
A Competitive Algorithm for Throughput

Maximization on Identical Machines

Benjamin Moseley?1, Kirk Pruhs??2[0000−0001−5680−1753], Clifford Stein? ? ?3,
and Rudy Zhou1

1 Tepper School of Business, Carnegie Mellon University
{moseleyb,rbz}@andrew.cmu.edu https://www.andrew.cmu.edu/user/moseleyb/

https://rudyzhou.github.io/
2 Computer Science Department, University of Pittsburgh kirk@cs.pitt.edu

https://people.cs.pitt.edu/~kirk/
3 Industrial Engineering and Operations Research, Columbia University

cliff@ieor.columbia.edu

Abstract. This paper considers the basic problem of scheduling jobs
online with preemption to maximize the number of jobs completed by
their deadline on m identical machines. The main result is an O(1) com-
petitive deterministic algorithm for any number of machines m > 1.

Keywords: Scheduling · Competitive Analysis· Online Algorithm

1 Introduction

We consider the basic problem of preemptively scheduling jobs that arrive online
with sizes and deadlines on m identical machines to maximize the number of jobs
that complete by their deadline.

Definition 1 (Throughput Maximization). Let J be a collection of jobs
such that each j ∈ J has a release time rj, a processing time (or size) xj, and a
deadline dj. The jobs arrive online at their release times, at which the scheduler
becomes aware of job j and its xj and dj.

At each moment of time, the scheduler can specify up to m released jobs to
run at this time, and the remaining processing time of the jobs that are run is
decreased at a unit rate (so we assume that the online scheduler is allowed to
produce a migratory schedule.) A job is completed if its remaining processing
time drops to zero by the deadline of that job. The objective is to maximize the
number completed jobs.

? B. Moseley and R. Zhou were supported in part by NSF grants CCF-1824303, CCF-
1845146, CCF-1733873 and CMMI-1938909. Benjamin Moseley was additionally
supported in part by a Google Research Award, an Infor Research Award, and a
Carnegie Bosch Junior Faculty Chair.

?? Supported in part by NSF grants CCF-1907673, CCF-2036077 and an IBM Faculty
Award.

? ? ? Research partly supported by NSF Grants CCF-1714818 and CCF-1822809.

2 B. Moseley et al.

A key concept in designing algorithms for this problem is the laxity of a job.
The laxity of a job j is `j = (dj − rj) − xj , which is the maximum amount of
time we can not run j and still possibly complete it.

We measure the performance of our algorithm by the competitive ratio, which
is the maximum over all instances of the ratio of the objective value of our
algorithm to the objective value of the optimal offline schedule that is aware of
all jobs in advance.

This problem is well understood for the m = 1 machine case. No O(1)-
competitive deterministic algorithm is possible [2], but there is a randomized
algorithm that is O(1)-competitive against an oblivious adversary [9], and there
is a scalable (O(1 + ε)-speed O(1/ε)-competitive) deterministic algorithm [7].
The scalability result in [7] was extended to the case of m > 1 machines in [11].

Whether an O(1)-competitive algorithm exists for m > 1 machines has been
open for twenty years. Previous results for the multiple machines setting require
resource augmentation or assume that all jobs have high laxity [11,5].

The main issue issue in removing these assumptions is how to determine
which machine to assign a job to. If an online algorithm could determine which
machine each job was assigned to in Opt, we could obtain an O(1)-competitive
algorithm for m > 1 machines by a relatively straight-forward adaptation of
the results from [9]. However, if the online algorithm ends up assigning some
jobs to different machines than Opt, then comparing the number of completed
jobs is challenging. Further, if jobs have small laxity, then the algorithm can be
severely penalized for small mistakes in this assignment. One way to view the
speed augmentation (or high laxity assumption) analyses in [11,5] is that the
speed augmentation assumption allows one to avoid having to address this issue
in the analyses.

1.1 Our Results

Our main result is an O(1)-competitive deterministic algorithm for Throughput
Maximization on m > 1 machines.

Theorem 1. For all m > 1, there exists a deterministic O(1)-competitive algo-
rithm for Throughput Maximization on m machines.

We summarize our results and prior work in Table 1. Interestingly, notice that
on a single machine there is no constant competitive deterministic algorithm, yet
a randomized algorithm exists with constant competitive ratio. Our work shows
that once more than one machine is considered, then determinism is sufficient
to get a O(1)-competitive online algorithm.

1.2 Scheduling Policies

We give some basic definitions and notations about scheduling policies.
A job j is feasible at time t (with respect to some schedule) if it can still be

feasibly completed, so xj(t) > 0 and t+xj(t) ≤ dj , where xj(t) is the remaining
processing time of job j at time t (with respect to the same schedule.)

Throughput Maximization on Identical Machines 3

Deterministic Randomized
Speed
Augmentation

m = 1 ω(1) O(1) O(1 + ε)-speed O(1/ε)-competitive
[2] [9] [7]

m > 1 O(1) O(1) O(1 + ε)-speed O(1/ε)-competitive
[This paper] [This paper] [11]

Table 1. Competitiveness Results

Then a schedule S of jobs J is defined by a map from time/machine pairs
(t, i) to a feasible job j that is run on machine i at time t, with the constraint
that no job can be run one two different machines at the same time. . We conflate
S with the scheduling policy as well as the set of jobs completed by the schedule.
Thus, the objective value achieved by this schedule is |S|.

