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Abstract. The f-invariant is an isomorphism invariant of free-group measure-preserving
actions introduced by Lewis Bowen, who first used it to show that two finite-entropy
Bernoulli shifts over a finitely generated free group can be isomorphic only if their base
measures have the same Shannon entropy. Bowen also showed that the f-invariant is a
variant of sofic entropy; in particular, it is the exponential growth rate of the expected
number of good models over a uniform random homomorphism. In this paper we present
an analogous formula for the relative f-invariant and use it to prove a formula for the
exponential growth rate of the expected number of good models over a random sofic
approximation which is a type of stochastic block model.
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1. Introduction and main results

Let G = (S) denote the rank-r free group with generating set S = {sy, . . ., s} and iden-
tity e, and let (X, u, T') be a measure-preserving G-system, that is, 7' is a homomorphism
from G to the automorphism group of the standard probability space (X, ©). We will not
need to make explicit use of the o-algebra on X, so we leave it unnamed.

An observable on X is a measurable map with domain X. In this paper the codomain
will be a finite set endowed with the discrete sigma algebra; in this case we call the map a
finite observable and the codomain an alphabet.

Any observable «: X — A induces a map «®: X — A by setting

@9 (x))g = a(Tyx) forallg € G.

We call the A-coloring % (x) of G the itinerary of x, since it records the observations
that will be made over the entire orbit of x under the action of G. We also similarly define

https://doi.org/10.1017/etds.2022.27 Published online by Cambridge University Press



2 C. Shriver

the map o™ : X — AH for any subset H of G. We abbreviate o” := oB¢"), where B(e, n)
is the closed ball of radius n centered at the identity in G, which is endowed with the
word-length metric. If 8:X — B is a second finite observable, we denote by ¢f:X —
A x B the map af(x) = (a(x), B(x)).

The (Shannon) entropy of a finite observable o : X — A is defined by

Hy(a) = — Z axu(a) log asu(a),

aeh

where o, it € Prob(2) is the pushforward measure, with the convention 0 log 0 = 0. The
entropy of o can be interpreted as the expected amount of information revealed by
observing «, assuming its distribution o, is known.

An early application of Shannon’s entropy to ergodic theory was its use by Kolmogorov
and Sinai to show that there exist non-isomorphic Bernoulli shifts over Z. A Bernoulli shift
over Z is a system of the form (&Z, u%, §) for some alphabet A and € Prob(2); S is the
shift action of Z. They did this by defining an entropy rate for Z-systems, which can be
interpreted as the average information per unit time revealed by observing the system. For
a Bernoulli shift (&%, uZ, S), the entropy rate is simply the ‘base entropy’ H, (@), where
o:A" — Ais the ‘time zero’ observable.

Isomorphism invariance of the Kolmogorov—Sinai entropy rate is typically proven
using the fact that entropy rate is non-increasing under factor maps (which are surjective
homomorphisms of measure-preserving systems). This fact can be interpreted as stating
that a system cannot simulate another system that is ‘more random’.

The entropy rate was soon generalized to systems acted on by an arbitrary amenable
group (such as Z¢). Extending beyond amenable groups proved more difficult, and in fact
it was found to be impossible for such an extension to preserve all desirable properties of
the Kolmogorov—Sinai entropy rate. In particular, an entropy rate for non-amenable group
actions which assigns Bernoulli shifts their base entropy cannot be non-increasing under
factor maps [13, Appendix C].

The first invariant to distinguish between Bernoulli shifts over free groups is Lewis
Bowen’s f-invariant. Following [2], this can be defined by

,
Fu(T, ) = (I = 2r)H, (o) + Z Hlt((x{e’s"}),
i=1
— 1 ny __ . n
fu(T o) = inf Fy (T, e") = lim F (T, a").

The main theorem of [3] is that f,(T, o) depends on the observable « only through
the o-algebra it generates. In particular, the common value of f,, (T, @) among all «
which generate the o-algebra of the measurable space X (assuming such o« exist) is a
measure-conjugacy invariant of the system (X, u, 7). In the same paper, Bowen showed
that the f-invariant of a Bernoulli shift is the Shannon entropy of the base measure; in
particular, Bernoulli shifts with different base entropies are non-isomorphic.

In [2], Bowen gave an alternate formula for the f-invariant, which we now introduce.

For any homomorphism o :G — Sym(n) we have a G-system ([n], Unif(n), ), and
we can consider a labeling x € A" as an A-valued observable on this system. We denote
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The relative f-invariant and non-uniform random sofic approximations 3

the law of its itinerary by PJ = xf Unif(n) and call this the empirical distribution of x.
We say that x is a good model for « over o if it is difficult to distinguish the G-systems
(X, u, T) and ([n], Unif(n), o) via their respective observables o and x. To make this
precise, we denote

Q(0,0):={xen": P} €0},

which is a set of good models for & over o if O is a weak*-open neighborhood of ¥ . €
Prob(A%); the particular set O quantifies how good the models are. The alphabet A is given
the discrete topology and A® the product topology, so ‘weak™-close’ means marginals on
some finite sets are close in total variation norm.

For each n e N, let s, = Unif(Hom(G, Sym(n))). Bowen showed in [2] that the
f-invariant is given by

1
fu(T,a) = inf limsup —log E [Q(c,O0)|.
o~s,

0308 n—soo N

To make an analogy with statistical physics, we can think of «%u as a macroscopic
statistical distribution of the state of a system; then the f-invariant is the exponential growth
rate of the expected number of ‘microstates’ that are consistent with these statistics. What
we here call good models are often called microstates for this reason.

More generally, given any random or deterministic sofic approximation £ = {s,}
we can define the sofic entropy relative to ¥ by

o
n=1’

1
hs ,(T,a) = inf limsup —log E [Q(c,O)l.
o~sy

0308 n—soo N

Here each s, is a probability measure on the set of functions G — Sym(n) which is
supported on functions which are approximately free homomorphisms.

This paper is motivated by a desire to better understand the dependence of sofic
entropy on the sofic approximation X. For any choice of X, the sofic entropy agrees
with Kolmogorov—Sinai entropy if the acting group is amenable [6] and with the Shannon
entropy of the base if the system is a Bernoulli shift [4]. For some systems, the sofic
entropy can be finite relative to some sofic approximations and —oo relative to others. It is
unknown whether two deterministic sofic approximations can yield different finite entropy
values for the same system.

In this paper, we express the entropy relative to a type of stochastic block model in terms
of the relative f-invariant, which we now introduce.

If o, B are two finite observables with codomains A, B, the conditional entropy is

Hy (a|B) = Hy(ap) —Hy(B).

This can be interpreted as the expected amount of information revealed by observing o if
both the value of § and the joint distribution of @ and 8 are known. The relative f-invariant
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is defined by

Fu(T, a|B) = Fu(T, ap) — Fu (T, B)

,
= (1—=2H,(@|B) + Y _ Hyu (o' | plesih,
i=1
fu(T,a|p) = inf sup F,(T,a* | p*).
k1eN kyeN
Both the infimum and supremum can be replaced by limits; this follows from Lemma 3.2
below. It follows from Corollary 3.5 that we could also directly define

Ju(T, alB) = fu(T, ap) — fu(T, B),

as long as f, (T, B) > —oo.

We now define the relevant type of stochastic block model. If H is a finite subset of G, we
denote by d (11, v) the total variation distance between the marginals of  and v on A7,
Our convention for the total variation distance between measures [, v € Prob(2) is

1
I =vliry = 5 ) luta} = viall.

a€hn

For each k € N we define a pseudometric on Prob(a%) by
di(p,v) = Y dPEOBED (),

ielr]

Note that {d}'}ren together generate the weak™ topology on Prob(A%). These generalize
the function d from [2], which corresponds to the case k = 0. For O = {v ¢ Prob(2%) :
d,f(ozfu, V) < &} we write

Q(0,0) =: Q(o,a, &) CA".

Our stochastic block model is now defined as follows: given yp € B", op €
Hom(G, Sym(n)), and k € N, let

SBM(00, Yo, k) := Unif({c € Hom(G, Sym(n)) : d,f(P;), Pg0) = 0}).

The labeling y( partitions the elements of [#] into |B| communities, and we can think
of the random homomorphism o as a random choice of directed edges between and
within the communities. Certain statistics of these random edge choices are determined
by the reference homomorphism og; note that for k£ > O these statistics are more precise
than those specified by a standard stochastic block model. In §2 we define weights, which
are the objects used to record the relevant statistics.

1.1. Main results. Our main theorems show that the relative f-invariant can be inter-
preted as the growth rate of the expected number of ways to extend a planted good model
for B to a good model for o8, over a stochastic block model which has statistics determined
by B and its planted model.

We first prove that if ﬁf i is Markov then we can use a stochastic block model which
only takes into account ‘one-step statistics’.
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The relative f-invariant and non-uniform random sofic approximations 5

THEOREM A. Leto:X — Aand :X — B be finite observables, and for each n let y, €
B" and 0,, € Hom(G, Sym(n)) be such that

hm dy (Pyr, BEw) =0.
Suppose that ﬁf W is a Markov measure. With s, = SBM(oy,, Y, 0), we have

fu(T,a|B)= inf limsup — log E |{xed": (x,y,) € Q(o, 0)}|.
O3@p)fu n—oo N o~ Sn
PROPOSITION A. The assumptions of Theorem A are non-vacuous; that is, for
any finite observable B:X — B there exist sequences {y, € B"}’°, and {o, €

Hom(G, Sym(n))}°°, such that lim,_,« d(Py", BS ) = 0.

This follows from the fact that free group actions are ‘sofic’, which is proven for example
in [10, 14, 15]. A more elementary proof is given in §4 below.

If BSu is not Markov, then the same formula holds with a more precise type of
stochastic block model.

