

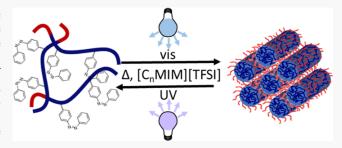
pubs.acs.org/Macromolecules Article

Photoreversible Order—Disorder Transitions in Block Copolymer/ Ionic Liquid Solutions

3 Claire L. Seitzinger, Cecilia C. Hall, and Timothy P. Lodge*

Cite This: https://doi.org/10.1021/acs.macromol.2c00397

Read Online


ACCESS I

Metrics & More

Supporting Information

4 **ABSTRACT:** External stimuli are of interest in controlling the 5 nanoscale morphology in self-assembling polymer materials. While 6 temperature is commonly used to control the state of microphase 7 separation in block polymer solutions, light is a highly tunable, 8 contactless method that can be spatially selective. Here, we use UV 9 irradiation to induce order—disorder transitions (ODTs) in 10 concentrated solutions of four poly(methyl methacrylate)-b-11 poly(benzyl methacrylate-s-4-phenylazophenyl methacrylate) 12 block copolymers in three imidazolium-based ionic liquids. Due 13 to a significant change in polarity in the phenylazophenyl

14 methacrylate monomer upon UV irradiation, a bistable temperature window exists between the ODT in the dark and under UV 15 irradiation, allowing for light-triggered ODTs. UV-irradiated small-amplitude oscillatory shear rheology is used to locate the bistable 16 window and then to trigger ODTs reversibly with light. The ordered states formed in the dark are determined by small-angle X-ray 17 scattering. Three tunable factors are explored within the system: the relative lengths of the copolymer blocks, the selectivity of the 18 solvent, and the content of the photoactive monomer. The block composition was found to mainly influence the ordered state 19 formed by the system after microphase separation. The selectivity of the solvent is the most promising method for tuning the ODT 20 temperature, and the amount of photoactive monomer controls the width of the bistable window.

INTRODUCTION

22 Control over nanoscale morphology in block polymers has 23 been an important aspect of technological development from 24 selective patterning of microchips to separation membranes 25 with improved transport properties. Padditionally, the 26 ability to reverse such patterning and switch between 27 morphologies could expand applications, for example in drug 28 delivery and repositionable adhesives. Numerous stimulus-responsive systems have been developed; common stimuli 30 include heat, pH, and light. Thermo-responsive behavior 31 is the most well-studied, but not all applications are amenable 32 to changes in the temperature. Light allows for a contactless 33 stimulus with both excellent temporal and spatial resolution. In 34 this study, we combine temperature and light stimuli to explore 35 an alternative method of controlling phase behavior in block 36 polymers.

Block polymers in concentrated solutions and melts display two major classes of thermo-responsive phase behavior: upper and lower critical ordering transitions (UCOT and LCOT), do depending on the sign of the correlation between temperature and the segregation strength. A UCOT polymer solution transitions from order to disorder upon heating, whereas microphase separation occurs upon heating for LCOT solutions. An LCOT arises when one of the blocks exhibits lower critical solution temperature (LCST) behavior (liquid—liquid phase separation upon heating) as a homopolymer in the solvent of interest. In diblock copolymers, generally the solvent

is chosen to be a good solvent for the other block. Some well-48 studied LCST examples include poly(N-isopropyl acrylamide) 49 in water, $^{24-26}$ poly(n-butyl methacrylate) in the ionic liquid 1-50 ethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide 51 ([C₂MIM][TFSI]), 27,28 and poly(benzyl methacrylate) 52 (PBnMA) in [C₂MIM][TFSI]. $^{15,29-33}$ In [C₂MIM][TFSI], a 53 suitable neutral block is poly(methyl methacrylate), as it is 54 completely soluble over a wide temperature window. 38

Here, a diblock copolymer solution is presented that 56 responds to both thermo- and photo-stimuli. Previous research 57 has incorporated photoactive monomers into existing thermo- 58 responsive polymer solutions. $^{34-37,39-41}$ Ueki *et al.* discovered 59 that by incorporating just 2 mol % of an azobenzene-based 60 monomer into PBnMA, there was a 15 °C window between 61 the phase separation temperatures of $[C_2MIM][TFSI]$ in the 62 dark (90 °C) and under UV irradiation (105 °C). This 63 allowed phase separation to be controlled by a light stimulus 64 between the two temperatures. Azobenzene is an advantageous 65 photo-trigger for polymer solutions. It undergoes *trans* to *cis* 66

Received: February 23, 2022 Revised: April 9, 2022

67 isomerization under UV irradiation (365 nm) that is readily 68 reversible by irradiation with visible light. 42 Additionally, 69 azobenzene does not exhibit significant decomposition path-70 ways, leading to robust, long-lasting, light-responsive materials. 71 The change in dipole moment is significant, from 0.53 D 72 (trans) to 3.08 D (cis), which changes the solubility of the 73 molecule substantially, with the cis form more soluble in polar 74 solvents such as ionic liquids. 42,43 Recently, Hall and Lodge 75 investigated the photoreversible phase behavior of poly(methyl 76 methacrylate)-block-poly(benzyl methacrylate-stat-4-phenyla-77 zophenyl methacrylate) in [C₂MIM][TFSI].⁴⁴ The system 78 showed different order-disorder transitions (ODTs) in the 79 dark versus under UV irradiation, and the authors demon-80 strated that there was a bistable temperature window in which 81 the ODT could be triggered with light. Here, we build upon 82 that work by exploring the effects of various parameters, 83 including the block ratio, amount of azobenzene incorporated 84 into the polymer, and choice of the ionic liquid.

MATERIALS AND METHODS

Experimental Section. Materials. 4-Cyano-4-87 [(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid, 4,4'-azobis(4cyanovaleric acid), tris(2-carboxyethyl)phosphate hydrochloride, npropyl amine, and methyl acrylate were used as purchased from 90 Sigma-Aldrich. 4-Phenylazophenyl methacrylate (AzoMA) was 91 synthesized from methacryloyl chloride and 4-phenylazophenol, as 92 previously described. 45 Methyl methacrylate and benzyl methacrylate 93 were purchased from Sigma-Aldrich, and inhibitors were removed by 94 passing through a neutral alumina column. The ionic liquids 95 [C₂MIM][TFSI] and [C₄MIM][TFSI] were synthesized as pre-96 viously described via ion exchange in water. 46 [C1MIM][TFSI] was purchased from IoLiTec. All ionic liquids were purified via liquid-98 liquid extraction from water into dichloromethane (DCM) and then 99 by stirring charcoal in the DCM solution, which was removed by 100 filtration. The DCM was removed by rotary evaporation, and the 101 ionic liquid was dried in a vacuum oven at 100 °C for three days. 102 Ionic liquid purity was confirmed by ¹H NMR and ¹⁹F NMR 103 spectroscopy (see Supporting Information).

Polymer Synthesis. The block copolymers were synthesized by 105 sequential RAFT polymerization as previously described, including 106 removal of the chain transfer agent (CTA) after polymerization. 44 A 107 representative synthesis is as follows: a dried Schlenk flask was 108 charged with a stir bar, methyl methacrylate (20 g, 200 mmol) 109 purified over neutral alumina, 4-cyano-4-110 [(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid (0.49 g, 1.2 111 mmol), and 4,4'-azobis(4-cyanovaleric acid) (0.034 g, 0.12 mmol) in 112 dioxane (40 mL). The flask was degassed by three freeze-pump-113 thaw cycles under argon. The reaction was stirred at 80 °C for 7.5 h 114 and was then quenched by opening the flask in the air and cooling on 115 ice. The solution was diluted with DCM, precipitated into hexanes 116 (10 times volume of solution), and vacuum filtered to recover the 117 polymer. The polymer was precipitated into hexanes from a DCM 118 solution twice more before drying at 100 $^{\circ}\text{C}$ under vacuum overnight. 119 The poly(methyl methacrylate) (PMMA or M) macroinitiator was 120 characterized by ¹H NMR spectroscopy and size exclusion 121 chromatography (SEC, Figures S1 and S2), giving $M_n = 16$ kg/mol 122 and D = 1.06.