A schedule is non-migratory if for every job j there exists a machine i such
that if j is run at time t then j is run on machine i. Otherwise the schedule is
migratory.

If S is a scheduling algorithm, then S(J,m) denotes the schedule that results
from running S on instance J on m machines. Similarly, Opt(J,m) denotes
the optimal schedule on instance J on m machines. We will sometimes omit
the J and/or the m if they are clear from context. Sometimes we will abuse
notation and let Opt denote a nearly-optimal schedule that additionally has
some desirable structural property.

1.3 Algorithms and Technical Overview

A simple consequence of the results in [8] and [9] is an O(1)-competitive algo-
rithm in the case that m = O(1). Thus we concentrate on the case that m is
large. Also note that since there is an O(1)-approximate non-migratory sched-
ule [8], changing the number of machines by an O(1) factor does not change the
optimal objective value by more than an O(1) factor. This is because we can
always take an optimal non-migratory schedule on m machines and create a new
schedule on m/c machines whose objective value decreases by at most a factor
of c, by keeping the m/c machines that complete the most jobs.

These observations about the structure of near-optimal schedules allow us
to design a O(1)-competitive algorithm that is a combination of various de-
terministic algorithms. In particular, on instance J our algorithm, FinalAlg

will run a deterministic algorithm LMNY on m/3 machines on the subinstance
Jhi = {j ∈ J | `j > xj} of high laxity jobs, a deterministic algorithm SRPT

on m/3 machines on the subinstance Jlo = {j ∈ J | `j ≤ xj} of low laxity jobs,
and a deterministic algorithm MLax on m/3 machines on the subinstance Jlo
of low laxity jobs. Note that we run SRPT and MLax on the same jobs. To
achieve this, if both algorithms decide to run the same job j, then the algorithm
in which j has shorter remaining processing time actually runs job j, and the
other simulates running j.

4 B. Moseley et al.

We will eventually show that for all instances, at least one of these three
algorithms is O(1)-competitive, from which our main result will follow. Roughly,
each of the three algorithms is responsible for a different part of Opt.

Our main theorem about FinalAlg is the following:

Theorem 2. For any m ≥ 48, FinalAlg is a O(1)-competitive deterministic
algorithm for Throughput Maximization on m machines.

We now discuss these three component algorithms of FinalAlg.

LMNY The algorithm LMNY is the algorithm from [11] with the following
guarantee.

Lemma 3. [11] For any number of machines m, and any job instance J , LMNY

is an O(1)-competitive deterministic algorithm on the instance Jhi.

SRPT The algorithm SRPT is a variation of the standard shortest remaining
processing time algorithm:

Definition 2 (SRPT). At each time, run the m feasible jobs with shortest
remaining processing time. If there are less than m feasible jobs, then all feasible
jobs are run.

We will show that SRPT is competitive with the low laxity jobs in that are
not preempted in Opt.

MLax The final, most challenging, component algorithm of FinalAlg isMLax,
which intuitively we want to be competitive on low-laxity jobs in Opt that are
preempted.

To better understand the challenge of achieving this, consider m = 1 and an
instance of disagreeable jobs, which means that jobs with an earlier release time
have a later deadline. Further, suppose all jobs but one in Opt is preempted and
completed at a later time.

To be competitive,MLaxmust preempt almost all the jobs that it completes,
but cannot afford to abandon too many jobs that it preempts. Because the jobs
have low laxity, this can be challenging as it can only preempt each job for a
small amount of time, and its hard to know which of the many options is the
“right” job to preempt for. This issue was resolved in [9] for the case of m = 1
machine, but the issue gets more challenging when m > 1, because we also have
to choose the “right” machine to assign a job.

We now describe the algorithm MLax. Let α = O(1) be a sufficiently large
constant (chosen later.) MLax maintains m stacks (last-in-first-out data struc-
tures) of jobs (one per machine), H1, . . . , Hm. The stacks are initially empty.
At all times, MLax runs the top job of stack Hi on machine i. We define the
frontier F to be the set consisting of the top job of each stack (i.e. all currently
running jobs.) It remains to describe how the Hi’s are updated.

There are two types of events that cause MLax to update the Hi’s: reaching
a job’s pseudo-release time (defined below) or completing a job.

Throughput Maximization on Identical Machines 5

Definition 3 (Viable Jobs and Pseudo-Release Time). The pseudo-release

time (if it exists) r̃j of job j is the earliest time in [rj , rj +
`j
2] such that there

are at least 7
8m jobs j′ on the frontier satisfying αxj′ ≥ `j.

We say a job j is viable if r̃j exists and non-viable otherwise.

At job j’s pseudo-release time (note r̃j can be determined online by MLax),
MLax does the following:

a) If there exists a stack whose top job j′ satisfies αxj ≤ `j′ , then push j onto
any such stack.

b) Else if there exist at least 3
4m stacks whose second-top job j′′ satisfies αxj ≤

`j′′ and further some such stack has top job j′ satisfying `j > `j′ , then on
such a stack with minimum `j′ , replace its top job j′ by j.

While the replacement operation in step b can be implemented as a pop and
then push, we view it as a separate operation for analysis purposes. To handle
corner cases in these descriptions, one can assume that there is a job with infinite
size/laxity on the bottom of each Hi.

When MLax completes a job j that was on stack Hi, MLax does the fol-
lowing:

c) Pop j off of stack Hi.
d) Keep popping Hi until the top job of Hi is feasible.