THEOREM B. Let a:X — A and f:X — B be finite observables. Let m, approach
infinity as n goes to infinity while satisfying m, = o(log log n). For each n, let y, € B"
and o, € Hom(G, Sym(n)) be such that

1
d (P, BSu) = 0 .
o (Pys B 1) (logn>
Suppose that f,, (T, B) > —oo. With s, = SBM(0y, Yu, My),

SuT,a | B)= inf limsup — ! log E |{x en": (x,y,) € Q(c,0)}|.
03@p)fu n—oo N
PROPOSITION B. The assumptions of Theorem B are non-vacuous; that is, for any
finite observable B:X — B and any sequence {m, € N}>°  approaching infinity
while satisfying m, = o(loglogn), there exist sequences {y, € B"}>>, and {o, €
Hom(G, Sym(n))};2 | such that lim, o« d,, (Pygn”, BC ) = 0(1/log n).

Using Theorem B, we prove the following formula for the growth rate of the expected
number of good models over a stochastic block model. This can be compared to the
variational principle in [12], and has a similar proof.

THEOREM C. Lets,, o, ,3 be as in the statement of Theorem B. Then

inf lim sup — log E |Q(a 0O)| = sup fr(S,a | b).
0308 n—oo N red@Cu, S 1)

Here J(af U, ﬁf n) is the set of joinings of the G-systems (a0, af u, S) and
(BG, ﬁf W, S), that is, shift-invariant probability measures on (A X B)G whose A¢, BC
marginals are «¥u, BYu, respectively. S denotes the shift action of G. We use a, b to
denote the maps

a:(AxB)G—>A

((aga bg))geG = de
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6 C. Shriver

and
b: (A x B)G — B
((ag: bg))geG > be,

which observe the A (respectively, B) label at the identity.

Note that the supremum is always greater than or equal to f, (T, o), with equality
attained by the product joining; this means that the expected number of good models for
« over a block model with built-in good models for any 8 is at least the expected number
of good models over a uniformly random homomorphism. It is possible for the supremum
to be strictly larger, however. For example, suppose f,, (T, a) < 0 and o = 8, and let A be
the diagonal joining. Then

f(S,alb)=0> f (T, ).

1.2. Related work. The expressions appearing on the right-hand sides of Theorems A
and B are very closely related to Ben Hayes’ definition of ‘relative sofic entropy in the
presence’ [11, Definition 2.5]. Some differences are that we consider expected numbers of
good models over random sofic approximations, and that Hayes takes a supremum inside
the logarithm over which good model is to be extended, while we fix a sequence {y,} of
planted good models. Hayes also does not restrict to shift systems as we do here.

In [8], the free energy (that is, the limit of normalized log partition functions) over a
type of stochastic block model is shown to satisfy a variational principle; see Propositions
3.6 and 3.7 of that paper.

1.3. Random sofic approximations. As noted above, the f-invariant is closely related
to another invariant of measure-preserving systems called sofic entropy, which was
introduced by Bowen in [4].

A homomorphism ¢ € Hom(G, Sym(n)) is called (D, §)-sofic for some finite D C G
and § > 0O if

Hjelnl:o(y)j#jforally € D\{e}}| > (1 =¥d)n.

A sequence of homomorphisms ¥ = (0, € Hom(G, Sym(n))),eN is called a sofic approx-
imation if, for every (D, §), the homomorphism o, is (D, §)-sofic for all large enough 7.

The sofic entropy relative to X is the exponential growth rate of the number of good
models over o,,. Specifically, for any finite observable o on X we have

hy (T, @) = inf lim sup l log|2 (0, O)|.
0308y n—oo N

This is an isomorphism invariant of the system (X, u, T) if « is any generating observable,
that is if the o -algebra of the measurable space X is the coarsest one which is shift-invariant
and o-measurable.

By analogy with this expression, we might call the sequences of random homomor-
phisms appearing in expressions above ‘random sofic approximations’. The following
proposition provides further justification for this terminology.
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The relative f-invariant and non-uniform random sofic approximations 7

PROPOSITION 1.1. If (sy,) is any of the sequences appearing in Theorems A, B, and C,
then for any (D, 8) there exists € > 0 such that

P (o is (D, 8)-sofic) >1—n"*%"

o~sy

for all large enough n.

In particular, if o1 ~ s1, 02 ~ s etc. are independent then (o;,) is a sofic approximation
with probability 1.

1.4. Organization. In §2 we define weights and discuss some of their useful properties.
In §3 we prove a few basic results about the functions f and F. Some of the results of
these two sections are used in §4 to show that the assumptions of the main theorems
are not vacuous. In §5 we show how the function F is related to the number of
homomorphism-labeling pairs (o, y) that realize a given weight, which is the main
ingredient of the proofs of Theorems A and B given in the next two sections. In §8 we show
how to deduce Theorem C from Theorem B. Section 9 contains a proof of Proposition 1.1.
The final section contains a proof of Lemma 2.3, which asserts that a weight can be
approximated by a denominator-n weight with a specified marginal.

2. Weights
If «: X — Ais a finite observable, fora, a’ € Aandi € [r] let

Wyla,d';i) = aie’si}u(a, ad)=pxeX akx) =a, a(Tyx) = a'}
and also denote
Wo(a) = axp(a).
For x € A" and 0 € Hom(G, Sym(n)) let

Wox(a,d'si) = P (a, ')

and W, x(a) = PJ ’{e}(a). This could equivalently be defined as a special case of the
previous construction, with o specifying an action on X = [n] with an observable
x:[n] — A.

More abstractly, any W € (Prob(a2))" is called an A-weight if

Y Waiiy=Y W aj)
a’eA a’'en

for all i, j € [r] and a € A. For each a € A we denote this common value by W (a). Note
that the objects W,, and W x defined above satisfy this condition.

We say that W has denominator nif n - W(a, a’; i) € Nforalla, d’, i.

The measures W (-, -; i) fori € [r] are called the edge measures of W, and W (-) is called
the vertex measure.
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8 C. Shriver

For any alphabet A, we use the metric on A-weights defined by

d(Wi, Wa) 1= ) IIW1(, 5 8) = WaC, 55 D) v

i€lr]
:—Z > IWila, d'si) — Wala, a'; ).
i€[r]l a,a’en

We can use weights to count good models up to equivalence under the pseudometrics
d; using the following proposition.

PROPOSITION 2.1. If 0 € Hom(G, Sym(n)) and x € A", then for any observable
a:X — A

d(Wy g, Wor) = dif (P, a8 ).
Note this implies also that
di (PZ, af 1) = dj(P%. (@) ).

Proof. By definition of the distance between weights,

d(Wy xi, Wep) = = Z Z |W, xk(@,a’;i) — Wye(a,a'; )|

te[r] a,a’enB(ek)
(. x; =a
;‘ {] € [I’l] . J ’

1
"2 22 X)o(sj =2

ielr] aacaBEd

ak(x) =a } ‘

— X :
" {x S ek (Tyx) =af

For many ‘incompatible’ pairs a, a’, both terms will be zero: suppose g € B(e, k) N
B(s;, k), so that gsf1 € B(e, k). If the second term in the absolute value is non-zero, then
for some x € X we have o*(x) = a and ak(Tsix) = a’, and therefore

= (@ (Tn) g1 = a(Ty 1 Tyx) = a(Tex) = (@ (1) = ag.

The same argument shows that a;s,l = ag for all g € B(e, k) N B(s;, k) whenever the first
term is non-zero. Therefore we can restrict the sum to pairs a, a’ with ag _, = a, for all
g € B(e, k) N B(sy, k). Equlvalently, we can sum over all A € ABEHUBG: &) to get

AWk, Wo) = Z >

AeAB(e k)UB(s; k)

L _
~l{j € [n] : (PEDIBED) ;= Ay

_ /vl/{-x c X . aB(e,k)UB(S,',k)(x) — A}‘

_ Z dBERUBGLO (po oGy
) Slhat .

ielr]

O

It will be useful to consider the pushforward map induced by a map between alphabets:
if 7 :A — B is a measurable map and W is an A-weight, then 7 W is the B-weight given by
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The relative f-invariant and non-uniform random sofic approximations 9

Wb, b i) = Z Z W(a,d’;i).

aen—Yb} a’en—1{b'}

Note that this implies that the vertex measure of W is

TWh) = Y W
aem~1{b}
For example, let 75 :A x B — B be the projection map. If W is an A x B-weight then
g W is given by

asW(b) =Y W(a,b)) msWbi,byi)= Y Wai, by, (a2 b);i).

ach ay,az€eA
We call this the B-marginal of W.
All weights in the present paper will be over alphabets of the form AB(©4) x BBA)
We use this fact to introduce some simplified notation for projections.

e 14 denotes projection onto the entire A factor AB@X); 75 is used similarly.
e Form <kandm’ <k, m,,, denotes projection onto AB(™ x pBem),
e 7, denotes the projection AB©X) — aAB(em) except that if m = 0 we write ..

We define F (W) for an abstract weight W by
F(W) = (1=2n0HW() + > HW(, )
i€lr]
where H is the Shannon entropy. Note that this is consistent with the above definitions in
that, for example,

F(W,) = F, (T, a).

We can revisit the definition of our version of the stochastic block model using weights.
Let H C G and let W be a denominator-n BB(¢4¥)_weight. Suppose there exist y € B” and
o € Hom(G, Sym(n)) such that W = Wa’yk. Then

SBM(c, y, k) = Unif({o’ € Hom(G, Sym(n)) : W, = W),

so we can also denote this distribution by SBM(y, W). Specifying the distribution by a
weight rather than a specific homomorphism will occasionally be more convenient.

2.1. Constructing weights and good models. We borrow the first result of this type
from [2]; it allows us to find a denominator-n approximation to a given weight.

