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Maximal entanglement velocity implies dual unitarity
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A global quantum quench can be modeled by a quantum circuit with local unitary gates. In general, entangle-
ment grows linearly at a rate given by entanglement velocity. Locality yields a finite light cone, which bounds the
velocity. We show that the unitary interactions achieving the maximal rate must remain unitary if we exchange
the space and time directions—a property known as dual unitarity. Our results are robust: approximate maximal
entanglement velocity also implies approximate dual unitarity. We further show that maximal entanglement
velocity is always accompanied by a specific dynamical pattern of entanglement, which yields simpler analyses
of several known exactly solvable models.
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Introduction. The propagation of information can never ex-
ceed the speed of light, due to Lorentz invariance. Any particle
actually achieving this speed must be massless, and lower
speed limits can be placed on massive particles when energy
is limited. In nonrelativistic systems where the speed of light
is effectively infinite, the locality of the interactions poses
an emergent constraint [1]. In this Letter we study the speed
limit of entanglement—a measure of quantum information—
in locally interacting quantum circuits. As with the speed of
light, it will turn out that local unitary interactions (or “gates”)
that achieve the maximum velocity of spreading entanglement
have a special form.

There is a natural notion of entanglement velocity in a
global quantum quench [2–4]. When a short-range entangled
state |ψ0〉 is unitarily evolved, in general, a (small) subsystem
Q will thermalize. After a sufficiently long time, the entangle-
ment (or von Neumann) entropy S(Q) of the subsystem Q will
saturate to its equilibrium value. To set the stage, we consider
an infinite lattice qudit system in one dimension with local
Hilbert space dimension q and take a semi-infinite region Q

as the subsystem. We assume that the unitary evolution can
thermalize the state |ψ0〉 to infinite temperature. On the way
to equilibrium, the von Neumann entropy of Q typically grows
linearly in t [5–7]:

S(Q)t ≡ S(Q)ρ(t ) ≡ −tr(ρQ ln ρQ) ∼ ln(q)vE t . (1)

The linear coefficient divided by the entropy density ln(q) has
the dimension of velocity. It is thus called the entanglement
velocity and denoted as vE . A more precise definition of vE

is the asymptotic growth rate (maximized over short-range
initial states)

vE = lim
t→∞

S(Q)t

t ln(q)
. (2)

We model spatially local interaction by a quantum circuit
with local gates in a brickwork structure [Fig. 1(a)]. The
brickwork unitary circuit has been extensively studied in re-
cent research about quantum chaos [8–12] and entanglement

[9,13–16], bearing fruitful results. Taking the depth as time,
the construction has a natural light cone velocity vLC = 1
so that the effective system size is at most 2vLCt = 2t . This
corresponds to a Hilbert space of dimension q2t . The largest
entanglement occurs when a qt -dimensional subspace of Q

maximally entangles with a qt -dimensional subspace of Q’s
complement [Fig. 1(a)]. Thus S(Q)t � t ln q and vE � 1.

In the study of quantum chaos, researchers discovered cer-
tain (generally nonintegrable) brickwork circuits whose vE is
exactly 1 [17]. The gate is taken to be self-dual as we now de-
fine. We denote a two-site unitary gate as u with element ui j,kl .
By definition, we obtain an identity matrix when multiplying
u with its Hermitian conjugate, i.e., ui j,kl u

∗
i′ j′,kl = δii′δ j j′ . We

draw this unitarity relation as

ii jj

k l

= ii ⊗ jj (unitarity) .

(3)

The four-leg red and blue tensors represent a two-site unitary
and its complex conjugate, respectively, with the top/bottom
legs as row/column indices i j/kl . Contraction at the bottom
represents matrix multiplication, and the two tensors on the
right denote the identities on the two sites. A dual unitary
satisfies an additional dual unitarity relation

ii

kk

j

l

=

kk

ii

(dual unitarity) .

(4)

This means that the matrix is also a unitary when viewed
sideways, i.e., ui j,kl u

∗
i′ j,k′l = δii′δkk′ . Examples of dual unitaries

include the SWAP gate and quantum Fourier transform [18,19];
see review [12] for more constructions.