Analysis Sketch There are three main steps in proving Theorem 2 to show
FinalAlg is O(1)-competitive:

– In Section 2, we show how to modify the optimal schedule to obtain certain
structural properties that facilitate the comparison with SRPT and MLax.

– In Section 3, we show that SRPT is competitive with the low-laxity, non-
viable jobs. Intuitively, the jobs that MLax is running that prevent a job
j from becoming viable are so much smaller than job j, and they provide a
witness that SRPT must also be working on jobs much smaller than j.

– In Section 4, we show that SRPT and MLax together are competitive with
the low-laxity, viable jobs. First, we show that SRPT is competitive with
the number of non-preempted jobs in Opt. We then essentially show that
MLax is competitive with the number of preempted jobs in Opt. The key
component is the design of MLax is the condition that a job j won’t replace
a job on the frontier unless at there are at least 3

4m stacks whose second-
top job j′′ satisfies αxj ≤ `j′′ . This is the condition that intuitively most
differentiates the MLax from m copies of the Lax algorithm in [9]. This also
is the condition that allows us to surmount the issue of potentially assigning
a job to a “wrong” processor. Jobs that satisfy this condition are highly
flexible about where they can go on the frontier. Morally, our analysis shows
that a constant fraction of the jobs that Opt preempts and completes must
be such flexible jobs.

We combine these results in Section 5 to complete the analysis of FinalAlg.

6 B. Moseley et al.

1.4 Related Work

There is a line of papers that consider a dual version of the problem, where
there is a constraint that all jobs must be completed by their deadline, and the
objective is to minimize the number of machines used [12,4,1,6]. The current
best known bound on the competitive ratio for this version is O(log logm) from
[6].

The speed augmentation results in [7,11] for throughput can be generalized
to weighted throughput, where there a profit for each job, and the objective
is to maximize the aggregate profit of jobs completed by their deadline. But
without speed augmentation, O(1)-approximation is not possible for weighted
throughput for any m, even allowing randomization [10].

There is also a line of papers that consider variations on online throughput
scheduling in which the online scheduler has to commit to completing jobs at
some point in time, with there being different variations of when commitment
is required [11,5,3]. For example, [5] showed that there is a scalable algorithm
for online throughput maximization that commits to finishing every job that it
begins executing.

2 Structure of Optimal Schedule

The goal of this section is to introduce the key properties of (near-)optimal
scheduling policies that we will use in our analysis.

For completeness, we show that by losing a constant factor in the competi-
tive ratio, we can use a constant factor fewer machines than Opt. This justifies
FinalAlg running each of three algorithms on m

3 machines.

Lemma 4. For any collection of jobs J , number of machines m, and c > 1, we
have |Opt(J, m

c)| = Ω(1c |Opt(J,m)|).

Proof. It is shown in [8] that for any schedule on m machines, there exists a
non-migratory schedule on at most 6m machines that completes the same jobs.
Applied to Opt(J,m), we obtain a non-migratory schedule S on 6m machines
with |S| = |Opt(J,m)|. Keeping the m

c machines that complete the most jobs in
S gives a non-migratory schedule on m

c machines that completes at least 1
6c |S|

jobs.

A non-migratory schedule on m machines can be expressed as m schedules,
each on a single machine and a separate set of jobs. To characterize these single
machine schedules, we introduce the concept of forest schedules. Let S be any
schedule. For any job j, we let fj(S) and cj(S) denote the first and last times
that S runs the job j, respectively. Note that S does not necessarily complete j
at time cj(S).

Definition 4 (Forest Schedule). We say a single-machine schedule S is a
forest schedule if for all jobs j, j′ such that fj(S) < fj′(S), then S does not run
j during the time interval (fj′(S), cj′(S)) (so the (fj(S), cj(S))-intervals form a

Throughput Maximization on Identical Machines 7

laminar family.) Then S naturally defines a forest (in the graph-theoretic sense),
where the nodes are jobs run by S and the descendants of a job j are the the jobs
that are first run in the time interval (fj(S), cj(S)).

Then a non-migratory m-machine schedule is a forest schedule if all of its
single-machine schedules are forest schedules.

With these definitions, we are ready to construct the near-optimal policies
that we will compare SRPT and MLax to:

Lemma 5. Let J be a set of jobs satisfying `j ≤ xj for all j ∈ J . Then for

any times r̂j ∈ [rj , rj +
`j
2] and constant α ≥ 1, there exist non-migratory forest

schedules S and S ′ on the jobs J such that:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = r̂j.
4. If job j′ is a descendant of job j in S, then αxj′ ≤ `j
5. |{leaves of S ′}|+ |S| = Ω(|Opt(J)|).

Proof. We modify the optimal schedule Opt(J) to obtain the desired properties.
First, we may assume that Opt(J) is non-migratory by losing a constant factor
(Lemma 4.) Thus, it suffices to prove the lemma for a single machine schedule,
because we can apply the lemma to each of the single-machine schedules in the
non-migratory schedule Opt(J). The proof for the single-machine case follows
from the modifications given in Lemmas 22 and 23 of [9]. We note that [9]

only show how to ensure fj(S) = tj for a particular tj ∈ [rj , rj +
`j
2], but it is

straightforward to verify that the same proof holds for any tj ∈ [rj , rj +
`j
2].