LEMMA 2.2. (Lemma 2.3 of [2]) There is a constant C such that for any A-weight W there
is a denominator-n A-weight within distance C|A|*r/n of W.

The following lemma allows us not only to construct a denominator-n approximation to
a given weight, but also to specify a marginal of this approximation:

LEMMA 2.3. Let W be an A x B-weight. If Wy is a B-weight of denominator n with
d(Wg, mgW) < § then there is an A X B-weight Wap with denominator n such that
meWap = Wg and d(Wag, W) < 265r (|2 x B|?/n + ).
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The construction is fairly involved, so it is postponed to §10. The constant 265 is not
intended to be optimal.

The definition of a weight W, x in terms of a homomorphism o and a labeling x
is straightforward. However, we will also need to know whether a given weight can be
realized in this way. The next two results address this inverse problem.

PROPOSITION 2.4. If W is a denominator-n A-weight, then there exist X € A" and o €
Hom(G, Sym(n)) such that W = Wy x.
Proof. This is implied by Proposition 2.1 of [2]. O

Unfortunately, this does not imply that for every denominator-n AB©K) _weight W there
is some o € Hom(G, Sym(n)) and x € A" such that W = W, «; instead it provides
X e (aB@h) such that W = W, x.

However, if we already know that W is close to a weight of the form W, « for some
observable «, then the following proposition shows that W is also close to a weight of the
form W .

PROPOSITION 2.5. Let a:X — A, o € Hom(G, Sym(n)), and X € (B0 be such
that d(Wys x, Wyk) < € for some ¢ > 0. Writing x = n,X € A", we have

d(Ws x, Wy xt) < 2r|B(e, k)|e.

An immediate consequence is that X € Qf(o, ) implies 7.X € Q} (0, a, ce)
where ¢ = 1 4 2r|B(e, k)|; cf. Claim 2 in the proof of Proposition 3.2 of [2].

Proof. Claim 4 in the proof of Proposition 3.2 of [2] implies that
10 € [n]: X(j) #x (D} < n[Ble, b)le.
It follows that for any i € [r],
(€ [n]: XI5 () £ (M ()
< [{j € n]: X)) # XD+ 1{j € [n]: X(0 (1)) # X" (0 (s0) )}
< 2n|B(e. K)|e.
50

d(Wox, Wy ) = > I(XI0), Unif(n) — ((&)1), Unif(n) |1y

ielr]

< Z 2|B(e, k)|e = 2r|B(e, k)|¢.

ielr]

O

The following corollary of the first part of the proof will be useful later. It says that if
the weight W, x generated by some X € (AB(e’k))” and 0 € Hom(G, Sym(n)) is exactly
attainable in some sense, then X can be exactly recovered from o and the projection
m.X € A",
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The relative f-invariant and non-uniform random sofic approximations 11

COROLLARY 2.6. Suppose that ¢ € Hom(G, Sym(n)) and X € @aBEN qre such that
either

(1) Wox = Wy for some a: X — A, or

2) Wex= W(70 Sfor some o¢ € Hom(G, Sym(m)) and x¢g € A™.

Then (7.X)F = X.

S X

Note that (7,X)* is the k-neighborhood labeling generated from 7, X using o, rather
than o¢ or some other homomorphism.

Proof. In the first case, we are in the setting of the previous proposition with ¢ = 0, so the
first inequality of its proof gives the claimed result.

The second case is actually the same; this is only obscured somewhat by the notation.
We are in the setting of the previous proposition with the space X = [m] having a G-action
specified by og and a finite observable xo:[m] — A. O

3. Properties of F and f
LEMMA 3.1. (Continuity as weight function) If Wi, Wy are A-weights with d(Wy, W) <
& <1 then

|[F(W1) — F(W2)| < 4r(H(e) + ¢ log,|Al),
where H(p) denotes the entropy of the probability measure (p, 1 — p) € Prob({0, 1}).

Proof. We use Fano’s inequality in the following form (equation (2.139) of [9]). Suppose
X,Y are A-valued random variables defined on the same probability space and let
pe = P(X # Y) be their probability of disagreement. Then

H(X |'Y) < H(pe) + pe log|A|.
Using the chain rule and non-negativity of Shannon entropy, we can deduce that
[H(X) — H(Y)| < H(pe) + pe log|2|.

Let w1, 2 € Prob(2) be the respective distributions of X1, X». Because |1 — pa|Tv is
the minimum value of P(X| # X») over all possible couplings, if |1 — u2]lTv < € then

[H(u1) — H(u2)| < H(e) + € log|A|.

The assumed bound d(W;, W>) < ¢ implies that each vertex and edge measure of Wi
is within total variation distance ¢ of its counterpart in W5, so

|F(W1) — F(W)| < [1=2r] - [H(W1()) — HW2 ()]
+ Y IH(WIC, 5 8)) = HWa(, 5 )

i€lr]
< (2r — 1)(H(e) + ¢ log|a|)
+ 7 - (H(e) + & log|al%)
< 4r(H(e) + ¢ log|a|). O
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12 C. Shriver

Leta:X — Aand B:X — B be observables. We say that 8 is a coarsening of « if each
part of the partition of X induced by B is a union of parts of the partition induced by «
(up to null sets). Equivalently, there is some function g :A — B such that 8 = g o o almost
surely. In this situation we can also call « a refinement of 8.

A useful property of the Shannon entropy H,, (@) is monotonicity under refinement. The
function F does not share this property, but it is monotone under the following particular
kind of refinement introduced in [3].

We say that B is a simple splitting of « if there is some s € {slﬂ, cee srﬂ} and a
coarsening & of « such that, up to null sets, the partition induced by S is the coarsest
common refinement of the partitions induced by « and & o T.

We say that 8 is a splitting of « if there are observables o = 8o, B1,..., B, = B
such that g; is a simple splitting of g;_; fori = 1,2, ..., n. We will use the following
monotonicity properties of the relative version of F.

LEMMA 3.2. (Monotonicity under splitting)
(1) Ifoay is a splitting of oy then F(a1|8) < F(az|B).
(2)  If Bu is a splitting of Ba then F(a|B1) = F(a|B2).

Proof. (1) This is essentially Proposition 5.1 of [3]; conditioning on 8 makes no difference
to the proof.

(2) The proof is based on the proof of part (1), but in place of the chain rule for
conditional entropy we use the following bound:

H(a | B2) < H(a, B1 | B2) (monotonicity)
=H(B; | B2) + H(x | B1, B2) (chain rule)
<H(B | B2) + H(x | B1) (monotonicity).

We will also use the following consequence of the previous bound:

Hea' | i) — Ha') | gl

> —H(ﬂie’si} | ﬂée’si}) (previous bound)
> —HEB | B +HB1 | B))  (subadditivity)
— _(HB | BT £ HB | ) (T-invariance of ).
It suffices to check the case where 8 is a simple splitting of 8. Let ¢ € {s]il, ce sri]}

and let 8 be a coarsening of B such that the partition induced by B is the same as the
coarsest common refinement of the partitions induced by 8, and 8 o T; up to null sets.
Then, using the two bounds just derived,

F(a|B1) — F(a|B) = (1 —2r)(H(x|B1) — H(x|B2))
+ Z (H(a{e,s,'} |131{e,s,'}) _ H(a{e,s[-}ml{e,s,»}))

ielr]
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The relative f-invariant and non-uniform random sofic approximations 13

{e,sf

1
> (1—2r)(~H(B112) — S (H(B1 | B )

ielr]

+H(B | )
=@ —DH@BIB) — Y. HEB B

se{slil ...s,il}

But

H(B1 | ) <H(B) | BB =0,

so we can remove the 7 term from the sum to get

F@|py) = F(@|f) > @r — DHB1B) — Y. H( | )

sefsi st

= > HBIB) -HE | )

se{sfH.-.Sy_fH}\{t}

> 0. O
One corollary is the following convenient formula.

COROLLARY 3.3. Let o, B be finite observables such that ﬂf W is a Markov measure.
Then Fy (T, okt | Bk2) is independent of k. In particular,

fu(T, e | B) = inf F (T, ok | ).

Proof. By the previous proposition, for any k < k» we have
Fu(T, " | B%) < Fu(T, o | B,
On the other hand, by Theorem 6.1 of [5] F,,(T, %) = F,(T, g*) so
Fu(T, a1 | p*) = Fu(T oM %) — Fu(T, ).
Applying monotonicity under splitting to the first term on the right gives
Fu(T, o | B%) = Fu(T, "1 %) — Fu(T, %) = Fu(T, o1 | p2).

This establishes independence of k»; the formula for f follows. O
PROPOSITION 3.4. Let o, B be finite observables. Then for any k € N,

Fu(T, o | B) <Hu(@ | B).
It follows that

fu(T,a|B) <Hy(x|p).
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14 C. Shriver

Proof. By Lemma 3.2, F, (T, ok | B) < F, (T, o | B). Using elementary properties of
Shannon entropy, we have

Fu(T,a | B) = (1 —2rH,(@ | B) + Y Hu (@' | glosih)

i€lr]

< (1=2nHu(@ | f) + Y [Hyule | 1)) + Hy@) | pleoh]
ielr]

<(1=20Hu(a | B)+ Y [Hu(e | ) +Hu@" | plihy).
i€lr]

By T-invariance of u we have
Hu (@) | B0 =Hy(@ | B),

so the first inequality follows.
For any k1, k> € N this gives

Fu (T, ok | B*2) <H, (o | B2) <H,(a | B),

so the second inequality follows upon taking the supremum over k; then the infimum
over kj. O

We can use this bound to give a proof of the chain rule for the relative f-invariant, a
version of which first appeared in [5] (there it is called the Abramov—Rokhlin formula; see
also [7]).