The dual unitary circuits are strongly chaotic [14,17,20–
23]. Their autocorrelation [14,24] and quantum butterfly
effect travel at the light cone speed of 1 [25] (though not
exclusively [26]). The spectrum form factor [20,27] exactly
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FIG. 1. (a) The brickwork circuit. Solid circles at the bottom
denote product initial states. The vertical dashed line cut the system
into subsystem Q and Q. The dotted line delineates the circuit light
cone. (b) (Top) At t = 2, analysis of S(Q)t=2 reduces to four qudits
and three gates. S(Q)t=2 is set to be the maximal 2 ln q. (Bottom)
Evolution from t = 1 to t = 2 with input ρABCD and output ρAB′C′D.

reproduces the random matrix behavior. For certain solvable
initial states, it has vE = 1 [17,28,29].

In this Letter, we ask what is required for the circuit to have
vE = 1. We prove two conditions: the dual unitarity [Eq. (4)]
of the gate and a decoupling structure [Fig. 2(b)] of the input
state. These conditions are robust: if vE = 1 − η, they are
satisfied up to error O(η

1
2 ) for small positive η. Furthermore,

such a local decoupling structure is exact in solvable states.
When acted on by an arbitrary dual unitary circuit, they yield
vE = 1 exactly, without the need for an asymptotical limit. We
will discuss later in the paper how dual unitaries are the most
efficient way to produce highly entangled states.

Almost maximal growth by a gate. The entanglement ve-
locity vE can be thought of as the long-term average rate of
entanglement growth per gate. Since the expression involves
a limit, vE = 1 can still be achieved if most gates have near-
maximal entanglement growth.

We start here with the vE � 1 limit. Follow the dashed
line in Fig. 1(a) from the bottom to the top. Entanglement
can only change when the line pierces through a unitary gate,
every other time step. The maximal growth by one gate is
upper bounded by 2 ln q (Lemma 1 of [30]). After t time steps
(assuming t even), there are t/2 gates between Q and Q, corre-
sponding to entanglement changes �τ ≡ S(Q)2τ − S(Q)2τ−1

for τ = 1, 2, . . . , t/2. Each �τ � 2 ln(q). On the other hand,
if vE = 1 then 1

t/2

∑

τ �τ � (1 − η)2 ln(q), where η → 0 as
t → ∞. Thus there exists at least one τ where the entangle-
ment increase �τ is � (1 − η)2 ln(q). As we take t → ∞,
this argument shows that individual gates must yield entangle-

A B C D

B C

u

(a)

A1 D1A2 B C D2

(b)

FIG. 2. (a) The four-party setup. Entanglement increases by
2 ln q − ε after applying unitary u on qudits B and C [Eq. (6)]. A and
D are auxiliary systems with arbitrary (finite) dimensions. (b) The
decoupling entanglement structure. A (D) is partitioned into A1 (D1)
and qudit A2 (D2). A2B and D2C are Bell pairs.

ment increases arbitrarily close to 2 ln(q). Note that the 2 ln(q)
upper bound is not really used here. We get the existence of
gates with entanglement growth � (1 − η)2 ln(q) just because
that is the average entanglement growth. We need the upper
bound only to interpret this as near maximal.

A four-qudit model. A simple version of the relation be-
tween dual unitarity and maximal entanglement growth can be
seen in a four-qudit example. Suppose we have S(Q)t=0 = 0
and S(Q)t=2 = 2 ln q in Fig. 1(a); then for the sake of en-
tanglement S(Q), we only need to consider four qudits and
three gates [Fig. 1(b)]. (Later we will generalize this to the
case where the initial entanglement may be large.) We la-
bel the four qudits at the slice of t = 1 as A, B, C, and D.
The gate evolves B and C to B′ and C′ [Fig. 1(b), bottom].
Our assumption of maximal entanglement growth means that
S(AB′) − S(AB) = 2 ln q.

