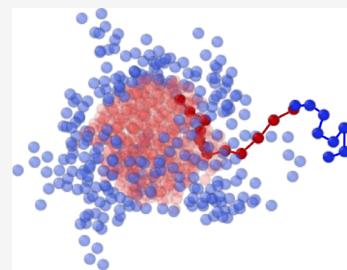


1 Mechanism of Escape of a Single Chain from a Diblock Copolymer 2 Micelle

3 Sarah C. Seeger, Timothy P. Lodge,* and Kevin D. Dorfman*

Cite This: <https://doi.org/10.1021/acs.macromol.2c01742>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

4 **ABSTRACT:** We investigate the dependence of the free energy trajectory for chain expulsion
5 from a diblock copolymer micelle in a selective solvent on core chain length through dissipative
6 particle dynamics simulations and umbrella sampling. The free energy barrier scales linearly with
7 the core block length of the expelled tracer chain for $N_{\text{core}} = 4-12$, consistent with experiments.
8 The simulations further reveal that the core chain undergoes a “hyperstretching” mechanism
9 near the transition state, where the core block partially stretches through the corona to allow
10 monomers further from the chain junction to remain shielded in the micelle core. As the
11 junction extends past the transition state, it becomes more favorable for the chain to be fully
12 expelled, and the monomer furthest from the junction exits the micelle core, allowing the core
13 block to escape from the micelle and collapse upon entering the solvent. We propose a simple
14 model to describe this process of chain expulsion, which provides an effective description of the simulation results.

15 ■ INTRODUCTION

16 Block copolymers (BCPs) in a selective solvent undergo
17 dynamic self-assembly to form micelles. BCP micelles find use
18 in applications such as nanolithography,^{1,2} nanoreactors,³ oil-
19 based lubrication,^{4,5} and vehicles for drug delivery.⁶⁻⁸ These
20 applications depend on the micelle size, which controls
21 solution properties such as viscosity. Moreover, the release of
22 cargo at the desired time and location, governed by the kinetic
23 stability of the micelles, dictates their success as drug delivery
24 and gene therapy vehicles.⁹ Thus, engineering applications of
25 micelles require understanding the relations among BCP
26 variables, micelle size, and relaxation kinetics.

27 As recently reviewed,¹⁰ micelle relaxation was first described
28 by the Aniansson–Wall model in the context of surfactant
29 systems.¹¹ This model predicts that micelles equilibrate by a
30 combination of single chain exchange, fusion, and fragmenta-
31 tion. Although these relaxation processes occur on subsecond
32 time scales for surfactant micelles, longer chain lengths result
33 in much slower kinetics for BCPs, often from seconds to days,
34 or on even longer time scales for “frozen” systems.¹²⁻¹⁴
35 Importantly, chain exchange is generally designated the “fast”
36 process, as it has the lowest activation energy for systems close
37 to equilibrium.^{15,16} In particular, single chain exchange
38 dominates for spherical micelles close to the equilibrium
39 aggregation number, Q_{eq} . Despite extensive work toward
40 understanding the kinetics of single chain exchange, the
41 dependence of the escape time on the chain size, particularly
42 the core block length N_{core} , is not well understood.

43 Chain exchange in BCPs has been explored experimentally
44 using techniques such as time-resolved small-angle neutron
45 scattering (TR-SANS),¹⁷⁻²⁸ nonradiative energy transfer,^{29,30}
46 and fluorescence.³¹⁻³⁴ Particularly, the kinetics of chain
47 exchange near equilibrium have been quantified using TR-

48 SANS. In this experiment, a solution of micelles prepared with
49 a standard (hydrogenated) core block is mixed with a second
50 solution prepared with their perdeuterated counterpart in a
51 zero-average-contrast solvent. Initially, scattering is at a
52 maximum. As chains are exchanged between micelles the
53 chains will become randomly dispersed, and the scattering
54 intensity decays to zero. Fitting the relaxation function of the
55 scattering intensity over time yields a characteristic exchange
56 time τ_{ex} . The free energy barrier to chain exchange is extracted
57 by fitting to $\tau_{\text{ex}} = \tau_0 \exp(E_a/k_B T)$ using a series of different
58 temperatures. Through this method, it is then possible to
59 obtain information about the free energy barrier to chain
60 exchange, which is assumed to be dominated by the expulsion
61 of the core block from the micelle core.

62 Although TR-SANS provides an estimate of the free energy
63 barrier to chain exchange, it is unable to resolve the
64 conformation of the core block upon expulsion. Importantly,
65 the N_{core} dependence of the relaxation time for single chain
66 exchange must depend on this transition state. Experiments
67 have been interpreted in the context of the Halperin and
68 Alexander model.¹⁵ This theory assumes that as the core block
69 of a chain undergoing expulsion moves from the dry micelle
70 core into the solvated corona, it forms a collapsed globule with
71 radius of gyration $R_g \sim N_{\text{core}}^{1/3}$ at the transition state. The
72 application of Kramers’ theory thus leads to a free energy

Received: August 21, 2022

Revised: October 15, 2022

73 barrier to expulsion that scales with the surface area of that
 74 globule, $N_{\text{core}}^{2/3}$. However, extensive TR-SANS work probing
 75 the effect of the core block length on the chain exchange rate
 76 has revealed that the barrier to chain exchange increases
 77 linearly with N_{core} ,^{17,18,20} a scaling also consistently observed
 78 for self-diffusion of BCPs in melts.^{35–37} This important
 79 experimental result is inconsistent with the scaling prediction
 80 of the Halperin and Alexander theory and has brought into
 81 question the assumptions of the model, particularly the
 82 conformation of the core block upon expulsion.

83 Recently,³⁸ we have shown that the full free energy profile of
 84 chain expulsion can be computed by combining dissipative
 85 particle dynamics simulations (DPD)^{39–47} with an umbrella
 86 sampling technique.⁴⁸ A similar approach has been applied to
 87 surfactant systems to access the free energy barrier for
 88 expulsion.^{49–51} For an isolated micelle of A_4B_8 chains in a
 89 dilute solution, where the A block forms the core, the free
 90 energy barrier to chain exchange was found to increase linearly
 91 with DPD excess interaction energy Δa (analogous to a
 92 simulation interaction parameter χ).³⁸ In the strong
 93 segregation limit, the transition state involved deformation of
 94 the spherical micelle core to minimize unfavorable core block
 95 contacts.³⁸ Contrary to the Halperin and Alexander model,¹⁵
 96 these initial observations suggested a *stretched* conformation of
 97 the core block upon expulsion at the transition state for a
 98 micelle of A_4B_8 chains in a dilute solution. Compared to past
 99 approaches to study chain exchange, this technique provides
 100 direct access to the transition state for chain expulsion.³⁸

101 Here we extend this method to obtain a scaling of the free
 102 energy barrier to expulsion with N_{core} . We analyze the effect of
 103 core block length using a tracer chain in a micelle of otherwise
 104 constant composition to assess the postulated transition state
 105 to chain exchange. Additionally, we examine the effect of
 106 changing N_{core} of the other chains constituting the micelle to
 107 assess the effect of micelle size independently from the length
 108 of the tracer core block, as previously it has not been possible
 109 to distinguish between N_{core} of the expelled chain and N_{core} of
 110 the micelle. Notably, the simulations reveal a transition state
 111 that is consistent with the linear scaling in N_{core} observed in
 112 past experiments^{16,17,19} and suggest a partial “hyperstretching”
 113 mechanism,⁵² whereby the terminal core block monomer
 114 remains in the core until the rest of the core block is
 115 significantly stretched. At the transition state, the last
 116 monomer departs the core, only then allowing the core
 117 block to collapse to a globular state.

