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In this paper a systematic examination of graphene/hexagonal boron nitride (g/hBN) bilayers is presented,
through a recently developed two-dimensional phase eld crystal model that incorporates out-of-plane defor-
mations. The system parameters are determined by closely matching the stacking energies and heights of
g/hBN bilayers to those obtained from existing quantum-mechanical density functional theory calculations.
Out-of-plane deformations are shown to reduce the energies of inversion domain boundaries in hBN, and the
coupling between graphene and hBN layers leads to a bilayer defect conguration consisting of an inversion
boundary in hBN and a domain wall in graphene. Simulations of twisted bilayers reveal the structure, energy,
and elastic properties of the corresponding moiré patterns and show a crossover as the misorientation angle
between the layers increases from a well-dened hexagonal network of domain boundaries and junctions to
smeared-out patterns. The transition occurs when the thickness of domain walls approaches the size of the moiré
patterns and coincides with the peaks in the average von Mises and volumetric stresses of the bilayer.
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I. INTRODUCTION

Two-dimensional (2D) materials, such as graphene (g),
hexagonal boron nitride (hBN), and transition-metal dichalco-
genides (TMDs), have been of continuously great interest in
recent years due to their extraordinary electronic, thermal,
and mechanical properties, and potential for various techno-
logical applications [1,2]. Currently there has been a focus
on stacking of such materials together to form multiple-layer
structures with tunable physical properties. Perhaps the sim-
plest of such systems, namely, a graphene bilayer, has long
shown interesting behavior ranging from being a good insu-
lator to a superconductor [3,4], whereas the stacking of an
hBN layer onto a graphene monolayer signicantly increases
thermal conductivity [5]. Many other exotic features, particu-
larly, those arising from the modulation of novel electronic
properties, such as fractal quantum Hall effects in g/hBN
bilayers [6–9], have also been reported.

An important feature of bilayer heterostructures is the
emergence of moiré patterns or superlattices which play a
key role in determining the material properties described
above, given their long-range superstructural behavior of pe-
riodic structural and electronic modulations coupled with
the underlying short-range atomic-scale lattice or sublattice
structure [6,7]. Moiré patterns in g/hBN bilayers with differ-
ent twist angles have been observed in experiments [6,7,9–
11] and examined in theoretical studies [8,12,13]. However,
most of existing work has focused on a relatively narrow

range of small misorientation angles between the two layers,
whereas knowledge of higher-angle moiré patterns and the
elastic behavior of the bilayers is still sparse, which limits
understanding and further development of this type of het-
erostructural system. This would then require a systematic
study of the structural, energetic, and elastic properties of
the g/hBN bilayers across a much wider range of interlayer
twist angles as will be explored in this paper through efcient
multiscale modeling and simulations.

To this end, phase eld crystal (PFC) models that were
developed and parameterized for the study of 2D layers of
graphene [14] and hBN [15] will be exploited. Several dif-
ferent types of PFC models for graphene were examined
in Ref. [14] and compared with quantum-mechanical den-
sity functional theory (DFT) and molecular dynamics (MD)
calculations in terms of energies of grain boundaries, poly-
crystals, and triple junctions [14,16]. The model termed PFC1
in that work will be used here. In Refs. [15,17] a binary
PFC model with sublattice ordering was developed and was
used to examine various types of grain boundaries and defect
core structures in hBN monolayers with results shown to be
in good agreement with experiments and other theoretical
studies. These PFC models have been applied and extended
to study various other structural and dynamical properties of
2D materials, such as grain rotation and coupled motion in
graphene and hBN [18], g/hBN lateral heterostructures [19],
ternary 2D hexagonal materials, and in-plane TMD/TMD het-
erostructures and multijunctions [20]. However, these models
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were strictly 2D and did not allow for out-of-plane variations.
Recently a simple extension of these models was devel-
oped to account for small out-of-plane deformations [21].
Such deformations were shown to signicantly lower the
energy of dislocations, consistent with other atomistic stud-
ies using DFT and MD. In addition, graphene/graphene,
graphene/hBN, and hBN/hBN bilayers were also considered
there with the coupling between the layers parametrized by t-
ting to quantum DFT results of stacking energies and heights
obtained by Zhou et al. [22] with the use of an analytical
one-mode approximation for the PFC bilayer models.

