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Abstract. The f -invariant is an isomorphism invariant of free-group measure-preserving

actions introduced by Lewis Bowen, who first used it to show that two finite-entropy

Bernoulli shifts over a finitely generated free group can be isomorphic only if their base

measures have the same Shannon entropy. Bowen also showed that the f -invariant is a

variant of sofic entropy; in particular, it is the exponential growth rate of the expected

number of good models over a uniform random homomorphism. In this paper we present

an analogous formula for the relative f -invariant and use it to prove a formula for the

exponential growth rate of the expected number of good models over a random sofic

approximation which is a type of stochastic block model.
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1. Introduction and main results

Let G = 〈S〉 denote the rank-r free group with generating set S = {s1, . . . , sr} and iden-

tity e, and let (X, µ, T ) be a measure-preserving G-system, that is, T is a homomorphism

from G to the automorphism group of the standard probability space (X, µ). We will not

need to make explicit use of the σ -algebra on X, so we leave it unnamed.

An observable on X is a measurable map with domain X. In this paper the codomain

will be a finite set endowed with the discrete sigma algebra; in this case we call the map a

finite observable and the codomain an alphabet.

Any observable α :X → A induces a map αG :X → A
G by setting

(αG(x))g = α(Tgx) for all g ∈ G.

We call the A-coloring αG(x) of G the itinerary of x, since it records the observations

that will be made over the entire orbit of x under the action of G. We also similarly define
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the map αH :X → A
H for any subset H of G. We abbreviate αn := αB(e,n), where B(e, n)

is the closed ball of radius n centered at the identity in G, which is endowed with the

word-length metric. If β :X → B is a second finite observable, we denote by αβ :X →
A× B the map αβ(x) = (α(x), β(x)).

The (Shannon) entropy of a finite observable α :X → A is defined by

Hµ(α) = −
∑

a∈A
α∗µ(a) log α∗µ(a),

where α∗µ ∈ Prob(A) is the pushforward measure, with the convention 0 log 0 = 0. The

entropy of α can be interpreted as the expected amount of information revealed by

observing α, assuming its distribution α∗µ is known.

An early application of Shannon’s entropy to ergodic theory was its use by Kolmogorov

and Sinai to show that there exist non-isomorphic Bernoulli shifts over Z. A Bernoulli shift

over Z is a system of the form (AZ, µZ, S) for some alphabet A and µ ∈ Prob(A); S is the

shift action of Z. They did this by defining an entropy rate for Z-systems, which can be

interpreted as the average information per unit time revealed by observing the system. For

a Bernoulli shift (AZ, µZ, S), the entropy rate is simply the ‘base entropy’ Hµ(α), where

α :An → A is the ‘time zero’ observable.

Isomorphism invariance of the Kolmogorov–Sinai entropy rate is typically proven

using the fact that entropy rate is non-increasing under factor maps (which are surjective

homomorphisms of measure-preserving systems). This fact can be interpreted as stating

that a system cannot simulate another system that is ‘more random’.

The entropy rate was soon generalized to systems acted on by an arbitrary amenable

group (such as Zd ). Extending beyond amenable groups proved more difficult, and in fact

it was found to be impossible for such an extension to preserve all desirable properties of

the Kolmogorov–Sinai entropy rate. In particular, an entropy rate for non-amenable group

actions which assigns Bernoulli shifts their base entropy cannot be non-increasing under

factor maps [13, Appendix C].

The first invariant to distinguish between Bernoulli shifts over free groups is Lewis

Bowen’s f -invariant. Following [2], this can be defined by

Fµ(T , α) = (1 − 2r)Hµ(α) +
r∑

i=1

Hµ(α{e,si }),

fµ(T , α) = inf
n

Fµ(T , αn) = lim
n→∞

Fµ(T , αn).

The main theorem of [3] is that fµ(T , α) depends on the observable α only through

the σ -algebra it generates. In particular, the common value of fµ(T , α) among all α

which generate the σ -algebra of the measurable space X (assuming such α exist) is a

measure-conjugacy invariant of the system (X, µ, T ). In the same paper, Bowen showed

that the f -invariant of a Bernoulli shift is the Shannon entropy of the base measure; in

particular, Bernoulli shifts with different base entropies are non-isomorphic.

In [2], Bowen gave an alternate formula for the f -invariant, which we now introduce.

For any homomorphism σ :G → Sym(n) we have a G-system ([n], Unif(n), σ), and

we can consider a labeling x ∈ A
n as an A-valued observable on this system. We denote
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the law of its itinerary by P σ
x = xG

∗ Unif(n) and call this the empirical distribution of x.

We say that x is a good model for α over σ if it is difficult to distinguish the G-systems

(X, µ, T ) and ([n], Unif(n), σ) via their respective observables α and x. To make this

precise, we denote

�(σ , O) := {x ∈ A
n : P σ

x ∈ O},

which is a set of good models for α over σ if O is a weak∗-open neighborhood of αG
∗ µ ∈

Prob(AG); the particular set O quantifies how good the models are. The alphabet A is given

the discrete topology and AG the product topology, so ‘weak∗-close’ means marginals on

some finite sets are close in total variation norm.

For each n ∈ N, let sn = Unif(Hom(G, Sym(n))). Bowen showed in [2] that the

f -invariant is given by

fµ(T , α) = inf
O�αG

∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|�(σ , O)|.

To make an analogy with statistical physics, we can think of αG
∗ µ as a macroscopic

statistical distribution of the state of a system; then the f -invariant is the exponential growth

rate of the expected number of ‘microstates’ that are consistent with these statistics. What

we here call good models are often called microstates for this reason.

More generally, given any random or deterministic sofic approximation � = {sn}∞n=1,

we can define the sofic entropy relative to � by

h�,µ(T , α) = inf
O�αG

∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|�(σ , O)|.

Here each sn is a probability measure on the set of functions G → Sym(n) which is

supported on functions which are approximately free homomorphisms.

This paper is motivated by a desire to better understand the dependence of sofic

entropy on the sofic approximation �. For any choice of �, the sofic entropy agrees

with Kolmogorov–Sinai entropy if the acting group is amenable [6] and with the Shannon

entropy of the base if the system is a Bernoulli shift [4]. For some systems, the sofic

entropy can be finite relative to some sofic approximations and −∞ relative to others. It is

unknown whether two deterministic sofic approximations can yield different finite entropy

values for the same system.

In this paper, we express the entropy relative to a type of stochastic block model in terms

of the relative f -invariant, which we now introduce.

If α, β are two finite observables with codomains A, B, the conditional entropy is

Hµ(α|β) = Hµ(αβ) − Hµ(β).

This can be interpreted as the expected amount of information revealed by observing α if

both the value of β and the joint distribution of α and β are known. The relative f -invariant
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is defined by

Fµ(T , α|β) = Fµ(T , αβ) − Fµ(T , β)

= (1 − 2r)Hµ(α|β) +
r∑

i=1

Hµ(α{e,si } | β{e,si }),

fµ(T , α|β) = inf
k1∈N

sup
k2∈N

Fµ(T , αk1 | βk2).

Both the infimum and supremum can be replaced by limits; this follows from Lemma 3.2

below. It follows from Corollary 3.5 that we could also directly define

fµ(T , α|β) = fµ(T , αβ) − fµ(T , β),

as long as fµ(T , β) > −∞.

We now define the relevant type of stochastic block model. If H is a finite subset of G, we

denote by dH (µ, ν) the total variation distance between the marginals of µ and ν on AH .

Our convention for the total variation distance between measures µ, ν ∈ Prob(A) is

‖µ − ν‖TV =
1

2

∑

a∈A
|µ{a} − ν{a}|.

For each k ∈ N we define a pseudometric on Prob(AG) by

d∗
k (µ, ν) =

∑

i∈[r]

dB(e,k)∪B(si ,k)(µ, ν).

Note that {d∗
k }k∈N together generate the weak∗ topology on Prob(AG). These generalize

the function d∗
σ from [2], which corresponds to the case k = 0. For O = {ν ∈ Prob(AG) :

d∗
k (αG

∗ µ, ν) < ε} we write

�(σ , O) =: �∗
k(σ , α, ε) ⊆ A

n.

Our stochastic block model is now defined as follows: given y0 ∈ B
n, σ0 ∈

Hom(G, Sym(n)), and k ∈ N, let

SBM(σ0, y0, k) := Unif({σ ∈ Hom(G, Sym(n)) : d∗
k (P σ

y0
, P σ0

y0
) = 0}).

The labeling y0 partitions the elements of [n] into |B| communities, and we can think

of the random homomorphism σ as a random choice of directed edges between and

within the communities. Certain statistics of these random edge choices are determined

by the reference homomorphism σ0; note that for k > 0 these statistics are more precise

than those specified by a standard stochastic block model. In §2 we define weights, which

are the objects used to record the relevant statistics.

1.1. Main results. Our main theorems show that the relative f -invariant can be inter-

preted as the growth rate of the expected number of ways to extend a planted good model

for β to a good model for αβ, over a stochastic block model which has statistics determined

by β and its planted model.

We first prove that if βG
∗ µ is Markov then we can use a stochastic block model which

only takes into account ‘one-step statistics’.
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THEOREM A. Let α :X → A and β :X → B be finite observables, and for each n let yn ∈
B

n and σn ∈ Hom(G, Sym(n)) be such that

lim
n→∞

d∗
0 (P σn

yn
, βG

∗ µ) = 0.

Suppose that βG
∗ µ is a Markov measure. With sn = SBM(σn, yn, 0), we have

fµ(T , α | β) = inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}|.

PROPOSITION A. The assumptions of Theorem A are non-vacuous; that is, for

any finite observable β :X → B there exist sequences {yn ∈ B
n}∞n=1 and {σn ∈

Hom(G, Sym(n))}∞n=1 such that limn→∞ d∗
0 (P

σn
yn

, βG
∗ µ) = 0.

This follows from the fact that free group actions are ‘sofic’, which is proven for example

in [10, 14, 15]. A more elementary proof is given in §4 below.

If βG
∗ µ is not Markov, then the same formula holds with a more precise type of

stochastic block model.

THEOREM B. Let α :X → A and β :X → B be finite observables. Let mn approach

infinity as n goes to infinity while satisfying mn = o(log log n). For each n, let yn ∈ B
n

and σn ∈ Hom(G, Sym(n)) be such that

d∗
mn

(P σn
yn

, βG
∗ µ) = O

(
1

log n

)
.

Suppose that fµ(T , β) > −∞. With sn = SBM(σn, yn, mn),

fµ(T , α | β) = inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}|.

PROPOSITION B. The assumptions of Theorem B are non-vacuous; that is, for any

finite observable β :X → B and any sequence {mn ∈ N}∞n=1 approaching infinity

while satisfying mn = o(log log n), there exist sequences {yn ∈ B
n}∞n=1 and {σn ∈

Hom(G, Sym(n))}∞n=1 such that limn→∞ d∗
mn

(P
σn
yn

, βG
∗ µ) = O(1/log n).

Using Theorem B, we prove the following formula for the growth rate of the expected

number of good models over a stochastic block model. This can be compared to the

variational principle in [12], and has a similar proof.