COROLLARY 3.5. (Chain rule)
Ju(T,af) = fu(T,a|B)+ fu(T, B).

Proof. By definition of the relative version of F' and the chain rule for conditional entropy,
for each kq, kp we have

Fu (T, a"1 %) = F (T, o" | p*2) + (T, B*).

By Lemma 3.2 each term is monotone in k>, so the limits as k — oo exist. By Proposition
3.4 all terms are bounded above (recall we only consider finite observables, so in particular
all observables have finite entropy), so we can split the limit across the sum on the right

to get
lim F(T,a"pR) = lim F,(T,a" | B*2) + f.(T, B).
ky— 00 ko— 00
Taking k1 to infinity gives the result. O

4. Non-vacuity of main theorems

4.1. Theorem A. Here we prove Proposition A, which asserts the non-vacuity of
Theorem A. Given B:X — B, we need to show that there exist y, € B” and o, €
Hom(G, Sym(n)) such that lim, o dif (Py", BE 1) = 0.
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The relative f-invariant and non-uniform random sofic approximations 15
By Lemma 2.2, there is a sequence {W,,}°° | of B-weights such that W,, has denominator
n for each n and d(W,,, Wg) = o(1). By Proposition 2.4, for each n we can pick y,, 0, such
that W, .y, = W,. Since di(Py", BE 1) = d(W,.y,, Wp), these suffice.

4.2. Theorems B and C. Here we prove Proposition B, which asserts the non-vacuity of
Theorem B (and by extension Theorem C, since the assumptions are the same).

Let m,, approach infinity as n approaches infinity while satisfying m, = o(log log n)
and let B:X — B be a finite observable. We need to show that there exist y, € B" and
o, € Hom(G, Sym(n)) such that d,”;,”(PyGn”, ﬁ*GM) = O(1/log n).

By Lemma 2.2, there is a sequence {W,}>°, of weights such that W, is a
denominator-n BB(¢)_weight for each n and d(W,, Wemn) = 0(|BB(6”"”)|2/n). By
Proposition 2.4, for each n we can pick Y, 0,, such that W, y, = W,. Lety, = n.Y,.
By Proposition 2.5,

. N G |BB(e,m,,)|2 1
i, (P> B 1) = d(Woy o, Wna) = O [Ble, m)] - ———— | = O{ {7 ).

5. Counting lemmas
For a B-weight W, let Z,, (W) denote the number of pairs (o, y) € Hom(G, Sym(n)) x B"
such that W,y = W.

PROPOSITION 5.1. If W is a B-weight with denominator n then

(3«/;)_”}3'2 < Zn(W) < (3«/%)”}3'2

eF(W)n (n! )rn(l—r)/Z -

Proof. We write

Zy(W) = Zl{y €B": Woy =W}l =@n!)Esl{y € B": Woy = W}|.

where E, denotes the expectation over a uniform choice of o € Hom(G, Sym(n)).
Proposition 2.1 of [2] states that

n!' T Thep (W ()12 !
[Tz [Tppce@W (b, b, il
Lemma 2.2 of the same paper gives an estimate of this quantity, but for our purposes we

need to be more careful about how the estimate depends on the size of the alphabet.
We use the version of Stirling’s approximation given by

Es|{y e B" : Woy = W}| =

127k <t < 3L k124

valid for k > 1. To estimate the products that appear in the expectation, we will need to
omit all factors which equal 0! = 1 since Stirling’s approximation is not valid for these. To
do this carefully, let

B = (b eB: W) 0}
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16 C. Shriver

and for each i € [r] let
B} = ((b, b)) € B> : W(b,b'; i) # 0}.
For the numerator of the above expectation we get

n!l—r H(nw(b))|2r—l < (3nn+l/2 e—n)l—r l_[ (3(nW(b))nW(b)-‘rl/ze—nW(b))Zi’—l
bepr’ bep’
— 31—r+\B’\(2r—1) nrn+l/2—r/2+(2r—l)\B’|/2

x e—rn+(2r—1)[n Y per W) log W(b)+1/2 >, log W(b)]

and a lower bound which is identical except missing the first factor. For the denominator,
let S =} [, IB;|. We get

r r
i=1 (b,b')eB, i=1 (bb)eB
— 3S nnr+S/2

« et 2i Xpy WDD'5i) log Wbb5i)+1/237; 4 log W(b,h’;i)—nr’
and again we have a lower bound which is identical except missing the first factor 35.
Therefore the quotient is bounded above by

3l=r+[B/|@2r=1) ,(1-r)/2+@2r=1)|8|/2-5/2 enF(W)+(2r—1)% > log W<b)—% Dby log Wbb'si)

and below by

3=S (1= /2+@Qr=1)[&'l/2-5/2 enF(W)-‘r(Zr—l)% 3, log W(b)—% Yt psy log WD)

Since W has denominator n, we have

1 1 1 2r —1
Oz(2r—1)§ZlogW(b)z(Zr—l)EZIOg;=—r |B'| log n

2
beB’ beB’

and

0<—12 Z log W (b b/‘i)<—12 Z loglzilogn

T2 & T 2 L n 2 ’
i (bb)eB] i (bb)eB,
Therefore Z,, (W) satisfies
3—Sn((1—r)—S)/ZeF(W)n (l’l' )r < Zn(W) < 3l—r+|B’|(2r—l)n((l—r)+(2r—l)|B’|)/ZeF(W)n (}’l' )I"
Since S < r|B|? and |B'| < |B|, we conclude that
3—r|B|2n((1—r)—r|B|2)/ZeF(W)n (n!)

< Z,(W) < 3177 FBIQr=D, (1=r)+Qr=DIBD/2 FW)n (1 yr
and the stated inequality follows. O

The following proposition establishes the connection between the relative version of F
and expected numbers of good models over stochastic block models.
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The relative f-invariant and non-uniform random sofic approximations 17

PROPOSITION 5.2. Given any denominator-n (A X BB(e’k))-weight Wag, let Wy denote the
BB(K) ypeight 15 Wagp. Let'y € B" be a fixed labeling with py = . Ws(), and let
wn = SBM(y, Wg) = Unif({o € Hom(G, Sym(n)) : W, v = Wg}),

assuming Wy is such that the desired support is non-empty. Then
Zn(Wag)
E:= E |{xenr": W = Wag}| = ———.
(f"’/Ll{ g,(x,yk) AB}' Zn(WB)
In particular,

&

— T o _r|B|2(|A\2+1) r|B|2(|A|2+1)
o (FWaz)—F(Wg)) < (On) » On) ).

LEMMA 5.3. Let Wag be an & x BBX) weight of denominator n. Then
|{(Ga X, Y) : Wo-,(x,yk) = WAB}| € {0’ |{(O" X, Y) : WU,(X,Y) = WAB}'}
Proof. Suppose |{(c, X, y) : Wo xyt) = Wag} # 0; we then need to show

|{(U3 X, y) : Wg',(X,yk) = WAB}' = |{(U, X, Y) : WG,(X,Y) = WAB}l'

The inequality < is clear, since we have an injection (o, X, y) — (0, X, yk).
The converse inequality holds because (o, X, Y) — (o, X, 7.Y) in an injection from
the set on the right to the set on the left. This follows from Corollary 2.6. O

Proof of Proposition 5.2. Let
l:L = Unlf({(O', 5’) : Wa,yk = WB}),

and let (i3 be its marginal on the ‘y’-coordinate. This marginal is supported on {y : py =
7, Wg(-)}. Note that i conditioned on any particular y in the support of ji; is SBM(y, Wg),
and that
E  [{xea": W, ys) = Wasll
o~SBM(y,Wg)
is the same for each y in the support of [ip, with one choice being y from the proposition
statement. This is because any two choices have the same label frequencies and hence are
related by a permutation of [n]. With the choice y = y the expectation is &, so
&E= E &
y~ita
= E [Eo~spu@.wsl{x € 2" : W, 5ty = Wasll]
y~iiz
= IE ~|{X € An : WO’,(X,S’k) = WAB}|
(o.9)~n
ZU,yHX I\ Wo,(x,f’k) = WAB}'
|{(G’ 5’) : Wo"glk = WB}'

_ |{(J7 X, 5’) : Wa,(x’yk) = WAB}'
1, 9) < Wy gt = Wall
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18 C. Shriver

N0, x,Y) : Wo xy) = Wasl|
 {(0.Y) : Wey = Wa}

_ Zp(Wap)

C Zy(We)

(previous lemma)

Note that our assumption that the intended support of u is non-empty allows us to rule out
the ‘0’ case in the application of Lemma 5.3.
The rest of the result then follows from our estimates on Z,, in Proposition 5.1. O

6. Proof of Theorem A
6.1. Upper bound. Note that we will not rely on the Markov assumption for the upper
bound.

Foreachk € N,

1
inf limsup —log E [{xe€A":(X,y,) € Q(c,0)}|
03@p)fu n—oo N o~y

1
<inflimsup —log E |{x € A" : (x,y,) € Q[ (0, apB, &)}|

€ pooo N o~sy

1
=inflimsup — log E |{x € &": (x, yfl) € (o, @Bk, &)}l

€ pooo N o~sy

1
<inflimsup — log E [{X € @B (X, ¥5) € Qi(o, (@B, &)}

& nso00 N o~s,
Write
Ene) = E |(Xe@ )" : Xy, € 20, @p), &)}l
= E X e @) :dWo xyt) Waap) < )

and assume that » is large enough that m, > k.
Writing W, (a8, k,e) for the set of all denominator-n weights W with
d(W, W(C\lﬁ)k) <e,

_ B(e,k) . —
Ene)= E > X e @)W, xyy = W
WeW, (af.k,e)

= > E [I{Xe @) W, xyk) = WHIW, o =7 W]
WeW, (@pke) . "
]P) (W(r,yf{l =Tip W)

o~sp

since if Wo yk # ngW then WU»(XaY’y‘,) # W. But s, conditioned on {Wa’yﬁ =ngW} is
SBM(y,, g W), so we can bound the expectation above using Proposition 5.2, getting

Ex(n, £)<(On) B VIAMLIHD Z MEWZEE ) p (W = W)
WeW, (@B k.e) orsn
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The relative f-invariant and non-uniform random sofic approximations 19

Note (9r)"B*“OPAPEO14D) o ponoct Fix § > 0. By continuity of F (Lemma 3.1),
for all small enough ¢ (possibly depending on k), we have

k| gk
Sk(n, 8) < en(FM(T,Ol |B¥)+86+04500(1)) Z o”ﬂllj)s (Wa’yﬁ = j'[BW)
WeW, (afk.e) "

Bounding each probability by 1, we get
Ex(n, £) < T II T Ho D4y, (@B, k. £)].
But
[ Wa(@p, k)] < | BDHHE < poroct),

so this implies

1
lim sup — log (1, &) < F (T, " | &) + 6

n—oo N
< Fu(T,o" | B%) +35
for any k; > k, by monotonicity under splitting. Taking the limit as k, — oo followed by

the infimum over ¢ (which takes § to 0) and k gives

1
inf lim sup — log &k (n, €) < fu (T, | B).