The purified PMMA (10 g, 0.53 mmol) was then added to a dried Schlenk flask along with benzyl methacrylate (31 g, 175 mmol) purified over neutral alumina, AzoMA (2.5 g, 9.0 mmol), and 4,4′-126 azobis(4-cyanovaleric acid) (0.0019 g, 0.0068 mmol) in dioxane (76 mL). The flask was degassed by three freeze—pump—thaw cycles under argon, and the reaction was allowed to run at 80 °C for 20 h. 129 The reaction was quenched by opening the flask to air and cooling it 130 on ice. The solution was diluted with DCM, precipitated into hexanes 131 (10 times the volume of solution), and vacuum filtered to recover the

polymer. The polymer was precipitated into hexanes from a DCM 132 solution twice more before drying under vacuum overnight.

The CTA was cleaved from the final block copolymer *via* 134 aminolysis and Michael addition with methyl acrylate. MBsA-CTA 135 (31 g, 0.36 mmol) was dissolved in tetrahydrofuran (THF) (200 mL) 136 in a round bottom flask, along with tris(2-carboxyethyl)phosphate 137 hydrochloride (0.224 g, 0.78 mmol) dissolved in water (4 mL). The 138 reaction flask was degassed with argon for 15 min. *N*-Propylamine 139 (2.8 g, 47 mmol) was added, and the reaction was allowed to stir for 5 140 h. Methyl acrylate (8.55 g, 99 mmol) was added to the flask, and the 141 mixture was allowed to stir for 12 h. The THF was removed by rotary 142 evaporation, and the polymer was purified by precipitation three 143 times, with DCM as the good solvent and hexane as the poor solvent. 144

Removal of the CTA was confirmed by 1 H NMR spectroscopy, 145 with peaks characteristic of the CTA between 1 and 1.5 ppm 146 unobserved after cleavage, and SEC (see Supporting Information, 147 Figures S1, S4, and S6). CTA removal could not be quantified by 148 UV/vis spectroscopy due to the overlap in absorbance between 149 AzoMA and the CTA. The polymer was characterized by 1 H NMR 150 spectroscopy and SEC (see Supporting Information); $M_n = 49$ kg/ 151 mol, D = 1.04, $n_{AzoMA} = 5$ mol % in the BsA block, and $f_{PMMA} = 0.2$, 152 assuming additivity of volumes and densities of 1.15 and 1.17 g/mL 153 for the M and BsA blocks, respectively. 47

Material Characterization. Proton nuclear magnetic resonance 155 (¹H NMR) spectra of the polymers, the ionic liquids, and the AzoMA 156 monomer were collected using a 400 MHz Bruker Avance III HD 157 spectrometer, with deuterated DCM, deuterated dimethyl sulfoxide, 158 and deuterated chloroform as solvents, respectively. Molar mass 159 distributions for the polymers were obtained using SEC equipped 160 with a refractive index (Wyatt Optilab rEX) and multi-angle light 161 scattering detectors (Wyatt DAWN HELEOS II) with THF as the 162 eluent. The dn/dc of the polymers in THF was calculated using a 163 weighted average of the dn/dc values from M (0.086 mL/g), 48 B 164 (0.144 mL/g), 49 and AzoMA (0.259 mL/g), 15 where the weight 165 percent monomer in the polymer was calculated from the ¹H NMR 166 spectra. 50 All ¹H NMR spectra and SEC traces can be found in the 167 Supporting Information.

Solution Preparation. Samples were prepared at 35 wt % polymer 169 via a cosolvent method. The polymer (0.35 g) and ionic liquid (0.65 170 g) were weighed into a 20 mL scintillation vial with a small stir bar. 10 171 mL of THF was added to the solution, which was allowed to stir for at 172 least 2 h. The solution was filtered through a PTFE filter (13 mm, 173 0.45 μ m). The THF was then removed by N₂ purge, followed by the 174 vials being placed in a vacuum oven at 100 °C overnight. Samples 175 were stored in a desiccator under vacuum.

Small Amplitude Oscillatory Shear Photo-rheology. Small- 177 amplitude oscillatory shear (SAOS) was performed on a TA 178 Instruments Discovery HR3 rheometer fitted with an electrically 179 heated upper plate (40 mm dia.) and a quartz lower plate (20 mm 180 dia.). An in-depth description of this set-up, including that of the UV 181 lower plate attachment, was provided in previous work.⁴⁴ An 182 Omnicure S1500 mercury arc lamp was used for irradiation, with 183 365 and 400-500 nm wavelength filters to allow for UV and visible 184 wavelength penetration, respectively. Here, samples were measured 185 with a gap of less than 300 μ m. Temperature sweeps were performed 186 from 30 to 150 °C at a frequency of 1 rad/s and a strain of 1%. Strain 187 sweeps were performed at 30 and 150 °C to ensure that the 188 measurements were taken in the linear viscoelastic regime. Frequency 189 sweeps were also performed at various temperatures after the initial 190 temperature sweeps, with annealing at 100 °C for 30 min prior to 191 measurements in the dark (no irradiation and a shield in place) and 192 annealing at 30 °C under UV radiation for 30 min prior to 193 measurements under UV illumination with the same shield in place. 194 For all cases, the ODT is taken as the point where the storage 195 modulus, G', is equal to the loss modulus, G'', or where $\tan(\delta) = G''/196$ G' = 1; $tan(\delta) > 1$ indicates a disordered sample and $tan(\delta) < 1$ an 197 ordered state.

Small-Angle X-ray Scattering. Small-angle X-ray scattering 199 (SAXS) was performed at Sector 5-ID-D of the Advanced Photon 200 Source at Argonne National Laboratory. The samples were loaded 201

202 into aluminum sample pans and then dried in a vacuum oven at 100 203 °C overnight prior to loading into a glovebox and sealed hermetically. 204 Measurements were taken upon heating from 30 to 175 °C with 205 about 10 min of annealing at each temperature. The sample-to-206 detector distance was fixed at 7.5 m, the beam energy was 17.5 keV 207 (wavelength $\lambda=0.7293$ Å), and SAXS data were collected using a 208 Rayonix area detector. The isotropic 2D data were reduced by 209 azimuthal integration to give intensity as a function of the scattering 210 wave vector, q. SAXS measurements were taken in the dark.

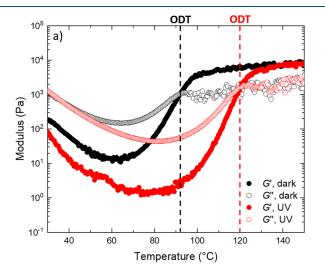
211 RESULTS

212 A total of four poly(methyl methacrylate)-b-poly(benzyl 213 methacrylate-s-4-phenylazophenyl methacrylate) (MBsA) ma-214 terials were synthesized: two symmetric and two asymmetric 215 block copolymers, where the volume fraction of the stimulus-216 responsive block was increased to 80 vol %. Both pairs of 217 copolymers were prepared with either 5 or 12 mol % AzoMA 218 incorporation to explore how adding more photoactive 219 monomer impacts the ODT window. The synthesized 220 polymers are listed in Table 1. The nomenclature for the

Table 1. Polymer Characteristics

Sample	$\frac{M_{\rm n}^{\ a}}{({ m kg/mol})}$	$M_{\rm w}^{a}$ (kg/mol)	Ð	f_{PMMA}^{b}	n _{AzoMA} (mol %)
s-MBsA ₅	65	66	1.01	0.5	5
a -MB s A $_5$	49	51	1.04	0.2	5
$s\text{-}MBsA_{12}$	62	67	1.08	0.5	12
$a\text{-}MBsA_{11}$	68	75	1.09	0.3	11
		_			

^aDetermined via SEC-MALS. ^bDetermined via ¹H NMR spectroscopy.