THEOREM C. Let sn, α, β be as in the statement of Theorem B. Then

inf
O�αG

∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|�(σ , O)| = sup
λ∈J(αG

∗ µ, βG
∗ µ)

fλ(S, a | b).

Here J(αG
∗ µ, βG

∗ µ) is the set of joinings of the G-systems (AG, αG
∗ µ, S) and

(BG, βG
∗ µ, S), that is, shift-invariant probability measures on (A× B)G whose A

G, BG

marginals are αG
∗ µ, βG

∗ µ, respectively. S denotes the shift action of G. We use a, b to

denote the maps

a : (A× B)G → A

((ag , bg))g∈G 
→ ae
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and

b : (A× B)G → B

((ag , bg))g∈G 
→ be,

which observe the A (respectively, B) label at the identity.

Note that the supremum is always greater than or equal to fµ(T , α), with equality

attained by the product joining; this means that the expected number of good models for

α over a block model with built-in good models for any β is at least the expected number

of good models over a uniformly random homomorphism. It is possible for the supremum

to be strictly larger, however. For example, suppose fµ(T , α) < 0 and α = β, and let λ be

the diagonal joining. Then

fλ(S, a | b) = 0 > fµ(T , α).

1.2. Related work. The expressions appearing on the right-hand sides of Theorems A

and B are very closely related to Ben Hayes’ definition of ‘relative sofic entropy in the

presence’ [11, Definition 2.5]. Some differences are that we consider expected numbers of

good models over random sofic approximations, and that Hayes takes a supremum inside

the logarithm over which good model is to be extended, while we fix a sequence {yn} of

planted good models. Hayes also does not restrict to shift systems as we do here.

In [8], the free energy (that is, the limit of normalized log partition functions) over a

type of stochastic block model is shown to satisfy a variational principle; see Propositions

3.6 and 3.7 of that paper.

1.3. Random sofic approximations. As noted above, the f -invariant is closely related

to another invariant of measure-preserving systems called sofic entropy, which was

introduced by Bowen in [4].

A homomorphism σ ∈ Hom(G, Sym(n)) is called (D, δ)-sofic for some finite D ⊂ G

and δ > 0 if

|{j ∈ [n] : σ(γ )j �= j for all γ ∈ D \ {e}}| > (1 − δ)n.

A sequence of homomorphisms � = (σn ∈ Hom(G, Sym(n)))n∈N is called a sofic approx-

imation if, for every (D, δ), the homomorphism σn is (D, δ)-sofic for all large enough n.

The sofic entropy relative to � is the exponential growth rate of the number of good

models over σn. Specifically, for any finite observable α on X we have

h�,µ(T , α) = inf
O�αG

∗ µ

lim sup
n→∞

1

n
log|�(σn, O)|.

This is an isomorphism invariant of the system (X, µ, T ) if α is any generating observable,

that is if the σ -algebra of the measurable space X is the coarsest one which is shift-invariant

and α-measurable.

By analogy with this expression, we might call the sequences of random homomor-

phisms appearing in expressions above ‘random sofic approximations’. The following

proposition provides further justification for this terminology.
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PROPOSITION 1.1. If (sn) is any of the sequences appearing in Theorems A, B, and C,

then for any (D, δ) there exists ε > 0 such that

P
σ∼sn

(σ is (D, δ)-sofic) ≥ 1 − n−εn

for all large enough n.

In particular, if σ1 ∼ s1, σ2 ∼ s2 etc. are independent then (σn) is a sofic approximation

with probability 1.

1.4. Organization. In §2 we define weights and discuss some of their useful properties.

In §3 we prove a few basic results about the functions f and F. Some of the results of

these two sections are used in §4 to show that the assumptions of the main theorems

are not vacuous. In §5 we show how the function F is related to the number of

homomorphism-labeling pairs (σ , y) that realize a given weight, which is the main

ingredient of the proofs of Theorems A and B given in the next two sections. In §8 we show

how to deduce Theorem C from Theorem B. Section 9 contains a proof of Proposition 1.1.

The final section contains a proof of Lemma 2.3, which asserts that a weight can be

approximated by a denominator-n weight with a specified marginal.

2. Weights

If α :X → A is a finite observable, for a, a′ ∈ A and i ∈ [r] let

Wα(a, a′; i) = α
{e,si }
∗ µ(a, a′) = µ{x ∈ X : α(x) = a, α(Tsi x) = a′}

and also denote

Wα(a) = α∗µ(a).

For x ∈ A
n and σ ∈ Hom(G, Sym(n)) let

Wσ ,x(a, a′; i) = P
σ ,{e,si }
x (a, a′)

and Wσ ,x(a) = P
σ ,{e}
x (a). This could equivalently be defined as a special case of the

previous construction, with σ specifying an action on X = [n] with an observable

x :[n] → A.

More abstractly, any W ∈ (Prob(A2))r is called an A-weight if

∑

a′∈A
W(a, a′; i) =

∑

a′∈A
W(a′, a; j)

for all i, j ∈ [r] and a ∈ A. For each a ∈ A we denote this common value by W(a). Note

that the objects Wα and Wσ ,x defined above satisfy this condition.

We say that W has denominator n if n · W(a, a′; i) ∈ N for all a, a′, i.

The measures W(·, ·; i) for i ∈ [r] are called the edge measures of W, and W(·) is called

the vertex measure.
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For any alphabet A, we use the metric on A-weights defined by

d(W1, W2) :=
∑

i∈[r]

‖W1(·, ·; i) − W2(·, ·; i)‖TV

=
1

2

∑

i∈[r]

∑

a,a′∈A
|W1(a, a′; i) − W2(a, a′; i)|.

We can use weights to count good models up to equivalence under the pseudometrics

d∗
k using the following proposition.

PROPOSITION 2.1. If σ ∈ Hom(G, Sym(n)) and x ∈ A
n, then for any observable

α :X → A,

d(Wσ ,xk , Wαk ) = d∗
k (P σ

x , αG
∗ µ).

Note this implies also that

d∗
k (P σ

x , αG
∗ µ) = d∗

0 (P σ
xk , (αk)G∗ µ).

Proof. By definition of the distance between weights,

d(Wσ ,xk , Wαk ) =
1

2

∑

i∈[r]

∑

a,a′∈AB(e,k)

|Wσ ,xk (a, a′; i) − Wαk (a, a′; i)|

=
1

2

∑

i∈[r]

∑

a,a′∈AB(e,k)

∣∣∣∣
1

n

∣∣∣∣
{
j ∈ [n] :

(xk)j = a

(xk)σ(si )j = a′

} ∣∣∣∣

− µ

{
x ∈ X :

αk(x) = a

αk(Tsi x) = a′

} ∣∣∣∣.

For many ‘incompatible’ pairs a, a′, both terms will be zero: suppose g ∈ B(e, k) ∩
B(si , k), so that gs−1

i ∈ B(e, k). If the second term in the absolute value is non-zero, then

for some x ∈ X we have αk(x) = a and αk(Tsi x) = a′, and therefore

a′
gs−1

i

= (αk(Tsi x))
gs−1

i
= α(T

gs−1
i

Tsi x) = α(Tgx) = (αk(x))g = ag .

The same argument shows that a′
gs−1

i

= ag for all g ∈ B(e, k) ∩ B(si , k) whenever the first

term is non-zero. Therefore we can restrict the sum to pairs a, a′ with a′
gs−1

i

= ag for all

g ∈ B(e, k) ∩ B(si , k). Equivalently, we can sum over all A ∈ A
B(e,k)∪B(si ,k) to get

d(Wσ ,xk , Wαk ) =
1

2

∑

i∈[r]

∑

A∈AB(e,k)∪B(si ,k)

∣∣∣∣
1

n
|{j ∈ [n] : (xB(e,k)∪B(si ,k))j = A}|

− µ{x ∈ X : αB(e,k)∪B(si ,k)(x) = A}
∣∣∣∣

=
∑

i∈[r]

dB(e,k)∪B(si ,k)(P σ
x , αG

∗ µ).

It will be useful to consider the pushforward map induced by a map between alphabets:

if π :A → B is a measurable map and W is an A-weight, then πW is the B-weight given by
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The relative f-invariant and non-uniform random sofic approximations 9

πW(b, b′; i) =
∑

a∈π−1{b}

∑

a′∈π−1{b′}

W(a, a′; i).

Note that this implies that the vertex measure of W is

πW(b) =
∑

a∈π−1{b}

W(a).

For example, let πB :A× B → B be the projection map. If W is an A× B-weight then

πBW is given by

πBW(b1) =
∑

a∈A
W((a, b1)) πBW(b1, b2; i) =

∑

a1,a2∈A
W((a1, b1), (a2, b2); i).

We call this the B-marginal of W.

All weights in the present paper will be over alphabets of the form A
B(e,k) × B

B(e,k′).

We use this fact to introduce some simplified notation for projections.

• πA denotes projection onto the entire A factor AB(e,k); πB is used similarly.

• For m < k and m′ < k′, πm,m′ denotes projection onto AB(e,m) × B
B(e,m′).

• πm denotes the projection AB(e,k) → A
B(e,m), except that if m = 0 we write πe.

We define F(W) for an abstract weight W by

F(W) = (1 − 2r)H(W(·)) +
∑

i∈[r]

H(W(·, ·; i))

where H is the Shannon entropy. Note that this is consistent with the above definitions in

that, for example,

F(Wα) = Fµ(T , α).

We can revisit the definition of our version of the stochastic block model using weights.

Let H ⊂ G and let W be a denominator-n BB(e,k)-weight. Suppose there exist y ∈ B
n and

σ ∈ Hom(G, Sym(n)) such that W = Wσ ,yk . Then

SBM(σ , y, k) = Unif({σ ′ ∈ Hom(G, Sym(n)) : Wσ ′,yk = W }),

so we can also denote this distribution by SBM(y, W). Specifying the distribution by a

weight rather than a specific homomorphism will occasionally be more convenient.

2.1. Constructing weights and good models. We borrow the first result of this type

from [2]; it allows us to find a denominator-n approximation to a given weight.

LEMMA 2.2. (Lemma 2.3 of [2]) There is a constant C such that for any A-weight W there

is a denominator-n A-weight within distance C|A|2r/n of W.

The following lemma allows us not only to construct a denominator-n approximation to

a given weight, but also to specify a marginal of this approximation:

LEMMA 2.3. Let W be an A× B-weight. If WB is a B-weight of denominator n with

d(WB, πBW) < δ then there is an A× B-weight WAB with denominator n such that

πBWAB = WB and d(WAB, W) < 265r(|A× B|2/n + δ).
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The construction is fairly involved, so it is postponed to §10. The constant 265 is not

intended to be optimal.

The definition of a weight Wσ ,xk in terms of a homomorphism σ and a labeling x

is straightforward. However, we will also need to know whether a given weight can be

realized in this way. The next two results address this inverse problem.

PROPOSITION 2.4. If W is a denominator-n A-weight, then there exist x ∈ A
n and σ ∈

Hom(G, Sym(n)) such that W = Wσ ,x.

Proof. This is implied by Proposition 2.1 of [2].