In this paper the previous model developed and a more
accurate parameter t to DFT calculations for g/hBN bilayers
is used to study inversion domain boundaries of hBN as well
as moiré patterns that emerge when the graphene and hBN
layers are rotated with respect to each other. The numerical
results are not only consistent with previous experimental
and theoretical ndings, but also provide predictions for the
energy density of an inversion boundary in graphene/hBN
bilayers and in rotated layers for the twist-angle dependence
and a transition of moiré pattern properties and the bilayer
elastic state.

In the next sections a description of the model (in Sec. II)
and the parametrization through tting to DFT calculations for
the equilibrium states (Sec. III) are presented. This is followed
by an examination of inversion domain boundaries in hBN
(Sec. IV), showing a reduction of grain boundary energies
by 8% to 13.9% as caused by out-of-plane deformations, and
a predicted defect conguration of a g/hBN bilayer with an
inversion boundary in the hBN layer coupled to a domain
wall in the graphene layer. The properties of moiré patterns
in twisted g/hBN bilayers are studied in Sec. V as a function
of misorientation angle, including the distributions of layer
height difference, free-energy density, and volumetric and von
Mises (vM) stresses. Of particular focus is the variation in var-
ious features of the moiré patterns (e.g., the buckling, energy
prole, site occupancy, and stresses) with the bilayer twist
angle, revealing a predicted transition to high-angle properties
(including smeared-out patterns and stress distribution) that
were unknown before. Finally, our conclusions of the results
and summary are given in Sec. VI.

II. MODEL

In the PFC model the free-energy functional F for a
graphene/hBN bilayer can be written as [21]

F = cg(Fg + Fgh )+ chFh, (1)

where cg = 6.58 eV and ch = 2.74 eV set the energy scales
for graphene [14] and hBN [15] layers, respectively. Fg is the
dimensionless free-energy functional for a exible graphene
layer, i.e.,

Fg =

∫

dr


B

2
n2g +
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2

(

∇2 + q2g
)
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where the Fourier component of Cg is given by

Ĉg(k) =

{

k4, k < kmax,

Cmax, k > kmax.
(3)

In the limit of κ = 0, Eq. (2) is the model termed PFC1 in
Ref. [14]. In Eq. (2), ng is proportional to the atomic num-
ber density difference that enters classical density functional
theory in the appropriate limit [23], and hg is the height of
the graphene sheet. The parameters entering Eq. (2) were t
to graphene in Refs. [14,16,21] and areB = −0.15, qg = 1,
Bx = v = 1, τ = 0.8748, κ = 0.114, and the average density
n̄g = 0. Fh is the dimensionless free-energy functional of the
hBN layer, given by [15,17]
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, (4)

where nN and nB are proportional to the atomic number den-
sity differences of the N and B species [17], respectively,
and hh is the height of the hBN layer. The parameters have
been tted to hBN [15], with εN = εB = 0.3, αNB = 0.5,
gN = gB = 0.5, w = u = 0.3, βB = v = 1, and the average
densities n̄N = n̄B = −0.28. The bending energy coefcient
κh was calculated by Guo et al. [24] to be 0.89 eV, which
in dimensionless units corresponds to 0.32 here. The values
of wave-numbers qN and qB are set to a common value qh and
will be determined in the next section. Fgh is the dimensionless
free-energy functional representing the coupling between the
two layers, given by

Fgh = a2

∫

dr (h−h0)2 +
∫

dr(VNnN +VBnB)ng, (5)

where h = hg − hh and

h0 = [1+ ng(αgNnN + αgBnB)]. (6)