118 ■ SIMULATION METHODOLOGY

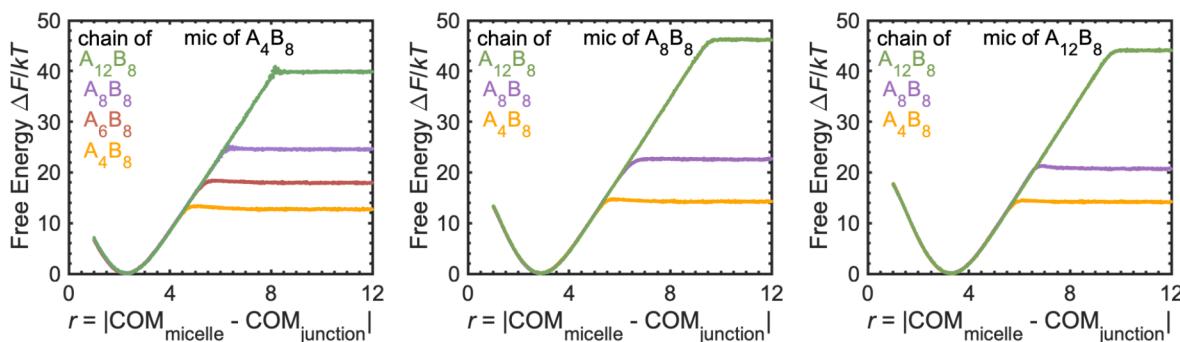
119 DPD simulations of dilute BCP solutions were performed in
 120 LAMMPS using the method recently outlined in Seeger et al.³⁸
 121 Similar to past DPD work,^{38,41,42} diblocks are modeled by
 122 coarse-grained polymers of A_xB_8 , where x is the number of
 123 solvophobic A beads (here, x ranges from 4 to 12). Monomer
 124 beads of mass m are held together by harmonic bonds with
 125 $F^{\text{bond}} = k(r_{ij} - r_0)\hat{r}_{ij}$, where the force constant $k = 100k_{\text{B}}T/d_p^2$
 126 in terms of the DPD length scale d_p , k_{B} is Boltzmann’s
 127 constant, T is temperature, and $r_0 = d_p$. \hat{r}_{ij} is the
 128 (dimensionless) unit vector between particles i and j , where
 129 $\mathbf{r}_{ij} = \mathbf{r}_i - \mathbf{r}_j$ is the distance vector and r_{ij} is its magnitude. The
 130 solvent S was modeled by single beads of the soluble (B) block
 131 in the BCP chain. The repulsive force between any two beads
 132 is taken as the pairwise sum of a conservative force, \mathbf{F}^{C} , a
 133 random force \mathbf{F}^{R} that captures the thermal fluctuations, and a

134 frictional force \mathbf{F}^{D} that dissipates energy to conserve the total
 135 system energy.^{39,40}

$$136 \quad \mathbf{F}_{ij} = \mathbf{F}_{ij}^{\text{C}} + \mathbf{F}_{ij}^{\text{R}} + \mathbf{F}_{ij}^{\text{D}} \quad 136$$

137 where

$$138 \quad \mathbf{F}_{ij}^{\text{C}} = -[a_{ij}(r_c - r_{ij})]\hat{\mathbf{r}}_{ij} \quad 138$$


$$139 \quad \mathbf{F}_{ij}^{\text{R}} = \sigma w^{\text{R}} \theta_{ij} \Delta t^{-1/2} \hat{\mathbf{r}}_{ij} \quad 139$$

$$140 \quad \mathbf{F}_{ij}^{\text{D}} = -\xi w^{\text{D}} (\hat{\mathbf{r}}_{ij} \cdot \mathbf{v}_{ij}) \hat{\mathbf{r}}_{ij} \quad 140$$

141 for $r_{ij} < r_c$.^{39,40} All forces are short-ranged with a cutoff distance
 142 $r_c = d_p$. Analogous to \mathbf{r}_{ij} , \mathbf{v}_{ij} is the velocity vector between the
 143 two particles, $w^{\text{D}} = (w^{\text{R}})^2 = (1 - r_{ij}/r_c)^2$,⁴⁰ and θ_{ij} is a Gaussian
 144 random number with zero mean and unit variance. The
 145 dissipative force has a friction coefficient $\xi = 3.0(mk_{\text{B}}T/d_p^2)^{1/2}$,¹⁴⁵
 146 and the random force has a noise amplitude $\sigma = (2\xi k_{\text{B}}T)^{1/2}$. A
 147 time step of $\Delta t = 0.04(md_p^2/k_{\text{B}}T)^{1/2}$ was used.^{40,41} In all
 148 simulations, the repulsive interaction energy for the con-
 149 servative force $a_{AA} = a_{BB} = a_{BS}$ was set to $25k_{\text{B}}T/d_p^2$ for like
 150 particles. For core block and corona/solvent contacts (A–B
 151 and A–S), the excess interaction energy $\Delta a = a_{AB} - a_{AA}$ was
 152 set to $25k_{\text{B}}T/d_p^2$, corresponding to the strong segregation
 153 regime.³⁸ Notably, $k_{\text{B}}T$ and d_p are the DPD units for energy
 154 and distance, respectively. In the following, we omit units for
 155 simplicity.

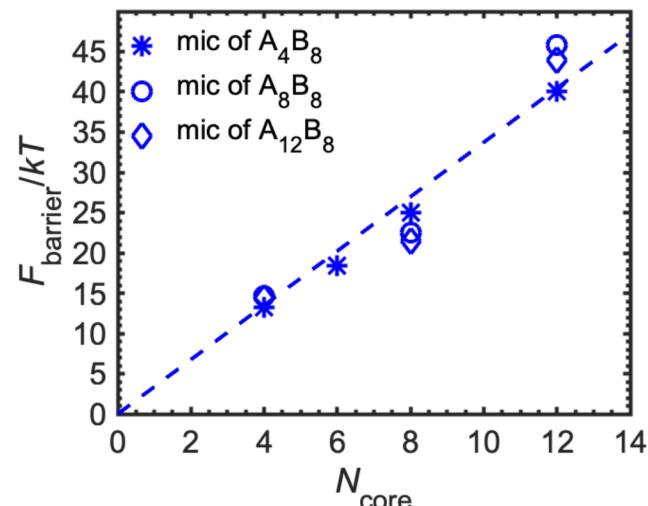
156 To create the micelles, 81000 beads including 35 chains of
 157 A_xB_8 and one chain of A_yB_8 (x and $y = 4, 6, 8, 12$) were
 158 initialized randomly in a cubic box with side 30; periodic
 159 boundary conditions were applied.^{41,42} To initialize the
 160 simulation, a harmonic biasing potential was applied to the
 161 core blocks to prepare a single micelle of aggregation number
 162 $Q = 36$, as was used in previous work for an A_4B_8 system.³⁸
 163 The biasing potential is removed, and the micelle is allowed to
 164 relax for $t \approx 10^5$ steps prior to the production run. Importantly,
 165 the choice $\Delta a = 25$ effectively halts chain exchange in this
 166 system, such that the micelle is stable and no chains leave this
 167 micelle prior to the umbrella sampling procedure. The micelle
 168 in these simulations is thus frozen at the chosen Q and is not at
 169 the global equilibrium; however, we note that many
 170 experimental systems are also out of equilibrium due to the
 171 extremely long exchange time scales.^{14,14} Moreover, because
 172 this work probes single-chain behavior rather than a system
 173 ensemble, a detailed analysis of Q_{eq} was not deemed necessary.
 174 We do note that the extent of corona crowding may be
 175 different based on the number of core beads x chosen for the
 176 simulation; however, the influence of the corona-forming block
 177 length is more subtle compared to the core-forming
 178 block,^{53–55} and a detailed study remains a topic for future
 179 work.

180 A single A_4B_8 chain, denoted the “tracer”, was selected from
 181 the locally equilibrated micelle. To perform umbrella sampling,
 182 we defined a reaction coordinate r as the distance between the
 183 center-of-mass of the micelle and the position of the AB chain
 184 junction for the designated tracer chain, following Halperin
 185 and Alexander.¹⁵ A harmonic force with $k = 12.0$ was then
 186 applied to bias the reaction coordinate r to fluctuate around
 187 the chosen value for each umbrella sampling window, using the
 188 LAMMPS⁵⁶ *colvars* module for $\sim(1–2) \times 10^5$ time steps.
 189 Because another chain leaving the micelle would result in an
 190 inaccurate center-of-mass calculation, the trajectory was
 191 analyzed to confirm that no additional unimer expulsion

Figure 1. Free energy profiles of chain expulsion for a single chain of A_xB_8 from a micelle of (a) A_4B_8 , (b) A_8B_8 , and (c) $A_{12}B_8$ chains with $Q = 36$ as a function of the distance between the center-of-mass of the micelle and the AB junction of the chain being expelled (r).