221 polymers is as follows: s-MBsA_n, where s- indicates that the 222 block copolymer is symmetric (for asymmetric a- is used) and 223 *n* is the mol % incorporation of AzoMA, indicated as A, in the 224 poly(benzyl methacrylate) (B) block.

To locate the ODT (G' = G'') as a function of temperature, 226 all polymers were studied at a representative concentration of 227 35 wt % by SAOS rheology. Additionally, SAXS data were 228 collected for the samples in the dark (*trans*-AzoMA) to 229 corroborate the SAOS rheology results.

Effect of the Photoresponsive Block Volume Frac- 230 tion. To explore the effect of composition on the ODT, the 231 photoresponsive behavior of a-MBsA₅ in [C₂MIM][TFSI] was 232 compared to that of s-MBsA₅ in the same IL, which was 233 studied previously by Hall and Lodge.⁴⁴ Figure 1a shows the 234 ft temperature sweep SAOS plots for s-MBsA₅ in [C₂MIM]- 235 [TFSI] at a fixed frequency of 1 rad/s in the dark (black 236 symbols) and under UV illumination (red symbols). At 30 °C, 237 the sample is a liquid, with G'' roughly an order of magnitude 238 larger than G', and both moduli initially decrease on heating, 239 which is consistent with heating a well-dissolved polymer 240 solution. However, under both states of illumination, the 241 moduli then begin to increase strongly, with G' exceeding G'' 242 at the ODT temperature. The ordered state G' achieves a value 243 approaching 10 kPa, which is about 3 orders of magnitude 244 larger than the liquid state and becomes independent of 245 temperature with further heating. The ODT is at 92 °C in the 246 dark (black curve), or where AzoMA is in its less soluble trans 247 isomer. Upon UV irradiation (red curve), the ODT increases 248 to 120 °C due to the increased solubility of the more polar cis 249 isomer.

Figure 1b shows the photoresponsive ODT behavior of a- 251 MBsA₅ in [C₂MIM][TFSI]. Compared to s-MBsA₅ (Figure 252 1a), the ODT behavior is qualitatively similar (Figure 1b): the 253 ODT in the dark is 89 °C, increasing to 130 °C under UV 254 irradiation. However, the increase in G' with temperature upon 255 ordering is both greater in magnitude and more abrupt than in 256 Figure 1a. This presumably reflects the "cleaner" transition 257 from a liquid state to a lattice of well-defined symmetry, as will 258 be discussed in the structural characterization below.

SAXS experiments were performed to determine the ordered 260 states formed by the various systems above the ODT in the 261 dark. Figure 2 compares the SAXS results for s-MBsA $_5$ and a- 262 ft MBsA $_5$ at 150 °C. The peak spacings were compared to 263 common block copolymer space group indices, and the pattern 264 for a-MBsA $_5$ (Figure 2b) was readily determined to be 265 hexagonally packed cylinders (HEX), indicated in the figure 266 with dashed vertical lines. The pattern for s-MBsA $_5$ was more 267 difficult to assign. In Figure 2a, the indexing lines present are 268 associated with body-centered-cubic (BCC) spheres. However, 269

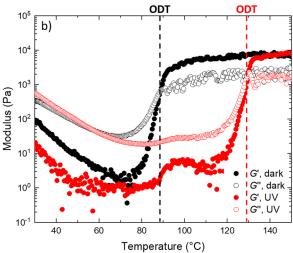


Figure 1. SAOS temperature sweeps for MBsA with 5 mol % incorporation of AzoMA in $[C_2MIM][TFSI]$. The cross-over points, where G' = G'', are taken to be the ODTs, are indicated by dashed lines. (a) s-MBsA₅, ODT in the dark (black) is 92 °C and under UV (red) is 120 °C. (b) a-MBsA₅, ODT in the dark (black) is 89 °C, under UV (red) is 130 °C. Gap: 175 μm, strain 1%, frequency 1 rad/s, temperature ramp 3 °C/min, UV intensity 50 mW/cm².

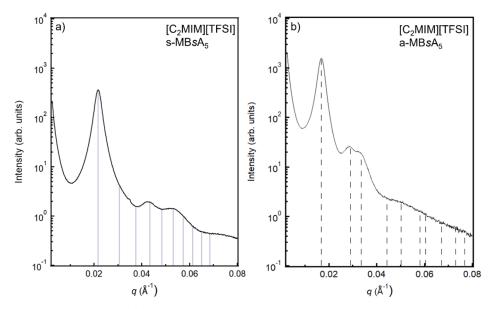
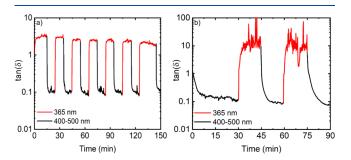



Figure 2. SAXS patterns of (a) s-MBsA₅ and (b) a-MBsA₅ in $[C_2MIM][TFSI]$ at 150 °C, where the vertical lines are the indexing for particular ordered states. (a) s-MBsA₅ does not order into a well-defined pattern and is assigned as a liquid-like packing (LLP) to indicate formation of spheres but no clear lattice, as shown by its non-conformity with BCC spheres (solid lines). (b) Ordered state formed by a-MBsA₅ is HEX, as indicated by the dashed indexing lines.

270 too many peaks are missing from the expected pattern to 271 confidently assign the structure to BCC. The major peaks fit to 272 the pattern 1, square root of 4, and square root of 6, which is 273 not a typical block copolymer pattern. Therefore, for the 274 purposes of this paper, we will refer to this pattern as a liquid-275 like packing, or LLP, to indicate that the polymers have 276 undergone microphase separation into spherical particles, but 277 that the packing of the spheres is jammed rather than well-278 ordered onto a lattice.

Returning to photorheology, the significant bistable temper-280 ature interval between the ODTs in the dark and under UV 281 presents an opportunity for reversible photo-control of the 282 ODT in both s-MBsA₅ and a-MBsA₅. This was demonstrated 283 at 100 °C by switching the light filters between 365 nm (UV) 284 and 400–500 nm (vis) in the rheometer. The transition 285 between order and disorder is best revealed by the loss tangent 286 $[\tan(\delta) = G''/G']$, as shown in Figure 3. This triggering was 287 effective almost instantly and was reversible over multiple

Figure 3. SAOS time sweep for (a) s-MBs A_5 in $[C_2MIM][TFSI]$ and (b) a-MBs A_5 . Temperature was kept constant at 100 °C, and the wavelength of the light source was alternated between 365 nm (red curves) and 400–500 nm (black curves) by changing a light filter. $\tan(\delta) < 1$ indicates order and $\tan(\delta) > 1$ indicates disorder. Transitions are sharp, indicating clean switching between the order and disorder. Gap 175 μ m, strain 1%, frequency 1 rad/s, UV intensity 50 mW/cm².

cycles. The two orders of magnitude change in $\tan(\delta)$ for a- 288 MBsA₅ in [C₂MIM][TFSI] indicate that the transitions 289 between the order and disorder permeate through the sample 290 and are not solely located on the interface closest to the UV 291 source.

Control over the ODT via Solvent Selectivity. To 293 enable broader tuning of the phase transition temperature, 294 solvent selectivity was explored. Ueki and Watanabe, Kharel et 295 al., and Carrick et al. all showed that the solubility of 296 poly(benzyl methacrylate) in imidazolium [TFSI] ionic liquids 297 can be changed by adjusting the alkyl chain length in the 1- 298 position of the imidazolium group. 51-53 Increasing the chain 299 length decreases the solvent selectivity and therefore increases 300 the LCST of the PBnMA homopolymer. Here, the alkyl chain 301 length was varied from ethyl ([C₂MIM][TFSI]) to methyl 302 ($[C_1MIM][TFSI]$) and butyl ($[C_4MIM][TFSI]$). Figure 4a-c 303 f4 compares the linear viscoelastic properties of s-MBsA5 in all 304 three ionic liquids. The ODT decreases to 71 $^{\circ}\text{C}$ in the dark 305 and 88 °C under UV irradiation (Figure 4a) in [C₁MIM]- 306 [TFSI], shifting the bistable ODT window down by 20 °C 307 from its position in [C₂MIM][TFSI] but retaining its width. In 308 the ordered state, G' values remained constant. When the alkyl 309 chain length is increased to [C₄MIM][TFSI], the ODTs 310 increase to above 150 °C, which is beyond the measurement 311 capabilities of the rheometer and therefore can not be 312 detected.