This form is similar to that reported by Elder et al. [21], but for
computational efciency, the coupling is among nN, nB, and ng
and not among the differences from the average densities (i.e.,
nN − n̄N etc.) which were simpler for analytic calculations.
The parameters entering Eqs. (5) and (6) (i.e., a2,, αgN, αgB,
VN, andVB) will be discussed in more detail in the next section.
Finally to allow for out-of-plane deformations the Laplacian
entering Eqs. (2) and (4) becomes

∇2 →
(

1− h2x
)

∂xx +
(

1− h2y
)

∂yy − 2hxhy∂xy, (7)

where hi ≡ ∂ih and the h eld entering Eq. (7) is hg in Eq. (2)
and hh in Eq. (4).

As discussed in Refs. [14,15], Eqs. (2) and (4) are in
essence the original PFC model (with some couplings be-
tween two components in the hBN case) that are minimized
by a periodic structure due to the term (∇2 + q2X ), where X is
g, B or N and qX uniquely determines the lattice periodicity
for a given set of parameters. The other polynomial terms in
the free-energy functional are essentially a standard Landau
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expansion that gives rise to two potential wells of differing
height, which breaks the up-down symmetry and leads to
2D triangular patterns as opposed to one-dimensional stripe
patterns. The corresponding coefcients can be connected to
the Fourier components of the expansion of direct correlation
functions in classical DFT [15,17,23]. For convenience qg was
set to unity and as discussed in the next section, qB and qN
were chosen to give the correct graphene/hBN lattice constant
ratio. Details of the choice of the parameters entering Eqs. (2)
and (4) are given in Refs. [14,15], respectively. Details of the
graphene-hBN layer coupling [i.e., Eq. (5)] are discussed in
Ref. [21] as well as in the following section.

The dynamics of the elds are conserved for the densities
and nonconserved for the heights, i.e.,

∂nα

∂t
= ∇2 δF

δnα
, (8)

and

∂hα

∂t
= −

δF

δhα
, (9)

where the subscript α = g, h corresponds to either graphene
(g) or hBN (h). Since the focus of this paper is on equilibrium
states,  was chosen as large as possible to get to equilibrium.
Typically,  ≈ 10–50, although in some cases after initial
relaxation it was possible to increase  up to 10 000. In all
the following calculations periodic boundary conditions are
used.

III. EQUILIBRIUM

For simplicity the wave-numbers qN and qB will be set
identical, i.e., qN = qB = qh in the hBN layer. In the lowest-
order Fourier expansion of the density elds qh is given by

qh = ag/ah, (10)

where ag and ah are the lattice constants of the graphene and
hBN layers, respectively. However, as will be discussed be-
low, qh must be numerically tted since higher-order Fourier
modes will play a non-negligible role in determining the lat-
tice constants. It is useful to rewrite the dimensionless bilayer
free-energy functional F as

F

cg
= Fg + Fgh +

ch

cg
Fh, (11)

to incorporate the ratio ch/cg in numerical simulations. It was
found that if qh were set to

qh = 1.011ag/ah, (12)

the dimensionless lattice constants obtained numerically be-
came

ah = 7.4191, ag = 7.2721. (13)

This then gives ag/ah = 0.9802, which is close to the ratio
2.46/2.51 = 0.9801 between graphene (of lattice constant
2.46 Å) and hBN (2.51 Å).