192 events occurred. The value of the reaction coordinate was
193 calculated every 10^3 time steps, and a histogram of r was
194 constructed. This procedure was repeated for a set of values for
195 r , yielding a series of neighboring umbrella windows with
196 information about all observed values of the reaction
197 coordinate (see Figure S1). $\Delta F_{\text{original}}$, i.e., the free energy
198 profile for chain expulsion, was extracted by applying the
199 weighted histogram analysis method (WHAM),^{57,58} and the
200 increased entropy due to the radial shell was subtracted as
201 follows:⁵⁰

$$\Delta F = \Delta F_{\text{original}} + kT \ln(r^2) \quad (5)$$


202 to yield a constant free energy once the chain is fully expelled
203 from the micelle.⁵⁰ Error analysis was performed by boot-
204 strapping.

206 ■ RESULTS AND DISCUSSION

207 To analyze the effect of N_{core} on the free energy barrier at a
208 fixed micelle size, the tracer chain length A_xB_8 was varied
209 independent of the block length A_xB_8 of other chains in the
210 micelle. The free energy trajectory of the expulsion of a tracer
211 chain of length A_xB_8 from a micelle consisting of chains of A_4B_8
212 is shown in Figure 1a. Here, the total number of chains in the
213 micelle, including the single chain of A_xB_8 , is $Q = 36$. The
214 reference (zero) free energy state is chosen to be the
215 equilibrium position of the reaction coordinate, $r = 2.35$,
216 where the chain junction lies at the core–corona interface (i.e.,
217 the micelle core radius). As the AB junction departs from the
218 core–corona interface there is an increase in the free energy
219 due to the introduction of unfavorable contacts; below the
220 equilibrium r , the corona block is pulled into the core, and the
221 unfavorable interactions between the core block and the
222 corona block increase. Analogously, as r is increased from its
223 equilibrium position, the unfavorable interactions between the
224 core and the corona blocks increase as well as between the core
225 block and the solvent. Beyond the point of highest free energy,
226 defining the barrier to expulsion, there is a slight decrease in
227 the free energy due to entropic relief as the chain leaves the
228 crowded corona.

229 From Figure 1, increasing the core block length of the tracer
230 chain consistently yields an increased free energy barrier for
231 escape, as expected due to the increased energy penalty for
232 expelling a longer core block. Importantly, in each case as the
233 reaction coordinate is increased, the system follows the same
234 free energy trajectory up to the r -position of the maximum free
235 energy barrier. This effect of the tracer core block is
236 reproducible for micelles of other sizes.

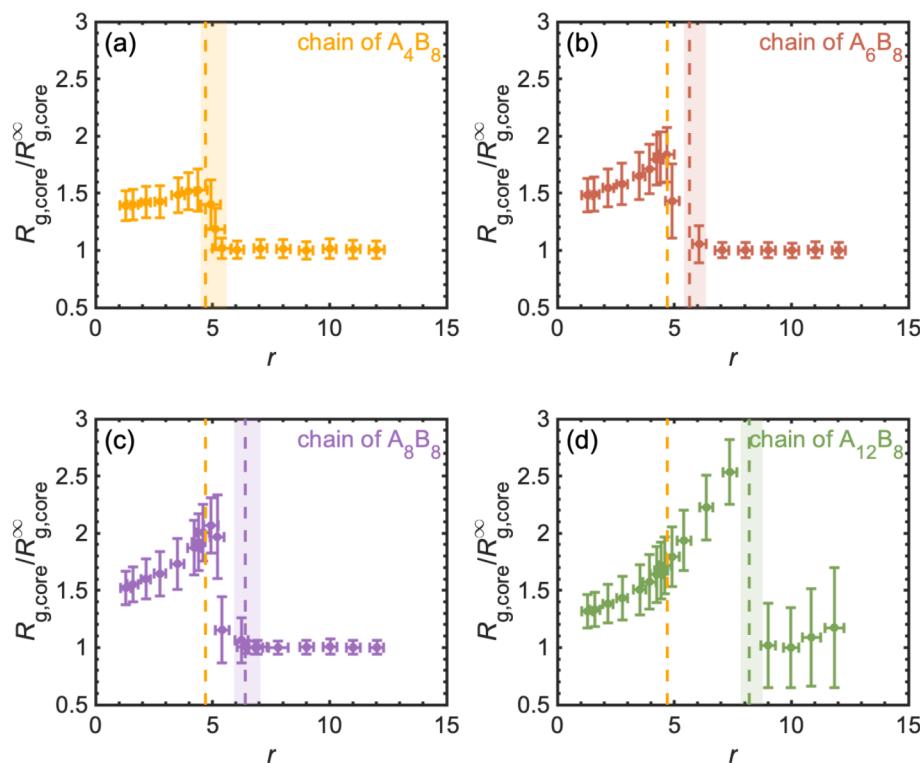
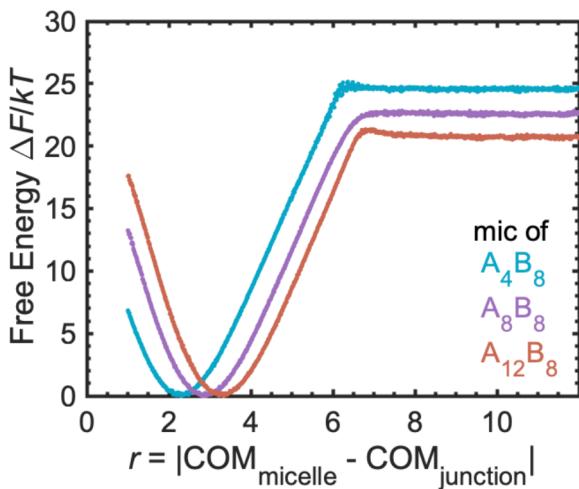

The free energy barriers from Figure 1 were then analyzed as
237 a function of the tracer core block length. Figure 2
238 f2

Figure 2. Free energy barrier to chain expulsion from an A_xB_8 micelle of $Q = 36$ as a function of the core block length N_{core} of the expelled chain.

demonstrates that F_{barrier} is linear with N_{core} of the tracer
239 chain. The free energy barriers from micelles of all sizes are
240 included, as micelle size had a much more subtle effect on
241 F_{barrier} than N_{core} of the tracer chain. These results reproduce
242 the scaling seen in past experiments^{17,18,20} and simulations⁴² of
243 chain exchange in BCP micelle systems, rather than the $N_{\text{core}}^{2/3}$
244 scaling anticipated by Halperin and Alexander.¹⁵ Notably, we
245 observe this linear scaling despite differences in formation and
246 equilibration conditions of the micelles used for simulations
247 compared to experiment. Compared to past simulation work,
248 we also use longer core block lengths ($N_{\text{core}} = 2–4$ in the study
249 by Li and Dormidontova).⁴² Additionally, here the barrier is
250 obtained directly from the umbrella sampling, rather than
251 through an analytical fitting of chain correlation functions.
252

253 Notably, our smallest tracer chain, A_4B_8 , with an expulsion
254 barrier of $\sim 13 k_B T$ is comparable to those observed in a recent
255 experimental system from TR-SANS. Wang et al. computed
256 the escape barrier for a series of poly(styrene)-*b*-poly(ethylene-
257 alt-propylene) (PS-*b*-PEP) in mixtures of phenyldodecane
258 (phd) and squalane (sql).²² For a system of 42 kDa PS and 64
259 kDa PEP in 25 vol % phd/75 vol % sql, F_{barrier} was calculated as
260 15.1 $k_B T$. This system formed micelles of $R_{\text{core}} = 10.9$ nm and
261 $R_h = 35$ nm, with $\chi = 1.46$. While being far from a rigorous
262

Figure 3. Radius of gyration of the core block along the reaction coordinate for expulsion for a chain of (a) A_4B_8 , (b) A_6B_8 , (c) A_8B_8 , or (d) $A_{12}B_8$ from a micelle of A_4B_8 chains with $Q = 36$. Each point represents one umbrella window, and error bars are the standard deviation for observations over the course of the umbrella sample. The dashed lines represent the position of the transition state, defined by the point of highest free energy, for each case of A_xB_8 , and the shaded area indicates its uncertainty. The dashed orange line indicating the position of the transition state for the A_4B_8 case is shown for all cases for comparison.