Figure 4d—f depicts the photothermal behavior of a-MBs A_5 314 in all three ionic liquids. A similar trend as with s-MBs A_5 is 315 observed, where there is a decrease in the ODT with shorter 316 alkyl tails. The ODT of a-MBs A_5 in $[C_1MIM][TFSI]$ in the 317 dark is lower than 30 °C, which is below the temperature range 318 available on the rheometer. However, it has an observable 319 ODT under UV irradiation at 100 °C, suggesting a much wider 320 bistable window. Again, the ODTs are too high to be detected 321 in $[C_4MIM][TFSI]$. These results suggest that blending pairs 322 of cations in the IL would be a straightforward way to adjust 323 the ODTs continuously across the accessible 324 range. $^{27,28,39,54-56}$

Figure 4. SAOS traces showing the impact of solvent selectivity on ODTs for the MBsA₅ polymers in the dark and under UV irradiation. In each figure, black symbols indicate the samples in the dark, while red symbols are under UV irradiation. From left to right, ionic liquids change from $[C_1MIM][TFSI]$ to $[C_2MIM][TFSI]$ to $[C_4MIM][TFSI]$. (a-c) s-MBsA₅ (d-f) a-MBsA₅. The ODT increases with increasing IL alkyl chain length for both MBsA polymers, both in the dark and under UV irradiation. Panels (b,d) are the same as in Figure 1a,b, reproduced here for ease of comparison.

All ordered states in the dark were determined by SAXS, and the patterns are shown in Figure 5. For s-MBsA₅, the pattern in $[C_1MIM][TFSI]$ is the same as in $[C_2MIM][TFSI]$, the LLP jammed packing of spheres discussed earlier (Figure 5a,b). The a-MBsA₅ samples in the same ionic liquids form HEX (Figure 31 5d,e). Both polymers in $[C_4MIM][TFSI]$ form what might be a complex packing of spheres, such as a Frank–Kasper phase (Figure 5c,f). However, the arrangement of peaks does not observed in block polymers. The peaks can be tentatively assigned to the coexistence of BCC (solid lines in the figure), hexagonally close-packed (HCP, open arrows), and face-same centered cubic spheres (FCC, filled arrows).

Control over the ODT via AzoMA Content in the **Responsive Block.** The effect of azobenzene content on the ODT was studied by doubling the AzoMA incorporation in the 342 B block. These changes were made in both the symmetric (s-343 MBsA₁₂, Figure 6a-c) and asymmetric (a-MBsA₁₁, Figure 6d-344 f) cases in all three ionic liquids. Starting with SAOS in [C₂MIM][TFSI] (Figure 6b,e), both are already ordered at 346 room temperature in the dark (black symbols), indicating that 347 the increased amount of trans--AzoMA further decreases the 348 solubility of the B block. Upon UV irradiation (red symbols), 349 s-MBs A_{12} has G' and G'' overlap from 40 °C until 90 °C, 350 where G' increases to the modulus observed in the dark, 351 indicating a transition to a more defined ordered state (Figure 352 6b). The structure at intermediate temperatures also appears to 353 reflect a liquid-like packing (Figure S16). a-MBsA₁₁ is 354 disordered until 120 $^{\circ}$ C under UV irradiation, where G' and

G'' overlap until 140 °C, where an ordered state is formed 355 (Figure 6e).

For s-MBsA₁₂, increasing the solvent selectivity by using 357 [C₁MIM][TFSI] resulted in an ordered state at all temper- 358 atures, both in the dark and under UV irradiation (Figure 6a). 359 On the other hand, [C₄MIM][TFSI] allowed an ODT at 91 360 °C in the dark and 130 °C under UV irradiation (Figure 6c), 361 which is reminiscent of the behavior of s-MBsA₅ in 362 [C₂MIM][TFSI]. a-MBsA₁₁ shows slightly different behavior. 363 The progression of ODTs in the dark corresponds as expected 364 to the change in solvent selectivity, with the solutions in both 365 [C₁MIM][TFSI] (Figure 6d) and [C₂MIM][TFSI] (Figure 366 e) ordered at all temperatures and in [C₄MIM][TFSI] having 367 an ODT at 130 °C (Figure 6f). The behavior under UV 368 irradiation is consistent, with the ODT increasing (albeit 369 relatively weakly) with a change in IL.

Similar to the 5 mol % samples, s-MBsA₁₂ and a-MBsA₁₁ in 371 [C₁MIM][TFSI] and [C₂MIM][TFSI] show LLP and HEX 372 patterns in the dark, respectively (Figure 7a,b,d,e). Again in 373 f7 [C₄MIM][TFSI], both samples apparently form spheres. s- 374 MBsA₁₂ forms a slightly different packing than before, which 375 still does not index clearly onto a well-ordered lattice (Figure 376 7c). Therefore, it will also be referred to as LLP, even though 377 the packing is apparently slightly different. a-MBsA₁₁ forms 378 coexisting HCP (open triangles) and BCC spheres (solid 379 lines) (Figure 7f), similar to the HCP/FCC/BCC seen in the 5 380 mol % AzoMA system. A summary of the behavior of all 381 samples is found in Table 2.

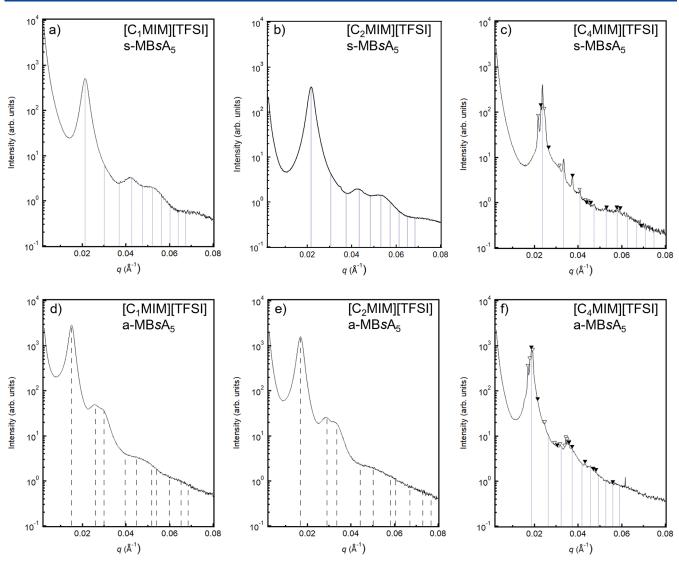


Figure 5. SAXS patterns for s-MBsA₅ and a-MBsA₅ in all ionic liquids at 150 °C. The lines and symbols indicate indexing for certain ordered states. Black dashed lines are for HEX, solid BCC, open triangles for HCP, and filled triangles for FCC. (a) is s-MBsA₅ in $[C_1MIM][TFSI]$, ordered to LLP, as demonstrated by the solid indexing lines for BCC not aligning properly. (b) s-MBsA₅ in $[C_2MIM][TFSI]$, LLP. (c) s-MBsA₅ in $[C_4MIM][TFSI]$, HCP (open symbols)/FCC (closed symbols)/BCC (solid lines). (d) a-MBsA₅ in $[C_1MIM][TFSI]$, HEX. (e) a-MBsA₅ in $[C_2MIM][TFSI]$, HEX. (f) a-MBsA₅ in $[C_4MIM][TFSI]$, HCP/FCC/BCC.