&k p—oo N

Since

1
inf  limsup —log E |{xe€A":(X,y,) € Q(o,0)}|
O3@p)fp n—oo N o~Sp

1
< inflim sup — log & (n, €)
€ pooo N

for every k, this completes the upper bound.

6.2. Lower bound. Fix k € N. To estimate

E:= E |[{xed":(x,y:) € Q(o,ap, &)}l

o~sy
we bound below using the expected size of
Xi(o,ap, e | yn) = (X € @) 1 (X yp) € (o, @B), o).

This is not a true lower bound but, by equation (7.1) below, there are constants C, d, ¢
independent of n such that

|Xk(o, aB, e | yn)| < C exp(nde + nH(2[B(e, k)|¢))
fx e A" (X,yn) € Q(0, ap, )}l

The ‘error’ factor has an exponential growth rate which vanishes as ¢ — 0, so will not be
a problem.
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20 C. Shriver

We now find a lower bound for the expectation of |Xi|. Applying Proposition 5.2 as
above, we have

E |Xi(o,aB, e|yn)l

o~sy

= > E (X e @) : W, gy =W

0~Sp
WeW, (ap.k.e)
> Y expl(F(W) = FasW) —0,(1)] P (maW = W, ).
WeW, (@B k.e) orsn
For any § > 0, for small enough ¢ > 0 (independent of n), by continuity of F this is at
least
expln(Fu(@* | ) =8 —o0, (11 P (rsW =W, y0).

WeW, @phe)
We give a lower bound for the sum by first rewriting it as
D HW e Wa@B ko) :msW = Wa)l - P (W, = Wa).
o~sy,
Ws denom.-n BBEK) _weight

Fix n > 0. By Lemma 2.3, for all large enough n the B-weight W, y, can be extended
to a BB@M _weight Wy with d(Ws, Wpgi) < n; to apply the lemma we can think of
the extended weight Wy as having alphabet BB©P\e} 5 B and recall that we assume
lim;, . o0 d(Ws,.y,» Wg) = 0.Choose o, Y such that W, y = Wz. Since 7, Wg = W, y,, it
must be that 7, Y is a permutation of y,,: they must assign labels with the same frequencies
since

PrY() = @ We)() = W, y, () = py, ().
Therefolg we can choose o, Y such that 7, Y = y,.
Let Wg = W, vt = W5 (7, v)k- By Proposition 2.5,
d(We, W) < d(Wa, Wa) +d(Wa, Wgi) < 2r|B(e. K)[n + 1.
So, as long as 7 is small enough and » is large enough (depending on ¢, k), by Lemma 2.3,
HW e Wy(aB, k, &) : mgW = Wg}| > 1.
Now consider the probability appearing in the Ws term:

b (W, g = Ty = 7 Wt = Wl
k = = .
o~sy OYn . l{o : Woy, = Wo,y,}

By symmetry in the choice of y with the correct letter frequencies (any two y with the
same py are related by a permutation of [n], so have the same number of ¢ which give a
particular weight), we can write this as

{(o.y) : Wy p = Wa}]
(o, y) : Woy = Wo, 3,1
{0, Y) : Woy = Wa}|
T 0,y Woy = Wo, )

P (W, y = Wa) =
o~Sp

(Lemma 5.3)
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The relative f-invariant and non-uniform random sofic approximations 21
_ Zu(W)
Zn(Wo, y,)
exp([F(Wa) — F (W, y)]) - (3y/n) " E*“CP=B)  (prop 5.1)
exp(n[F (Wa) — F(Wa,y,) — o(1)]).

(definition of Z,,)

v

By continuity of F, we then get

P (W, = Wa) > exp (Fu(B*) — Fu(B) — 26 + o(1))

o~sy

for all large enough n and small enough 7 (again depending on k, ¢), with § > O the same
as chosen above. Since ,B*Gu is a Markov chain, F), (ﬂk) = F,(B) [5, Theorem 6.1].
Putting this all together, for any £ € N, for all § > 0, we have

E |Xi(o, @B, e | ya)| = expln(F, (" | g5) — 38 — o(1))]

o~sy

for all large enough n and small enough ¢ > 0.
It follows that for any k € N,

1
inflimsup — log E |{x € " : (X, y,) € Qf (0, af, &)}| > Fu (T, a* | 5.

€ posoo N o~Sy

Taking the limit as k — oo gives the desired bound, using Corollary 3.3 and that the family
of pseudometrics {d} : k € N} generates the weak™* topology.

7. Proof of Theorem B
Let W, = W_ _ma, so that

Ons¥Yn

Sp = SBM(Yn, Wa).
Note that, by definition of s,

]P) (Wd,y;ln" = Wn) = 1

o~sy

LEMMA 7.1. With W, as just defined in terms of my, o, and y,, we have
lim F(W,) = fu.(T, B).
n— oo

Proof. The assumption in the theorem statement that d, P;; " B u) = 0(1/log n)
implies the existence of a constant C such that

d(W,, Wgmn) < .
(Wa, W )_logn

By Lemma 3.1 we have

|F (W yma) = F(Wgm)| < 4r<H( IB(e. my)| log|B|> =o(1)

log n) + logn
using that m, = o(log log n). Since m,, approaches infinity as n goes to infinity we have
Su(T, B) =lim,_, o0 F(Wgmn), so the result follows. ]
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LEMMA 72. If m, =o(loglogn), then for any k>0 and & >0 we have
|BB(e,m,,)|k — O(HS).

Proof. This is certainly true if |B| = 1; assume therefore that |B| > 2.
Our assumption m, = o(log log n) guarantees that

1

r — £
poqym <7 &
@r = D™ < == g 08"

for all large enough n. Therefore
rQr — 1" —1 £
< Io
r—1 k log|B|

This inequality can be rearranged to give

IB(e, mp)| =

gn

|BB(E,mn)|k < ns.
Since ¢ > 0 is arbitrary, the result follows. O]

In the remainder of this section we prove Theorem B by first proving the right-hand side
is an upper bound for the left, then proving it is also lower bound.

7.1. Upper bound. Just as in the proof of the upper bound in Theorem A, for each k € N
and & > 0 we have

1 1
inf limsup —log E |{x € A" : (X,¥,) € Q(0,0)}| < limsup — log E(n, ),
O3@p)Su n—soo N 0™~8n n—oo N

where

En.e) = E |(Xe @) Xy, € Q0. @p) o))

= E [{Xe @ )" d(W, xy), Wepp) < O}

o~Sp
We assume that n is large enough that m,, > k.

Since s, is SBM(0y,, Yu, M, ) rather than SBM(0,, y,, k), we cannot apply Proposition 5.2
directly to this expression. We get around this as follows. Let

Wy(m,m') = (W, : o € Hom(G, Sym(n)), X € (aBE™)" y e B"}.

Xy

All elements of this set are denominator-n AB@™ x BB@m) yeiohts; we avoid the
question of exactly which weights are in this set, but call such weights attainable. For
k<mand k' <m'let

Wa(m,m'; ap, k,k'se) ={W e Wym,m") 1 d(wpe W, Woipe) < €}

denote the set of such weights whose appropriate marginal is within & of the (AB@h x
BB(e’k,))—weight W - For now we take m = k = k’, but we will need more generality
below. Then

E(n,£) = E > (X € @B W, oy = W,
" WeW, (ki Bk kie)
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so we can apply Proposition 5.2 to get

Sk(”l, 8) < (9n)r|BB(E’m”)|2(|AB(E’k>‘+1) Z en(F(W)_F(”BW))l{T[BW:W -

WeW, (k,m,;ap.k.k;e)

By Lemma 7.2 we have (9n)’|BB(e'm") P(aPER 1+ < %~ Using this and Lemma 7.1,
we have

Sk(n, 8) S Z eﬂ(F(W)*f(T,ﬁ)‘l’onaoo(]))I{HBW:WH},
WeW, (kmyap.kke)

where the little o is uniform over all terms in the sum. Here we use the assumption that
Sfu(T, B) is finite.