262 comparison with experiment, this provides a concrete example
263 of an experimental system that has similar exchange barriers to
264 the simulated system.

265 To understand the mechanistic basis behind the linear
266 scaling of F_{barrier} with N_{core} , the radius of gyration of the
267 expelled core block, $R_{\text{g,core}}$, was analyzed as a function of the
268 reaction coordinate for each tracer chain. Initially, close to the
269 equilibrium position, Figure 3 shows that $R_{\text{g,core}}/R_{\text{g,core}}^{\infty} \approx 1.5$,
270 indicating that the core block is significantly more expanded in
271 the micelle core than after being expelled into a bad solvent. As
272 the chain junction is pulled further from its favored position
273 into the crowded corona, $R_{\text{g,core}}$ actually increases and the core
274 block is stretched. This stretching persists with increasing r up
275 to the transition state, whose r position is indicated by the
276 vertical dashed line, where the core block remains at least
277 partially extended. Importantly, the position of the transition
278 state (and maximum $R_{\text{g,core}}$) occurs at larger values of r with
279 increasing N_{core} , as the total extension of a longer core block
280 can be greater before it becomes favorable for the chain to be
281 fully expelled. This increase in $R_{\text{g,core}}$ toward the transition state
282 occurs because the core beads furthest from the junction prefer
283 to remain in the micelle core to shield them from the
284 unfavorable interactions with the solvent and corona.
285 Eventually, though, this partial stretching of the core block
286 to minimize unfavorable core–corona contacts becomes
287 unfavorable relative to completely expelling the chain from
288 the micelle core, and $R_{\text{g,core}}$ decreases as the chain is expelled.
289 Interestingly, the average $R_{\text{g,core}}$ does in many cases begin to
290 decrease for the umbrella window where the r -position is
291 below that of the transition state, accompanied by an increase

292 in the variance of $R_{\text{g,core}}$, an observation that will be explained
293 later in our discussion.

294 In contrast to what is observed in Figure 3, the Halperin and
295 Alexander¹⁵ model predicts that $R_{\text{g,core}}$ will steadily *decrease*
296 with increasing r until the core block fully exits the micelle
297 portion of the core block. We expect that if the Halperin and
298 Alexander model were valid for the BCP systems, it would
299 apply to even more strongly segregated systems than those in
300 these simulations, where there is a larger internal energy
301 penalty for core–solvent contacts and the core block has more
302 incentive to immediately form a globule as it exits the core and
303 enters the solvated corona. However, for the relatively strong
304 segregation in these simulations, there is no evidence of core
305 block collapse before or even at the transition state. We note
306 that an $N_{\text{core}} = 4–12$ is too short to fully collapse to form a
307 globule, based on past DPD studies;⁵⁹ however, the results in
308 Figure 3 indicate that increasing N_{core} exacerbates the chain
309 stretching at the transition state, rather than tending toward
310 the postulated globular state.
311

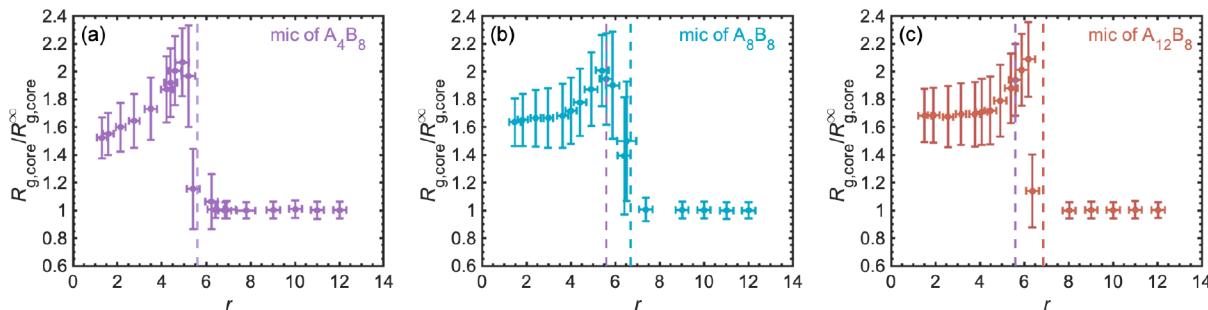
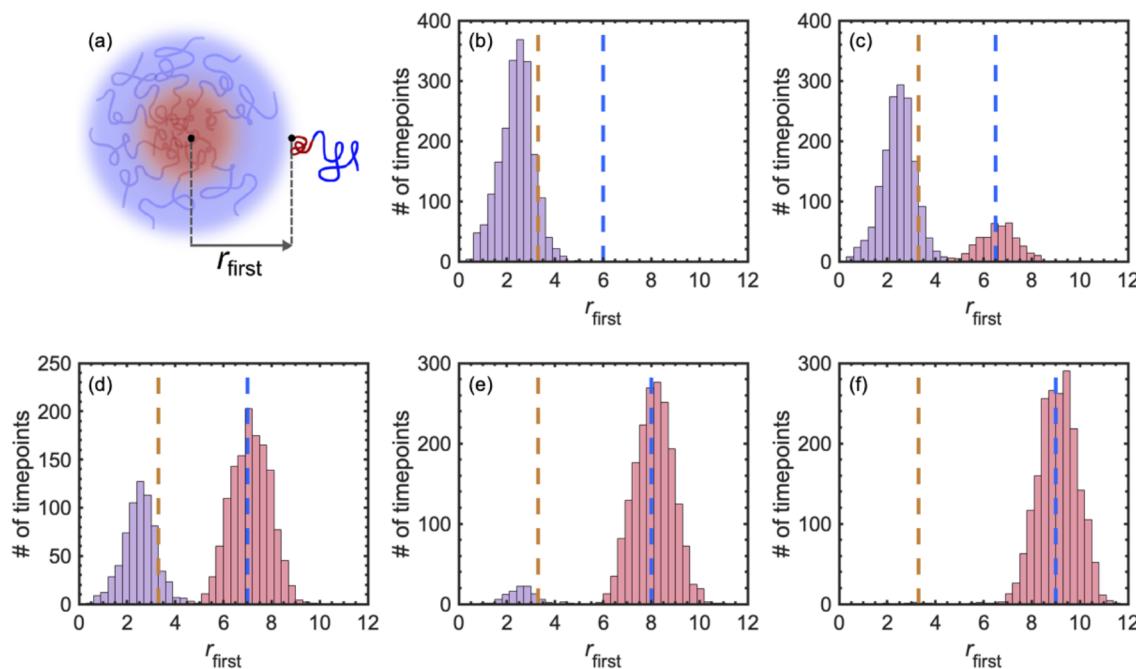

312 To investigate the effect of micelle size, we monitored the
313 dependence of the free energy profile on the lengths of the
314 chains constituting the micelle. Thus, the core block lengths of
315 the 35 A_xB_8 chains forming the micelle were varied, keeping
316 the length of the tracer A_8B_8 chain constant. As seen in Figure 316 f4
317 f4, the equilibrium r increases with N_{core} of the chains forming
318 the micelle, as the core radius of the micelle increases.
319 Similarly, the position of the barrier shifts to larger r and in fact
320 occurs at nearly the same r relative to the minimum free energy
321 state. The free energy barrier to expulsion has a smaller
322 dependence on the micelle core block length compared to the
322

Figure 4. Free energy profiles of chain expulsion for a single chain of A_8B_8 from a micelle of A_xB_8 chains with $Q = 36$ as a function of the distance between the center-of-mass of the micelle and the AB junction of the chain being expelled (r).