Unfortunately, this does not imply that for every denominator-n AB(e,k)-weight W there

is some σ ∈ Hom(G, Sym(n)) and x ∈ A
n such that W = Wσ ,xk ; instead it provides

X ∈ (AB(e,k))n such that W = Wσ ,X.

However, if we already know that W is close to a weight of the form Wαk for some

observable α, then the following proposition shows that W is also close to a weight of the

form Wσ ,xk .

PROPOSITION 2.5. Let α :X → A, σ ∈ Hom(G, Sym(n)), and X ∈ (AB(e,k))n be such

that d(Wσ ,X, Wαk ) ≤ ε for some ε ≥ 0. Writing x = πeX ∈ A
n, we have

d(Wσ ,X, Wσ ,xk ) ≤ 2r|B(e, k)|ε.

An immediate consequence is that X ∈ �∗
0(σ , αk , ε) implies πeX ∈ �∗

k(σ , α, cε)

where c = 1 + 2r|B(e, k)|; cf. Claim 2 in the proof of Proposition 3.2 of [2].

Proof. Claim 4 in the proof of Proposition 3.2 of [2] implies that

|{j ∈ [n] : X(j) �= xk(j)}| ≤ n|B(e, k)|ε.

It follows that for any i ∈ [r],

|{j ∈ [n] : X{e,si }(j) �= (xk){e,si }(j)}|

≤ |{j ∈ [n] : X(j) �= xk(j)}| + |{j ∈ [n] : X(σ (si)j) �= xk(σ (si)j)}|

≤ 2n|B(e, k)|ε,

so

d(Wσ ,X, Wσ ,xk ) =
∑

i∈[r]

‖(X{e,si })∗ Unif(n) − ((xk){e,si })∗ Unif(n)‖TV

≤
∑

i∈[r]

2|B(e, k)|ε = 2r|B(e, k)|ε.

The following corollary of the first part of the proof will be useful later. It says that if

the weight Wσ ,X generated by some X ∈ (AB(e,k))n and σ ∈ Hom(G, Sym(n)) is exactly

attainable in some sense, then X can be exactly recovered from σ and the projection

πeX ∈ A
n.
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COROLLARY 2.6. Suppose that σ ∈ Hom(G, Sym(n)) and X ∈ (AB(e,k))n are such that

either

(1) Wσ ,X = Wαk for some α :X → A, or

(2) Wσ ,X = Wσ0,xk
0

for some σ0 ∈ Hom(G, Sym(m)) and x0 ∈ A
m.

Then (πeX)k = X.

Note that (πeX)k is the k-neighborhood labeling generated from πeX using σ , rather

than σ0 or some other homomorphism.

Proof. In the first case, we are in the setting of the previous proposition with ε = 0, so the

first inequality of its proof gives the claimed result.

The second case is actually the same; this is only obscured somewhat by the notation.

We are in the setting of the previous proposition with the space X = [m] having a G-action

specified by σ0 and a finite observable x0 :[m] → A.

3. Properties of F and f

LEMMA 3.1. (Continuity as weight function) If W1, W2 are A-weights with d(W1, W2) ≤
ε ≤ 1 then

|F(W1) − F(W2)| ≤ 4r(H(ε) + ε log2|A|),

where H(p) denotes the entropy of the probability measure (p, 1 − p) ∈ Prob({0, 1}).

Proof. We use Fano’s inequality in the following form (equation (2.139) of [9]). Suppose

X, Y are A-valued random variables defined on the same probability space and let

pe = P(X �= Y ) be their probability of disagreement. Then

H(X | Y ) ≤ H(pe) + pe log|A|.

Using the chain rule and non-negativity of Shannon entropy, we can deduce that

|H(X) − H(Y )| ≤ H(pe) + pe log|A|.

Let µ1, µ2 ∈ Prob(A) be the respective distributions of X1, X2. Because ‖µ1 − µ2‖TV is

the minimum value of P(X1 �= X2) over all possible couplings, if ‖µ1 − µ2‖TV < ε then

|H(µ1) − H(µ2)| ≤ H(ε) + ε log|A|.

The assumed bound d(W1, W2) ≤ ε implies that each vertex and edge measure of W1

is within total variation distance ε of its counterpart in W2, so

|F(W1) − F(W2)| ≤ |1 − 2r| · |H(W1(·)) − H(W2(·))|

+
∑

i∈[r]

|H(W1(·, ·; i)) − H(W2(·, ·; i))|

≤ (2r − 1)(H(ε) + ε log|A|)
+ r · (H(ε) + ε log|A|2)

≤ 4r(H(ε) + ε log|A|).
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Let α :X → A and β :X → B be observables. We say that β is a coarsening of α if each

part of the partition of X induced by β is a union of parts of the partition induced by α

(up to null sets). Equivalently, there is some function g :A → B such that β = g ◦ α almost

surely. In this situation we can also call α a refinement of β.

A useful property of the Shannon entropy Hµ(α) is monotonicity under refinement. The

function F does not share this property, but it is monotone under the following particular

kind of refinement introduced in [3].

We say that β is a simple splitting of α if there is some s ∈ {s±1
1 , . . . , s±1

r } and a

coarsening α̃ of α such that, up to null sets, the partition induced by β is the coarsest

common refinement of the partitions induced by α and α̃ ◦ Ts .

We say that β is a splitting of α if there are observables α = β0, β1, . . . , βn = β

such that βi is a simple splitting of βi−1 for i = 1, 2, . . . , n. We will use the following

monotonicity properties of the relative version of F.

LEMMA 3.2. (Monotonicity under splitting)

(1) If α1 is a splitting of α2 then F(α1|β) ≤ F(α2|β).

(2) If β1 is a splitting of β2 then F(α|β1) ≥ F(α|β2).

Proof. (1) This is essentially Proposition 5.1 of [3]; conditioning on β makes no difference

to the proof.

(2) The proof is based on the proof of part (1), but in place of the chain rule for

conditional entropy we use the following bound:

H(α | β2) ≤ H(α, β1 | β2) (monotonicity)

= H(β1 | β2) + H(α | β1, β2) (chain rule)

≤ H(β1 | β2) + H(α | β1) (monotonicity).

We will also use the following consequence of the previous bound:

H(α{e,si } | β
{e,si }
1 ) − H(α{e,si } | β

{e,si }
2 )

≥ −H(β
{e,si }
1 | β

{e,si }
2 ) (previous bound)

≥ −(H(β
{si }
1 | β

{e,si }
2 ) + H(β1 | β

{e,si }
2 )) (subadditivity)

= −(H(β1 | β
{e,s−1

i }
2 ) + H(β1 | β

{e,si }
2 )) (T -invariance of µ).

It suffices to check the case where β1 is a simple splitting of β2. Let t ∈ {s±1
1 , . . . , s±1

r }
and let β̃ be a coarsening of β2 such that the partition induced by β1 is the same as the

coarsest common refinement of the partitions induced by β2 and β̃ ◦ Tt up to null sets.

Then, using the two bounds just derived,

F(α|β1) − F(α|β2) = (1 − 2r)(H(α|β1) − H(α|β2))

+
∑

i∈[r]

(H(α{e,si }|β{e,si }
1 ) − H(α{e,si }|β{e,si }

1 ))
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≥ (1 − 2r)(−H(β1|β2)) −
∑

i∈[r]

(H(β1 | β
{e,s−1

i }
2 )

+ H(β1 | β
{e,si }
2 ))

= (2r − 1)H(β1|β2) −
∑

s∈{s±1
1 ...s±1

r }

H(β1 | β
{e,s}
2 )

But

H(β1 | β
{e,t}
2 ) ≤ H(β1 | β2β̃

{t}) = 0,

so we can remove the t term from the sum to get

F(α|β1) − F(α|β2) ≥ (2r − 1)H(β1|β2) −
∑

s∈{s±1
1 ...s±1

r }\{t}

H(β1 | β
{e,s}
2 )

=
∑

s∈{s±1
1 ...s±1

r }\{t}

(H(β1|β2) − H(β1 | β
{e,s}
2 ))

≥ 0.

One corollary is the following convenient formula.

COROLLARY 3.3. Let α, β be finite observables such that βG
∗ µ is a Markov measure.

Then Fµ(T , αk1 | βk2) is independent of k2. In particular,

fµ(T , α | β) = inf
k

Fµ(T , αk | β).

Proof. By the previous proposition, for any k ≤ k2 we have

Fµ(T , αk1 | βk) ≤ Fµ(T , αk1 | βk2).

On the other hand, by Theorem 6.1 of [5] Fµ(T , βk) = Fµ(T , βk2) so

Fµ(T , αk1 | βk) = Fµ(T , αk1βk) − Fµ(T , βk2).

Applying monotonicity under splitting to the first term on the right gives

Fµ(T , αk1 | βk) ≥ Fµ(T , αk1βk2) − Fµ(T , βk2) = Fµ(T , αk1 | βk2).

This establishes independence of k2; the formula for f follows.

PROPOSITION 3.4. Let α, β be finite observables. Then for any k ∈ N,

Fµ(T , αk | β) ≤ Hµ(α | β).

It follows that

fµ(T , α | β) ≤ Hµ(α | β).
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14 C. Shriver

Proof. By Lemma 3.2, Fµ(T , αk | β) ≤ Fµ(T , α | β). Using elementary properties of

Shannon entropy, we have

Fµ(T , α | β) = (1 − 2r)Hµ(α | β) +
∑

i∈[r]

Hµ(α{e,si } | β{e,si })

≤ (1 − 2r)Hµ(α | β) +
∑

i∈[r]

[Hµ(α | β{e,si }) + Hµ(α{si } | β{e,si })]

≤ (1 − 2r)Hµ(α | β) +
∑

i∈[r]

[Hµ(α | β) + Hµ(α{si } | β{si })].

By T-invariance of µ we have

Hµ(α{si } | β{si }) = Hµ(α | β),

so the first inequality follows.

For any k1, k2 ∈ N this gives

Fµ(T , αk1 | βk2) ≤ Hµ(α | βk2) ≤ Hµ(α | β),

so the second inequality follows upon taking the supremum over k2 then the infimum

over k1.

We can use this bound to give a proof of the chain rule for the relative f -invariant, a

version of which first appeared in [5] (there it is called the Abramov–Rokhlin formula; see

also [7]).

COROLLARY 3.5. (Chain rule)

fµ(T , αβ) = fµ(T , α | β) + fµ(T , β).

Proof. By definition of the relative version of F and the chain rule for conditional entropy,

for each k1, k2 we have

Fµ(T , αk1βk2) = Fµ(T , αk1 | βk2) + Fµ(T , βk2).

By Lemma 3.2 each term is monotone in k2, so the limits as k2 → ∞ exist. By Proposition

3.4 all terms are bounded above (recall we only consider finite observables, so in particular

all observables have finite entropy), so we can split the limit across the sum on the right

to get

lim
k2→∞

Fµ(T , αk1βk2) = lim
k2→∞

Fµ(T , αk1 | βk2) + fµ(T , β).

Taking k1 to infinity gives the result.