To ascertain the nature of the equilibrium state, a bilayer
was constructed with 49× 49 unit cells of hBN and 50× 50
of graphene. This turned out to be an unstable initial condition
which spontaneously relaxed to the graphene layer becoming

FIG. 1. Stacking for the graphene/hBN bilayer. The black, blue
and red points correspond to density maxima in ng, nN, and nB,
respectively. y0 is the shift of the graphene lattice with respect to
the hBN lattice, and a is the nearest-neighbor distance.

commensurate (49× 49 unit cells) with the hBN layer. Next
the free-energy density of a commensurate g/hBN bilayer
system was examined as a function of the lattice constant axb of
the bilayer. It was found that the lowest-energy state occurred
when

axb = 7.3548, (14)

or 2.488 Å in dimensional units and is slightly closer to
the hBN lattice constant, i.e., axb − ag = 0.083 and ah − axb =

0.064.
The free-energy density difference F/A (with area A)

and the relative height heq were examined for the bilayer
as a function of stacking position, where F is the difference
with respect to the AB stacking. The stacking is illustrated
in Fig. 1, for densities ng(x, y+ y0) and nB(N)(x, y) such that
when y0 = 0 an AB stacking (the lowest-energy state) occurs.
The parameters as listed in Table I were initially chosen using
the analytic one-mode approximation (which includes only
the lowest-order Fourier coefcients needed to reconstruct the
graphene and hBN crystalline lattices) as described by Elder
et al. [21]. They were obtained by tting to the DFT calcula-
tions of Zhou et al. [22] which considered four different DFT
approaches and determined the one with adiabatic-connection
uctuation-dissipation theorem within the random phase ap-
proximation (ACFDT-RPA) giving the best predictions for
bulk properties; as such these data were used to t the current
PFC model. Their predictions forF/A and equilibriumheq

are shown in Figs. 2 and 3, respectively. Numerical simu-

TABLE I. Summary of model parameters for the graphene/hBN
bilayer PFC model.

Model parameter One-mode approximation Adjusted value

VN 2.06× 10−4 2.25× 10−4

VB 2.64× 10−5 5.20× 10−5

 10.31 10.32
αgN 0.195 0.21
αgB 0.037 0.07
a2 7.31× 10−5 7.31× 10−5
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FIG. 2. Stacking height predictions. The DFT calculations
[adiabatic-connection uctuation-dissipation theorem within the ran-
dom phase approximation (ACFDT-RPA), van der Waals density
functionals (vdW-DF2), meta–generalized gradient approximation
(MGGA-MS2), and Grimme’s density functional dispersion correc-
tion (DFT-D2)] are from Zhou et al. [22].

lations of the PFC model were conducted (which naturally
include all Fourier coefcients) to minimize the free energy
for an AB stacking. This conguration was then used to de-
termine the energy of other stackings as described by Elder
et al. [21]. As with the DFT calculations these were performed
on a single unit cell which does not allow for out-of-plane
deformations. The outcomes of these studies show that results
from the one-mode parameters are close to the DFT calcula-
tions but are slightly different with small deviations for the
height and free-energy density difference between the AB

and AA stackings as seen in Figs. 2 and 3. One particular
feature is that in the one-mode predictions the magnitude
of heq and F/A are very similar for the AB and AA
stackings which, however, are clearly different in all the DFT
calculations. For this reason the parameters were adjusted to
obtain a better t as shown in both Figs. 2 and 3. A summary
of the corresponding dimensionless parameters obtained are
given in Table I. These adjusted parameters are used in all the
subsequent simulations that follow.

IV. INVERSION DOMAIN BOUNDARIES IN HBN AND THE

GRAPHENE/hBN BILAYER

In a prior publication [15] an examination of inversion
boundaries in hBN was performed using a rigid model, i.e.,
using the free-energy functional in Eq. (4) with hh = 0. An
inversion boundary forms when the atomic ordering switches
from BNBNBN to NBNBNB as illustrated in Fig. 4. As drawn
in the gure the boundary contains many homoelemental near-
est neighbors in the middle portion, which would be very

FIG. 3. Stacking energy-density predictions. The DFT calcula-
tions (ACFDT-RPA, vdW-DF2, MGGA-MS2, and DFT-D2) are from
Zhou et al. [22].

unfavorable energetically. Instead the system prefers to form
defected structures with unit rings that contain more or less
than six atoms but avoid having homoelemental B-B or N-N