Morally, the schedule S captures the jobs in Opt that are preempted and S ′

captures the jobs in Opt that are not preempted (i.e. the leaves in the forest
schedule.)

3 SRPT is Competitive with Non-Viable Jobs

The main result of this section is that SRPT is competitive with the number of
non-viable, low-laxity jobs of the optimal schedule (Theorem 6.) We recall that

a job j is non-viable if for every time in [rj , rj +
`j
2], there are at least 1

8m jobs
j′ on the frontier of MLax satisfying αxj′ < `j .

Theorem 6. Let J be a set of jobs satisfying `j ≤ xj for all j ∈ J . Then for α =
O(1) sufficiently large and number of machines m ≥ 16, we have |SRPT(J)| =
Ω(|Opt(Jnv)|), where Jnv is the set of non-viable jobs with respect to MLax(J).

In the remainder of this section, we prove Theorem 6. The main idea of the
proof is that for any non-viable job j, MLax is running many jobs that are much

8 B. Moseley et al.

smaller than j (by at least an α-factor.) These jobs give a witness that SRPT

must be working on these jobs or even smaller ones.
We begin with a lemma stating that SRPT is competitive with the leaves of

any forest schedule. Intuitively this follows because whenever some schedule is
running a feasible job, then SRPT either runs the same job or a job with shorter
remaining processing time. We will use this lemma to handle the non-viable jobs
that are not preempted.

Lemma 7. Let J be any set of jobs and S be any forest schedule on m machines
and jobs J ′ ⊂ J that only runs feasible jobs. Let L be the set of leaves of S. Then
|SRPT(J)| ≥ 1

2 |L|

Proof. It suffices to show that |L\SRPT(J)| ≤ |SRPT(J)|. The main property
of SRPT gives:

Proposition 8. Consider any leaf ` ∈ L\SRPT(J). Suppose S starts running `
at time t. Then SRPT completes m jobs in the time interval [f`(S), f`(S)+x`].

Proof. At time f`(S) in SRPT (J), job ` has remaining processing time at
most x` and is feasible by assumption. Because ` /∈ SRPT(J), there must exist
a first time t′ ∈ [f`(S), f`(S) + x`] where ` is not run by SRPT(J). At this
time, SRPT(J) must be running m jobs with remaining processing time at
most x` − (t′ − f`(S)). In particular, SRPT(J) must complete m jobs by time
f`(S) + x`.

Using the proposition, we give a charging scheme: Each job ` ∈ L\SRPT(J)
begins with 1 credit. By the proposition, we can find m jobs that SRPT(J)
completes in the time interval [f`(S), f`(S) + x`]. Then ` transfers 1

m credits
each to m such jobs in SRPT.

It remains to show that each j ∈ SRPT(J) gets at most 1 credit. Note that
j can only get credits from leaves ` such that cj(SRPT) ∈ [f`(S), f`(S) + x`].
There are at most m such intervals (at most one per machine), because we only
consider leaves, whose intervals are disjoint if there are on the same machine.

Now we are ready to prove Theorem 6.

Proof of Theorem 6. Let S,S ′ be the schedules guaranteed by Lemma 5 on the
set of jobs Jnv with r̂j = rj for all j ∈ Jnv. We re-state the properties of these
schedules for convenience:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = rj .
4. If job j′ is a descendant of job j in S, then αxj′ ≤ `j
5. |{leaves of S ′}|+ |S| = Ω(|Opt(Jnv)|).

By Lemma 7, we have |SRPT(J)| = Ω(|{leaves of S ′}|). Thus, it remains to
show the following:

Throughput Maximization on Identical Machines 9

Lemma 9. For α = O(1) sufficiently large, |SRPT(J)| = Ω(|S|)

Proof. We first show that for the majority of jobs j in S’s forest, we run j itself
on some machine for at least a constant fraction of the time interval [rj , rj +

`j
2].

Proposition 10. For at least half of the nodes j in S’s forest, there exists a
closed interval Ij ⊂ [rj , rj +

`j
2] of length at least

`j
8 such that S runs j on some

machine during Ij.

Proof. We say a node j is a non-progenitor if j has less than 2z descendants at
depth z from j for all z ≥ 1. Because S satisfies (1), at least half of the nodes in
S’s forest are non-progenitors. This follows from Lemma 7 in [9].

Now consider any non-progenitor node j. Because S is a forest, S is only
running j or its descendants on some machine in times [rj , rj +

`j
2]. Further,

because j is a non-progenitor and S satisfies (1) and (4), we can partition [rj , rj+
`j
2] = [rj , a]∪ (a, b)∪ [b, rj+

`j
2] such that [rj , a] and [b, rj+

`j
2] are times where S

is running j, and (a, b) are times where S is running descendants of j. By taking

α sufficiently large, we have |(a, b)| ≤
`j
4 . This follows from Lemma 6 in [9]. It

follows, at least one of [rj , a] or [b, rj +
`j
2] has length at least

`j
8 . This gives the

desired Ij .

Let S ′′ ⊂ S be the collection of jobs guaranteed by the proposition, so |S ′′| ≥
1
2 |S|. It suffices to show that |SRPT(J)| = Ω(|S ′′|). Thus, we argue about
MLax(J) in the interval Ij (guaranteed by Proposition 10) for some j ∈ S ′′.

Proposition 11. Consider any job j ∈ S ′′. For sufficiently large α = O(1),
MLax(J) starts running at least m

16 jobs during Ij such that each such job j′

satisfies [fj′(MLax(J)), fj′(MLax(J)) + xj′] ⊂ Ij.