The input and output states can be determined from the
entropies. We have S(AB) = 0, due to the product initial state
and absence of gate across AB and CD at t = 1. Thus AB′

is maximally mixed. By tracing out B′, so is A (for t = 2
and consequently for t = 1), and B therefore forms a Bell
state with A at t = 1. Similarly, C forms a Bell state with
D. We denote the Bell state as a curved line connecting the
qudits in Fig. 1(b) bottom [there is an ambiguity of a unitary
transformation in A, but it can be removed once we obtain the
right-hand side of Eq. (5)].

In a graphical notation similar to Eqs. (3) and (4), we
rewrite ρAB′ in two ways:

1

q2
=

1

q2
⊗ .

(5)

On the left-hand side, the input state—two separate Bell
pairs—is conjugated by u (red) and u† (blue). Partial trace at
C′, D denoted by the closed loop gives ρAB′ . The open -shape
symbol denotes the maximally mixed states at A and B′. Can-
celing the normalization factor 1

q2 , Eq. (5) is an alternative way
to write down the dual unitary condition in Eq. (4). Thus we
see that maximal entanglement growth implies dual unitarity
in our example.

Approximate maximal entangling. We extend the intuition
in the four-qudit toy model to the case where entanglement
growth is almost maximal. This could arise if vE = 1, and
individual gates approach but do not necessarily achieve this
limit; alternately, we might have vE close to, but not equal to,
1. In Theorem 1 we will derive entropy bounds to analyze the
input and output states, yielding an approximate dual unitary
condition.

More formally, let us consider at time slice t there is a
gate on the dashed line Fig. 1(a) which is nearly maximally
entangling. The gate u acts on qudits B and C, while A (D)
now denotes the collection of qudits to the left (right) of B (C)
[31–35], see Fig. 2(a). Unitary gates acting exclusively on A

or D do not change S(AB′), and so are ignored.
Theorem 1 (proximity to dual unitarity). Let u act as in

Fig. 2(a) such that

S(AB′) − S(AB) = 2 ln q − ε, (6)
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then

1

q
⊗

1

q
−

1

q2

1

≤ O(
1

2 )

(7)

When vE = 1, ε goes to zero for a sequence of gates along
the dashed line in Fig. 1(a). Hence vE = 1 implies that the gate
is dual unitary. If vE = 1 − η, then the entanglement growth
for a sequence of gates along the dashed line can converge
to 2 ln q(1 − η). Theorem 1 indicates that the dual unitary
condition is satisfied up to an error of order η

1
2 .

When Eq. (7) holds, there is a nearby dual unitary. We give
an explicit bound for q = 2 thanks to an explicit parametriza-
tion; for q > 2, we know only nonexplicit bounds.

Theorem 2. If u has vE = 1 − η for 0 < η < 1, then there
exists a dual unitary u×, s.t. it is close to the gate u up to an
error

||u − u×||1 �

{

O
(

η
1
4
)

if q = 2
fq(η) if q > 2,

(8)

where fq(η) → 0 as η → 0.
The rest of this section gives a proof sketch of Theorem 1.

See Supplemental Material [36] for the proof of Theorem 2.
First we show that near-maximal entanglement increases re-
quire that B and C be nearly maximally entangled with A and
D, respectively.

Lemma 1. Let u act as in Fig. 2(a) and assume entangle-
ment growth in Eq. (6). Then

−S(B|A) = S(A) − S(AB) � ln q − ε, (9)

−S(D|C) = S(D) − S(CD) � ln q − ε. (10)

The lemma can be proved by telescoping S(A) − S(AB′) +
S(AB′) − S(AB) and using subadditivity [36].

The subsystem AB contains one extra qudit (B) than A,
yet its entanglement is at least ln q − ε smaller. This almost
maximal difference implies that −S(B|A) � ln(q) − ε entan-
glement can be asymptotically distilled from the state [37,
Chaps. 11, 24].

Lemma 2 (Local decoupling structure in input). Up to
unitary transformations exclusively in A or D, the input state
ρABCD can be approximated by

σABCD =
∣

∣αA2B

〉〈

αA2B

∣

∣ ⊗ σA1D1 ⊗
∣

∣βCD2

〉〈

βCD2

∣

∣ (11)

s.t.