By definition of ‘W, (k, m,), for any W € W, (k, m,; af, k, k; €) we can pick o €
Hom(G, Sym(n)), X € (aB@®)" and y € B" so that W = W, (x ym). Then since Xy
is a splitting of Xy*, by Lemma 3.2 we have

F(W) = Funita)) (0, Xy™) < Funita) (0, Xy¥) = F (W),

where here Funif(a)) (o, Xy”") is F of the observable Xy™” on the measure-preserving
system ([n], Unif([n]), o) (we shift to this notation from weights in order to apply the
splitting lemma). By continuity of F, for all small enough ¢ (depending on k) we have

F(exW) < F(Wigp) +8 = Fu(T, (@B)) + .
Along with the above, this implies that

Ene) < N E T @B )= f (T B)+on(1)+6) Z
WeW, (k.ny;ap.kke)

Vmyw=w,}-

Bounding all terms in the sum by 1, we get
Ex(n, &) < " ET@BI=[uTB+on O+ | (kK 1my; af, k, k; £)].
Using Lemma 7.2, we have
[ Wk, mas B, k, ks £)] < | Wy, my)| < n/B7EE < gonoct),

so this implies

lim sup 1 log Ex(n, &) < Fu(T, (@B)*) — fu(T, ) +3.

n—oo N

Taking the infimum over € and k, and using the chain rule for f (Corollary 3.5, again using
the assumption that f,, (T, B) is finite), gives

1
inf lim sup - log Ek(n, &) < fu(T,ap) — fu(T, B) = fu(T,a | B).

&k n—oo

https://doi.org/10.1017/etds.2022.27 Published online by Cambridge University Press



24 C. Shriver

Since

1
inf  limsup—log E |[{xe€d":(x,y,) € Q(o,0)}

O3(@p)fpu n—soo N o~Sn

1
< inf lim sup — log & (n, €),

€ n—soo ;l
for every k, this completes the upper bound.
7.2. Lower bound. In this section we denote
Xipho (0, aB,e |y) = (X € @) 1 (X, ¥%) € Q(0, a1, ),
Q(o,af, e ly):={xen": (x,y) € Q(0,ap, ¢)}
(note the dependence on n is implicitly specified by ¢ € Hom(G, Sym(n)) and y € B"),

and with ¥ = {s,,}°2 |,

1
hs  (T,a | B:k,e):= limsup —log E |{x € A" :(x,y) € Q(0,ap, &)}

n—oo N 0~ 8y

1
= limsup — log E [Q;(c,aB, & |yl
o~sy,

n—oo N

The following two claims are used to relate the sizes of the sets defined above.
CLAIM 1. Let k < min(ky, k2). For any o,y, we have
el Xk ko (0, B, e | V)] S Q (0, B, ce |y)
where ¢ = 1 + |B(e, k).
Proof. If (X, y*2) € Qi (o, k1 B*2, ¢), then
ik (X, ¥2) € (0, (@), e);

this follows from the fact that total variation distance is non-increasing under pushfor-
wards. Applying Proposition 2.5, we get

(X, y) = e (miek (X, y*2)) € Qi (0, ap, ce). O

CLAIM 2. Fix o,y, and k < min(ky, k). As established in the previous claim, we can
consider 1, as a map from Xy, y, (o, ap, ¢ |y) to Qz (o, aB, ce | y). There are constants
C, d independent of n such that m, is at most C exp(nde + nH(2|B(e, k)|¢))-to-one.

Proof. If QZ(O’, apB, ce | y) is empty, then the claim is vacuously true. Otherwise, fix
xeQi(o,af,cely). If Xe rre_l{x}, then 7, (X, y¥) = (x, y). Claim 3 in the proof of
Proposition 3.2 of [2] gives an upper bound of the desired form for the number of such
pairs (X, yk ), and therefore the number of such X. O

Claim 2 implies that
| Xk ko (0, @B, & | Y)| < C exp(nde +nHQ2|B(e, k)le)) - (0, af, ce | Y. (1.1

where C, d are independent of n.
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We now find a lower bound for the expectation of |X|. Fix ki, k2 € N, and suppose n is
large enough that m, > max(ky, k2). Using Proposition 5.2 and Lemma 7.2, we have

E |Xk1,k2(6’ (Xﬂ, & | Yn)l
o~sy,

= > E [{Xe@Peh)m:w, o om) =W}
o~8,
WeW, (ki,mp;ap.ki.kze)
> > expln(F(W) = F(aW) = 04 (D)L imaw=w, )

WeW, (ki,mu;aB.ki.kae)

v

inf exp[n(F(W) — F(mgW) — on(1))]
WeW, (ky,my;apB.kykse)

x > Ligs W=wW, i }-
Yn
WeW, (kimnaf.kikase)

We bound the infimum below as follows. Given any W € ‘W, (k{, m,; af, ki, ka; €), we
can let X, y, o be such that W = W; (x ymn). Then by Lemma 3.2 and continuity of F,

F(W) — F(mzW) = F(o, X|y™)
> F(o, X|y?)
= F(mg ko, W) — F(memi, i, W)
> F (T, a"(p*) =8

for any § > O for all small enough ¢ (with ‘small enough’ dependent only on k1, k7). This
implies that the infimum is bounded below by

expln(Fu (T, o118'2) — 04 (1) - 8)1.
We bound the sum below by first rewriting it as

HW € Wy (ki, mn; aB, ki, ko €) : mgW = W ymn }.
The following claim, then, implies that the sum is bounded below by 1.
CLAIM 3. For all large enough n,

(W e W,ki,mp;aB, ki, kos €) cigW = W, ym} # 2.
Proof. By Lemma 2.3, if
n > 680|ABEkD s pBlemn) |2, /¢

and d(W, ymn, Wgm) < £/530r then there is a (ABekD) 5 gBlemn)y_weight W with
W = Wo,y,,m” and d(W, Wi, ﬁ,n,,) < ¢. By definition of s, and Lemma 7.2, both
conditions are met for all large enough n.

The claim will follow if we show that W is attainable.

With W as chosen above, by Proposition 2.4 we can choose 6 € Hom(G, Sym(n)),

X € (aB@kD)y? and Y e (BB such that W = W, &)
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Lety = ne? € B". To complete the proof we show that y"» = i{, that is,
(@G (9)i) = (Y(0))g
foralli € [n] and g € B(e, m,). We prove this by induction on the word length |g|.
The base case |g| = O (that is, g = e) follows immediately from the definition of y.

For the inductive step, write g = ht with |h| = |g| — 1l and ¢ € {slﬂ, o ,sril}. Then,
assuming the result holds for A,

(6 ()i) = (6 (G 1)i) = (Y (& (1)i))n-

Now since Wéj{ = Wa,, ym s We can pick j € [n] such that
Y@) =y,"(j) and Y(G@)i) =y (1))
This implies
Y@ ODn = 5" (@O ))h = Ya(@(©))) = ¥ (N)g = (Y(D))g- O
Hence, for all large enough n, we have
JE Xt (0, @B, | yo)l = expln(Fu(T, o | ) — 0,(1) = 9)]
and therefore

. 1
lim sup ~log E |Xiy (0, B, € | yu)l = Fu(T, ™t | B2) 8.

n—oo

Combining this lower bound with equation (7.1) and the definition of hy , (T, «a | B :
k, ce), we get

de +HQIB(e, k)|e) +hx (T, o | B : k, ce) = Fu(T, oM | p*2) —5.

Taking the infimum in ¢ then letting § go to zero gives

1

inflimsup —log E [{x € A" : (X,yn) € Qj(0, af, )} > Fu(T, ok | ﬁkz)
&€ nooo N o~Sy

for k < min(ky, ky). First take k; — oo, then k| — oo, then take the infimum over k.

We get

1
Ju(T,a| p) <inflimsup —log E |{x € A" (X, ¥n) € (0, ap, o)}
3

n—oo N o~y
1
= inf limsup—log E |[{x€2":(x,y,) € Q(o,0)}
03(ap)fp n—oo M~ 0~sn
where the last line follows because the collection of pseudometrics {d; : k € N} generates
the weak™ topology on Prob((a x B)Y).

8. Proof of Theorem C

By analogy with sofic entropy, we denote X := {s,}°° | and denote the left-hand side of
the formula in the theorem statement by hx , (T, @).
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Endow Prob(a%) with the metric
x
d(r,v) =Y 277dP0 (o, v).

r=1

Note that this induces the weak* topology (where A is given the discrete topology and A
the product topology).
Writing pua = a*G w € Prob(A%), we then have

1
hs (T, ) = inf lim sup log IE |{x e A" 1 d(P], pua) < €}

e>0 p—oo

We will similarly denote 1z = BS 1 € Prob(BY).

8.1. Lower bound. Let A € Prob((a x B)Y) be any joining of (the shift systems with
respective measures) ta and wup. Then, for any x € A" and y € B”, we have

d(P;’ ILLA) = d(P&’y), )")a

where d is defined on Prob((A x B)¢) analogously to the definition given on Prob(a%)
above. This inequality holds because total variation distance is non-increasing under
pushforwards. Consequently,

1
hs (T, o) > inf lim sup log E |{xea" d(P(Xy ) A) < e}l = fo(S,a|b).

e>0 p—oo o~sy

Taking the supremum over joinings X gives the lower bound.

8.2. Upper bound. Fore > 0, let
= {1 € Prob®((& x B)Y) : d(a%%, ua) < & and d(bC A, ug) < €}

be the set of shift-invariant ‘approximate joinings’ of 15 and wg. Since Prob((a x B)Y) is
compact, for each ¢ > 0 there exist A, . .., A, € J such that

m
Je C U B\, €).
i=1

By definition of s, we have Py~ (d (Py‘fl , up) < ¢) = 1 for all large enough n. Therefore,

1
hy (T, @) =inflimsup —log E [{x € A" P(xy,,) e J

€ n—soo N 0~Sp

<1nf11msup logz E |{xea": P(Xy)eB(Al,e)}l

n—oo N g~8Sp

l
=inf max limsup —log E |[{xe€A": P(Xy ) € B(A;, &)}

& 1<ism p—soo N 0~Sp

1
< inf sup limsup —log E |{x € A" P<Xy ) € B(A, &)}].