FIG. 4. Illustration of an unstable inversion domain boundary.
The blue and red dots indicate N and B atoms, respectively, and the
dashed black line highlights the inversion boundary.
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FIG. 5. Inversion boundary energy γ of three lowest-energy in-
version domain boundaries in hBN monolayers. The solid black and
open blue dots above the snapshots correspond to rigid and exible
sheets, respectively, where the energy was minimized with respect
to the dimensions of the simulation box. Note that only one unit
cell was included in the y direction. In the congurations, blue and
yellow maxima correspond to the positions of the N and B atoms,
respectively, and black and white dots have been placed on lattice
locations at the inversion boundaries.

neighboring. In particular, the grain boundary energy per unit
length (γ ) of inversion boundaries that contain 4|8, 8|8, and
4|4 defect structures will be studied, where i| j corresponds
to neighboring defect pairs containing i- and j-membered
atomic rings. In prior work [15] it was found that the 4|8
boundary naturally emerges when the boundary is along the
armchair (AC) direction, whereas the 8|8 results from the
zigzag (ZZ) orientation. There was also a 4|4 boundary along
a ZZ interface that was slightly shifted; hence, strictly speak-
ing the 4|4 is not an inversion boundary due to the shift (see
Fig. 5).

In this section inversion boundaries will be examined for a
exible hBN monolayer and a hBN/graphene bilayer. These
studies will illustrate the impact of allowing out-of-plane de-
formations on a single layer as well as the inuence of the
hBN inversion boundary on the graphene layer in a bilayer
system.

Simulations were rst conducted to reproduce the results
of Taha et al. [15]. A fully periodic box of size Lxx × Lyy,
where Lx and Ly are integers, was used. In these simulations
a box of grid size 3200x × 24y for the AC conguration
and 3200x × 14y for the ZZ conguration were used.
This corresponds to boxes of size 563 × 4.22 Å2 for the
AC and 563 × 2.46 Å2 for ZZ, and corresponds to a single
unit cell in the x direction. It should be noted that conserved
dynamics [i.e., Eq. (8)] were employed, which do not x
the local density whereas ensuring a constant average density
in the whole system. Taha et al. [15] typically found grain

FIG. 6. (a) Comparison of height variation across two 4|8 inver-
sion boundaries in a single monolayer of hBN (black curve) and a
g/hBN bilayer (red lines), where the upper (lower) red line is for
graphene (hBN) in the bilayer. (b) Height difference between the
graphene and hBN layers in the g/hBN bilayer [i.e., the difference
between the red lines in (a)].

boundary energies saturate for system sizes of 500 Å and
larger. For the rigid case (without out-of-plane deformations)
the initial condition was such that half the simulation box was
of conguration NBNB whereas the other half was BNBN
with a uniform density band of width 20x placed at the
boundaries. Simulations were run until the system energy was
minimized. Next,x andywere varied to nd the minimum
energy state (since it is not possible to know the desired width
of the domain walls). In the simulations here (exible hBN
monolayer and hBN/graphene bilayer) the same procedure
was followed. Fixing h = 0 reproduced the results of Taha
et al. [15] for the 2D rigid planar systems.

Following these simulations were conducted for a exi-
ble sheet allowing out-of-plane deformations (i.e., containing
variations in h). A rst test was conducted on a system of
size 563 × 169 Å2 with the initial condition set up by repro-
ducing 40 lattice constants for an AC boundary along the x

direction. The initial height was set to be a uniform random
number in the range of −1/8 < h < 1/8. The simulation re-
sults showed that the height developed into a one-dimensional
pattern perpendicular to the domain wall [see Fig. 6(a)]. This
indicates that one unit cell along the parallel direction of this
pattern was sufcient. Allowing for out-of-plane deformations
lowered the domain-wall energy as shown in Fig. 5. Despite
a modest bending of the sheet [on the order of one atomic
spacing, as seen in, e.g., Fig. 6(a)], a considerable decrease
in system energy was observed (by 8.0%, 13.9%, and 9.4%,
respectively, for 4|8, 8|8, and 4|4 boundaries).