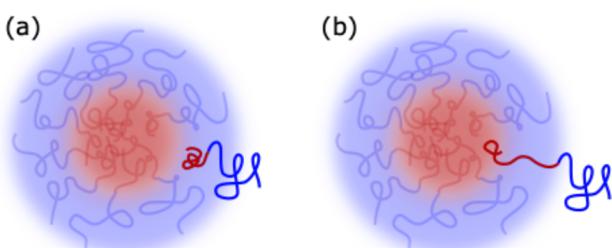
323 tracer chain and is not proportional to N_{core} of the chains in the 324 micelle. Here, we find the barrier for expulsion is smaller for an 325 A_8B_8 chain expelled from a micelle consisting of longer core 326 block chains; this may be due to less coronal crowding in 327 micelles with larger cores as the corona block lengths were held 328 constant. Notably, the increase in free energy upon expulsion 329 for a given tracer chain varies depending on the micelle the 330 tracer chain is expelled from. We expect that this is due to 331 differences between the reference state in each case; the 332 micelle consisting of chains with the shortest core block length, 333 A_4B_8 , is closest to its optimal aggregation number, and it takes 334 more energy to expel a chain from this micelle. This effect of 335 micelle core block length is subtle and is not significant for 336 other tracer core block lengths (see Figures S2–S4 for other 337 tracer chain lengths).

338 $R_{g,\text{core}}$ was computed for each umbrella window, and Figure 339 5 shows $R_{g,\text{core}}$ for an A_8B_8 tracer chain from micelles consisting 340 of chains with various N_{core} from Figure 4. For each micelle 341 N_{core} , the highest $R_{g,\text{core}}$ occurs close to the transition state 342 marked by the dashed lines and close to the same distance 343 from the core radius of the micelle. Effectively, we find that the 344 size of the micelle has no effect on the extent of chain 345 stretching at the transition state, and the position of the 346 transition state does not change with respect to the core radius.

Figure 5. Radius of gyration of the core block along the reaction coordinate for expulsion for a chain of A_8B_8 from a micelle (a) A_4B_8 , (b) A_8B_8 , or (c) $A_{12}B_8$ chains of $Q = 36$. Each point represents one umbrella window, and error bars are the standard deviation for observations over the course of the umbrella sample. The dashed lines represent the position of the transition state for the escape of the A_8B_8 chain from a micelle consisting of A_xB_8 chains.


Thus, the degree of extension of the core block at the 347 transition state is independent of the micelle size. 348

To further resolve the conformation of the core block, we 349 examined the distance between the micelle core and the 350 terminal bead of the expelled chain, i.e., that furthest from the 351 chain junction. This quantity was designated r_{first} and is 352 displayed in Figure 6 for a series of subsequent umbrella 353 windows for an A_8B_8 tracer chain expelled from a micelle 354 formed of A_8B_8 chains. Initially, the bead furthest from the 355 junction remains in the micelle core, even when the umbrella 356 sampling bias is applied to hold the junction significantly 357 outside of the micelle core, as seen in Figure 6b. As the 358 position of biasing increases to larger r , we see a small 359 population in which the first bead has exited the micelle core 360 and fluctuates around the position of the umbrella window. As 361 the bias position increases further, the fraction of states in 362 which the first bead has exited the core increases, and in Figure 363 6d at the transition state this proportion is approximately half. 364 This is characteristic of the transition states in all cases, as 365 shown in Figure S5. As the bias is applied to hold the junction 366 even further from the micelle core, the chain has fully exited 367 the core, and the population of states in which the chain 368 remains partially in the core decreases until it decays to zero in 369 Figure 6f. 370


Importantly, the first bead either remains inside the core or 371 escapes it completely when the penalty of stretching to 372 minimize unfavorable internal energy considerations becomes 373 too high. At the transition state, the core block goes from an 374 extended conformation where the beads furthest from the 375 junction remain in the core to a collapsed state as the chain is 376 fully expelled. This also explains the decrease in $R_{g,\text{core}}$ prior to 377 the transition state in Figure 3; as the core block begins to 378 toggle between its stretched conformation and the collapsed 379 state in which the chain fully exits the micelle core, the average 380 $R_{g,\text{core}}$ decreases and its variance increases. This core block 381 stretching at the transition state results in a linear dependence 382 of the free energy barrier on N_{core} , thereby reproducing the 383 experimental result. We show a schematic of the proposed 384 transition state compared to the Halperin and Alexander 385 mechanism in Figure 7. 386 f7

■ MODEL

To describe the chain expulsion trajectory, we formulate a 388 simple model. The reaction coordinate for umbrella sampling 389 fixes the AB junction point at a distance r from the center-of- 390 mass of the micelle. We assume that the micelle is spherical 391

Figure 6. Distances of the “first bead” of the expelled chain for varying umbrella windows for an A_8B_8 chain expelled from a micelle of A_8B_8 chains with $Q = 36$. (a) Schematic of r_{first} , the distance from the micelle center of mass to the bead furthest from the chain junction. (b–f) Histograms of r_{first} for umbrella windows with centers at (b) 6.0, (c) 6.5, (d) 7.0 (the transition state), (e) 8.0, and (f) 9.0 (when the chain is full expelled from the micelle). The purple histogram represents the population of states in which the first bead is still in the micelle core, and the pink histogram the states in which the first bead has exited the micelle core. The core radius is marked by the dashed orange line, and the position of the bias on the chain junction is marked by the blue line.

Figure 7. Transition states to chain expulsion: (a) the assumed globular transition state by Halperin and Alexander;¹⁵ (b) the transition state observed in our system.

392 with a core radius of r_c . The test chain has a core block degree
393 of polymerization N_{core} , with a fraction f of that block extracted
394 from the micelle core when the AB junction is constrained to a
395 position r . At the scaling level of approximation, the free
396 energy cost due to extracting fN_{core} monomers from the
397 micelle core into the corona/solvent with the AB junction
398 point at position r is a balance between the unfavorable effect
399 of A/B contact energy and stretching of the extracted core
400 block monomers

$$\frac{F}{k_B T} \cong fN_{\text{core}}\Delta a + \frac{(r - r_c)^2}{fN_{\text{core}}b^2} \quad (6)$$

402 where Δa is the enthalpic cost per segment for bringing a core
403 block into the corona/solvent and b is the statistical segment
404 length of the core block.

405 For a given position r near the transition state, the fraction of
406 the core block extracted minimizes the free energy.

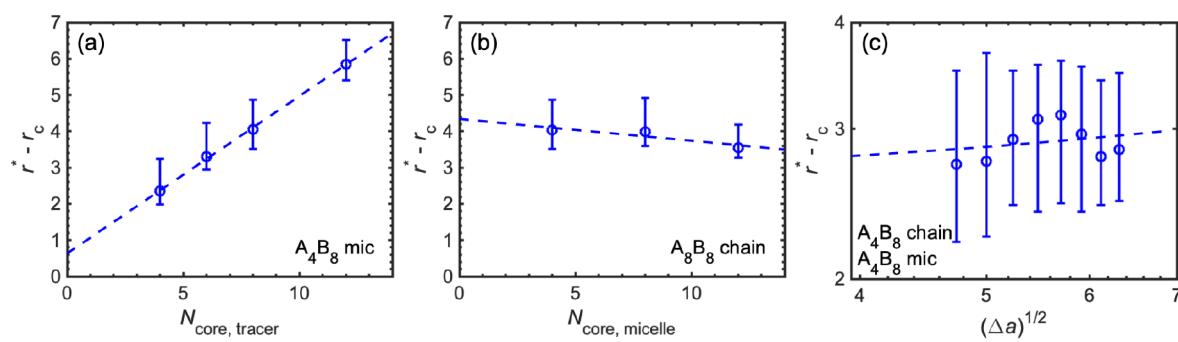
$$\frac{\partial}{\partial f} \left(\frac{F}{k_B T} \right) = N_{\text{core}}\Delta a - \frac{(r - r_c)^2}{f^2 N_{\text{core}}b^2} = 0 \quad (7)$$