383 DISCUSSION

384 The point of reference for these results is s-MBsAs in 385 [C₂MIM][TFSI]. The ODT temperature window between 386 the sample in the dark and under UV irradiation is 92-120 °C, 387 about 30 °C. Changing the block ratio from 50:50 to 20:80 M/ 388 BsA5 has minimal impact on the width of the bistable ODT 389 window. The asymmetric sample, a-MBsA5, has an ODT window from 89 to 130 °C, slightly wider than s-MBsA₅. The 391 Flory-Huggins interaction parameter, χ , between the BsA 392 block and the solvent changes with the two isomeric states of 393 the azobenzene. Assuming that the ODT occurs at a fixed χN_1 394 N remains constant under the change in irradiation; therefore, 395 the difference in the ODT window is attributable to the 396 dependence of χ on copolymer composition. As UV irradiation 397 is directed from one side of the material, there is the possibility 398 of a change in χ along the thickness of the sample, as UV light 399 is attenuated by the chromophore. Previous work by Hall et al. 400 explored the penetration depth of UV light through a statistical 401 copolymer of benzyl methacrylate and 4-phenylazophenyl

methacrylate in $[C_2MIM][TFSI]$ and found that samples must 402 be thinner than 500 μ m to show a difference in phase 403 separation temperatures observed in UV-irradiated samples 404 ν ersus those left in the dark. Based on that work, samples in 405 this work were kept thinner than 300 μ m. Evidence of 406 penetration through the sample can be seen in the photo-407 switching rheology (Figure 3) as the UV light causes the 408 sample to clearly disorder, as evidenced by multiple orders of 409 magnitude change in modulus from the ordered state formed 410 under visible irradiation.

From SAXS, the polymers form different ordered states due 412 to their difference in volume fraction of the core block (BsA). 413 Effective volume fractions of the core block ($f_{\rm eff,BsA}$) can be 414 determined by $f_{\rm eff,M} = f_{\rm M}^* \varphi + (1-\varphi)$, where $f_{\rm M}$ is the volume 415 fraction of PMMA in the block polymer melt, and φ is the 416 volume fraction of the polymer in ionic liquid. At one extreme, 417 $f_{\rm eff,BsA} = 1 - f_{\rm eff,M}$, assuming 100% exclusion of the solvent from 418 the core block. At a constant polymer concentration of 35 wt 419% in ionic liquid, the $f_{\rm eff,BsA}$ of s-MBsA is around 0.2 in all ionic 420 liquids and both concentrations of AzoMA and 0.3 for a-421

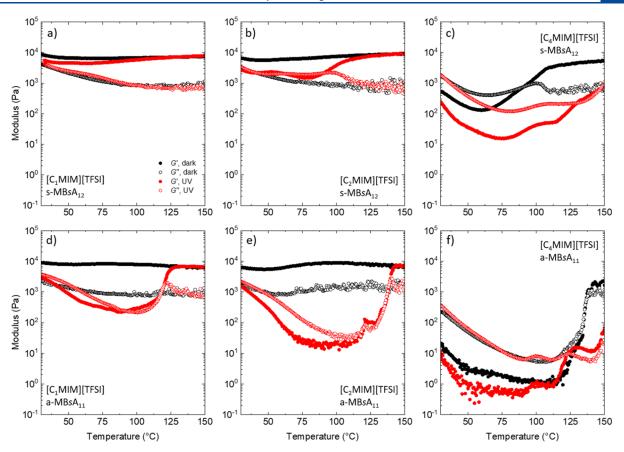


Figure 6. Impact of changing solvent selectivity on ODTs (G' = G'') for the MBsA₁₂ polymers. Decreasing alkyl chain length decreases the ODT and *vice versa*. In each figure, black symbols indicate the samples in the dark, while red symbols are under UV irradiation. Top row is in $[C_1MIM][TFSI]$, middle in $[C_2MIM][TFSI]$, and bottom in $[C_4MIM][TFSI]$. (a-c) s-MBsA₁₂ (d-f) a-MBsA₁₁. ODTs are increasing as the IL alkyl chain length increases.

422 MBsA. Accordingly, a-MBsA $_5$ forms HEX cylinders (except in [C₄MIM][TFSI], discussed below) as expected by the concentration of the core block, while s-MBsA5 forms spheres. Solvent selectivity in s-MBsA5 has the expected impact: the ODT increases as selectivity decreases. The ODT is lower in [C₁MIM][TFSI] than in [C₂MIM][TFSI], which is in turn lower than in [C₄MIM][TFSI]. For both [C₁MIM][TFSI] and [C₂MIM][TFSI], the width of the bistable ODT window 430 remains the same, indicating that 5 mol % incorporation of 431 AzoMA undergoing the trans to cis isomerization causes a 432 similar $\Delta \chi$ in both ionic liquids. In the dark, solvent selectivity contributes to different ordered phases in SAXS. When selectivity is high, in both $[C_1MIM][TFSI]$ and $[C_2MIM]$ -[TFSI], the ordered state is consistently LLP, whereas in 436 [C₄MIM][TFSI], the ordered state is a coexistence of a variety 437 of sphere phases—HCP, FCC, and BCC. The behavior of a-438 MBsA₅ in the same ionic liquids gave a clearer explanation for 439 such behavior. In [C₁MIM][TFSI] and [C₂MIM][TFSI], the 440 ordered state was HEX, while in [C₄MIM][TFSI], it was again 441 HCP/FCC/BCC, indicating that solvent-polymer interac-442 tions dominate the behavior rather than block-block 443 interactions, rendering the assumption of 100% exclusion of 444 the solvent from the core inapplicable in this least selective 445 solvent.⁵⁷ As rheology indicates that the samples in [C₄MIM]-446 [TFSI] were still disordered at 150 °C, the temperature was 447 increased in SAXS to 175 °C to see if the ordered state 448 resolved to similar packing as in the more selective ionic 449 liquids (Figure S17). s-MBsA₅ remained in the BCC/HCP/

FCC coexistence state, while a-MBs A_5 looks to be evolving 450 toward a HEX state with the HCP peaks merging and new 451 peaks growing in.

Previous work relative to the effect of increasing the 453 concentration of azobenzene on statistical copolymers 454 concerned liquid-liquid phase separation rather than the 455 ODT. Initial studies by Ueki et al. found that increasing the 456 AzoMA incorporation from 2 to 4 mol % in BsA statistical 457 copolymers in [C₂MIM][TFSI] increased the temperature 458 window between phase separation in the dark and under UV 459 irradiation from 15 to 25 °C. 34 In another study, Ueki et al. 460 found that increasing the AzoMA content in statistical 461 copolymers of poly(N-isopropylacrylamide) from 8 to 30 462 mol % increased the temperature window in the UCST from 8 463 to 50 °C.58 In contrast, Hall et al. found that increasing the 464 AzoMA incorporation in BsA from 6 to 17 mol % did not 465 influence the width of the bistable window, but rather, it 466 decreased the solubility of the polymer in the ionic liquid. 467 Assuming that any change in the ODT window can be 468 attributed to χ , adding more AzoMA should increase $\Delta \chi$, 469 making the window wider. The ODTs for s-MBsA₁₂ in 470 $[C_4MIM][TFSI]$ are similar to those of s-MBsA₅ in $[C_2MIM]$ - 471 [TFSI], consistent with Hall et al.'s results. s-MBsA₁₂ is also the 472 only sample in [C₄MIM][TFSI] that did not form coexisting 473 BCC/FCC/HCP, suggesting that, for the symmetric case, 474 increasing the AzoMA concentration effectively increases the 475 solvent selectivity. However, the asymmetric samples align 476 more with Ueki et al.'s results, especially in the case of 477