‖ ρABCD − σABCD1 � O
(

ε
1
2
)

. (12)

Here A1, A2 (D1, D2) are partitions of A (D), and A2 (D2)
is a qudit. |αA2B〉 and |βCD2〉 are maximally entangled, i.e.,
S(A2)α = S(D2)β = ln q.

Figure 2(b) depicts the structure of σABCD in the theo-
rem. Using similar notation as in Eq. (5) for the Bell state,
Equation (12) can be written as

ρABCD − σA1D1
⊗ A2B/q ⊗ CD2

/q
1
≤ O(

1

2 ).
.

(13)
We use monogamy of entanglement to prove this structure;
see [36] for details. We now discuss the constraints that apply

x

S(ρ−∞,...,x)/ ln q

1

2

3

FIG. 3. Entanglement entropy of sites from −∞ to x in units
of ln q for t = 1 (black), t = 2 (blue), and t = 3 (red). vE = 1 at
finite time. At t = 1, the entanglement alternates between 0 and ln q.
Applying dual unitary gates at the valleys relay this zigzag pattern.

to the output state ρAB′ , which should be nearly maximally
mixed on A2B′ after tracing out A1.

Lemma 3 (Almost maximally mixed output). Given the
configurations in Fig. 2(a) and entanglement growth in
Eq. (6), we have

ρA1A2B − σA1
⊗ A2

/q ⊗ B /q
1
≤ O(

1

2 )
(14)

where /q denotes a maximally mixed state, and σA1 is the
reduced state from σABCD in Eq. (11).

For the proof, we can first deduce the approximate decou-
pling ‖ ρAB′ − ρA ⊗ /q ‖1� O(ε

1
2 ) and then replace the ρA

by the approximate σA1 ⊗
A2

/q from the known structure in
Lemma 3. With these components, we can prove Theorem 1.

Proof. Taking a partial trace of C′D in Eq. (13), we have
the approximation from the input side,

ρAB − σA1
⊗

1

q2

1

≤ O( )
1

2

(15)

On the output side, we replace ρAB′ with the maximally mixed
state in Lemma 3,

σA1
⊗

1

q
⊗

1

q
− σA1

⊗
1

q2

1

≤ O(
1

2 )

(16)

Taking a partial trace in A1 does not increase the distance. We
thus obtain Eq. (7). �

Mechanism for vE = 1. We have shown that dual unitar-
ity is a necessary condition for vE = 1. For sufficiency, it
is known that vE = 1 for translational invariant dual unitary
circuits even at finite times, given special classes of “solv-
able”initial states [17,23].

We enhance the results by dropping the translational in-
variance and prove vE = 1 for solvable states through the
entanglement structure developed above.

Theorem 3 (Dual unitarity relays the zigzag entanglement

pattern). Suppose at the t = 1 time slice, the entanglement
across bonds alternates between ln q or 0. For any dual unitary
circuits, we have at even steps,

S(Q)t = t ln q. (17)

Proof. At t = 1, the entanglement profile is given by the
black curve in Fig. 3. There are peaks whose value is ln q

and valleys whose value is 0. Since the valley has ln q en-
tanglement smaller than its neighbors (Lemma 1 with ε = 0),
the input state locally has the exact distillable entanglement
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structure in Figure 2(b) (Lemma 2 with ε = 0). When a dual
unitary gate acts at the valley, dual unitarity guarantees to
increase the entanglement by 2 ln q (the four-qudit model).
A valley becomes a peak. In a brickwork circuit structure,
the gate always acts on valleys. Thus the circuit interchanges
the role of peak and valley in one step, yet still maintains the
entanglement difference to be ln q. For example, the red and
blue lines in Fig. 3 depict the entanglement profile at t = 2
and t = 3. We see that the dual unitary gates can relay the
zigzag entanglement pattern, while always generating 2 ln q

entanglement in each step, even if the gates are different across

the circuit. Hence the exact relation S(Q)t = t ln q at even

steps. �

We find that “solvable” states [17,23] can initiate a zigzag
pattern [36] (blue line in Fig. 3). Thus its entanglement growth
can achieve vE = 1 without the need for an asymptotic limit.
We conjecture that the zigzag pattern can be dynamically
generated in a dual unitary circuit even if absent in the initial
state, thus achieving vE = 1 as t → ∞.