A further simulation was conducted to understand the in-
uence of such boundaries in g/hBN bilayers. The initial
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(a) (b)

(d)(c)

FIG. 9. Sample congurations at misorientation 2θ = 0.66◦ for
(a) smoothed free-energy density difference and the smoothed volu-
metric stress in (b) the combined bilayer, (c) graphene, and (d) hBN
layers, respectively. The scale is in units of eV/nm2 in (a) and eV/Å2

in (b)–(d). The size of the system is the same as that of Fig. 8.

stacking regions and the largest at the AA junctions, followed
by the AB junctions, consistent with Fig. 2. This makes the
pattern slightly nonsymmetric or tilted.

Sample congurations are shown in Fig. 9 for the corre-
sponding free-energy density and the volumetric stress, σV =

σxx + σyy of the whole system and individual layers. These
quantities vary on the length scale of the atomic spacing,
which makes it difcult to observe the overall pattern. For this
reason in the visualization of patterns they were smoothed via
the multiplication of e−α0k

2
in Fourier space, where k is the

wave number, and then an inverse Fourier transform. A value
of α0 = 14 was found to mostly eliminate the small scale
oscillations whereas not washing out the large-scale moiré
patterns and was used for the pattern visualization of all an-
gles. Figure 9 shows that the triple junctions in the pattern are
slightly twisted, particularly, evident in the σV spatial distribu-
tion of individual layers [see panels (c) and (d)] from which it
is also interesting to note that the junctions in two layers twist
in opposite directions. Similar twisted junctions have been
observed in many other strained-layer moiré patterns [25,27–
32]. This twisting occurs to move the junctions to lower the
junction energy, even though this slightly increases the length
of the domain walls connecting the junctions.

For very small angles it is possible to postulate that the sys-
tem free energy would scale as F = 2χ + (3λ/

√
3)γ + A fc,

where χ is the free energy of the junction, γ is the energy per

FIG. 10. Free-energy density difference as a function of 1/λ. The
points correspond to simulation data, and the dashed line corresponds
to a second-order polynomial t to F/A in terms of 1/λ according
to Eq. (17) for 1/λ < 0.10 nm−1.

unit length of the domain wall, fc is the free-energy density of
the commensurate regions, and A = (

√
3/2)λ2 is the area of a

hexagon in the pattern. The factor of 2 in front of χ is due to
the fact that each junction contributes χ/3 to each hexagon,
and there are six junctions per hexagon. The 3λ/

√
3 factor in

front of γ arises from the fact that each domain-wall length

FIG. 11. Free-energy density difference across a domain wall.
The lines from top to bottom correspond to angles 2θ =

0.36◦, 0.51◦, 0.66◦, 0.76◦, 0.89◦, 1.04◦, and 1.23◦.
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FIG. 12. Buckling of the hBN (black line) and graphene (red
line) layers as a function of misorientation. In addition, the difference
of the average distance between layers with respect to the equilibrium
AB-stacking distance (i.e., hh − hg −hAB) is shown in blue. The
lines are guides to the eye.

is λ/
√
3 and that there are six domain walls per hexagon with

each wall contributing to two hexagons. This then implies that
the free-energy density difference scales as

F

A
=

4√
3

χ

λ2
+

2γ

λ
. (17)

The total free-energy density of the bilayer is shown as a
function of the inverse periodicity (1/λ) of the pattern in
Fig. 10, which includes a t to the formF/A = α/λ+ β/λ2

for the small angle data. This gives a prediction for the junc-
tion energy χ = −11.9 eV and domain-wall energy density
γ = 2.71 eV/nm. These results should be taken with a grain
of salt as they assume λ is much larger than the size of the
defects (domain walls and junctions) and that the specic form
of defects does not change with system size. However, it is
clear that there are, in fact, changes in these defects as shown
in Fig. 11, where the free-energy density across a domain wall
can be seen to increase with larger system size.