This extremum is a minimum in the free energy because the
408 second derivative is positive. Solving for f gives
409

$$f \sim \frac{r - r_c}{N_{\text{core}}b(\Delta a)^{1/2}} \quad (8)$$

To determine the value of the free energy at some value of r ,
411 we substitute eq 8 into eq 6, which gives a free energy that is
412 linear in $r - r_c$ and independent of N_{core} .
413

$$\frac{F}{k_B T} \cong \frac{r - r_c}{b}(\Delta a)^{1/2} \quad (9)$$


The free energy will keep increasing until it is more favorable
415 to extract the entire core block into the solvent rather than
416 stretch further. Assuming that the core block is wetted by the
417 solvent, the maximum in the free energy is
418

$$\frac{F_{\text{barrier}}}{k_B T} \cong N_{\text{core}}\Delta a \quad (10)$$

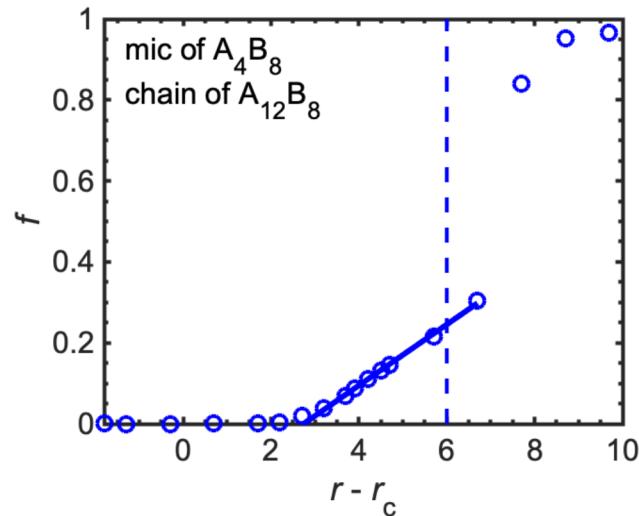
and the free energy barrier is linear with both N_{core} and Δa , as
420 seen in previous work.³⁸ The corresponding location r^* of the
421 chain junction at the maximum in the free energy is obtained
422 by equating eqs 9 and 10:
423

$$(r^* - r_c) \sim N_{\text{core}}b(\Delta a)^{1/2} \quad (11)$$

The key prediction of this model is already evident in Figure 1;
425 for a micelle formed by chains of a given size A_yB_8 , the free
426 energy for extracting a tracer chain of size A_yB_8 should follow a
427 similar trajectory with r , independent of the value of y , until
428 reaching the point at which that core block size is fully
429

Figure 8. Dependence of $r^* - r_c$ on (a) the core block length of the tracer chain from micelles consisting of A_4B_8 chains, (b) the core block length of chains formulating the micelle, using a tracer chain of A_8B_8 , and (c) the DPD excess interaction energy for A/B contacts, using data from Seeger et al.³⁸ Error bars are constructed using the error in the positions of r_c and r^* determined by bootstrapping.

430 extracted. The related predictions for the dependence of the
431 transition state are tested in Figure 8. Here, $r^* - r_c$ is
432 determined by taking the difference of r^* determined by the
433 position of highest free energy and r_c from the minimum free
434 energy state; however, different ways to identify the position of
435 transition state would lead to slightly different locations of the
436 barrier.


437 Clearly, Figure 8a indicates that the radial distance of the
438 transition state from the core radius of the micelle, $r^* - r_c$,
439 varies linearly with N_{core} of the tracer chain, consistent with eq
440 11. Differences in the value of x for the micelle the tracer chain
441 is expelled from are not explicitly included in the theory. In
442 Figure 8b, the transition state occurs at approximately the same
443 distance from the micelle core regardless of the micelle size
444 and is within the uncertainty of the peak position. This result
445 indicates that the base micelle has, at most, a small effect on
446 the expulsion trajectory of the tracer chain.

447 In Figure 8c, the position of the transition state was recorded
448 for a range of values of DPD excess interaction energy Δa from
449 previous work.³⁸ Contrary to the model, which predicts the
450 position of the transition state to vary linearly with $(\Delta a)^{1/2}$, the
451 dependence on Δa appears to be weakly nonmonotonic in the
452 range of values tested. At the highest values of Δa , the decrease
453 in $r^* - r_c$ may be due to the observed deformation of the
454 micelle cores at the transition state³⁸ due to the large internal
455 energy penalty for exposure of core monomers to the corona/
456 solvent. However, we note that the changes in the position of
457 the transition state in this range of Δa are likely not significant
458 and well within the range of error for the data.

459 The fraction of the core block extracted from the micelle
460 core, f , was computed for each umbrella window using a
461 distance criterion of $1.0d_p$ from other monomers forming the
462 micelle core. Here, the tracer chain of $N_{\text{core}} = 12$ is used to
463 minimize effects of discretizing the number of core beads.
464 Initially, Figure 9 shows that $f = 0$ as all monomers are within
465 the micelle core, and past the transition state f rapidly increases
466 to unity as the chain is fully expelled from the micelle core. In
467 the vicinity of the transition state, f increases linearly with
468 distance from the micelle core, as predicted by eq 8. Notably,
469 the model captures this observed scaling behavior despite there
470 being relatively few assumptions beyond the conformation of
471 the core block of the expelled chain around the transition state.

472 ■ SUMMARY

473 We explored the effect of increasing the core block length on
474 the barrier to chain expulsion using a tracer chain in a micelle
475 consisting of either the same, or different, chains. Compared to

Figure 9. Fraction of expelled core beads as a function of radial distance of the chain junction from the micelle core radius. The dashed line indicates the position of the transition state.

476 the A_4B_8 case, using a tracer core block of up to 12 beads yields 477
478 a larger free energy barrier to expulsion and a transition state 479
480 where the chain junction is further from the micelle center-of- 481
482 mass, along with increased core block stretching toward the 483
484 transition state. In addition, using a tracer chain of constant 485
486 core block length, changing the core block length of other 487
487 chains in the micelle does not change the observed transition 488
488 state or the extent of core block stretching. Overall, the 489
489 observed transition state, where the core chain stretches to 490
490 allow some core beads to remain in the core to minimize 491
491 unfavorable contacts, persists for longer chain lengths, and the 492
492 transition state for the expelled chain appears to be 493
493 independent of the matrix. We present a model based on 494
494 this proposed mechanism and show that the simulation data 495
495 are consistent with its implicit scaling behavior. Interestingly, 496
496 the proposed mechanism provides a possible explanation for 497
497 the experimental observations, which show that the free energy 498
498 barrier to chain exchange increases linearly with core block 499
499 length.

495 ■ ASSOCIATED CONTENT

496 ■ Supporting Information

497 The Supporting Information is available free of charge at 498
498 <https://pubs.acs.org/doi/10.1021/acs.macromol.2c01742>. 499

499 Example histograms of observed values of the reaction
500 coordinate for a series of umbrella windows, free energy
501 profiles of chain expulsion of single chains of fixed core
502 block length (A_4B_8 , A_6B_8 , and $A_{12}B_8$) from micelles of
503 various core block lengths, histograms of “first bead”
504 positions at the transition states for varying core block
505 lengths of both the tracer chain and micelle chains
506 (PDF)

507 ■ AUTHOR INFORMATION

508 Corresponding Authors

509 **Kevin D. Dorfman** — *Department of Chemical Engineering*
510 and *Materials Science, University of Minnesota—Twin Cities,*
511 *Minneapolis, Minnesota 55455, United States;* [0000-0003-0065-5157](https://orcid.org/0000-0003-0065-5157); Email: dorfman@umn.edu
512
513 **Timothy P. Lodge** — *Department of Chemical Engineering*
514 and *Materials Science and Department of Chemistry,*
515 *University of Minnesota—Twin Cities, Minneapolis,*
516 *Minnesota 55455, United States;* [0000-0001-5916-8834](https://orcid.org/0000-0001-5916-8834); Email: lodge@umn.edu

518 Author

519 **Sarah C. Seeger** — *Department of Chemical Engineering and*
520 *Materials Science, University of Minnesota—Twin Cities,*
521 *Minneapolis, Minnesota 55455, United States;* [0000-0002-3224-7222](https://orcid.org/0000-0002-3224-7222)

523 Complete contact information is available at:
524 <https://pubs.acs.org/10.1021/acs.macromol.2c01742>

525 Notes

526 The authors declare no competing financial interest.

527 ■ ACKNOWLEDGMENTS

528 We acknowledge Vaidyanathan Sethuraman for helpful
529 discussions about the techniques used in this work. This
530 material was supported by the National Science Foundation
531 Polymers Program (DMR-2103630) and by an NSF Graduate
532 Research Fellowship (S.C.S.). Simulations were conducted on
533 the Minnesota Supercomputing Institute (MSI) at the
534 University of Minnesota.