Discussion. In quantum simulation experiments, it is de-
sirable to create entangled states as quickly as possible to
complete the operations within the coherence time and to
reduce errors. Theorem 1 suggests only (approximate) dual
unitarity gives the (nearly) maximal entanglement growth
rate. In fact, in the random circuit sampling experiment by
the Google Quantum AI group [38], the original choice of
CZ gate was replaced by a dual unitary gate in order to
better resist classical simulation; see Sec. VIII A of [36] for
details.

A random pure state on two qudits has entanglement
ln q − O(1). It is an approximate unitary from one qudit to the
other: the expected fidelity with a maximally entangled state
is 8

3π
+ O(q−2) [36]. Similarly, a random unitary (brickwork)

circuit has vE ∼ 1 − O( 1
ln(q) ) at large q [39,40]. Each gate in-

creases entanglement by 2 ln q − ε, with ε an O(1) number in
q. By Theorem 1, we infer that a random unitary has an O(1)
distance to a dual unitary. This is consistent with expected
fidelity 8

3π
+ O(q−2) [36]. Thus in both cases we see an O(1)

deviation from maximal entanglement, whether measured in
entropy or fidelity.

In numerical simulations of quantum chaos, pseudorandom
choices of the gate parameters can accidentally lead to vE ≈ 1
[41–43]. Our theorem indicates that it is approximately a dual
unitary (Sec. VIII B of [36]), which would hinder typical
behaviors of chaotic dynamics from being observed at numer-
ically accessible system sizes.

Lemma 2 characterizes the local decoupling structure of
the state to have maximal entanglement growth. Instead of
relying on translational invariance, in Theorem 3 we use
the decoupling structure to demonstrate why vE = 1 even
at finite times for arbitrary dual unitary circuits acting on
solvable states. We believe that such a zigzag structure
can be dynamically generated even when the initial states
are not “solvable,” see proof for a subset of dual unitaries
in Ref. [44].

Next we consider continuous setups. When space is
discrete and time is continuous, the question of maximal
entanglement velocity is known as the “small incremental en-
tangling” (SIE) problem [31,33,35,45]. Using the four-party
setup in Fig. 2 with u = e−iHt , the best known SIE bound
is dS(AB)t

dt
� 8 ‖ H ln(q), which resembles the corresponding

discrete-time bound, up to O(1) factors [45]. However, the
structure of the optimal entangling state in continuous time is
unknown. The locally decoupling state in Fig. 2(b) maximizes
entanglement growth in discrete time but has dS(AB)t

dt
= 0 in

continuous time for any H . Further developing connections
between these settings is an intriguing direction for study.

In a quantum field theory, both space and time are con-
tinuous. In Lorentz-invariant theories, we also have vE � vLC

and the proofs [2,4] are quite similar to our entropy bound
estimates in [36]. There are examples such as conformal field
theories in 1+1 dimension that have vE = vLC. It is natural to
attempt to extend our results to this setting; however, defining
the right field-theoretic analog of dual unitarity is an open
question.

In d-dimensional space-time, holographic systems which
are believed to be strongly chaotic have [46,47]

vE =
√

d (d − 2)
1
2 − 1

d

[2(d − 1)]1− 1
d

and vLC =

√

d

2(d − 1)
. (18)

When d = 1 + 1, vE = vLC = 1 as in the discrete case, but
when d > 1 + 1, vE < vLC. We note that our theorem only
gives the necessary condition for vE = vLC without showing
that circuits achieving vE = vLC in fact exist for d > 1 + 1.
There are two important questions in higher dimensions (i.e.,
d > 1 + 1) for both the continuum and discrete cases: (1) Is
the maximal vE strictly less than vLC? and (2) If so, which
gates/Hamiltonians can achieve maximal vE ? We conjecture
that the dual unitary gates still give the maximal possible rate,
but the rate itself could depend on the lattice structure in the
discrete case and the geometry of the cut in both the discrete
and continuum cases.

Finally, we may exploit the small temporal (operator) en-
tanglement of the (almost maximally) mixed output state (AB′

or C′D) in a matrix product state-based algorithm. We leave
this to future work.
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