Proof. We let I ′ be the prefix of Ij with length exactly
|Ij |
2 ≥

`j
16 . Recall that

j ∈ S ′′ is non-viable. Thus, because I ′ ⊂ Ij ⊂ [rj , rj +
`j
2], MLax(J) is always

running at least 1
8m jobs j′ satisfying αxj′ < `j during I ′.

We define J ′ to be the set of jobs that MLax(J) runs during I ′ satisfying
αxj′ < `j . We further partition J ′ into size classes, J ′ =

⋃
z∈N

J ′
z such that J ′

z

consists of the jobs in J ′ with size in (
`j

αz+1 ,
`j
αz].

For each machine i, we let T i
z be the times in I ′ that MLax(J) is running

a job from J ′
z on machine i. Note that each T i

z is the union of finitely many
intervals. Then becauseMLax(J) is always running at least 1

8m jobs j′ satisfying
αxj′ ≤ `j during I ′, we have:

∑

z∈N

∑

i∈[m]

|T i
z | ≥

m

8
|I ′|.

By averaging, there exists some z with
∑

i∈[m]|T
i
z | ≥

m
8

|I′|
2z+1 .

Fix such a z. It suffices to show that there exist at least m
16 jobs in J ′

z that

Lax starts in I ′. This is because every job j′ ∈ J ′
z has size at most

`j
αz and

|Ij \ I
′| ≥

`j
16 . Taking α ≥ 16 gives that fj′(Lax) + xj′ ∈ Ij .

10 B. Moseley et al.

Note that every job in J ′
z has size within a α-factor of each other, so there

can be at most one such job per stack at any time. This implies that there are
at most m jobs in J ′

z that don’t start in I ′ (i.e. the start before I ′.) These jobs

contribute at most m
`j
αz to

∑
i∈[m]|T

i
z |. Choosing α large enough, we can ensure

that the jobs in J ′
z that start in I ′ contribute at least m

16
`j
αz to

∑
i∈[m]|T

i
z |. To

conclude, we note that each job in J ′
z that starts in I ′ contributes at most

`j
αz

to the same sum, so there must exist at least m
16 such jobs.

Using the above proposition, we define a charging scheme to show that
|SRPT(J)| = Ω(|S ′′|). Each job j ∈ S ′′ begins with 1 credit. By the propo-
sition, we can find m

16 jobs j′ such that [fj′(MLax(J)), fj′(MLax(J)) + xj′] is
contained in the time when S runs j. There are two cases to consider. If all m

16
jobs we find are contained in SRPT(J), then we transfer 16

m credits from j to
each of the m

16 -many jobs. Note that here we are using m ≥ 16. Otherwise, there
exists some such j′ that is not in SRPT(J). Then SRPT(J) will complete at
least m jobs in [fj′(MLax(J)), fj′(MLax(J))+xj′]. We transfer 1

m credits from
j to each of the m-many jobs. To conclude, we note that each j′ ∈ SRPT(J)
gets O(1

m) credits from at most O(m) jobs in S ′′.

4 SRPT and MLax are Competitive with Viable Jobs

We have shown that SRPT is competitive with the non-viable, low-laxity jobs.
Thus, it remains to account for the viable, low-laxity jobs. We recall that a job j
is viable if there exists a time in [rj , rj +

`j
2] such that there are at least 7

8m jobs
j′ on the frontier satisfying αxj′ ≥ `j . The first such time is the pseudo-release
time, r̃j of job j. For these jobs, we show that SRPT and MLax together are
competitive with the viable, low-laxity jobs of the optimal schedule.

Theorem 12. Let J be a set of jobs satisfying `j ≤ xj for all j ∈ J . Then for α =
O(1) sufficiently large and number of machines m ≥ 8, we have |SRPT(J)| +
|MLax(J)| = Ω(|Opt(Jv)|), where Jv is the set of viable jobs with respect to
MLax(J).

Proof of Theorem 12. Let S,S ′ be the schedules guaranteed by Lemma 5 on the
set of jobs Jv with r̂j = r̃j for all j ∈ Jv. We re-state the properties of these
schedules for convenience:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = r̃j .
4. If job j′ is a descendant of job j in S, then αxj′ ≤ `j
5. |{leaves of S ′}|+ |S| = Ω(|Opt(Jv)|).

Throughput Maximization on Identical Machines 11

By Lemma 7, we have |SRPT(J)| = Ω(|{leaves of S ′}|). Thus, it suffices to show
that |SRPT(J)| + |MLax(J)| = Ω(|S|). We do this with two lemmas, whose
proofs we defer until later. First, we show that MLax pushes (not necessarily
completes) many jobs. In particular, we show:

Lemma 13. |SRPT(J)|+#(pushes of MLax(J)) = Ω(|S|)

The main idea to prove Lemma 13 is to consider sequences of preemptions in
Opt. In particular, suppose Opt preempts job a for b and then b for c. Roughly,
we use viability to show that the only way MLax doesn’t push any of these jobs
is if in between their pseudo-release times, MLax pushes Ω(m) jobs.

Second, we show that the pushes of MLax give a witness that SRPT and
MLax together actually complete many jobs.

Lemma 14. |SRPT(J)|+ |MLax(J)| = Ω(#(pushes of MLax(J))).