535 ■ REFERENCES

- (1) Lohmuller, T.; Aydin, D.; Schwieder, M.; Morhard, C.; Louban, I.; Pacholski, C.; Spatz, J. P. Nanopatterning by Block Copolymer Micelle Nanolithography and Bioinspired Applications. *Biointerphases* **2011**, *6* (1), MR1–MR12.
- (2) Glass, R.; Möller, M.; Spatz, J. P. Block Copolymer Micelle Nanolithography. *Nanotechnology* **2003**, *14*, 1153–1160.
- (3) Cotanda, P.; Lu, A.; Patterson, J. P.; Petzeltakis, N.; O'Reilly, R. K. Functionalized Organocatalytic Nanoreactors: Hydrophobic Pockets for Acylation Reactions in Water. *Macromolecules* **2012**, *45*, 2377–2384.
- (4) Anderson, W. *Block Copolymers as Viscosity Index Improvers for Lubrication Oils* **1973**, 3763044.
- (5) Stambaugh, R. L.; Kinker, B. G. Viscosity Index Improvers and Thickeners BT. In *Chemistry and Technology of Lubricants*; Mortier, R. M., Fox, M. F., Orszulik, S. T., Eds.; Springer: Dordrecht, the Netherlands, 2010; pp 153–187.
- (6) Hubbell, J. A. Enhancing Drug Function. *Science* **2003**, *300* (5619), 595–596.
- (7) Kazunori, K.; Glenn, S. K.; Masayuki, Y.; Teruo, O.; Yasuhisa, S. Block Copolymer Micelles as Vehicles for Drug Delivery. *J. Controlled Release* **1993**, *24* (1–3), 119–132.

- (8) Luo, L.; Tam, J.; Maysinger, D.; Eisenberg, A. Cellular Internalization of Poly(Ethylene Oxide)-*b*-Poly(*ε*-Caprolactone) Di-block Copolymer Micelles. *Bioconjugate Chem.* **2002**, *13* (6), 1259–1265.
- (9) Kim, S.; Shi, Y.; Kim, J. Y.; Park, K.; Cheng, J. Overcoming the Barriers in Micellar Drug Delivery: Loading Efficiency, *in vivo* Stability, and Micelle–Cell Interaction. *Expert Opin. Drug Delivery* **2010**, *7* (1), 49–62.
- (10) Lodge, T. P.; Seitzinger, C. L.; Seeger, S. C.; Yang, S.; Gupta, S.; Dorfman, K. D. Dynamics and Equilibration Mechanisms in Block Copolymer Particles. *ACS Polym. Au* (in press, DOI: 10.1021/acspolymers.2c00033).
- (11) Aniansson, E. A. G.; Wall, S. N.; Almgren, M.; Hoffmann, H.; Kielmann, I.; Ulbricht, W.; Zana, R.; Lang, J.; Tondre, C. Theory of the Kinetics of Micellar Equilibria and Quantitative Interpretation of Chemical Relaxation Studies of Micellar Solutions of Ionic Surfactants. *J. Phys. Chem.* **1976**, *80*, 905–922.
- (12) Won, Y.-Y.; Davis, H. T.; Bates, F. S. Molecular Exchange in PEO–PB Micelles in Water. *Macromolecules* **2003**, *36* (3), 953–955.
- (13) Zhao, D.; Ma, Y.; Lodge, T. P. Exchange Kinetics for a Single Block Copolymer in Micelles of Two Different Sizes. *Macromolecules* **2018**, *51* (6), 2312–2320.
- (14) He, Y.; Li, Z.; Simone, P.; Lodge, T. P. Self-Assembly of Block Copolymer Micelles in an Ionic Liquid. *J. Am. Chem. Soc.* **2006**, *128* (8), 2745–2750.
- (15) Halperin, A.; Alexander, S. Polymeric Micelles: Their Relaxation Kinetics. *Macromolecules* **1989**, *22* (5), 2403–2412.
- (16) Dormidontova, E. E. Micellization Kinetics in Block Copolymer Solutions: Scaling Model. *Macromolecules* **1999**, *32* (22), 7630–7644.
- (17) Choi, S.-H.; Bates, F. S.; Lodge, T. P. Molecular Exchange in Ordered Diblock Copolymer Micelles. *Macromolecules* **2011**, *44* (9), 3594–3604.
- (18) Ma, Y.; Lodge, T. P. Chain Exchange Kinetics in Diblock Copolymer Micelles in Ionic Liquids: The Role of χ . *Macromolecules* **2016**, *49* (24), 9542–9552.
- (19) Zhao, D.; Ma, Y.; Wang, E.; Lodge, T. P. Micellization of Binary Diblock Co-Polymer Mixtures in an Ionic Liquid. *Macromolecules* **2019**, *52* (12), 4729–4738.
- (20) Lund, R.; Willner, L.; Pipich, V.; Grillo, I.; Lindner, P.; Colmenero, J.; Richter, D. Equilibrium Chain Exchange Kinetics of Diblock Copolymer Micelles: Effect of Morphology. *Macromolecules* **2011**, *44* (15), 6145–6154.
- (21) Willner, L.; Poppe, A.; Allgaier, J.; Monkenbusch, M.; Richter, D. Time-resolved SANS for the Determination of Unimer Exchange Kinetics in Block Copolymer Micelles. *Europhys. Lett.* **2001**, *55*, 667.
- (22) Wang, E.; Zhu, J.; Zhao, D.; Xie, S.; Bates, F. S.; Lodge, T. P. Effect of Solvent Selectivity on Chain Exchange Kinetics in Block Copolymer Micelles. *Macromolecules* **2020**, *53* (1), 417–426.
- (23) Zhao, D.; Ma, Y.; Lodge, T. P. Exchange Kinetics for a Single Block Copolymer in Micelles of Two Different Sizes. *Macromolecules* **2018**, *51* (6), 2312–2320.
- (24) Cooksey, T. J.; Singh, A.; Le, K. M.; Wang, S.; Kelley, E. G.; He, L.; Vajjala Kesava, S.; Gomez, E. D.; Kidd, B. E.; Madsen, L. A.; Robertson, M. L. Tuning Biocompatible Block Copolymer Micelles by Varying Solvent Composition: Core/Corona Structure and Solvent Uptake. *Macromolecules* **2017**, *50* (11), 4322–4334.
- (25) Zinn, T.; Willner, L.; Lund, R.; Pipich, V.; Richter, D. Equilibrium Exchange Kinetics in N-Alkyl–PEO Polymeric Micelles: Single Exponential Relaxation and Chain Length Dependence. *Soft Matter* **2012**, *8* (3), 623–626.
- (26) Lu, J.; Choi, S.; Bates, F. S.; Lodge, T. P. Molecular Exchange in Diblock Copolymer Micelles: Bimodal Distribution in Core-Block Molecular Weights. *ACS Macro Lett.* **2012**, *1* (8), 982–985.
- (27) Lu, J.; Bates, F. S.; Lodge, T. P. Addition of Corona Block Homopolymer Retards Chain Exchange in Solutions of Block Copolymer Micelles. *Macromolecules* **2016**, *49* (4), 1405–1413.
- (28) Kim, S.; Lee, S.; Choi, S.-H.; Char, K. Chain Exchange Kinetics of Bottlebrush Block Copolymer Micelles. *Macromolecules* **2021**, *54* (10), 4739–4746.