4. Non-vacuity of main theorems

4.1. Theorem A. Here we prove Proposition A, which asserts the non-vacuity of

Theorem A. Given β :X → B, we need to show that there exist yn ∈ B
n and σn ∈

Hom(G, Sym(n)) such that limn→∞ d∗
0 (P

σn
yn

, βG
∗ µ) = 0.
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By Lemma 2.2, there is a sequence {Wn}∞n=1 of B-weights such that Wn has denominator

n for each n and d(Wn, Wβ) = o(1). By Proposition 2.4, for each n we can pick yn, σn such

that Wσn,yn = Wn. Since d∗
0 (P

σn
yn

, βG
∗ µ) = d(Wσn,yn , Wβ), these suffice.

4.2. Theorems B and C. Here we prove Proposition B, which asserts the non-vacuity of

Theorem B (and by extension Theorem C, since the assumptions are the same).

Let mn approach infinity as n approaches infinity while satisfying mn = o(log log n)

and let β :X → B be a finite observable. We need to show that there exist yn ∈ B
n and

σn ∈ Hom(G, Sym(n)) such that d∗
mn

(P
σn
yn

, βG
∗ µ) = O(1/log n).

By Lemma 2.2, there is a sequence {Wn}∞n=1 of weights such that Wn is a

denominator-n B
B(e,mn)-weight for each n and d(Wn, Wβmn ) = O(|BB(e,mn)|2/n). By

Proposition 2.4, for each n we can pick Yn, σn such that Wσn,Yn
= Wn. Let yn = πeYn.

By Proposition 2.5,

d∗
mn

(P σn
yn

, βG
∗ µ) = d(Wσn,y

mn
n

, Wβmn ) = O

(
|B(e, mn)| ·

|BB(e,mn)|2

n

)
= O

(
1

log n

)
.

5. Counting lemmas

For a B-weight W, let Zn(W) denote the number of pairs (σ , y) ∈ Hom(G, Sym(n)) × B
n

such that Wσ ,y = W .

PROPOSITION 5.1. If W is a B-weight with denominator n then

(3
√

n)−r|B|2 ≤
Zn(W)

eF(W)n(n! )rn(1−r)/2
≤ (3

√
n)r|B|2 .

Proof. We write

Zn(W) =
∑

σ

|{y ∈ B
n : Wσ ,y = W }| = (n! )rEσ |{y ∈ B

n : Wσ ,y = W }|.

where Eσ denotes the expectation over a uniform choice of σ ∈ Hom(G, Sym(n)).

Proposition 2.1 of [2] states that

Eσ |{y ∈ B
n : Wσ ,y = W }| =

n!1−r
∏

b∈B(nW(b))!2r−1

∏r
i=1

∏
b,b′∈B(nW(b, b′; i))!

.

Lemma 2.2 of the same paper gives an estimate of this quantity, but for our purposes we

need to be more careful about how the estimate depends on the size of the alphabet.

We use the version of Stirling’s approximation given by

kk+1/2e−k ≤ k! ≤ 3 · kk+1/2e−k ,

valid for k ≥ 1. To estimate the products that appear in the expectation, we will need to

omit all factors which equal 0! = 1 since Stirling’s approximation is not valid for these. To

do this carefully, let

B
′ = {b ∈ B : W(b) �= 0}

https://doi.org/10.1017/etds.2022.27 Published online by Cambridge University Press



16 C. Shriver

and for each i ∈ [r] let

B
′
i = {(b, b′) ∈ B

2 : W(b, b′; i) �= 0}.

For the numerator of the above expectation we get

n!1−r
∏

b∈B′
(nW(b))!2r−1 ≤ (3nn+1/2 e−n)1−r

∏

b∈B′
(3(nW(b))nW(b)+1/2e−nW(b))2r−1

= 31−r+|B′|(2r−1) nrn+1/2−r/2+(2r−1)|B′|/2

× e−rn+(2r−1)[n
∑

b∈B′ W(b) log W(b)+1/2
∑

b∈B′ log W(b)]

and a lower bound which is identical except missing the first factor. For the denominator,

let S =
∑

i∈[r]|B′
i |. We get

r∏

i=1

∏

(b,b′)∈B′
i

(nW(b, b′; i))! ≤
r∏

i=1

∏

(b,b′)∈B′
i

3(nW(b, b′; i))nW(b,b′;i)+1/2e−nW(b,b′;i)

= 3S nnr+S/2

× en
∑

i

∑
b,b′ W(b,b′;i) log W(b,b′;i)+1/2

∑
i,b,b′ log W(b,b′;i)−nr ,

and again we have a lower bound which is identical except missing the first factor 3S .

Therefore the quotient is bounded above by

31−r+|B′|(2r−1) n(1−r)/2+(2r−1)|B′|/2−S/2 e
nF(W)+(2r−1)

1
2

∑
b log W(b)− 1

2

∑
i,b,b′ log W(b,b′;i)

and below by

3−S n(1−r)/2+(2r−1)|B′|/2−S/2 e
nF(W)+(2r−1)

1
2

∑
b log W(b)− 1

2

∑
i,b,b′ log W(b,b′;i)

.

Since W has denominator n, we have

0 ≥ (2r − 1)
1

2

∑

b∈B′
log W(b) ≥ (2r − 1)

1

2

∑

b∈B′
log

1

n
= −

2r − 1

2
|B′| log n

and

0 ≤ −
1

2

∑

i

∑

(b,b′)∈B ′
i

log W(b, b′; i) ≤ −
1

2

∑

i

∑

(b,b′)∈B′
i

log
1

n
=

S

2
log n.

Therefore Zn(W) satisfies

3−Sn((1−r)−S)/2eF(W)n(n! )r ≤ Zn(W) ≤ 31−r+|B′|(2r−1)n((1−r)+(2r−1)|B′|)/2eF(W)n(n! )r .

Since S ≤ r|B|2 and |B′| ≤ |B|, we conclude that

3−r|B|2n((1−r)−r|B|2)/2eF(W)n(n! )r

≤ Zn(W) ≤ 31−r+|B|(2r−1)n((1−r)+(2r−1)|B|)/2eF(W)n(n! )r ,

and the stated inequality follows.

The following proposition establishes the connection between the relative version of F

and expected numbers of good models over stochastic block models.
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PROPOSITION 5.2. Given any denominator-n (A× B
B(e,k))-weight WAB, let WB denote the

B
B(e,k)-weight πBWAB. Let y ∈ B

n be a fixed labeling with py = πeWB(·), and let

µ = SBM(y, WB) = Unif({σ ∈ Hom(G, Sym(n)) : Wσ ,yk = WB}),

assuming WB is such that the desired support is non-empty. Then

E := E
σ∼µ

|{x ∈ A
n : Wσ ,(x,yk) = WAB}| =

Zn(WAB)

Zn(WB)
.

In particular,

E

en(F (WAB)−F(WB))
∈ ((9n)−r|B|2(|A|2+1), (9n)r|B|2(|A|2+1)).

LEMMA 5.3. Let WAB be an A× B
B(e,k)-weight of denominator n. Then

|{(σ , x, y) : Wσ ,(x,yk) = WAB}| ∈ {0, |{(σ , x, Y) : Wσ ,(x,Y) = WAB}|}.

Proof. Suppose |{(σ , x, y) : Wσ ,(x,yk) = WAB}| �= 0; we then need to show

|{(σ , x, y) : Wσ ,(x,yk) = WAB}| = |{(σ , x, Y) : Wσ ,(x,Y) = WAB}|.

The inequality ≤ is clear, since we have an injection (σ , x, y) 
→ (σ , x, yk).

The converse inequality holds because (σ , x, Y) 
→ (σ , x, πeY) in an injection from

the set on the right to the set on the left. This follows from Corollary 2.6.

Proof of Proposition 5.2. Let

µ̃ = Unif({(σ , ỹ) : Wσ ,ỹk = WB}),

and let µ̃2 be its marginal on the ‘ỹ’-coordinate. This marginal is supported on {ỹ : pỹ =
πeWB(·)}. Note that µ̃ conditioned on any particular ỹ in the support of µ̃2 is SBM(ỹ, WB),

and that

E
σ∼SBM(ỹ,WB)

|{x ∈ A
n : Wσ ,(x,ỹk) = WAB}|

is the same for each ỹ in the support of µ̃2, with one choice being y from the proposition

statement. This is because any two choices have the same label frequencies and hence are

related by a permutation of [n]. With the choice ỹ = y the expectation is E, so

E = E
ỹ∼µ̃2

E

= E
ỹ∼µ̃2

[Eσ∼SBM(ỹ,WB)|{x ∈ A
n : Wσ ,(x,ỹk) = WAB}|]

= E
(σ ,ỹ)∼µ̃

|{x ∈ A
n : Wσ ,(x,ỹk) = WAB}|

=
∑

σ ,ỹ|{x ∈ A
n : Wσ ,(x,ỹk) = WAB}|

|{(σ , ỹ) : Wσ ,ỹk = WB}|

=
|{(σ , x, ỹ) : Wσ ,(x,ỹk) = WAB}|

|{(σ , ỹ) : Wσ ,ỹk = WB}|
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=
|{(σ , x, Y) : Wσ ,(x,Y) = WAB}|

|{(σ , Y) : Wσ ,Y = WB}|
(previous lemma)

=
Zn(WAB)

Zn(WB)
.

Note that our assumption that the intended support of µ is non-empty allows us to rule out

the ‘0’ case in the application of Lemma 5.3.

The rest of the result then follows from our estimates on Zn in Proposition 5.1.

6. Proof of Theorem A

6.1. Upper bound. Note that we will not rely on the Markov assumption for the upper

bound.

For each k ∈ N,

inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}|

≤ inf
ε

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �∗

k(σ , αβ, ε)}|

= inf
ε

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (xk , yk

n) ∈ �∗
0(σ , (αβ)k , ε)}|

≤ inf
ε

lim sup
n→∞

1

n
log E

σ∼sn

|{X ∈ (AB(e,k))n : (X, yk
n) ∈ �∗

0(σ , (αβ)k , ε)}|.

Write

Ek(n, ε) := E
σ∼sn

|{X ∈ (AB(e,k))n : (X, yk
n) ∈ �∗

0(σ , (αβ)k , ε)}|

= E
σ∼sn

|{X ∈ (AB(e,k))n : d(Wσ ,(X,yk
n), W(αβ)k ) < ε)}|

and assume that n is large enough that mn ≥ k.

Writing Wn(αβ, k, ε) for the set of all denominator-n weights W with

d(W , W(αβ)k ) < ε,

Ek(n, ε) = E
σ∼sn

∑

W∈Wn(αβ,k,ε)

|{X ∈ (AB(e,k))n : Wσ ,(X,yk
n) = W }|

=
∑

W∈Wn(αβ,k,ε)

E
σ∼sn

[|{X ∈ (AB(e,k))n : Wσ ,(X,yk
n) = W }||Wσ ,yk

n
= πBW ]

· P
σ∼sn

(Wσ ,yk
n

= πBW)

since if Wσ ,yk
n

�= πBW then Wσ ,(X,yk
n) �= W . But sn conditioned on {Wσ ,yk

n
= πBW } is

SBM(yn, πBW), so we can bound the expectation above using Proposition 5.2, getting

Ek(n, ε)≤(9n)r|B
B(e,k)|2(|AB(e,k)|+1)

∑

W∈Wn(αβ,k,ε)

en(F (W)−F(πBW))
P

σ∼sn

(Wσ ,yk
n

= πBW).
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Note (9n)r|B
B(e,k)|2(|AB(e,k)|+1) ≤ eon→∞(n). Fix δ > 0. By continuity of F (Lemma 3.1),

for all small enough ε (possibly depending on k), we have

Ek(n, ε) ≤ en(Fµ(T ,αk |βk)+δ+on→∞(1))
∑

W∈Wn(αβ,k,ε)

P
σ∼sn

(Wσ ,yk
n

= πBW).

