Mech. Phys. Solids 16 229-42
[91] Hill R 1970 Proc. R. Soc. A 314 457-72
[92] Bruhns O T 2015 The multiplicative decomposition of the deformation gradient in plastic-
ity—origin and limitations From Creep Damage Mechanics to Homogenization Methods
(Berlin: Springer) pp 37-66
[93] Neft P, Eidel B and Martin R J 2016 Arch. Ration. Mech. Anal. 222 507-72
[94] Landau L D, Lifshitz E M, Kosevich A M and Pitaevskii L P 1986 Theory of Elasticity (Amsterdam:
Elsevier)
[95] Skogvoll V, Skaugen A and Angheluta L 2021 Phys. Rev. B 103 224107
[96] Skogvoll V, Skaugen A, Angheluta L, Salvalaglio M and Vifals J 2021 arXiv:2110.03476
[97] Anderson P, Hirth J and Lothe J 2017 Theory of Dislocations (Cambridge: Cambridge University
Press)
[98] Mazenko G F 1997 Phys. Rev. Lett. 78 401
[99] Mazenko G F 2001 Phys. Rev. E 64 016110
[100] Angheluta L, Jeraldo P and Goldenfeld N 2012 Phys. Rev. E 85 011153
[101] Hiiter C, Fridk M, Weikamp M, Neugebauer J, Goldenfeld N, Svendsen B and Spatschek R 2016
Phys. Rev. B 93 214105
[102] Cai W, Arsenlis A, Weinberger C and Bulatov V 2006 J. Mech. Phys. Solids 54 561-87
[103] Head A K 1953 Proc. Phys. Soc. B 66 793-801
[104] Marzegalli A, Brunetto M, Salvalaglio M, Montalenti F, Nicotra G, Scuderi M, Spinella C, De Seta
M and Capellini G 2013 Phys. Rev. B 88 165418
[105] Lazar M and Maugin G A 2005 Int. J. Eng. Sci. 43 1157-84
[106] Lazar M 2017 Phil. Mag. 97 3246-75
[107] Mindlin R D 1964 Arch. Ration. Mech. Anal. 16 51-78
[108] Mindlin R D and Eshel N N 1968 Int. J. Solids Struct. 4 109-24
[109] Lazar M and Po G 2018 J. Micromech. Mol. Phys. 03 1840008
[110] Salvalaglio M, Chockalingam K, Voigt A and Dorfler W 2022 Examples Counterexamples 2
100067
[111] Kinoshita N and Mura T 1971 Phys. Status Solidi a 5§ 759-68
[112] Eshelby J D 1957 Proc. R. Soc. A 241 376-96
[113] Eshelby J D 1959 Proc. R. Soc. A 252 561-9
[114] Mura T 1987 Micromechanics of Defects in Solids (Berlin: Springer)
[115] Heinonen V 2016 Phase field crystal models and fast dynamics PhD Thesis Aalto University,
Finland
[116] Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504
[117] Galenko P, Danilov D and Lebedev V 2009 Phys. Rev. E 79 051110
[118] Huang Z F 2013 Phys. Rev. E 87 012401
[119] CahnJ W and Hilliard J E 1958 J. Chem. Phys. 28 258—-67
[120] Kocher G and Provatas N 2015 Phys. Rev. Lett. 114 155501
[121] Guo C, Wang J, Wang Z, Li J, Guo Y and Huang Y 2016 Soft Matter 12 4666—73
[122] Hwa T, Kardar M and Paczuski M 1991 Phys. Rev. Lett. 66 441
[123] Huang Z F 2016 Phys. Rev. E 93 022803
[124] Kundin J, Choudhary M A and Emmerich H 2014 Eur. Phys. J. Spec. Top. 223 36372
[125] Chen L-Q 2002 Annu. Rev. Mater. Res. 32 113-40
[126] Boettinger W J, Warren J A, Beckermann C and Karma A 2002 Annu. Rev. Mater. Res. 32 163-94
[127] Steinbach I 2009 Modelling Simul. Mater. Sci. Eng. 17 073001
[128] Chen L-Q, Wang Y and Khachaturyan A G 1991 Phil. Mag. Lett. 64 241-51
[129] Bugaev V N, Reichert H, Shchyglo O, Udyansky A, Sikula Y and Dosch H 2002 Phys. Rev. B 65
180203
[130] Tewary V K 2004 Phys. Rev. B 69 094109
[131] Varvenne C, Finel A, Le Bouar Y and Féevre M 2012 Phys. Rev. B 86 184203
[132] Varvenne C and Clouet E 2017 Phys. Rev. B 96 224103
[133] Nizovtseva I G and Galenko P K 2018 Phil. Trans. R. Soc. A 376 20170202

51



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

[134] Ofori-Opoku N, Warren J A and Voorhees P W 2018 Phys. Rev. Mater. 2 083404

[135] Wheeler A A 2006 Proc. R. Soc. A 462 3363—-84

[136] Torabi S, Lowengrub J, Voigt A and Wise S 2009 Proc. R. Soc. A 465 1337-59

[137] Salvalaglio M, Backofen R, Bergamaschini R, Montalenti F and Voigt A 2015 Cryst. Growth Des.
15 2787-94

[138] Salvalaglio M, Backofen R, Elder K R and Voigt A 2018 Phys. Rev. Mater. 2 053804

[139] Adland A, Karma A, Spatschek R, Buta D and Asta M 2013 Phys. Rev. B 87 024110