The change in free-energy density is also accompanied by
a change in the buckling of the individual layers. In Fig. 12
the buckling width



(hα − h̄α )2 (where α refers to the g or
hBN layer) is depicted. The buckling reaches a maximum as
θ → 0 and becomes very small for large angles as has been
observed in other studies [33]. Also shown in this gure is
the average distance between the layers minus the equilibrium
AB-stacking distance. As can be seen this distance is much
smaller than the buckling of the individual layers, indicating

FIG. 13. Smoothed volumetric [(a)–(e)] and von Mises [(f)–(j)] stresses for misorientation angles and pattern wavelengths (2θ , λ) =
(0.36◦, 39.6 nm), (0.76◦, 18.5 nm), (1.64◦, 8.5 nm), (2.96◦, 4.8 nm), and (9.43◦, 1.5 nm) for (a)–(e) or (f)–(j), respectively. The color scale is
in units of eV/nm2. In each instance the system size is

√
3λ× 3λ.
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FIG. 14. Occupancy of AA, AB, and AB sites as a function of
misorientation. The black points correspond to the sum of the AB,
AB, and AA occupancies. The lines are guides to the eye.

that the sheets buckle in sync with each other as has been
observed in graphene/graphene bilayers [21,22,30].

More interesting than the buckling is the change in stress
as a function of misorientation. The picture of well-dened
domain walls and junctions breaks down for large misorien-
tations when the domain walls become comparable with the
size of the moiré pattern. This can be well captured by the

FIG. 15. Average vonMises and volumetric stresses as a function
of misorientation in (a) and (b), respectively.

volumetric (σV) and von Mises [34] (σVM) stresses, where the

latter is given by σVM =

√

σ 2
xx + σ 2

yy − σxxσyy + 3σ 2
xy in 2D

after neglecting the z-direction stress components. The cor-
responding results are shown in Fig. 13. The patterns exhibit
a transition from those with well-dened triple junctions and
domain walls to smeared-out patterns around θ ≈ 0.5◦ − 0.8◦

(with λ = 15–25 nm). As can be seen in Fig. 11 the size of the
domain wall is on the order of 5–10 nm; thus, the transition
occurs roughly when the domain walls begin to overlap. In
this case there are no well-dened AB, AB, and AA regions
as indicated in Fig. 14, which shows the occupancy of these
states as a function of θ . It should be noted that it was not
always possible to determine the state of a given unit cell;
i.e., as shown in this gure the sum of the occupancy does
not add to one. Clearly for small angles the AB states dom-
inate since they are the lowest-energy phases, followed by
the next lowest-energy state AB and nally by the AA state
as expected. This also implies that for small angles the AA
junctions are slightly smaller than the AB junctions.

The transition from small- to large-angle patterns can be
identied from the average von Mises and volumetric stresses
as given in Fig. 15. Both become larger with the increase in
misorientation angle, then reach a peak before slowly decreas-
ing. The peak in σVM occurs at 2θ = 1.03◦ and in σV appears
at 2θ = 1.76◦, consistent with the observation in spatial pro-
les of stress distribution in Fig. 13 which show the transition
between two different types of moiré patterns. However, it
is interesting to note the differences between the patterns. In
the volumetric case the stress is largest in the commensurate
regions and smallest at the domain walls. This is the exact
opposite of the von Mises stress, which is most apparent at
small misorientations as seen in Fig. 13. The spatial difference
between the two stresses is likely due to the fact that von
Mises stress incorporates effects of distortion and shearing,
and, thus, would be large at domain walls, while volumetric
(hydrostatic) stress accounts for the effect of volume change
but not distortion or shear, and, thus, would be small at domain
boundaries but large in the domain bulk subjected to lattice
compression or tension. In addition, in the volumetric case the
stress increases in the commensurate regions with increasing
angle until the transition to the smeared-out state occurs. In
contrast, the von Mises stress in the commensurate regions
does not vary as much with the change of misorientation. It
appears that as the angle decreases from large values, domain
walls emerge, which increases the von Mises stress until the
walls are fully formed. When the angle is further reduced,
the total von Mises stress decreases as the relative area of
the domain wall compared to well-separated commensurate
region becomes smaller. This results in a maximum of average
stress around a transition angle as shown in Fig. 15. This
change in von Mises stress distribution indicates the change
in mechanical property (e.g., yielding) of the bilayer across
the transition of the moiré pattern.