Bounding each probability by 1, we get

Ek(n, ε) ≤ en(Fµ(T ,αk |βk)+δ+on→∞(1))|Wn(αβ, k, ε)|.

But

|Wn(αβ, k, ε)| ≤ nr|(A×B)B(e,k)|2 ≤ eon→∞(n),

so this implies

lim sup
n→∞

1

n
log Ek(n, ε) ≤ Fµ(T , αk | βk) + δ

≤ Fµ(T , αk | βk2) + δ

for any k2 ≥ k, by monotonicity under splitting. Taking the limit as k2 → ∞ followed by

the infimum over ε (which takes δ to 0) and k gives

inf
ε,k

lim sup
n→∞

1

n
log Ek(n, ε) ≤ fµ(T , α | β).

Since

inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}|

≤ inf
ε

lim sup
n→∞

1

n
log Ek(n, ε)

for every k, this completes the upper bound.

6.2. Lower bound. Fix k ∈ N. To estimate

E := E
σ∼sn

|{x ∈ A
n : (x, yn) ∈ �∗

k(σ , αβ, ε)}|

we bound below using the expected size of

Xk(σ , αβ, ε | yn) := {X ∈ (AB(e,k))n : (X, yk
n) ∈ �∗

0(σ , (αβ)k , ε)}.

This is not a true lower bound but, by equation (7.1) below, there are constants C, d , c

independent of n such that

|Xk(σ , αβ, ε | yn)| ≤ C exp(ndε + nH(2|B(e, k)|ε))
· |{x ∈ A

n : (x, yn) ∈ �∗
k(σ , αβ, ε)}|.

The ‘error’ factor has an exponential growth rate which vanishes as ε → 0, so will not be

a problem.
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We now find a lower bound for the expectation of |Xk|. Applying Proposition 5.2 as

above, we have

E
σ∼sn

|Xk(σ , αβ, ε | yn)|

=
∑

W∈Wn(αβ,k,ε)

E
σ∼sn

|{X ∈ (AB(e,k))n : Wσ ,(X,yk
n) = W }|

≥
∑

W∈Wn(αβ,k,ε)

exp[n(F (W) − F(πBW) − on(1))] P
σ∼sn

(πBW = Wσ ,yk
n
).

For any δ > 0, for small enough ε > 0 (independent of n), by continuity of F this is at

least

exp[n(Fµ(αk | βk) − δ − on(1))]
∑

W∈Wn(αβ,k,ε)

P
σ∼sn

(πBW = Wσ ,yk
n
).

We give a lower bound for the sum by first rewriting it as
∑

WB denom.-n B
B(e,k)-weight

|{W ∈Wn(αβ, k, ε) : πBW = WB}| · P
σ∼sn

(Wσ ,yk
n

= WB).

Fix η > 0. By Lemma 2.3, for all large enough n the B-weight Wσn,yn can be extended

to a B
B(e,k)-weight WB with d(WB, Wβk ) ≤ η; to apply the lemma we can think of

the extended weight WB as having alphabet BB(e,k)\{e} × B, and recall that we assume

limn→∞ d(Wσn,yn , Wβ) = 0. Choose σ , Y such that Wσ ,Y = WB. Since πeWB = Wσn,yn , it

must be that πeY is a permutation of yn: they must assign labels with the same frequencies

since

pπeY(·) = (πeWB)(·) = Wσn,yn(·) = pyn(·).

Therefore we can choose σ , Y such that πeY = yn.

Let W̃B = Wσ ,yk
n

= Wσ ,(πeY)k . By Proposition 2.5,

d(W̃B, Wβk ) ≤ d(W̃B, WB) + d(WB, Wβk ) ≤ 2r|B(e, k)|η + η.

So, as long as η is small enough and n is large enough (depending on ε, k), by Lemma 2.3,

|{W ∈Wn(αβ, k, ε) : πBW = WB}| ≥ 1.

Now consider the probability appearing in the W̃B term:

P
σ∼sn

(Wσ ,yk
n

= W̃B) =
|{σ : Wσ ,yk

n
= W̃B}|

|{σ : Wσ ,yn = Wσn,yn}|
.

By symmetry in the choice of y with the correct letter frequencies (any two y with the

same py are related by a permutation of [n], so have the same number of σ which give a

particular weight), we can write this as

P
σ∼sn

(Wσ ,yk
n

= W̃B) =
|{(σ , y) : Wσ ,yk = W̃B}|

|{(σ , y) : Wσ ,y = Wσn,yn}|

=
|{(σ , Y) : Wσ ,Y = W̃B}|

|{(σ , y) : Wσ ,y = Wσn,yn}|
(Lemma 5.3)
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=
Zn(W̃B)

Zn(Wσn,yn)
(definition of Zn)

≥ exp(n[F(W̃B) − F(Wσn,yn)]) · (3
√

n)−r(|BB(e,k)|2−|B|) (Prop. 5.1)

= exp(n[F(W̃B) − F(Wσn,yn) − o(1)]).

By continuity of F, we then get

P
σ∼sn

(Wσ ,yk
n

= W̃B) ≥ exp n(Fµ(βk) − Fµ(β) − 2δ + o(1))

for all large enough n and small enough η (again depending on k, ε), with δ > 0 the same

as chosen above. Since βG
∗ µ is a Markov chain, Fµ(βk) = Fµ(β) [5, Theorem 6.1].

Putting this all together, for any k ∈ N, for all δ > 0, we have

E
σ∼sn

|Xk(σ , αβ, ε | yn)| ≥ exp[n(Fµ(αk | βk) − 3δ − o(1))]

for all large enough n and small enough ε > 0.

It follows that for any k ∈ N,

inf
ε

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �∗

k(σ , αβ, ε)}| ≥ Fµ(T , αk | βk).

Taking the limit as k → ∞ gives the desired bound, using Corollary 3.3 and that the family

of pseudometrics {d∗
k : k ∈ N} generates the weak∗ topology.

7. Proof of Theorem B

Let Wn = Wσn,y
mn
n

, so that

sn = SBM(yn, Wn).

Note that, by definition of sn,

P
σ∼sn

(Wσ ,y
mn
n

= Wn) = 1.

LEMMA 7.1. With Wn as just defined in terms of mn, σn, and yn, we have

lim
n→∞

F(Wn) = fµ(T , β).

Proof. The assumption in the theorem statement that d∗
mn

(P
σn
yn

, βG
∗ µ) = O(1/log n)

implies the existence of a constant C such that

d(Wn, Wβmn ) ≤
C

log n
.

By Lemma 3.1 we have

|F(Wσ ,ymn ) − F(Wβmn )| ≤ 4r

(
H

(
C

log n

)
+

C

log n
|B(e, mn)| log|B|

)
= o(1)

using that mn = o(log log n). Since mn approaches infinity as n goes to infinity we have

fµ(T , β) = limn→∞ F(Wβmn ), so the result follows.
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LEMMA 7.2. If mn = o(log log n), then for any k > 0 and ε > 0 we have

|BB(e,mn)|k = o(nε).

Proof. This is certainly true if |B| = 1; assume therefore that |B| ≥ 2.

Our assumption mn = o(log log n) guarantees that

(2r − 1)mn <
r − 1

r

ε

k log|B|
log n

for all large enough n. Therefore

|B(e, mn)| =
r(2r − 1)mn − 1

r − 1
<

ε

k log|B|
log n.

This inequality can be rearranged to give

|BB(e,mn)|k < nε.

Since ε > 0 is arbitrary, the result follows.

In the remainder of this section we prove Theorem B by first proving the right-hand side

is an upper bound for the left, then proving it is also lower bound.

7.1. Upper bound. Just as in the proof of the upper bound in Theorem A, for each k ∈ N

and ε > 0 we have

inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}| ≤ lim sup

n→∞

1

n
log Ek(n, ε),

where

Ek(n, ε) := E
σ∼sn

|{X ∈ (AB(e,k))n : (X, yk
n) ∈ �∗

0(σ , (αβ)k , ε)}|

= E
σ∼sn

|{X ∈ (AB(e,k))n : d(Wσ ,(X,yk
n), W(αβ)k ) < ε)}|.

We assume that n is large enough that mn ≥ k.

Since sn is SBM(σn, yn, mn) rather than SBM(σn, yn, k), we cannot apply Proposition 5.2

directly to this expression. We get around this as follows. Let

Wn(m, m′) := {W
σ ,(X,ym′

)
: σ ∈ Hom(G, Sym(n)), X ∈ (AB(e,m))n, y ∈ B

n}.

All elements of this set are denominator-n A
B(e,m) × B

B(e,m′)-weights; we avoid the

question of exactly which weights are in this set, but call such weights attainable. For

k ≤ m and k′ ≤ m′ let

Wn(m, m′; αβ, k, k′; ε) = {W ∈Wn(m, m′) : d(πk,k′W , W
αkβk′ ) < ε}

denote the set of such weights whose appropriate marginal is within ε of the (AB(e,k) ×
B

B(e,k′))-weight W
αkβk′ . For now we take m = k = k′, but we will need more generality

below. Then

Ek(n, ε) = E
σ∼sn

∑

W∈Wn(k,mn;αβ,k,k;ε)

|{X ∈ (AB(e,k))n : Wσ ,(X,y
mn
n ) = W }|,
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so we can apply Proposition 5.2 to get

Ek(n, ε) ≤ (9n)r|B
B(e,mn)|2(|AB(e,k)|+1)

∑

W∈Wn(k,mn;αβ,k,k;ε)

en(F (W)−F(πBW))1{πBW=Wn}.

By Lemma 7.2 we have (9n)r|B
B(e,mn)|2(|AB(e,k)|+1) ≤ eon→∞(n). Using this and Lemma 7.1,

we have

Ek(n, ε) ≤
∑

W∈Wn(k,mn;αβ,k,k;ε)

en(F (W)−f (T ,β)+on→∞(1))1{πBW=Wn},

where the little o is uniform over all terms in the sum. Here we use the assumption that

fµ(T , β) is finite.

By definition of Wn(k, mn), for any W ∈Wn(k, mn; αβ, k, k; ε) we can pick σ ∈
Hom(G, Sym(n)), X ∈ (AB(e,k))n, and y ∈ B

n so that W = Wσ ,(X,ymn ). Then since Xymn

is a splitting of Xyk , by Lemma 3.2 we have

F(W) = FUnif([n])(σ , Xymn) ≤ FUnif([n])(σ , Xyk) = F(πk,kW),

where here FUnif([n])(σ , Xymn) is F of the observable Xymn on the measure-preserving

system ([n], Unif([n]), σ) (we shift to this notation from weights in order to apply the

splitting lemma). By continuity of F, for all small enough ε (depending on k) we have

F(πk,kW) ≤ F(W(αβ)k ) + δ = Fµ(T , (αβ)k) + δ.