€ red, n—>oo n 0~Sp
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Note that the entire expression in the infimum is decreasing as ¢ — 0, so we may replace
the infimum with a limit. Rather than taking a continuous limit we write

1
hy ,(T,a) < lim sup limsup —log E |[{xea”: P&y y € B(, 1/m)}].
m 2N

—00 ~
redyyy n—00 n o~Sy

For each m, pick A, € Ji/m to get within 1/m of the supremum. Then the right-hand
side is equal to

1
lim limsup —log E |{xea": P&y ) € BOun, 1/m)}]. (%)
o~En sYn

m—=0 psoco N

Let A ; be a subsequence with weak™ limit A9. By weak™ continuity of pushforwards
under projection we have Ao € J(ua, us). Now, for any § > 0, for all large enough j we
have both 1/m; < é/2 and d(Am;, o) < §/2, so by the triangle inequality

B(Am;, 1/mj) S B(%o, ).

It follows that the expression in (x), and hence /iy (@), is bounded above by

) 1
lim sup - log ULES {x en": P&,yn) € B( o, 8)}I.
n—oQ n
Taking the infimum over § shows that

hs(u, ) < fig(S,alb) < sup  fa(S,a|Db).
red(ua.up)

9. Proof of Proposition 1.1
All sequences of interest are of the form

Sp = SBM(0y, Yn, my) = Unif({oc € Hom(G, Sym(n)) : Wa’ynmn =W,DH

with y, € B", 0, € Sym(n), m, = o(log log n), and where W, is the BB _weight
W, ymn - In the case of Theorem A we simply have m,, = 0 for all n.
The theorem will follow from the following lemma.

LEMMA 9.1. Let &, denote the uniform measure on Hom(G, Sym(n)). Then, for any finite
D C G and § > 0, there exists ¢ > 0 such that

P (o is (D, §)-sofic) > 1 —n"*"

o~

for all large enough n.

This can be proven by making superficial changes to the proof of the similar result
[1, Lemma 3.1].
To prove Proposition 1.1, it now suffices to show that, for any & > 0,

P (Woym = W) = n™""

o~y
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for all large enough n. To do this, first note that the left-hand side here depends only on the
vector py, € Prob(B) of letter frequencies. Therefore,

P (there exists y € B" s.t. Wy ymn = W,,) < Z P (Woym=W,)

o~ o
&n Y:Py=Py,

= exp{nH(py,) + o(n)} IP{ (Wa,ynmn =W,).
0™~Cn

7

But by Proposition 2.5, if o € Hom(G, Sym(n)) and Y € (BB©"))" are such that W, y =
W, = W_ _ma, then the projection Y, € B” satisfies (Y.)"" =Y. Therefore, for each o,

OnsYn
HY € @B W,y = Wy} = [{y € B" : Wy ym = Wy)l.
Hence,

E Y € %) : Woy = Wy}|= E Iy e B" : Wy ymn = W}
0™~Cn

o N;}l

<|B|" P (thereexistsy € B" s.t. Wy ymn =W,,).

o~&,

Combining these last few statements, we see that

P (W, ym = W,) > exp{—2n log|B| + o(n)} E Y e BB W,y = W,}I.
0~Cn

o N{)l

We can ignore the first factor here since it only decays exponentially fast. By
Proposition 5.1,

Zn (W) —ppBlemm)2 _
Y Blemp)yn .y w ni\’n r|B I“ ,F(Wyn , (1—r)/2
O’I?inH €(B ) oY = W = 1y > (3\/’;) € n .

The third factor is clearly not a problem and can also be ignored. For the first factor,

5B |BB(em) |2 10g 3., /n
log(3 rlgBlemm2
nlogn 0g(3m) " n log n

— 0 asn—> o0

using Lemma 7.2. For the second factor, first note that by definition of ¥ (W,,) we have

F(W,) = =2r)HW, () + Z H(W, (., -51))

ielr]
> =2rH(W, ()
> —2r log|BBEm)|,
So
F(W 1 BB(e,mn)
log eFWun _ M > _zrb — 0 asn— oo,
nlogn log n logn

again using Lemma 7.2. This implies that for every ¢ > 0 we have
(3ﬁ)7r|BB(e’m”)\zeF(Wn)n > pen

for all large enough n, which implies the result.
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10. Proof of Lemma 2.3

We show how to construct a denominator-n weight Wag that has a given B-marginal Wy
and is close to a given (A x B)-weight W whose B-marginal wg W is close to Wg. As in the
theorem statement, we assume

d(mgW, W) < 6.

To minimize the appearance of factors of %, in this section we work with the ¢! distance
on weights, which is twice the distance defined above. Therefore the previous assumption
becomes

dy(reW, We) = > > [meW(b,b'si) — Wa(b, bs i)| < 25.
i€[r] b,b'eB

We fix distinguished elements ap € A and by € B which will be referred to throughout
this section.

10.1. The vertex measure. ~We first define the weight’s vertex measure by
1
Wag((a, b)) = ;Ln -W((a,b))] aen\{ao}, beB,

Was((ag, b)) = Wa(b) — Y Was((a, b)) be€B.
a#agp
See Table 1.
Note that |Wag((a, b)) — W((a, b))| < 1/n for a # ap and

[Wag((ao, b)) — W ((ao, b))| < |Wr(b) — ngW(D)| + |A|/n.
Therefore the ¢! distance between the vertex measures is

Y IWas((a, b)) — W((a, b)| < |Bl[BI/n+ Y _(IWa(b) — msW (b)| + |Al/n)

ab beB

<25 +2|2]|B|/n.

10.1.1. Nonnegativity. The terms defined by rounding down W using the floor function
are guaranteed to be non-negative, but the others are not. In the following we show how to
repair any negativity.

TABLE 1. Picking entries of the vertex measure Wag(-). First
choose entries of the form Wag((a, b)) for a # ap by rounding
down W((a, b)), then fill in the first column in a way that
guarantees the correct B-marginal.

aop ay
by — L] L]
by - L] L]

— L] L-]

https://doi.org/10.1017/etds.2022.27 Published online by Cambridge University Press



The relative f-invariant and non-uniform random sofic approximations 31

Let —R/n denote the sum of all negative terms in the vertex measure. Since W contains
only non-negative terms, we have

Liwas((@.p))<0) - [Wag((a, b))| < |Was((a, b)) — W((a, b))| foralla,b.
Therefore

R/n <) |Was((ao, b)) — W((ag, b))| < 25 + |Al[B|/n.

beB

Suppose there is some b € B such that Wag((ag, b)) < 0. Since Wap has denominator 7,
we must have Wag((ag, b)) < —1/n. By construction, we have

Y Was((a, b)) = Wa(b) = 0,

acA
so there exists some a™ € A with Wag((a™, b)) > 1/n. Increase Wag((ag, b)) by 1/n and
decrease Wag((a™, b)) by 1/n.

The number of times we must repeat this step before all terms are non-negative is
exactly R, and each step moves the measure by £! distance 2/n; therefore the final edited
vertex measure is distance at most 2R /n from the original Wag. If we now let Wap denote
the new, non-negative vertex measure, by the above bound on R/n we get

D IWas((a, b)) — W((a, b)| < 63 + 4IAl[B|/n.
a,b

10.2. The B half-marginal. For the purposes of this construction we use the B
‘half-marginal’, which we denote by

Wb, (@, b);i) = Z W((a, b), (a’, b); i).
ach

This is an element of Prob((B x (A x B))").

Before constructing the edge measure of Wag, in this section we first construct what
will be its half-marginal.

Foreachi € [r], b, b’ € B, and a’ € A, we define

Wag(b, (a', b);i) = %Ln -W(b, (a',b);i)] fora # ap, b # by, (10.1)

Waz (b, (ao, b/)§ i) = Wg(b, b’ i)— Z Wag(b, ((1/, b/); i) forb # by, (10.2)

a’'#ag

Wag(bo, (@', b); i) = Was((d', b)) — Z Was (b, (a', b'); 0). (10.3)
beby

See Table 2 for a representation of which terms are defined by each equation.
The definition of the terms in (10.3) ensures that

> Was(b. (@ 0):0) = Wap((@', b)) foralla’, ..

beB

https://doi.org/10.1017/etds.2022.27 Published online by Cambridge University Press



32 C. Shriver

TABLE 2. A diagram of how the half-marginal Wag(:, (-, -); i) is chosen if A = {ag, a;, a2} and B =
{bo, b1, ba}. First obtain the entries marked |-| by rounding down W. Then choose the entries marked —
according to equation (10.2) which ensures that the B-marginal is Wg. Then choose the entries marked |
according to equation (10.3) which ensures that the vertex weight is the one we chose above.

(ao, bo) (a1, bo) (az,bo) (ao,b1) (a1,b1) (a2, b1) (ag,b2) (a1,b2) (az,b2)

bo \ \ \ { ! { ! \ !
by - L L] - L] L e L L
by —— L L] - L] L] - L] L

This will ensure that Wap has the correct vertex measure. Note also that, by line (10.2),

Z Wag(b, (a', b'); i) = We(b,b';i) forallb e B\ {bo}and b’ € B.

a’en

Using this and definition (10.3), we also get

> Wag(bo, (a', b)) i) = Wa(bo, b5 i).

a’en

This will ensure that the B-marginal of Wag is Wg.

We show now that the half-marginal Wag(-, (-, -); i) is 2lclose to W, (-, -);i0) by
considering separately the contributions to the ¢! distance from terms defined using
equations (10.1), (10.2), and (10.3).