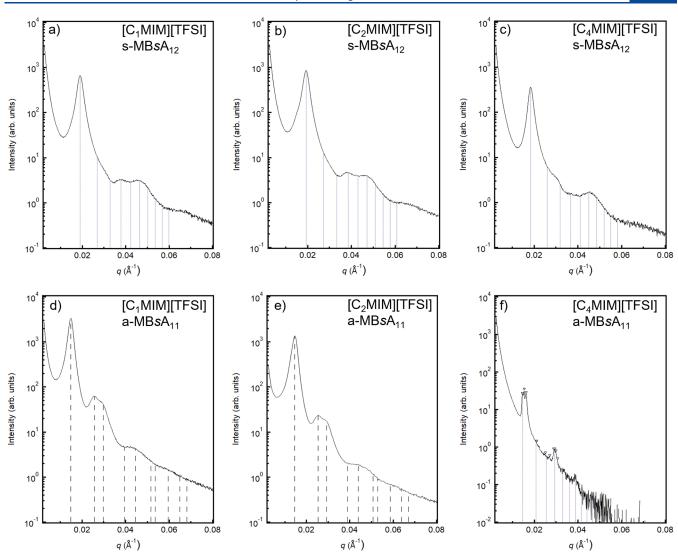


Figure 7. SAXS patterns for s-MBsA $_{12}$ and a-MBsA $_{11}$ in all ionic liquids at 150 °C. The lines and symbols indicate indexing for certain ordered states. Dashed lines are for HEX, solid lines for BCC, open triangles for HCP, and filled triangles for FCC. (a) s-MBsA $_{12}$ in $[C_1MIM][TFSI]$, assigned as LLP. (b) s-MBsA $_{12}$ in $[C_2MIM][TFSI]$, LLP. (c) s-MBsA $_{12}$ in $[C_4MIM][TFSI]$, LLP. (d) a-MBsA $_{11}$ in $[C_1MIM][TFSI]$, HEX. (e) a-MBsA $_{11}$ in $[C_2MIM][TFSI]$, HEX. (f) a-MBsA $_{11}$ in $[C_4MIM][TFSI]$, HCP/BCC.

Table 2. Summary of ODTs

				ODT (°C)		
Polymer	n _{AzoMA} (mol %)	$f_{ m PMMA}$	Irradiation	[C ₁ MIM][TFSI]	[C ₂ MIM][TFSI]	[C ₄ MIM][TFSI]
s-MBsA ₅	5	0.5	dark	71	92	disordered
			UV	88	120	disordered
$a-MBsA_5$	5	0.2	dark	ordered	89	disordered
			UV	100	130	disordered
s -MB s A $_{12}$	12	0.5	dark	ordered	ordered	91
			UV	ordered	42-90	130
$a-MBsA_{11}$	11	0.3	dark	ordered	ordered	132
			UV	92-120	120-140	137

 $_{478}$ [C₂MIM][TFSI]. For a-MBsA₁₁, the dark ODT is below 30 $_{479}$ °C, while under UV irradiation is 130 °C, in comparison to the $_{480}$ 89–130 °C window for a-MBsA₅. Further studies are necessary $_{481}$ to fully explore and understand the connection between the $_{482}$ AzoMA isomer solubility change and solvent selectivity $_{483}$ changes with alkyl chain length modification in imidazolium- $_{484}$ based ionic liquids.

CONCLUSIONS

This work focused on characterizing the ODTs of thermo- and 486 photoresponsive block copolymer solutions with varying block 487 ratios, solvent selectivity, and photoactive monomer content. 488 Varying the less soluble block content from symmetric to 489 asymmetric with a 5 mol % Azo monomer in [C₂MIM][TFSI] 490 did not have a large impact on the ODT of the system but 491 rather accessed the HEX instead of the LLP ordered state. 492

485

493 Adjusting the solvent selectivity was the most convenient 494 method for adjusting the ODT temperature, especially in the s-495 MBsA system. As the alkyl chain length of the IL increased, the 496 ODT moved to higher temperatures. In general, the 497 asymmetric polymer samples had slightly higher ODTs 498 under UV irradiation than the symmetric samples. Increasing 499 the azobenzene content of the responsive block caused the 500 ODT to decrease in the dark due to the insolubility of *trans* 501 azobenzene.

502 ASSOCIATED CONTENT

503 Supporting Information

504 The Supporting Information is available free of charge at 505 https://pubs.acs.org/doi/10.1021/acs.macromol.2c00397.

Proton and fluorine nuclear magnetic resonance spectra, size exclusion chromatographs for polymer and ionic liquid characterization, and SAXS patterns for intermediate temperatures for s-MBs A_{12} and at high temperature for s-MBs A_{5} and a-MBs A_{5} in [C₄MIM][TFSI] (PDF)

512 AUTHOR INFORMATION

513 Corresponding Author

Timothy P. Lodge — Department of Chemistry and
Department of Chemical Engineering and Materials Science,
University of Minnesota, Minneapolis, Minnesota 55455,
United States; orcid.org/0000-0001-5916-8834;
Email: lodge@umn.edu

519 Authors

506

507

508

509

510

511

Claire L. Seitzinger – Department of Chemistry, University of
Minnesota, Minneapolis, Minnesota SS4SS, United States
Cecilia C. Hall – Department of Chemistry, University of
Minnesota, Minneapolis, Minnesota SS4SS, United States;
orcid.org/0000-0003-2773-1279

525 Complete contact information is available at: 526 https://pubs.acs.org/10.1021/acs.macromol.2c00397

527 Notes

528 The authors declare no competing financial interest.

529 ACKNOWLEDGMENTS

530 This work was supported through the NSF Polymers Program 531 DMR-1797578 and DMR-2103630. The SAXS measurements 532 were performed at the DuPont-Northwestern-Dow Collabo-533 rative Access Team (DND-CAT) located at Sector 5 of the 534 Advanced Photon Source (APS). DND-CAT is supported by 535 E.I. DuPont de Nemours & Co., the Dow Chemical Company, 536 and Northwestern University. Use of the APS, an Office of 537 Science User Facility operated for the U.S. DOE Office of 538 Science by Argonne National Laboratory, was supported by 539 the U.S. DOE under contract no. DE-AC02-06CH11357. We 540 would like to thank S. Piril Ertem for editing, David Giles for 541 discussions about the rheology, and Aaron Lindsay and 542 Andreas Mueller for writing and refining an Igor code for 543 indexing SAXS patterns (https://doi.org/10.13020/9m8p-544 pv93).

545 REFERENCES

546 (1) Ye, Y.-S.; Rick, J.; Hwang, B.-J. Ionic Liquid Polymer 547 Electrolytes. *J. Mater. Chem. A* **2013**, *1*, 2719–2743.