[140] Pinomaa T, Lindroos M, Jreidini P, Haapalehto M, Ammar K, Wang L, Forest S, Provatas N and
Laukkanen A 2022 Phil. Trans. R. Soc. A 380 20200319

[141] Cottrell A H, Jaswon M A and Mott N F 1949 Proc. R. Soc. A 199 10414

[142] Cottrell A H and Bilby B A 1949 Proc. Phys. Soc. A 62 49-62

[143] Cottrell A H 1953 Dislocations and Plastic Flow in Crystals (International Series of Monographs
on Physics) (Oxford: Clarendon)

[144] Zhang F and Curtin W A 2008 Modelling Simul. Mater. Sci. Eng. 16 055006

[145] Sills R B and Cai W 2016 Phil. Mag. 96 895-921

[146] GuY and El-Awady J A 2020 Mater. Theory 4 1

[147] Mishin Y 2019 Acta Mater. 179 383-95

[148] Koju R K and Mishin Y 2020 Acta Mater. 198 111-20

[149] Darvishi Kamachali R, Kwiatkowski da Silva A, McEniry E, Ponge D, Gault B, Neugebauer J and
Raabe D 2020 npj Comput. Mater. 6 191

[150] Elder K R and Huang Z-F 2010 J. Phys.: Condens. Matter. 22 364103

[151] Kubstrup C, Herrero H and Pérez-Garcia C 1996 Phys. Rev. E 54 1560

[152] Kundin J and Choudhary M A 2017 Modelling Simul. Mater. Sci. Eng. 25 055004

[153] Merino P, Svec M, Pinardi A L, Otero G and Martin-Gago J A 2011 ACS Nano 5 5627-34

[154] Roos M, Uhl B, Kiinzel D, Hoster H E, Gro3 A and Behm R J 2011 Beilstein J. Nanotechnol. 2
365-73

[155] Balog R et al 2010 Nat. Mater. 9 315-9

[156] Asaro R J and Tiller W A 1972 Metall. Trans. 3 1789-96

[157] Grinfeld M A 1993 J. Nonlinear Sci. 3 35-83

[158] Srolovitz D J 1989 Acta Metall. 37 621-5

[159] Giinther C, Vrijmoeth J, Hwang R Q and Behm R J 1995 Phys. Rev. Lett. 74 754

[160] Schmid A K, Bartelt N C, Hamilton J C, Carter C B and Hwang R Q 1997 Phys. Rev. Lett. 78
3507-10

[161] Elder K R, Achim C V, Granato E, Ying S C and Ala-Nissila T 2017 Phys. Rev. B 96 195439

[162] Elder K R, Achim C V, Granato E, Ying S C and Ala-Nissila T 2016 Europhys. Lett. 116 56002

[163] Elder KR, Chen Z, Elder K L M, Hirvonen P, Mkhonta S K, Ying S-C, Granato E, Huang Z-F and
Ala-Nissila T 2016 J. Chem. Phys. 144 174703

[164] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S C, Granato E, Achim C V and Ala-Nissila T
2013 Phys. Rev. B 88 075423

[165] Elder K R, Rossi G, Kanerva P, Sanches F, Ying S-C, Granato E, Achim C V and Ala-Nissila T
2012 Phys. Rev. Lett. 108 226102

[166] Chaikin P M and Lubensky T C 1995 Principles of Condensed Matter Physics (Cambridge:
Cambridge University Press)

[167] Huang Z-F and Elder K R 2008 Phys. Rev. Lett. 101 158701

[168] Huang Z-F and Elder K R 2010 Phys. Rev. B 81 165421

[169] Spencer B J, Voorhees P W and Davis S H 1991 Phys. Rev. Lett. 67 3696

[170] Spencer B J, Voorhees P W and Davis S H 1993 J. Appl. Phys. 73 4955

[171] Levine M S, Golovin A A, Davis S H and Voorhees P W 2007 Phys. Rev. B 75 205312

[172] Eisenberg H R and Kandel D 2000 Phys. Rev. Lett. 85 1286

[173] Miiller J and Grant M 1999 Phys. Rev. Lett. 82 1736

[174] Kassner K, Misbah C, Miiller J, Kappey J and Kohlert P 2001 Phys. Rev. E 63 036117

[175] Wu K-A and Voorhees P W 2009 Phys. Rev. B 80 125408

[176] Sutter P and Lagally M G 2000 Phys. Rev. Lett. 84 4637

[177] Tromp R M, Ross F M and Reuter M C 2000 Phys. Rev. Lett. 84 4641

[178] Bergamaschini R, Salvalaglio M, Backofen R, Voigt A and Montalenti F 2016 Adv. Phys. X 1
331-67

[179] Huang M, Rugheimer P, Lagally M G and Liu F 2005 Phys. Rev. B 72 085450

[180] Kim-Lee H-J, Savage D E, Ritz C S, Lagally M G and Turner K T 2009 Phys. Rev. Lett. 102 226103

52



Modelling Simul. Mater. Sci. Eng. 30 (2022) 053001 Topical Review

[181] Huang M et al 2009 ACS Nano 3 721-7

[182] Shenoy V B, Miller R, Tadmor E b, Rodney D, Phillips R and Ortiz M 1999 J. Mech. Phys. Solids
47 611-42

[183] Curtin W A and Miller R E 2003 Modelling Simul. Mater. Sci. Eng. 11 R33-68

53