Along with the above, this implies that

Ek(n, ε) ≤ en(F (T ,(αβ)k)−f (T ,β)+on(1)+δ)
∑

W∈Wn(k,mn;αβ,k,k;ε)

1{πBW=Wn}.

Bounding all terms in the sum by 1, we get

Ek(n, ε) ≤ en(F (T ,(αβ)k)−fµ(T ,β)+on(1)+δ) |Wn(k, mn; αβ, k, k; ε)|.

Using Lemma 7.2, we have

|Wn(k, mn; αβ, k, k; ε)| ≤ |Wn(k, mn)| ≤ nr|AB(e,k)×BB(e,mn)|2 ≤ eon→∞(n),

so this implies

lim sup
n→∞

1

n
log Ek(n, ε) ≤ Fµ(T , (αβ)k) − fµ(T , β) + δ.

Taking the infimum over ε and k, and using the chain rule for f (Corollary 3.5, again using

the assumption that fµ(T , β) is finite), gives

inf
ε,k

lim sup
n→∞

1

n
log Ek(n, ε) ≤ fµ(T , αβ) − fµ(T , β) = fµ(T , α | β).
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Since

inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}|

≤ inf
ε

lim sup
n→∞

1

n
log Ek(n, ε),

for every k, this completes the upper bound.

7.2. Lower bound. In this section we denote

Xk1,k2
(σ , αβ, ε | y) := {X ∈ (AB(e,k1))n : (X, yk2) ∈ �∗

0(σ , αk1βk2 , ε)},

�∗
k(σ , αβ, ε | y) := {x ∈ A

n : (x, y) ∈ �∗
k(σ , αβ, ε)}

(note the dependence on n is implicitly specified by σ ∈ Hom(G, Sym(n)) and y ∈ B
n),

and with � = {sn}∞n=1,

h�,µ(T , α | β : k, ε) := lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, y) ∈ �∗

k(σ , αβ, ε)}|

= lim sup
n→∞

1

n
log E

σ∼sn

|�∗
k(σ , αβ, ε | y)|.

The following two claims are used to relate the sizes of the sets defined above.

CLAIM 1. Let k ≤ min(k1, k2). For any σ , y, we have

πe[Xk1,k2
(σ , αβ, ε | y)] ⊆ �∗

k(σ , αβ, cε | y)

where c = 1 + |B(e, k)|.

Proof. If (X, yk2) ∈ �∗
0(σ , αk1βk2 , ε), then

πk,k(X, yk2) ∈ �∗
0(σ , (αβ)k , ε);

this follows from the fact that total variation distance is non-increasing under pushfor-

wards. Applying Proposition 2.5, we get

(πeX, y) = πe(πk,k(X, yk2)) ∈ �∗
k(σ , αβ, cε).

CLAIM 2. Fix σ , y, and k ≤ min(k1, k2). As established in the previous claim, we can

consider πe as a map from Xk1,k2
(σ , αβ, ε | y) to �∗

k(σ , αβ, cε | y). There are constants

C, d independent of n such that πe is at most C exp(ndε + nH(2|B(e, k)|ε))-to-one.

Proof. If �∗
k(σ , αβ, cε | y) is empty, then the claim is vacuously true. Otherwise, fix

x ∈ �∗
k(σ , αβ, cε | y). If X ∈ π−1

e {x}, then πe(X, yk) = (x, y). Claim 3 in the proof of

Proposition 3.2 of [2] gives an upper bound of the desired form for the number of such

pairs (X, yk), and therefore the number of such X.

Claim 2 implies that

|Xk1,k2
(σ , αβ, ε | y)| ≤ C exp(ndε + nH(2|B(e, k)|ε)) · |�∗

k(σ , αβ, cε | y)|, (7.1)

where C, d are independent of n.
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We now find a lower bound for the expectation of |X|. Fix k1, k2 ∈ N, and suppose n is

large enough that mn ≥ max(k1, k2). Using Proposition 5.2 and Lemma 7.2, we have

E
σ∼sn

|Xk1,k2
(σ , αβ, ε | yn)|

=
∑

W∈Wn(k1,mn;αβ,k1,k2;ε)

E
σ∼sn

|{X ∈ (AB(e,k1))n : Wσ ,(X,y
mn
n ) = W }|

≥
∑

W∈Wn(k1,mn;αβ,k1,k2;ε)

exp[n(F (W) − F(πBW) − on(1))]1{πBW=W
σ ,y

mn
n

}

≥ inf
W∈Wn(k1,mn;αβ,k1,k2;ε)

exp[n(F (W) − F(πBW) − on(1))]

×
∑

W∈Wn(k1,mn;αβ,k1,k2;ε)

1{πBW=W
σ ,y

mn
n

}.

We bound the infimum below as follows. Given any W ∈Wn(k1, mn; αβ, k1, k2; ε), we

can let X, y, σ be such that W = Wσ ,(X,ymn ). Then by Lemma 3.2 and continuity of F,

F(W) − F(πBW) = F(σ , X|ymn)

≥ F(σ , X|yk2)

= F(πk1,k2
W) − F(πBπk1,k2

W)

≥ Fµ(T , αk1 |βk2) − δ

for any δ > 0 for all small enough ε (with ‘small enough’ dependent only on k1, k2). This

implies that the infimum is bounded below by

exp[n(Fµ(T , αk1 |βk2) − on(1) − δ)].

We bound the sum below by first rewriting it as

|{W ∈Wn(k1, mn; αβ, k1, k2; ε) : πBW = Wσ ,y
mn
n

}|.

The following claim, then, implies that the sum is bounded below by 1.

CLAIM 3. For all large enough n,

{W ∈Wn(k1, mn; αβ, k1, k2; ε) : πBW = Wσ ,y
mn
n

} �= ∅.

Proof. By Lemma 2.3, if

n > 680|AB(e,k1) × B
B(e,mn)|2r/ε

and d(Wσ ,y
mn
n

, Wβmn ) < ε/530r then there is a (AB(e,k1) × B
B(e,mn))-weight W with

πBW = Wσ ,y
mn
n

and d(W , Wαk1βmn ) < ε. By definition of sn and Lemma 7.2, both

conditions are met for all large enough n.

The claim will follow if we show that W is attainable.

With W as chosen above, by Proposition 2.4 we can choose σ̃ ∈ Hom(G, Sym(n)),

X̃ ∈ (AB(e,k1))n, and Ỹ ∈ (BB(e,mn))n such that W = W
σ̃ ,(X̃,Ỹ)

.
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Let ỹ = πeỸ ∈ B
n. To complete the proof we show that ỹmn = Ỹ, that is,

ỹ(σ̃ (g)i) = (Ỹ(i))g

for all i ∈ [n] and g ∈ B(e, mn). We prove this by induction on the word length |g|.
The base case |g| = 0 (that is, g = e) follows immediately from the definition of ỹ.

For the inductive step, write g = ht with |h| = |g| − 1 and t ∈ {s±1
1 , . . . , s±1

r }. Then,

assuming the result holds for h,

ỹ(σ̃ (g)i) = ỹ(σ̃ (h)σ̃ (t)i) = (Ỹ(σ̃ (t)i))h.

Now since W
σ̃ ,Ỹ

= Wσn,y
mn
n

, we can pick j ∈ [n] such that

Ỹ(i) = ymn
n (j) and Ỹ(σ̃ (t)i) = ymn

n (σ (t)j).

This implies

(Ỹ(σ̃ (t)i))h = (ymn
n (σ (t)j))h = yn(σ (g)j) = (ymn

n (j))g = (Ỹ(i))g .

Hence, for all large enough n, we have

E
σ∼sn

|Xk1,k2
(σ , αβ, ε | yn)| ≥ exp[n(Fµ(T , αk1 | βk2) − on(1) − δ)],

and therefore

lim sup
n→∞

1

n
log E

σ∼sn

|Xk1,k2
(σ , αβ, ε | yn)| ≥ Fµ(T , αk1 | βk2) − δ.

Combining this lower bound with equation (7.1) and the definition of h�,µ(T , α | β :

k, cε), we get

dε + H(2|B(e, k)|ε) + h�,µ(T , α | β : k, cε) ≥ Fµ(T , αk1 | βk2) − δ.

Taking the infimum in ε then letting δ go to zero gives

inf
ε

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �∗

k(σ , αβ, ε)}| ≥ Fµ(T , αk1 | βk2)

for k ≤ min(k1, k2). First take k2 → ∞, then k1 → ∞, then take the infimum over k.

We get

fµ(T , α | β) ≤ inf
ε,k

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �∗

k(σ , αβ, ε)}|

= inf
O�(αβ)G∗ µ

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : (x, yn) ∈ �(σ , O)}|

where the last line follows because the collection of pseudometrics {d∗
k : k ∈ N} generates

the weak∗ topology on Prob((A× B)G).

8. Proof of Theorem C

By analogy with sofic entropy, we denote � := {sn}∞n=1 and denote the left-hand side of

the formula in the theorem statement by h�,µ(T , α).
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Endow Prob(AG) with the metric

d(λ, ν) :=
∞∑

r=1

2−rdB(e,r)(λ, ν).

Note that this induces the weak* topology (where A is given the discrete topology and AG

the product topology).

Writing µA = αG
∗ µ ∈ Prob(AG), we then have

h�,µ(T , α) = inf
ε>0

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : d(P σ

x , µA) < ε}|.

We will similarly denote µB = βG
∗ µ ∈ Prob(BG).

8.1. Lower bound. Let λ ∈ Prob((A× B)G) be any joining of (the shift systems with

respective measures) µA and µB. Then, for any x ∈ A
n and y ∈ B

n, we have

d(P σ
x , µA) ≤ d(P σ

(x,y), λ),

where d is defined on Prob((A× B)G) analogously to the definition given on Prob(AG)

above. This inequality holds because total variation distance is non-increasing under

pushforwards. Consequently,

h�,µ(T , α) ≥ inf
ε>0

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : d(P σ

(x,yn), λ) < ε}| = fλ(S, a | b).

Taking the supremum over joinings λ gives the lower bound.

8.2. Upper bound. For ε > 0, let

Jε := {λ ∈ ProbS((A× B)G) : d(aG
∗ λ, µA) < ε and d(bG

∗ λ, µB) < ε}

be the set of shift-invariant ‘approximate joinings’ of µA and µB. Since Prob((A× B)G) is

compact, for each ε > 0 there exist λ1, . . . , λm ∈ Jε such that

Jε ⊆
m⋃

i=1

B(λi , ε).