- (2) Kelly, J. C.; Degrood, N. L.; Roberts, M. E. Li-Ion Battery Shut- 548 off at High Temperature Caused by Polymer Phase Separation in 549 Responsive Electrolytes. *Chem. Commun.* **2015**, *51*, 5448–5451.
- (3) Thelen, J. L.; Wang, A. A.; Chen, X. C.; Jiang, X.; Schaible, E.; 551 Balsara, N. P. Correlations between Salt-Induced Crystallization, 552 Morphology, Segmental Dynamics, and Conductivity in Amorphous 553 Block Copolymer Electrolytes. *Macromolecules* **2018**, 51, 1733–1740. 554
- (4) Wakayama, H.; Yonekura, H.; Kawai, Y. Three-Dimensional 555 Bicontinuous Nanocomposite from a Self-Assembled Block Copoly- 556 mer for a High-Capacity All-Solid-State Lithium Battery Cathode. 557 *Chem. Mater.* **2016**, 28, 4453–4459. 558
- (5) Liu, S.; Zhou, L.; Wang, P.; Zhang, F.; Yu, S.; Shao, Z.; Yi, B. 559 Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous 560 H2/Cl2 Fuel-Cell Applications. ACS Appl. Mater. Interfaces 2014, 6, 561 3195–3200.
- (6) Park, M. J.; Choi, I.; Hong, J.; Kim, O. Polymer Electrolytes 563 Integrated with Ionic Liquids for Future Electrochemical Devices. *J.* 564 Appl. Polym. Sci. **2013**, 129, 2363–2376.
- (7) Saba, S. A.; Mousavi, M. P. S.; Bühlmann, P.; Hillmyer, M. A. 566 Hierarchically Porous Polymer Monoliths by Combining Controlled 567 Macro- and Microphase Separation. *J. Am. Chem. Soc.* **2015**, *137*, 568 8896–8899.
- (8) Chen, L.; Phillip, W. A.; Cussler, E. L.; Hillmyer, M. A. Robust 570 Nanoporous Membranes Templated by a Doubly Reactive Block 571 Copolymer. J. Am. Chem. Soc. 2007, 129, 13786–13787.
- (9) Jackson, E. A.; Lee, Y.; Hillmyer, M. A. ABAC Tetrablock 573 Terpolymers for Tough Nanoporous Filtration Membranes. *Macro-* 574 molecules **2013**, 46, 1484–1491.
- (10) Phillip, W. A.; Amendt, M.; O'Neill, B.; Chen, L.; Hillmyer, M. 576 A.; Cussler, E. L. Diffusion and Flow across Nanoporous 577 Polydicyclopentadiene-Based Membranes. *ACS Appl. Mater. Interfaces* 578 **2009**, *1*, 472–480.
- (11) Preman, N. K.; Barki, R. R.; Vijayan, A.; Sanjeeva, S. G.; 580 Johnson, R. P. Recent Developments in Stimuli-Responsive Polymer 581 Nanogels for Drug Delivery and Diagnostics: A Review. *Eur. J. Pharm.* 582 *Biopharm.* 2020, 157, 121–153.
- (12) Zhang, Q.; Zhang, Y.; Wan, Y.; Carvalho, W.; Hu, L.; Serpe, M. 584 J. Stimuli-Responsive Polymers for Sensing and Reacting to 585 Environmental Conditions. *Prog. Polym. Sci.* **2021**, *116*, 101386.
- (13) Gately, T. J.; Li, W.; Mostafavi, S. H.; Bardeen, C. J. Reversible 587 Adhesion Switching Using Spiropyran Photoisomerization in a High 588 Glass Transition Temperature Polymer. *Macromolecules* **2021**, 54, 589 9319–9326.
- (14) Bütün, V.; Billingham, N. C.; Armes, S. P. Unusual Aggregation 591 Behavior of a Novel Tertiary Amine Methacrylate-Based Diblock 592 Copolymer: Formation of Micelles and Reverse Micelles in Aqueous 593 Solution. J. Am. Chem. Soc. 1998, 120, 11818–11819.
- (15) Hall, C. C.; Rivera, C. A.; Lodge, T. P. The Effect of Light 595 Penetration Depth on the LCST Phase Behavior of a Thermo- and 596 Photoresponsive Statistical Copolymer in an Ionic Liquid. *J. Polym.* 597 Sci., Part A: Polym. Chem. 2019, 57, 281–287.
- (16) Ueki, T.; Nakamura, Y.; Usui, R.; Kitazawa, Y.; So, S.; Lodge, 599 T. P.; Watanabe, M. Photoreversible Gelation of a Triblock 600 Copolymer in an Ionic Liquid. *Angew. Chem., Int. Ed.* **2015**, *54*, 601 3018–3022.
- (17) Lee, H.-N.; Newell, N.; Bai, Z.; Lodge, T. P. Unusual Lower 603 Critical Solution Temperature Phase Behavior of Poly(Ethylene 604 Oxide) in Ionic Liquids. *Macromolecules* **2012**, 45, 3627–3633.
- (18) Lachwa, J.; Szydlowski, J.; Najdanovic-Visak, V.; Rebelo, L. P. 606 N.; Seddon, K. R.; Nunes da Ponte, M.; Esperança, J. M. S. S.; 607 Guedes, H. J. R. Evidence for Lower Critical Solution Behavior in 608 Ionic Liquid Solutions. J. Am. Chem. Soc. 2005, 127, 6542–6543.
- (19) Dudowicz, J.; Freed, K. F. Explanation for the Unusual Phase 610 Behavior of Polystyrene-b-Poly(*n*-Alkyl Methacrylate) Diblock 611 Copolymers: Specific Interactions. *Macromolecules* **2000**, 33, 5292–612 5299
- (20) Russell, T. P.; Karis, T. E.; Gallot, Y.; Mayes, A. M. A Lower 614 Critical Ordering Transition in a Diblock Copolymer Melt. *Nature* 615 **1994**, 368, 729–731.

ı

- 617 (21) Ryu, D. Y.; Jeong, U.; Kim, J. K.; Russell, T. P. Closed-Loop 618 Phase Behaviour in Block Copolymers. *Nat. Mater.* **2002**, *1*, 114–117.
- 619 (22) Ruzette, A.-V. G.; Banerjee, P.; Mayes, A. M.; Pollard, M.;
- 620 Russell, T. P.; Jerome, R.; Slawecki, T.; Hjelm, R.; Thiyagarajan, P. 621 Phase Behavior of Diblock Copolymers between Styrene and *n*-Alkyl
- 622 Methacrylates. Macromolecules 1998, 31, 8509–8516.
- 623 (23) Ueki, T. Stimuli-Responsive Polymers in Ionic Liquids. *Polym.* 624 *J.* **2014**, *46*, 646–655.
- 625 (24) Halperin, A.; Kröger, M.; Winnik, F. M. Poly(*N*-isopropyla-626 crylamide) Phase Diagrams: Fifty Years of Research. *Angew. Chem.*, 627 *Int. Ed.* **2015**, *54*, 15342–15367.
- 628 (25) Kujawa, P.; Winnik, F. M. Volumetric Studies of Aqueous 629 Polymer Solutions Using Pressure Perturbation Calorimetry: A New 630 Look at the Temperature-Induced Phase Transition of Poly(N-631 Isopropylacrylamide) in Water and D₂O. *Macromolecules* **2001**, 34, 632 4130–4135.
- 633 (26) Heskins, M.; Guillet, J. E. Solution Properties of Poly(N-634 Isopropylacrylamide). *J. Macromol. Sci., Part A: Pure Appl. Chem.* **1968**, 635 2, 1441–1455.
- 636 (27) Lee, H.-N.; Lodge, T. P. Poly(*n*-butyl methacrylate) in Ionic 637 Liquids with Tunable Lower Critical Solution Temperatures (LCST). 638 *J. Phys. Chem. B* **2011**, *115*, 1971–1977.
- 639 (28) Hoarfrost, M. L.; He, Y.; Lodge, T. P. Lower Critical Solution 640 Temperature Phase Behavior of Poly(*n*-butyl methacrylate) in Ionic 641 Liquid Mixtures. *Macromolecules* **2013**, *46*, 9464–9472.
- 642 (29) Ueki, T.; Arai, A. A.; Kodama, K.; Kaino, S.; Takada, N.; 643 Morita, T.; Nishikawa, K.; Watanabe, M. Thermodynamic study on 644 phase transitions of poly(benzyl methacrylate) in ionic liquid solvents. 645 *Pure Appl. Chem.* **2009**, *81*, 1829–1841.
- 646 (30) Fujii, K.; Ueki, T.; Niitsuma, K.; Matsunaga, T.; Watanabe, M.; 647 Shibayama, M. Structural aspects of the LCST phase behavior of 648 poly(benzyl methacrylate) in room-temperature ionic liquid. *Polymer* 649 **2011**, 52, 1589–1595.
- 650 (31) Kobayashi, Y.; Kitazawa, Y.; Hashimoto, K.; Ueki, T.; Kokubo, 651 H.; Watanabe, M. Thermosensitive phase separation behavior of 652 poly(benzyl methacrylate)/solvate ionic liquid solutions. *Langmuir* 653 **201**7, 33, 14105–14114.
- 654 (32) Fujii, K.; Ueki, T.; Hashimoto, K.; Kobayashi, Y.; Kitazawa, Y.; 655 Hirosawa, K.; Matsugami, M.; Ohara, K.; Watanabe, M.; Shibayama, 656 M. Microscopic structure of solvated poly(benzyl methacrylate) in an 657 imidazolium-based ionic liquid: high-energy X-ray total scattering and 658 all-atom MD simulation study. *Macromoecules* **2017**, *50*, 4780–4786. 659 (33) Hirosawa, K.; Fujii, K.; Ueki, T.; Kitazawa, Y.; Littrell, K. C.; 660 Watanabe, M.; Shibayama, M. SANS study on the solvated structure
- 661 and molecular interactions of a thermo-responsive polymer in a room 662 temperature ionic liquid. *Phys. Chem. Chem. Phys.* **2016**, *18*, 17881–663 17889.
- 664 (34) Ueki, T.; Yamaguchi, A.; Ito, N.; Kodama, K.; Sakamoto, J.; 665 Ueno, K.; Kokubo, H.; Watanabe, M. Photoisomerization-Induced 666 Tunable LCST Phase Separation of Azobenzene-Containing Poly-667 mers in an Ionic Liquid. *Langmuir* 2009, 25, 8845–8848.
- 668 (35) Ueki, T.; Usui, R.; Kitazawa, Y.; Lodge, T. P.; Watanabe, M. 669 Thermally Reversible Ion Gels with Photohealing Properties Based on 670 Triblock Copolymer Self-Assembly. *Macromolecules* **2015**, 48, 5928–671 5933.
- 672 (36) Ueki, T.; Yamaguchi, A.; Watanabe, M. Unlocking of 673 Interlocked Heteropolymer Gel by Light: Photoinduced Volume 674 Phase Transition in an Ionic Liquid from a Metastable State to an 675 Equilibrium Phase. *Chem. Commun.* **2012**, *48*, 5133.
- 676 (37) Ye, Q.; Huo, M.; Zeng, M.; Liu, L.; Peng, L.; Wang, X.; Yuan, J. 677 Photoinduced Reversible Worm-to-Vesicle Transformation of Azo-678 Containing Block Copolymer Assemblies Prepared by Polymer-679 ization-Induced Self-Assembly. *Macromolecules* **2018**, *51*, 3308–3314.
- 680 (38) Zhao, D.; Ma, Y.; Lodge, T. P. Exchange Kinetics for a Single 681 Block Copolymer in Micelles of Two Different Sizes. *Macromolecules* 682 **2018**, *51*, 2312–2320.
- 683 (39) Wang, C.; Ma, X.; Kitazawa, Y.; Kobayashi, Y.; Zhang, S.; 684 Kokubo, H.; Watanabe, M. From Macromolecular to Small-Molecular 685 Triggers: Facile Method toward Photoinduced LCST Phase Behavior