The main idea to prove Lemma 14 is to upper-bound the number of jobs
that MLax pops because they are infeasible (all other pushes lead to completed
jobs.) The reason MLax pops a job j for being infeasible is because while j was

on a stack, MLax spent at least
`j
2 units of time running jobs higher than j on

j’s stack. Either those jobs are completed by MLax, or MLax must have have
done many pushes or replacements instead. We show that the replacements give
a witness that SRPT must complete many jobs.

Combining these two lemmas completes the proof of Theorem 12.

Now we go back and prove Lemma 13 and Lemma 14.

4.1 Proof of Lemma 13

Recall that S is a forest schedule. We say the first child of a job j is the child
j′ of j with the earliest starting time fj′(S). In other words, if j is not a leaf,
then its first child is the first job that pre-empts j. We first focus on a sequence
of first children in S.

Lemma 15. Let a, b, c ∈ S be jobs such that b is the first child of a and c is
the first child of b. Then MLax(J) does at least one of the following during the
time interval [r̃a, r̃c]:

– Push at least m
8 jobs

– Push job b
– Push a job on top of b when b is on the frontier
– Push c

Proof. By the properties of S, we have r̃a < r̃b < r̃c. It suffices to show that if
during [r̃a, r̃c], MLax(J) pushes strictly fewer than m

8 jobs, MLax(J) does not
push b, and MLax(J) does not push any job on top of b if b is on the frontier,
then MLax(J) pushes c.

First, because MLax(J) pushes strictly fewer than m
8 jobs during [r̃a, r̃c],

there exists at least 7
8m stacks that receive no push during this interval. We

12 B. Moseley et al.

call such stacks stable. The key property of stable stacks is that the laxities of
their top- and second-top jobs never decrease during this interval, because these
stacks are only changed by replacements and pops.

Now consider time r̃a. By definition of pseudo-release time, at this time, there
exist at least 7

8m stacks whose top job j′ satisfies αxj′ ≥ `j . Further, for any
such stack, let j′′ be its second-top job. Then because b is a descendant of a in
S, we have:

αxb ≤ `a ≤ αxj′ ≤ `j′′ .

It follows, there exist at least 3
4m stable stacks whose second-top job j′′ satisfies

αxb ≤ `j′′ for the entirety of [r̃a, r̃c]. We say such stacks are b-stable.
Now consider time r̃b. We may assume b is not pushed at this time. However,

there exist at least 3
4m that are b-stable. Thus, if we do not replace the top of

some stack with b, it must be the case that the top job j′ of every b-stable stack
satisfies `′j ≥ `b. Because these stacks are stable, their laxities only increase by
time r̃c, so MLax(J) will push c on some stack at that time.

Otherwise, suppose we replace the top job of some stack with b. In particular,
b is on the frontier at r̃b. We may assume that no job is pushed directly on top
of b. If b remains on the frontier by time r̃c, then MLax(J) will push c, because
αxc ≤ `b. The remaining case is if b leaves the frontier in some time in [r̃b, r̃c].
We claim that it cannot be the case that b is popped, because by (2), S could
not complete b by time r̃c, so MLax(J) cannot as well. Thus, it must be the
case that b is replaced by some job, say d at time r̃d. At this time, there exist
at least 3

4m stacks whose second-top job j′′ satisfies αxd ≤ `j′′ . It follows, there
exist at least m

2 b-stable stacks whose second-top job j′′ satisfies αxd ≤ `j′′ at
time r̃d. Note that because m ≥ 8, there exists at least one such stack, say i,
that is not b’s stack. In particular, because b’s stack has minimum laxity, it must
be the case that the top job j′ of stack i satisfies `j′ ≥ `b. Finally, because stack
i is stable, at time r̃c we will push c.

Now using the above lemma, we give a charging scheme to prove Lemma 13.
First note that by Lemma 7, we have |SRPT(J)| = Ω(#(leaves of S)). Thus, it
suffices to give a charging scheme such that each job a ∈ S begins with 1 credit,
and charges it to leaves of S and completions of MLax(J) so that each job is
charged at most O(1) credits. Each job a ∈ S distributes its 1 credit as follows:

– (Leaf Transfer) If a is a leaf or parent of a leaf of S, say `, then a charges `
for 1 credit.

Else let b be the first child of a and c the first child of b in S

– (Push Transfer) If MLax(J) pushes b or c, then a charges 1 unit to b or c,
respectively.

– (Interior Transfer) Else if job b is on the frontier, but another job, say d, is
pushed on top of b, then a charges 1 unit to d.

– (m-Push Transfer) Otherwise, by Lemma 15, MLax(J) must push at least
m
8 jobs during [r̃a, r̃c]. In this case, a charges 8

m units to each of these m
8

such jobs.

Throughput Maximization on Identical Machines 13

This completes the description of the charging scheme. It remains to show that
each job is charged at most O(1) credits. Each job receives at most 2 credits
due to Leaf Transfers and at most 2 credits due to Push Transfers and Interior
Transfers. As each job is in at most 3m intervals of the form [r̃a, r̃c], each job is
charged O(1) from m-Push Transfers.

4.2 Proof of Lemma 14

Recall in MLax, there are two types of pops: a job is popped if it is com-
pleted, and then we continue popping until the top job of that stack is fea-
sible. We call the former completion pops and the later infeasible pops. Note
that it suffices to prove the next lemma, which bounds the infeasible pops.
This is because #(pushes of MLax(J)) = #(completions pops of MLax(J)) +
#(infeasible pops of MLax(J)). To see this, note that every stack is empty at
the beginning and end of the algorithm, and the stack size only changes due to
pushes and pops.