626 (29) Wang, Y.; Kausch, C. M.; Chun, M.; Quirk, R. P.; Mattice, W.
627 L. Exchange of Chains between Micelles of Labeled Polystyrene-
628 Block-Poly(Oxyethylene) As Monitored by Nonradiative Singlet
629 Energy Transfer. *Macromolecules* **1995**, *28* (4), 904–911.
630 (30) Prochazka, K.; Bednar, B.; Mukhtar, E.; Svoboda, P.; Trnena, J.;
631 Almgren, M. Nonradiative Energy Transfer in Block Copolymer
632 Micelles. *J. Phys. Chem.* **1991**, *95* (11), 4563–4568.
633 (31) Creutz, S.; van Stam, J.; Antoun, S.; De Schryver, F. C.; Jerome,
634 R. Exchange of Polymer Molecules between Block Copolymer
635 Micelles Studied by Emission Spectroscopy. A Method for the
636 Quantification of Unimer Exchange Rates. *Macromolecules* **1997**, *30*
637 (14), 4078–4083.
638 (32) Cao, T.; Munk, P.; Ramireddy, C.; Tuzar, Z.; Webber, S. E.
639 Fluorescence Studies of Amphiphilic Poly(Methacrylic Acid)-Block-
640 Polystyrene-Block-Poly(Methacrylic Acid) Micelles. *Macromolecules*
641 **1991**, *24* (23), 6300–6305.
642 (33) Smith, C. K.; Liu, G. Determination of the Rate Constant for
643 Chain Insertion into Poly(Methyl Methacrylate)-Block-Poly-
644 (Methacrylic Acid) Micelles by a Fluorescence Method. *Macro-
645 molecules* **1996**, *29* (6), 2060–2067.
646 (34) Wang, Y.; Kausch, C. M.; Chun, M.; Quirk, R. P.; Mattice, W.
647 L. Exchange of Chains between Micelles of Labeled Polystyrene-
648 Block-Poly(Oxyethylene) As Monitored by Nonradiative Singlet
649 Energy Transfer. *Macromolecules* **1995**, *28* (4), 904–911.
650 (35) Cavicchi, K. A.; Lodge, T. P. Self-Diffusion and Tracer
651 Diffusion in Sphere-Forming Block Copolymers. *Macromolecules*
652 **2003**, *36*, 7158–7164.
653 (36) Yokoyama, H.; Kramer, E. J. Self-diffusion of Asymmetric
654 Diblock Copolymers with a Spherical Domain Structure. *Macro-
655 molecules* **1998**, *31*, 7871–7876.
656 (37) Yokoyama, H.; Kramer, E. J. Diffusion of Triblock Copolymers
657 in a Spherical Domain Structure. *Macromolecules* **2000**, *33*, 954–959.
658 (38) Seeger, S. C.; Dorfman, K. D.; Lodge, T. P. Free Energy
659 Trajectory for Escape of a Single Chain from a Diblock Copolymer
660 Micelle. *ACS Macro Lett.* **2021**, *10* (12), 1570–1575.
661 (39) Espa  ol, P.; Warren, P. Statistical Mechanics of Dissipative
662 Particle Dynamics. *Europhys. Lett.* **1995**, *30* (4), 191–196.
663 (40) Groot, R. D.; Warren, P. B. Dissipative Particle Dynamics:
664 Bridging the Gap between Atomistic and Mesoscopic Simulation. *J.
665 Chem. Phys.* **1997**, *107* (11), 4423–4435.
666 (41) Li, Z.; Dormidontova, E. E. Kinetics of Diblock Copolymer
667 Micellization by Dissipative Particle Dynamics. *Macromolecules* **2010**,
668 *43* (7), 3521–3531.
669 (42) Li, Z.; Dormidontova, E. E. Equilibrium Chain Exchange
670 Kinetics in Block Copolymer Micelle Solutions by Dissipative Particle
671 Dynamics Simulations. *Soft Matter* **2011**, *7* (9), 4179.
672 (43) Peters, A. J.; Lodge, T. P. Chain Exchange Kinetics of
673 Asymmetric B_1AB_2 Linear Triblock and AB_1B_2 Branched Triblock
674 Copolymers. *Macromolecules* **2017**, *50* (16), 6303–6313.
675 (44) Prhashanna, A.; Khan, S. A.; Chen, S. B. Kinetics of Chain
676 Exchange between Diblock Copolymer Micelles. *Macromol. Theory
677 Simul.* **2016**, *25*, 383–391.
678 (45) Prhashanna, A.; Chen, S. B. Chain Exchange Kinetics between
679 Linear ABA-Type Triblock Copolymer Micelles. *Polymer* **2017**, *118*,
680 22–29.
681 (46) Prhashanna, A.; Dormidontova, E. E. Tadpole and Mixed
682 Linear/Tadpole Micelles of Diblock Copolymers: Thermodynamics
683 and Chain Exchange Kinetics. *Macromolecules* **2017**, *50* (4), 1740–
684 1748.
685 (47) Prhashanna, A.; Dormidontova, E. E. Micelle Self-Assembly and
686 Chain Exchange Kinetics of Tadpole Block Copolymers with a Cyclic
687 Corona Block. *Macromolecules* **2020**, *53* (3), 982–991.
688 (48) Torrie, G. M.; Valleau, J. P. Nonphysical sampling distributions
689 in Monte Carlo free-energy estimation: Umbrella sampling. *J. Comput.
690 Phys.* **1977**, *23* (2), 187–199.
691 (49) von Gottberg, F. K.; Smith, K. A.; Hatton, T. A. Dynamics of
692 Self-Assembled Surfactant Systems. *J. Chem. Phys.* **1998**, *108* (5),
693 2232–2244.
694 (50) Yuan, F.; Wang, S.; Larson, R. G. Potentials of Mean Force and
695 Escape Times of Surfactants from Micelles and Hydrophobic Surfaces
696 Using Molecular Dynamics Simulations. *Langmuir* **2015**, *31* (4), 696
697 1336–1343.
698 (51) Wen, B.; Bai, B.; Larson, R. G. Surfactant Desorption and
699 Scission Free Energies for Cylindrical and Spherical Micelles from
700 Umbrella-Sampling Molecular Dynamics Simulations. *J. Colloid
701 Interface Sci.* **2021**, *599*, 773–784.
702 (52) Helfand, E. Diffusion in Strongly Segregated Block Copoly-
703 mers. *Macromolecules* **1992**, *25* (1), 492–493.
704 (53) Underhill, R. S.; Ding, J.; Birss, V. I.; Liu, G. Chain Exchange
705 Kinetics of Polystyrene-Block-Poly(2-Cinnamoylethyl Methacrylate)
706 Micelles in THF/Cyclopentane Mixtures. *Macromolecules* **1997**, *30*
707 (26), 8298–8303.
708 (54) Zinn, T.; Willner, L.; Lund, R.; Pipich, V.; Richter, D.
709 Molecular Exchange Kinetics of Micelles: Corona Chain Length
710 Dependence. *ACS Macro Lett.* **2016**, *5* (7), 884–888.
711 (55) Wang, E.; Lu, J.; Bates, F. S.; Lodge, T. P. Effect of Corona
712 Block Length on the Structure and Chain Exchange Kinetics of Block
713 Copolymer Micelles. *Macromolecules* **2018**, *51* (10), 3563–3571.
714 (56) Plimpton, S. Fast Parallel Algorithms for Short-Range
715 Molecular Dynamics. *J. Comput. Phys.* **1995**, *117* (1), 1–19.
716 (57) Grossfield, A. An Implementation of WHAM: The Weighted
717 Histogram Analysis Method Version 2.0.10. 20.
718 (58) Kumar, S.; Rosenberg, J. M.; Bouzida, D.; Swendsen, R. H.;
719 Kollman, P. A. The Weighted Histogram Analysis Method for Free-
720 Energy Calculations on Biomolecules. I. The Method. *J. Comput.
721 Chem.* **1992**, *13* (8), 1011–1021.
722 (59) Guo, J.; Liang, H.; Wang, Z. Coil-to-globule transition by
723 dissipative particle dynamics simulation. *J. Chem. Phys.* **2011**, *134*,
724 244904.