By definition of sn we have Pσ∼sn(d(P σ
yn

, µB) < ε) = 1 for all large enough n. Therefore,

h�,µ(T , α) = inf
ε

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ Jε}|

≤ inf
ε

lim sup
n→∞

1

n
log

m∑

i=1

E
σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ B(λi , ε)}|

= inf
ε

max
1≤i≤m

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ B(λi , ε)}|

≤ inf
ε

sup
λ∈Jε

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ B(λ, ε)}|.
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Note that the entire expression in the infimum is decreasing as ε → 0, so we may replace

the infimum with a limit. Rather than taking a continuous limit we write

h�,µ(T , α) ≤ lim
m→∞

sup
λ∈J1/m

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ B(λ, 1/m)}|.

For each m, pick λm ∈ J1/m to get within 1/m of the supremum. Then the right-hand

side is equal to

lim
m→∞

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ B(λm, 1/m)}|. (∗)

Let λmj
be a subsequence with weak* limit λ0. By weak* continuity of pushforwards

under projection we have λ0 ∈ J(µA, µB). Now, for any δ > 0, for all large enough j we

have both 1/mj < δ/2 and d(λmj
, λ0) < δ/2, so by the triangle inequality

B(λmj
, 1/mj ) ⊆ B(λ0, δ).

It follows that the expression in (∗), and hence h�(α), is bounded above by

lim sup
n→∞

1

n
log E

σ∼sn

|{x ∈ A
n : P σ

(x,yn) ∈ B(λ0, δ)}|.

Taking the infimum over δ shows that

h�(µ, α) ≤ fλ0
(S, a | b) ≤ sup

λ∈J(µA,µB)

fλ(S, a | b).

9. Proof of Proposition 1.1

All sequences of interest are of the form

sn = SBM(σn, yn, mn) = Unif({σ ∈ Hom(G, Sym(n)) : Wσ ,y
mn
n

= Wn})

with yn ∈ B
n, σn ∈ Sym(n), mn = o(log log n), and where Wn is the B

B(e,mn)-weight

Wσn,y
mn
n

. In the case of Theorem A we simply have mn = 0 for all n.

The theorem will follow from the following lemma.

LEMMA 9.1. Let ζn denote the uniform measure on Hom(G, Sym(n)). Then, for any finite

D ⊂ G and δ > 0, there exists ε > 0 such that

P
σ∼ζn

(σ is (D, δ)-sofic) ≥ 1 − n−εn

for all large enough n.

This can be proven by making superficial changes to the proof of the similar result

[1, Lemma 3.1].

To prove Proposition 1.1, it now suffices to show that, for any ε > 0,

P
σ∼ζn

(Wσ ,y
mn
n

= Wn) ≥ n−εn
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for all large enough n. To do this, first note that the left-hand side here depends only on the

vector pyn ∈ Prob(B) of letter frequencies. Therefore,

P
σ∼ζn

(there exists y ∈ B
n s.t. Wσ ,ymn = Wn) ≤

∑

y:py=pyn

P
σ∼ζn

(Wσ ,ymn =Wn)

= exp{nH(pyn) + o(n)} P
σ∼ζn

(Wσ ,y
mn
n

=Wn).

But by Proposition 2.5, if σ ∈ Hom(G, Sym(n)) and Y ∈ (BB(e,mn))n are such that Wσ ,Y =
Wn = Wσn,y

mn
n

, then the projection Ye ∈ B
n satisfies (Ye)

mn = Y. Therefore, for each σ ,

|{Y ∈ (BB(e,mn))n : Wσ ,Y = Wn}| = |{y ∈ B
n : Wσ ,ymn = Wn}|.

Hence,

E
σ∼ζn

|{Y ∈ (BB(e,mn))n : Wσ ,Y = Wn}|= E
σ∼ζn

|{y ∈ B
n : Wσ ,ymn = Wn}|

≤|B|n P
σ∼ζn

(there exists y ∈ B
n s.t. Wσ ,ymn =Wn).

Combining these last few statements, we see that

P
σ∼ζn

(Wσ ,y
mn
n

= Wn) ≥ exp{−2n log|B| + o(n)} E
σ∼ζn

|{Y ∈ (BB(e,mn))n : Wσ ,Y = Wn}|.

We can ignore the first factor here since it only decays exponentially fast. By

Proposition 5.1,

E
σ∼ζn

|{Y ∈ (BB(e,mn))n : Wσ ,Y = Wn}| =
Zn(Wn)

(n! )r
≥ (3

√
n)−r|BB(e,mn)|2eF(Wn)nn(1−r)/2.

The third factor is clearly not a problem and can also be ignored. For the first factor,

1

n log n
log(3

√
n)−r|BB(e,mn)|2 = −r

|BB(e,mn)|2

n

log 3
√

n

log n
→ 0 as n → ∞

using Lemma 7.2. For the second factor, first note that by definition of F(Wn) we have

F(Wn) = (1 − 2r)H(Wn(·)) +
∑

i∈[r]

H(Wn(·, ·; i))

≥ −2rH(Wn(·))
≥ −2r log|BB(e,mn)|.

So

1

n log n
log eF(Wn)n =

F(Wn)

log n
≥ −2r

log|BB(e,mn)|
log n

→ 0 as n → ∞,

again using Lemma 7.2. This implies that for every ε > 0 we have

(3
√

n)−r|BB(e,mn)|2eF(Wn)n ≥ n−εn

for all large enough n, which implies the result.
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10. Proof of Lemma 2.3

We show how to construct a denominator-n weight WAB that has a given B-marginal WB

and is close to a given (A× B)-weight W whose B-marginal πBW is close to WB. As in the

theorem statement, we assume

d(πBW , WB) < δ.

To minimize the appearance of factors of 1
2
, in this section we work with the �1 distance

on weights, which is twice the distance defined above. Therefore the previous assumption

becomes

d1(πBW , WB) =
∑

i∈[r]

∑

b,b′∈B
|πBW(b, b′; i) − WB(b, b′; i)| < 2δ.

We fix distinguished elements a0 ∈ A and b0 ∈ B which will be referred to throughout

this section.

10.1. The vertex measure. We first define the weight’s vertex measure by

WAB((a, b)) =
1

n
�n · W((a, b))� a ∈ A \ {a0}, b ∈ B,

WAB((a0, b)) = WB(b) −
∑

a �=a0

WAB((a, b)) b ∈ B.

See Table 1.

Note that |WAB((a, b)) − W((a, b))| ≤ 1/n for a �= a0 and

|WAB((a0, b)) − W((a0, b))| ≤ |WB(b) − πBW(b)| + |A|/n.

Therefore the �1 distance between the vertex measures is
∑

a,b

|WAB((a, b)) − W((a, b))| ≤ |A||B|/n +
∑

b∈B
(|WB(b) − πBW(b)| + |A|/n)

≤ 2δ + 2|A||B|/n.

10.1.1. Nonnegativity. The terms defined by rounding down W using the floor function

are guaranteed to be non-negative, but the others are not. In the following we show how to

repair any negativity.

TABLE 1. Picking entries of the vertex measure WAB(·). First

choose entries of the form WAB((a, b)) for a �= a0 by rounding

down W((a, b)), then fill in the first column in a way that

guarantees the correct B-marginal.

a0 a1 · · ·
b0 → �·� �·�
b1 → �·� �·�
... → �·� �·�
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Let −R/n denote the sum of all negative terms in the vertex measure. Since W contains

only non-negative terms, we have

1{WAB((a,b))<0} · |WAB((a, b))| ≤ |WAB((a, b)) − W((a, b))| for all a, b.

Therefore

R/n ≤
∑

b∈B
|WAB((a0, b)) − W((a0, b))| ≤ 2δ + |A||B|/n.

Suppose there is some b ∈ B such that WAB((a0, b)) < 0. Since WAB has denominator n,

we must have WAB((a0, b)) ≤ −1/n. By construction, we have

∑

a∈A

WAB((a, b)) = WB(b) ≥ 0,

so there exists some a+ ∈ A with WAB((a
+, b)) ≥ 1/n. Increase WAB((a0, b)) by 1/n and

decrease WAB((a
+, b)) by 1/n.

The number of times we must repeat this step before all terms are non-negative is

exactly R, and each step moves the measure by �1 distance 2/n; therefore the final edited

vertex measure is distance at most 2R/n from the original WAB. If we now let WAB denote

the new, non-negative vertex measure, by the above bound on R/n we get

∑

a,b

|WAB((a, b)) − W((a, b))| ≤ 6δ + 4|A||B|/n.

10.2. The B half-marginal. For the purposes of this construction we use the B

‘half-marginal’, which we denote by

W(b, (a′, b′); i) :=
∑

a∈A
W((a, b), (a′, b′); i).

This is an element of Prob((B× (A× B))r).

Before constructing the edge measure of WAB, in this section we first construct what

will be its half-marginal.

For each i ∈ [r], b, b′ ∈ B, and a′ ∈ A, we define

WAB(b, (a′, b′); i) =
1

n
�n · W(b, (a′, b′); i)� for a′ �= a0, b �= b0, (10.1)

WAB(b, (a0, b′); i) = WB(b, b′; i) −
∑

a′ �=a0

WAB(b, (a′, b′); i) for b �= b0, (10.2)

WAB(b0, (a′, b′); i) = WAB((a
′, b′)) −

∑

b �=b0

WAB(b, (a′, b′); i). (10.3)

See Table 2 for a representation of which terms are defined by each equation.

The definition of the terms in (10.3) ensures that

∑

b∈B
WAB(b, (a′, b′); i) = WAB((a

′, b′)) for all a′, b′, i.
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TABLE 2. A diagram of how the half-marginal WAB(·, (·, ·); i) is chosen if A = {a0, a1, a2} and B =
{b0, b1, b2}. First obtain the entries marked �·� by rounding down W. Then choose the entries marked →
according to equation (10.2) which ensures that the B-marginal is WB. Then choose the entries marked ↓
according to equation (10.3) which ensures that the vertex weight is the one we chose above.

(a0, b0) (a1, b0) (a2, b0) (a0, b1) (a1, b1) (a2, b1) (a0, b2) (a1, b2) (a2, b2)

b0 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
b1 → �·� �·� → �·� �·� → �·� �·�
b2 → �·� �·� → �·� �·� → �·� �·�

This will ensure that WAB has the correct vertex measure. Note also that, by line (10.2),

∑

a′∈A
WAB(b, (a′, b′); i) = WB(b, b′; i) for all b ∈ B \ {b0} and b′ ∈ B.

Using this and definition (10.3), we also get

∑

a′∈A
WAB(b0, (a′, b′); i) = WB(b0, b′; i).

This will ensure that the B-marginal of WAB is WB.

We show now that the half-marginal WAB(·, (·, ·); i) is �1-close to W(·, (·, ·); i) by

considering separately the contributions to the �1 distance from terms defined using

equations (10.1), (10.2), and (10.3).

(10.1) terms: Each of the terms of WAB defined using the floor in equation (10.1) is

distance at most 1/n from the corresponding term of W; therefore the total contribution of

these terms to the �1 distance is

∑

b∈B\{b0}
a′∈A\{a0},b′∈B

i∈[r]

|WAB(b, (a′, b′); i) − W(b, (a′, b′); i)| ≤ |A||B|2r/n.