Lemma 16. For α = O(1) sufficiently large, we have:

|SRPT(J)|+|MLax(J)|+#(pushes of MLax(J)) ≥ 2·#(infeasible pops of MLax(J)).

Proof. We define a charging scheme such that the completions of SRPT(J) and
MLax(J) and the pushes executed by MLax(J) pay for the infeasible pops.
Each completion of SRPT(J) is given 2 credits, each completion of MLax(J) is
given 1 credit, and each job that MLax(J) pushes is given 1 credit. Thus each
job begins with at most 4 credits. For any z ≥ 0, we say job j′ is z-below j (at
time t) if j′ and j are on the same stack in MLax(J) and j′ is z positions below
j on that stack at time t. We define z-above analogously. A job j distributes
these initial credits as follows:

– (SRPT-transfer) If SRPT(J) completes job j and MLax also ran j at
some point, then j gives 1

2z+1 credits to the job that is z-below j at time
fj(MLax(J)) for all z ≥ 0.

– (m-SRPT-transfer) If SRPT(J) completes job j at time t, then j gives
1

2z+1

1
m credits to the job that is z-below the top of each stack in MLax(J)

at time t for all z ≥ 0.
– (MLax-transfer) If MLax(J) completes a job j, then j gives 1

2z+1 credits to
the job that is z-below j at the time j is completed for all z ≥ 0.

– (Push-transfer) If MLax(J) pushes a job j, then j gives 1
2z+1 credits to the

job that is z-below j at the time j is pushed for all z ≥ 0.

It remains to show that for α = O(1) sufficiently large, every infeasible
pop gets at least 4 credits. We consider any job j that is an infeasible pop of
MLax(J). At time r̃j when j joins some stack in MLax(J), say H, j’s remaining

laxity was at least
`j
2 . However, as j later became an infeasible pop, it must be

the case that while j was on stack H, MLax(J) was running jobs that are higher

than j on stack H for at least
`j
2 units of time.

14 B. Moseley et al.

Let I be the union of intervals of times that MLax(J) runs a job higher than

j on stack H (so j is on the stack for the entirety of I.) Then we have |I| ≥
`j
2 .

Further, we partition I based on the height of the job on H that MLax(J) is
currently running. In particular, we partition I =

⋃
z≥1 Iz, where Iz is the union

of intervals of times that MLax(J) runs a job on H that is exactly z-above j.

By averaging, there exists a z ≥ 1 such that |Iz| ≥
`j

2z+1 . Fix such a z. We
can write Iz as the union of disjoint intervals, say Iz =

⋃s
u=1[au, bu]. Because

during each sub-interval, MLax(J) is running jobs on H that are much smaller
than j itself, these jobs give a witness that SRPT(J) completes many jobs as
long as these sub-intervals are long enough. We formalize this in the following
proposition.

Proposition 17. In each sub-interval [au, bu] of length at least 4
`j
αz , job j earns

at least 1
2z+3

bu−au

`j/αz credits from SRPT-transfers and m-SRPT-transfers.

Proof. Because [au, bu] has length at least 4
`j
αz , we can partition [au, bu] into sub-

sub-intervals such that all but at most one sub-sub-interval has length exactly
2

`j
αz . In particular, we have at least 1

2
bu−au

2`j/αz sub-sub intervals of length exactly

2
`j
αz .
Now consider any such sub-sub-interval. During this time, MLax(J) only

runs jobs on H that are z-above j. Let Jz be the set of z-above jobs that
MLax(J) runs during Iz. For every job j′ ∈ Jz, we have xj′ ≤

`j
αz . It follows

that j′ is on stack H for at most xj′ ≤
`j
αz units of time. In particular, MLax(J)

must start a new z-above job, say j′, in the first half of the sub-sub-interval at
some time, say t.

At time t, j′ is feasible. There are two cases to consider. If SRPT(J) also
completes j′ at some time, then j get 1

2z+1 credits from j′ in a SRPT-transfer.
Otherwise if SRPT(J) never completes j′, then because j′ is feasible at t, it
must be the case that SRPT(J) completes m jobs during the sub-sub-interval.
Thus, j gets 1

m
1

2z+1 credits from m separate m-SRPT-transfers during this sub-

sub-interval. We conclude, job j gets at least 1
2z+1 credits from at least 1

2
bu−au

2`j/αz

sub-sub-intervals.

On the other hand, even if the sub-intervals are too short, the job j still gets
credits from MLax-transfers and Push-transfers when the height of the stack
changes. We formalize this in the following proposition.

Proposition 18. For every sub-interval [au, bu], job j earns at least 1
2z+2 credits

from MLax-transfers and Push-transfers at time bu.

Proof. Up until time bu, MLax(J) was running a z-above job on stack H.
At time bu, the height of the stack H must change. If the height decreases,
then it must be the case that MLax(J) completes the z-above job, so j will
get 1

2z+1 credits from a MLax(J)-transfer. Otherwise, the height increases, so
MLax(J) must push a job that is z+1-above j, which gives j 1

2z+2 credits from
a Push-transfer.