- of Thermoresponsive Polymers in Mixed Ionic Liquids Containing an 686 Azobenzene Moiety. *Macromol. Rapid Commun.* **2016**, 37, 1960–687 1965.
- (40) Wang, C.; Dong, W.; Li, P.; Wang, Y.; Tu, H.; Tan, S.; Wu, Y.; 689 Watanabe, M. Reversible Ion-Conducting Switch by Azobenzene 690 Molecule with Light-Controlled Sol–Gel Transitions of the PNIPAm 691 Ion Gel. ACS Appl. Mater. Interfaces 2020, 12, 42202–42209.
- (41) Lan, X.; Ma, X.; Wang, L.; Shi, Y.; Gu, Q.; Wu, L.; Gu, X.; Luo, 693 Z. Self-Assembly of Diblock Copolymers Containing Thermo- and 694 Photoresponsive Lower Critical Solution Temperature Phase 695 Behavior Polymer with Tunable Assembly Temperature in an Ionic 696 Liquid Mixture. ACS Omega 2019, 4, 11229–11236.
- (42) Hartley, G. S. The Cis-Form of Azobenzene. *Nature* **1937**, *140*, 698
- (43) Bullock, D. J. W.; Cumper, C. W. N.; Vogel, A. I. 989. Physical 700 Properties and Chemical Constitution. Part XLIII. The Electric 701 Dipole Moments of Azobenzene, Azopyridines, and Azoquinolines. *J.* 702 Chem. Soc. 1965, 5316.
- (44) Hall, C. C.; Lodge, T. P. Photoreversible Order–Disorder 704 Transition in an Ionic Liquid Solvated Block Polymer. ACS Macro 705 Lett. 2019, 8, 393–398.
- (45) Shimoboji, T.; Ding, Z.; Stayton, P. S.; Hoffman, A. S. 707 Mechanistic Investigation of Smart Polymer–Protein Conjugates. 708 *Bioconjugate Chem.* **2001**, *12*, 314–319.
- (46) Lundin, F.; Hansen, H. W.; Adrjanowicz, K.; Frick, B.; Rauber, 710 D.; Hempelmann, R.; Shebanova, O.; Niss, K.; Matic, A. Pressure and 711 Temperature Dependence of Local Structure and Dynamics in an 712 Ionic Liquid. *J. Phys. Chem. B* **2021**, 125, 2719–2728.
- (47) Chemical Retrieval on the Web. Polymer Properties Database. 714 https://polymerdatabase.com/home.html. 715
- (48) Jackson, C.; Chen, Y.-J.; Mays, J. W. Size Exclusion 716 Chromatography with Multiple Detectors: Solution Properties of 717 Linear Chains of Varying Flexibility in Tetrahydrofuran. *J. Appl.* 718 *Polym. Sci.* **1996**, *61*, 865–874.
- (49) Podzimek, S. Light Scattering, Size Exclusion Chromatography 720 and Asymmetric Flow Field Flow Fractionation; John Wiley & Sons, 721 Inc.: Hoboken, NJ, USA, 2011.
- (50) Tuzar, Z.; Kratochvíl, P. Determination of the Composition of 723 Copolymers by Differential Refractometry in Mixed Solvents. *Polym.* 724 *Lett.* **1969**, 7, 825–828.
- (51) Ueki, T.; Watanabe, M. Lower Critical Solution Temperature 726 Behavior of Linear Polymers in Ionic Liquids and the Corresponding 727 Volume Phase Transition of Polymer Gels. *Langmuir* **2007**, 23, 988–728 990.
- (52) Kharel, A.; Hall, C.; Černoch, P.; Stepanek, P.; Lodge, T. P. 730 Dilute Solution Properties of Poly(Benzyl Methacrylate) in Ionic 731 Liquids. *Macromolecules* **2020**, *53*, 885–894.
- (53) Carrick, B. R.; Seitzinger, C. L.; Lodge, T. P. Unusual Lower 733 Critical Solution Temperature Phase Behavior of Poly(Benzyl 734 Methacrylate) in a Pyrrolidinium-Based Ionic Liquid. *Molecules* 735 **2021**, 26, 4850.
- (\$4) Lee, H.-N.; Lodge, T. P. Lower Critical Solution Temperature 737 (LCST) Phase Behavior of Poly(Ethylene Oxide) in Ionic Liquids. *J.* 738 *Phys. Chem. Lett.* **2010**, *1*, 1962–1966.
- (55) Lee, H.-N.; Bai, Z.; Newell, N.; Lodge, T. P. Micelle/Inverse 740 Micelle Self-Assembly of a PEO-PNIPAm Block Copolymer in Ionic 741 Liquids with Double Thermoresponsivity. *Macromolecules* **2010**, *43*, 742 9522–9528.
- (56) Kodama, K.; Nanashima, H.; Ueki, T.; Kokubo, H.; Watanabe, 744 M. Lower Critical Solution Temperature Phase Behavior of Linear 745 Polymers in Imidazolium-Based Ionic Liquids: Effects of Structural 746 Modifications. *Langmuir* **2009**, 25, 3820–3824.
- (57) Hanley, K. J.; Lodge, T. P.; Huang, C.-I. Phase Behavior of a 748 Block Copolymer in Solvents of Varying Selectivity. *Macromolecules* 749 **2000**, 33, 5918–5931.
- (58) Ueki, T.; Nakamura, Y.; Yamaguchi, A.; Niitsuma, K.; Lodge, T. 751 P.; Watanabe, M. UCST Phase Transition of Azobenzene-Containing 752 Random Copolymer in an Ionic Liquid. *Macromolecules* **2011**, *44*, 753 6908–6914.