(10.2) terms: By the triangle inequality,

|WAB(b, (a0, b′); i) − W(b, (a0, b′); i)|

=
∣∣∣∣
(

WB(b, b′; i) −
∑

a′ �=a0

WAB(b, (a′, b′); i)

)

−
(

πBW(b, b′; i) −
∑

a′ �=a0

W(b, (a′, b′); i)

)∣∣∣∣

≤ |WB(b, b′; i) − πBW(b, b′; i)|

+
∑

a′ �=a0

|WAB(b, (a′, b′); i) − W(b, (a′, b′); i)|.
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The total contribution of such terms is therefore
∑

b∈B\{b0}, b′∈B
i∈[r]

|WAB(b, (a0, b′); i) − W(b, (a0, b′); i)|

≤

≤d1(WB,πBW)︷ ︸︸ ︷∑

b∈B\{b0}, b′∈B
i∈[r]

|WB(b, b′; i) − (πB)∗W(b, b′; i)|

+

=contribution from (10.1) terms︷ ︸︸ ︷∑

b∈B\{b0}
a′∈A\{a0}, b′∈B

i∈[r]

|WAB(b, (a′, b′); i) − W(b, (a′, b′); i)|

≤ 2δ + |A||B|2r/n.

(10.3) terms: Again applying the triangle inequality,

|WAB(b0, (a, b′); i) − W(b0, (a, b′); i)|
≤ |WAB((a, b′)) − W((a, b′))|

+
∑

b �=b0

|WAB(b, (a, b′); i) − W(b, (a, b′); i)|.

Summing over all a ∈ A, b′ ∈ B and i ∈ [r], we see that the total contribution of such

terms is bounded by

∑

a∈A,b′∈B
i∈[r]

[
|WAB((a, b′)) − W((a, b′))|

+
∑

b �=b0

|WAB(b, (a, b′); i) − W(b, (a, b′); i)|
]

=
∑

i∈[r]

vertex measure︷ ︸︸ ︷∑

a∈A
b∈B

|WAB((a, b)) − W((a, b))|

+

(10.1) terms︷ ︸︸ ︷∑

b∈B\{b0}
a′∈A\{a0}, b′∈B

i∈[r]

|WAB(b, (a′, b′); i) − W(b, (a′, b′); i)|

+

(10.2) terms︷ ︸︸ ︷∑

b∈B\{b0}, b′∈B
i∈[r]

|WAB(b, (a0, b′); i) − W(b, (a0, b′); i)|

≤ r · [6δ + 4|A||B|/n] + [|A||B|2r/n] + [2δ + |A||B|2r/n]

≤ 8rδ + 6|A||B|2r/n.
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Adding up the contributions of the three types of terms, we see that the �1 distance

between the half-marginals of W and WAB is bounded by

10rδ + 8|A||B|2r/n.

10.2.1. Nonnegativity. Again, the preceding construction does not guarantee that all

terms are non-negative. In the following we describe how to correct negativity.

Let −R/n be the sum of all negative terms of the half-marginal. As above, we get

R/n ≤ 10rδ + 7|A||B|2r/n.

Suppose there is some b− ∈ B, (a′
−, b′

−) ∈ A× B, and i ∈ [r] such that WAB(b−,

(a′
−, b′

−); i) < 0. Then WAB(b−, (a′
−, b′

−); i) ≤ −1/n. Since
∑

a′∈A
WAB(b−, (a′, b′

−); i) = WB(b−, b′
−; i) ≥ 0

and ∑

b∈B
WAB(b, (a′

−, b′
−); i) = WAB((a

′
−, b′

−)) ≥ 0

there exist a′
+ ∈ A and b+ ∈ B such that

WAB(b−, (a′
+, b′

−); i) ≥ 1/n and WAB(b+, (a′
−, b′

−); i) ≥ 1/n.

Decrease both of these terms by 1/n, and increase both WAB(b−, (a′
−, b′

−); i) and

WAB(b+, (a′
+, b′

−); i) by 1/n. This moves the half-marginal by �1 distance 4/n:
∑

a′∈A
WAB(b, (a′, b′); i) = WB(b, b′; i) and

∑

b∈B
WAB(b, (a′, b′); i) = WAB((a

′, b′)).

This step must be done at most R times to eliminate all negative entries, so the final

half-marginal satisfies
∑

i∈[r]

∑

b∈B

∑

(a′,b′)∈A×B
|WAB(b, (a′, b′); i) − W(b, (a′, b′); i)|

≤ (10rδ + 8|A||B|2r/n) + R · 4/n ≤ 50rδ + 36|A||B|2r/n.

10.3. The edge measure. Finally, we define the edge measure of WAB by

WAB((a, b), (a′, b′); i) =
1

n
�n · W((a, b), (a′, b′); i)�

for a �= a0 and (a′, b′) �= (a0, b0), (10.4)

WAB((a0, b), (a′, b′); i) = WAB(b, (a′, b′); i) −
∑

a �=a0

WAB((a, b), (a′, b′); i)

for (a′, b′) �= (a0, b0), (10.5)

WAB((a, b), (a0, b0); i) = WAB((a, b)) −
∑

(a′,b′) �=(a0,b0)

WAB((a, b), (a′, b′); i). (10.6)

See Table 3.

https://doi.org/10.1017/etds.2022.27 Published online by Cambridge University Press



The relative f-invariant and non-uniform random sofic approximations 35

TABLE 3. A diagram of how the edge measure WAB((·, ·), (·, ·); i) is chosen if A = {a0, a1, a2} and B =
{b0, b1, b2}. First obtain the entries marked �·� by rounding down entries of W. Then choose entries marked

↓ according to equation (10.5), which ensures that the B half-marginal is the one chosen above. Then choose

entries marked → according to equation (10.6), which ensures that the vertex measure is the one chosen above.

(a0, b0) (a1, b0) (a2, b0) (a0, b1) (a1, b1) (a2, b1) (a0, b2) (a1, b2) (a2, b2)

(a0, b0) → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
(a1, b0) → �·� �·� �·� �·� �·� �·� �·� �·�
(a2, b0) → �·� �·� �·� �·� �·� �·� �·� �·�
(a0, b1) → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
(a1, b1) → �·� �·� �·� �·� �·� �·� �·� �·�
(a2, b1) → �·� �·� �·� �·� �·� �·� �·� �·�
(a0, b2) → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
(a1, b2) → �·� �·� �·� �·� �·� �·� �·� �·�
(a2, b2) → �·� �·� �·� �·� �·� �·� �·� �·�

It follows from this definition that WAB is a (signed) weight with B-marginal WB.

We now check that WAB is �1-close to W. We consider separately the contribution to the

�1 distance of terms defined in equations (10.4), (10.5), and (10.6).

(10.4) terms: Each term of WAB defined using the floor function in equation (10.4) is

distance at most 1/n from the corresponding W term. The total contribution of these terms

to the �1 distance is therefore at most |A|2|B|2r/n.

(10.5) terms: Applying the triangle inequality to terms defined in equation (10.5),

|WAB((a0, b), (a′, b′); i) − W((a0, b), (a′, b′); i)|
≤ |WAB(b, (a′, b′); i) − W(b, (a′, b′); i)|

+
∑

a �=a0

|WAB((a, b), (a′, b′); i) − W((a, b), (a′, b′); i)|

≤ |WAB(b, (a′, b′); i) − W(b, (a′, b′); i)| + |A|/n.

By the �1 bound on the distance between the half-marginals, the total contribution of

all such terms is therefore at most

∑

i∈[r]

∑

b

∑

(a′,b′) �=(a0,b0)

(|WAB(b, (a′, b′); i) − W(b, (a′, b′); i)| + |A|/n)

≤ [50rδ + 36|A|2|B|2r/n] + |A|2|B|2r/n

= 50rδ + 37|A|2|B|2r/n.

(10.6) terms: Applying the triangle inequality to terms defined in equation (10.6),

|WAB((a, b), (a0, b0); i) − WAB((a, b), (a0, b0); i)|
≤ |WAB((a, b)) − W((a, b))|

+
∑

(a′,b′) �=(a0,b0)

|WAB((a, b), (a′, b′); i) − W((a, b), (a′, b′); i)|.
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Therefore the total contribution of all such terms is
∑

i∈[r]

∑

a,b

|WAB((a, b), (a0, b0); i) − WAB((a, b), (a0, b0); i)|

=
∑

i∈[r]

∑

a,b

[
|WAB((a, b)) − W((a, b))|

+
∑

(a′,b′) �=(a0,b0)

|WAB((a, b), (a′, b′); i) − W((a, b), (a′, b′); i)|
]

=

vertex measure︷ ︸︸ ︷∑

i∈[r]

∑

a,b

|WAB((a, b)) − W((a, b))|

+

(10.4) terms︷ ︸︸ ︷∑

i∈[r]

∑

a �=a0

∑

b

∑

(a′,b′) �=(a0,b0)

|WAB((a, b), (a′, b′); i) − W((a, b), (a′, b′); i)|

+

(10.5) terms︷ ︸︸ ︷∑

i∈[r]

∑

b

∑

(a′,b′) �=(a0,b0)

|WAB((a0, b), (a′, b′); i) − W((a0, b), (a′, b′); i)|
]

≤ r · [6δ + 3|A||B|/n] + [|A|2|B|2r/n] + [50rδ + 37|A|2|B|2r/n]

≤ 56rδ + 41|A|2|B|2r/n.

Summing up the contributions from terms of all three types, we get that

d1(WAB, W) ≤ 106rδ + 79|A|2|B|2r/n.

10.3.1. Nonnegativity. We can modify a solution with negative entries to get a

non-negative one similarly to above. Let −R/n be the sum of all negative entries; then

R/n ≤ 106rδ + 78|A|2|B|2r/n.

Suppose there is some entry

WAB((a−, b−), (a′
−, b′

−); i) ≤ −1/n.

We want to increment this term by 1/n without affecting the vertex measure or the B

marginal. Since
∑

(a′,b′)∈A×B
WAB((a−, b−), (a′, b′); i) = WAB((a−, b−)) ≥ 0

there exists some (a′
+, b′

+) ∈ A× B such that WAB((a−, b−), (a′
+, b′

+); i) ≥ 1/n; simi-

larly, since
∑

a∈A

WAB((a, b−), (a′, b′
−); i) = WAB(b−, (a′

−, b′
−); i) ≥ 0

there exists some a+ such that WAB((a+, b−), (a′
−, b′

−); i) ≥ 1/n. Increase

WAB((a−, b−), (a′
−, b′

−); i) and WAB((a+, b−), (a′
+, b′

+); i)
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by 1/n, and decrease

WAB((a−, b−), (a′
+, b′

+); i) and WAB((a+, b−), (a′
−, b′

−); i)

by 1/n. This moves the weight by �1 distance 4/n.

Since R is the maximum number of times we need to do this before there are no more

negative entries, the final weight satisfies

d1(WAB, W) ≤ 106rδ + 79|A|2|B|2r/n + 4R/n ≤ 530rδ + 391|A|2|B|2r/n.

To simplify, we write

d1(WAB, W) ≤ 530r(δ + |A× B|2/n),

or

d(WAB, W) ≤ 265r(δ + |A× B|2/n).
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