(10.1) terms: Each of the terms of Wap defined using the floor in equation (10.1) is
distance at most 1/n from the corresponding term of W; therefore the total contribution of
these terms to the £! distance is

D Was(b, (@, b);i) = Wb, (@, b); )| < |nlBPr/n.

beB\{bo}
a’eb\{ap},b'eB
ielr]

(10.2) terms: By the triangle inequality,
|WAB(b9 (a09 b/)s l) - W(bv (a()» b/)’ l)|

= '(Wgaa, bii)— Y Was(b, (d,b); i))

a'#ag

- <nBW(b, bii)y— Y W, (@, b/);i))‘

a'#agp

< [Wa(b,b's i) — s W (b, b'; i)

+ Y [Wap(b, (@, b); i) = Wb, (d, b); ).

a'#ao
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The total contribution of such terms is therefore

D [Was(b, (a0, b); i) — Wb, (a0, b); )|

beB\{bp}, b'eB
iglr]

<d|(Wg,ms W)

< ) Ws(, b)) — ()W (b, b3 1))

beB\{bo}, b'eB
ielr]

=contribution from (10.1) terms

+ Y Was(b. (@, b)) — Wb, (@, b))
beB\{bo}

a’eh\{ap}, b'eB
i€lr]

<25 + |a||B|%r/n.
(10.3) terms: Again applying the triangle inequality,

|Was (bo, (a, b'); i) — W (bo, (a, b); )|
< |Was((a, b)) = W((a, b))
+ Y |Was(b, (a,b); i) — Wb, (@, b); ).
b#bgy

Summing over all @ € A, b’ € B and i € [r], we see that the total contribution of such
terms is bounded by

> [|WAB((a, b)) — W((a, b))

aeh,b'eB
iglr]

+ 3 (Was (b, (@, b 1) — Wb, (@, b); ")'}
by

vertex measure

= Z Z|WAB((0, b)) — W((a, b))

= ach
ietr] beB

(10.1) terms
+ Y (Was(b, (@, b)) — Wb, (@, b))
beB\{bo}
a’en\{ap}, b'eB
i€lr]
(10.2) terms

+ > |[Was(b, (ag, b); i) — Wb, (a0, b'); 1))

beB\{by}, b'eB
ielr]

<r-[68 + 4|a||B|/n] + [|Al|B|?r/n] + [28 + |A||B|*r/n]
< 8r8 + 6|A||B|*r/n.
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Adding up the contributions of the three types of terms, we see that the £! distance
between the half-marginals of W and Wap is bounded by

10r8 + 8|A||B|%r/n.

10.2.1. Nonnegativity. Again, the preceding construction does not guarantee that all
terms are non-negative. In the following we describe how to correct negativity.
Let —R/n be the sum of all negative terms of the half-marginal. As above, we get

R/n < 10r8 + 7|2||B|*r/n.

Suppose there is some b_ € B, (a’ ,b’ ) € A x B, and i € [r] such that Wag(b_,
(a_, b );i) <0.Then Wag(b_, (a’_,b");i) < —1/n. Since

> Was(b—, (@', b );i) = Wa(b_, b ;i) = 0
a’en

and
> Was(b, (a,b); i) = Was((a_, b.)) = 0

beB
there exist a/, € Aand b, € B such that
Wag(b—, (ay, b );i) = 1/n and  Wag(by, (a_, b’ );i) = 1/n.
Decrease both of these terms by 1/n, and increase both Wagp(b—, (a’, b’ );i) and
Wag(b, (a/, b"); i) by 1/n. This moves the half-marginal by ¢! distance 4/n:
> Wap(b, (@, b);i) = Wa(b, b5 i) and Y Wag(b, (d', b'); i) = Wap((d, b)).
a’en beB

This step must be done at most R times to eliminate all negative entries, so the final
half-marginal satisfies

YD DT Was(b, (@, b)) — Wb, (@, b): )

i€[r] beB (a’,b')eAxXB

< (10r8 + 8|A||B|?r/n) + R - 4/n < 50r8 + 36|2||B|*r/n.

10.3. The edge measure. Finally, we define the edge measure of Wag by

1
WAB((CZ, b)v (a/’ b/)? l) = ;l_n : W((a’ b)’ (a/v b/)a Z)J

for a # ap and (a’, b") # (ao, bo), (10.4)
Wag (a0, b), (@', b'); i) = Wan(b, (@', b); i) — Y Wag((a, b), (', b); i)
a#ag
for (a’, b') # (ag, bo), (10.5)
Was((a, b), (a0, bo); i) = Wae((a, b)) — Z Wazs((a, b), (@', b); 1) (10.6)

(@’ ,b")#(ag,bo)
See Table 3.
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TABLE 3. A diagram of how the edge measure Wag((-, ), (-, -); i) is chosen if A = {ag, a1, a2} and B =
{bo, b1, b2}. First obtain the entries marked |-| by rounding down entries of W. Then choose entries marked
} according to equation (10.5), which ensures that the B half-marginal is the one chosen above. Then choose
entries marked — according to equation (10.6), which ensures that the vertex measure is the one chosen above.

(ao, bo) (a1,bo) (az,bo) (ao,b1) (a1,b1) (az,b1) (ao,b2) (a1,b2) (az,b2)

(ao, bo) — l \ \ \ J J ! \:
(a1, bo) — L] L] L] L] L] L-] L] L]
(a2, bo) — L] L] L] L] L] L-] L] L-]
(ao, b1) — J J { J | J J \
(ar, by) — L] L] L] L] L] L-] L-] L-]
(a2, by) - L] L] L] L] L] L] L] L]
(ao, b2) — 2 2 2 J J J J \
(ar, b2) — L] L] L] L] L] L-] L-] L-]
(az, by) — L] L] L] L] -] L] L] L]

It follows from this definition that Wag is a (signed) weight with B-marginal Wg.

We now check that Wag is £!-close to W. We consider separately the contribution to the
¢! distance of terms defined in equations (10.4), (10.5), and (10.6).

(10.4) terms: Each term of Wap defined using the floor function in equation (10.4) is
distance at most 1/n from the corresponding W term. The total contribution of these terms
to the ¢! distance is therefore at most |A|2|B|%r/n.

(10.5) terms: Applying the triangle inequality to terms defined in equation (10.5),

|Was((ao, b), (d, b'); i) — W((ao, b), (a', b'); )|
< |WAB(bv (a/7 b/)’ l) - W(b’ (Cl/, b/)v l)|
+ ) |War((@. b), (@', b)) — W((a. b), (@, b)) )]
a#ay
< |Was(b, (@', b); i) — Wb, (@, b); )| + |2]/n.

By the ¢! bound on the distance between the half-marginals, the total contribution of
all such terms is therefore at most

DX D (Was(h, (@, b);i) = Wb, (@, b); )] + [B]/n)

ielrl b (a'.b)#(ag.bo)
< [50r8 + 36|A12 B2 /n] + |212[B[r/n
= 50r8 + 37|a)%|B|*r/n.

(10.6) terms: Applying the triangle inequality to terms defined in equation (10.6),

|Waz((a, b), (a0, bo); i) — Was((a, b), (ao, bo); )]
< [Wae((a, b)) — W((a, b))|

+ > Wap((@, b), (@, b);i) = W((a, b), (@', b'); 1)
(a’,b")#(a.bo)
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Therefore the total contribution of all such terms is

D> IWas((a, b), (a0, bo); i) — Was((a, b), (ao, bo); i)

ie[r] ab

=>. > [|WAB<(a, b)) = W((a, b))

i€[r] a,b

+ > |WAB<(a,b>,(a’,b’>;i>—W(<a,b>,(a’,b/);m]
(a’,b")#(ao.bo)

vertex measure

= Z Z|WAB((a, b)) — W((a, b))|

i€[r] ab

(10.4) terms

X33 Y Wae((@. b), (@, b)) — W((a, b), (@, b); 1))

i€lrla#ag b (a’.b")#(ag.bo)

(10.5) terms
+0 > Was((ao, b), (@, b); i) — W((ao, b), (d', b); i>|}
i€lr] b (a',b")#(ag.bo)
<r-[68 +3|a||B|/n] + [|A]%|B|*r/n] + [50rs + 37|2)%|B|%>r/n]
< 56r8 + 41|a%B|%r/n.

Summing up the contributions from terms of all three types, we get that

di(Wag, W) < 106r8 + 79|a|%|B|*r/n.

10.3.1. Nonnegativity. We can modify a solution with negative entries to get a
non-negative one similarly to above. Let —R/n be the sum of all negative entries; then

R/n < 106r8 + 78|2|%|B|*r/n.
Suppose there is some entry
Was((a—, b-), (@, b );i) < —1/n.

We want to increment this term by 1/n without affecting the vertex measure or the B
marginal. Since
Y Was((a,bo), (@, b);i) = Wap((a—,b-)) = 0

(a’,b')EAXB
there exists some (a/, b)) € A x B such that Wag((a—, b_), (), bl,); i) = 1/n; simi-
larly, since

> Was((a, bo), (@', bL); i) = Wag(b-, (@, b); i) = 0

acA

there exists some a4 such that Wag((a, b—), (a’_, b’ ); i) > 1/n. Increase

WAB((a—’b—)v (al_vb/_)v l) and WAB((a-I—v b—)9 (ag_v bi}.)» l)
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by 1/n, and decrease

WAB((a—9b—)7 (agn bg-)9 l) and WAB((a-‘r’ b—)9 (a/—9b/_)9 l)

by 1/n. This moves the weight by ¢! distance 4/n.
Since R is the maximum number of times we need to do this before there are no more
negative entries, the final weight satisfies

di(Wag, W) < 106r8 + 79|A|%|B|*r/n + 4R /n < 530r8 + 391|a|%|B|*r/n.

To simplify, we write

or

di(Wag, W) < 530r(8 + |A x B|*/n),

d(Was, W) < 265r(8 + |A x B|>/n).
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