Throughput Maximization on Identical Machines 15

Now we combine the above two propositions to complete the proof of Lemma
16. We say a sub-interval [au, bu] is long if it has length at least 4

`j
αz (i.e. we can

apply Proposition 17 to it) and short otherwise. First, suppose the aggregate

length of all long intervals it at least 4 · 2z+3 `j
αz . Then by Proposition 17, job j

gets at least 4 credits from the long intervals. Otherwise, the aggregate length
of all long intervals is less than 4 · 2z+3 `j

αz . In this case, recall that the long

and short intervals partition Iz, which has length at least
`j

2z+1 . It follows, the

aggregate length of the short intervals is at least
`j

2z+1 −4 ·2z+3 `j
αz . For α = O(1)

large enough, we may assume the aggregate length of the short intervals is at
least 4 · 2z+2 4`j

αz . Because each short interval has length at most 4
`j
αz , there are

at least 4 · 2z+2 short intervals. We conclude, by Proposition 18, job j gets at
least 4 credits from the short intervals. We conclude, in either case job j gets at
least 4 credits.

5 Putting it all together

In this section, we prove our main result, Theorem 1, which follows from the
next meta-theorem:

Theorem 19. Let J be any set of jobs. Then for number of machines m ≥
16, we have |LMNY(Jhi)|+ |SRPT(Jlo)|+ |MLax(Jlo)| = Ω(|Opt(J)|), where
Jhi = {j ∈ J | `j > xj} and Jlo = {j ∈ J | `j ≤ xj} partition J into high- and
low-laxity jobs.

Proof. We have |LMNY(Jhi)| = Ω(|Opt(Jhi)| by Lemma 3. Also, we further
partition Jlo = Jv ∪ Jnv into the viable and non-viable jobs with respect to
MLax(Jlo). Then Theorem 6 and Theorem 12 together give |SRPT(Jlo)| +
|MLax(Jlo)| = Ω(|Opt(Jv)| + |Opt(Jnv)|). To complete the proof, we observe
that J = Jhi ∪ Jv ∪ Jnv partitions J , so |Opt(Jhi)| + |Opt(Jv)| + |Opt(Jnv)| =
Ω(|Opt(J)|).

The proof of Theorem 2, which gives our performance guarantee for Fi-

nalAlg is immediate:

Proof of Theorem 2. By combining Theorem 19 and Lemma 4, the objective
value achieved by FinalAlg is:

Ω(|LMNY(Jhi,
m

3
)|+ |SRPT(Jlo,

m

3
)|+ |MLax(Jlo,

m

3
)|) = Ω(|Opt(J,

m

3
)|)

= Ω(|Opt(J,m)|).

Finally, we obtain our O(1)-competitive deterministic algorithm for all m >
1 (recall FinalAlg is O(1)-competitive only when m ≥ 48) by using a two-
machine algorithm when m is too small:

16 B. Moseley et al.

Proof of Theorem 1. Our algorithm is the following: If 1 < m < 48, then we
run the deterministic two-machine algorithm from [9] which is O(1)-competitive
with the optimal single-machine schedule. Thus by Lemma 4, this algorithm is
also O(m) = O(1)-competitive for all m < 48. Otherwise, m ≥ 48, so we run
FinalAlg.

References

1. Azar, Y., Cohen, S.: An improved algorithm for online machine minimization.
Operations Research Letters 46(1), 128–133 (2018)

2. Baruah, S.K., Koren, G., Mao, D., Mishra, B., Raghunathan, A., Rosier, L.E.,
Shasha, D.E., Wang, F.: On the competitiveness of on-line real-time task schedul-
ing. Real Time Systems 4(2), 125–144 (1992)

3. Chen, L., Eberle, F., Megow, N., Schewior, K., Stein, C.: A general framework
for handling commitment in online throughput maximization. Mathematical Pro-
gramming 183(1), 215–247 (2020)

4. Chen, L., Megow, N., Schewior, K.: An o(log m)-competitive algorithm for online
machine minimization. SIAM Journal of Computing 47(6), 2057–2077 (2018)

5. Eberle, F., Megow, N., Schewior, K.: Optimally handling commitment issues in
online throughput maximization. In: Grandoni, F., Herman, G., Sanders, P. (eds.)
European Symposium on Algorithms). LIPIcs, vol. 173, pp. 41:1–41:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

6. Im, S., Moseley, B., Pruhs, K., Stein, C.: An o(log log m)-competitive algorithm
for online machine minimization. In: 2017 IEEE Real-Time Systems Symposium.
pp. 343–350. IEEE Computer Society (2017)

7. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. Journal of
the ACM 47(4), 617–643 (2000), also 1995 Symposium on Foundations of Com-
puter Science

8. Kalyanasundaram, B., Pruhs, K.: Eliminating migration in multi-processor
scheduling. Journal of Algorithms 38(1), 2–24 (2001)

9. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. Journal of
Algorithms 49(1), 63–85 (2003), also 1998 European Symposium on Algorithms

10. Koren, G., Shasha, D.E.: MOCA: A multiprocessor on-line competitive algorithm
for real-time system scheduling. Theoretical Computer Science 128(1&2), 75–97
(1994)

11. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-
sensitive jobs. In: Blelloch, G.E., Vöcking, B. (eds.) ACM Symposium on Paral-
lelism in Algorithms and Architectures. pp. 305–314. ACM (2013)

12. Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via
resource augmentation. Algorithmica 32(2), 163–200 (2002)

	A Competitive Algorithm for Throughput Maximization on Identical Machines