As a nal note it is interesting to contrast these results with
the moiré patterns that appear in graphene/graphene bilayers.
The main difference is that in a graphene/graphene bilayer
the AB stacking would have an energy identical to the AB
stacking, i.e., in such a bilayer no AB junction would exist.
This completely changes the symmetry of the domain wall

024003-9
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FIG. 16. Comparison of height differences at misorientations 2θ = 1.04◦ in (a) and (b) and 2θ = 3.74◦ in (c) and (d). (a) and (c) correspond
to the graphene/hBN bilayer and (b) and (d) to the graphene/graphene bilayer. The dotted black line is a guide to the eye to illustrate the
triangular and hexagonal ordering of the commensurate regions in the graphene/hBN and graphene/graphene bilayers, respectively. In (a) and
(c) the scale varies from 3.25 Å (yellow/light) to 3.6 Å (blue/dark) and in (b) and (d) from 3.25 to 3.55 Å. The system sizes are (a) 23.5 ×

40.7 nm2, (b) 23.2 × 40.2 nm2, (c) 6.5 × 11.3 nm2, and (d) 6.4 × 11.2 nm2.

and defect structures from triangular in graphene/graphene
bilayers to a honeycomb shape in g/hBN bilayers. A com-
parison of the two different systems is shown in Fig. 16
for two different misorientations. The commensurate regions
(with lowest height differences, appearing yellow/light in the
gure) of these two types of bilayers have inverse symmetry
with respect to each other, i.e., a triangular pattern forms in
the g/hBN bilayer and honeycomb in the graphene/graphene
bilayer.

VI. SUMMARY AND CONCLUSIONS

In this paper a 2D PFC model incorporating out-of-plane
deformations was examined for hBN and graphene/hBN
bilayers. In the bilayer case, the model was parametrized
numerically to closely match the ACFCT-RPA DFT calcula-
tions for stacking energies and height differences between the
graphene and the hBN layers obtained by Zhou et al. [22],
which improves the previous analytic one-mode calculations
of Ref. [21]. It was shown that out-of-plane deformations lead
to signicantly lower inversion boundary energies in hBN on
the order of ≈8%–14%. The boundary in the g/hBN system
results in the formation of a domain wallwith local distortions
in the graphene lattice. This interesting defect conguration in
the g/hBN bilayer gives a domain-wall energy of γ3d = 0.142
eV/Å2 as predicted from this PFC calculation.

Numerical simulations were conducted to examine the
moiré patterns that form when the bilayers are rotated with
respect to each other, showing regions of different types

of stacking positions between the layers. For small rota-
tions the patterns consisted of well-dened hexagon-shaped
domain walls with triple junctions twisting in opposite direc-
tions in graphene versus hBN layers. Results of the system
free-energy density, layer height difference, buckling, and
smoothed volumetric and von Mises stresses have been ob-
tained for a range of bilayer misorientation angles (and moiré
pattern wavelengths) that go beyond previous studies. An
interesting phenomenon observed is the breakdown of well-
distinguished domain-wall structures in the moiré pattern at
large enough misorientation when the domain-wall width and
the pattern size are of compatible scale, leading to the tran-
sition to a different type of smeared-out moiré pattern with
overlapping domain boundaries. The corresponding elastic
variations of these bilayer systems, in terms of volumetric and
von Mises stresses, have been identied, serving as a useful
way to characterize the moiré pattern, transition, and the me-
chanical property of this type of vertical heterostructures.
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