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Abstract—Neural Normalized MinSum (N-NMS) decoding de-
livers better frame error rate (FER) performance on linear block
codes than conventional Normalized MinSum (NMS) by assigning
dynamic multiplicative weights to each check-to-variable node
message in each iteration. Previous N-NMS efforts primarily
investigated short block codes (N < 1000), because the number of
N-NMS parameters required to be trained scales proportionately
to the number of edges in the parity check matrix and the
number of iterations. This imposes an impractical memory re-
quirement for conventional tools such as Pytorch and Tensorflow
to create the neural network and store gradients. This paper
provides efficient methods of training the parameters of N-NMS
decoders that support longer block lengths. Specifically, this
paper introduces a family of Neural 2-dimensional Normalized
(N-2D-NMS) decoders with various reduced parameter sets and
shows how performance varies with the parameter set selected.
The N-2D-NMS decoders share weights with respect to check
node and/or variable node degree. Simulation results justify a
reduced parameter set, showing that the trained weights of N-
NMS have a smaller value for the neurons corresponding to
larger check/variable node degree. Further simulation results on
a (3096,1032) Protograph-Based Raptor-Like (PBRL) code show
that the N-2D-NMS decoder can achieve the same FER as N-
NMS while also providing at least a 99.7% parameter reduction.
Furthermore, the N-2D-NMS decoder for the (16200,7200) DVBS-
2 standard LDPC code shows a lower error floor than belief
propagation. Finally, this paper proposes a hybrid decoder
training structure that utilizes a neural network which combines
a feedforward module with a recurrent module. The decoding
performance and parameter reduction of the hybrid training
depends on the length of recurrent module of the neural network.

I. INTRODUCTION

Message passing decoders are often used to decode linear
block codes. Typical message passing decoders utilize belief
propagation (BP), MinSum, and its variations. However, mes-
sage passing decoders are sub-optimal because of the existence
of cycles in the corresponding Tanner graph.

Recently, numerous works have focused on enhancing the
performance of message passing decoders with the help of
neural networks [1]-[14]. The neural network is created by
unfolding the message passing operations of each decoding
iteration [1]. Nachmani et al. in [1] proposed improving BP
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decoding by assigning unique multiplicative weights to check-
to-variable messages and the channel log-likelihood (LLR) of
variables in each iteration. This so-called "Neural BP (NBP)"
showed better performance than BP. Continuing off this, the
authors later proposed a recurrent neural network BP (RNN-
BP) [3] decoder which set the edge-specific weight to be equal
in each iteration. Nachmani et al. and Lugosch et al. in [1], [2],
[4] proposed a Neural Normalized MinSum (N-NMS) decoder
and Neural Offset MinSum (N-OMS) decoder to improve the
performance of the NMS and OMS decoder.

However, with longer code lengths, these edge-specific
neural decoders become impractical because the number of
edges scales rapidly. A possible solution is to share one
parameter across all edges that have some similar property
such as across the same iteration, or connecting to the same
check/variable node. For an example, Wang et al. proposed to
assign the same parameters for each check-to-variable layer
and variable-to-check layer [13], respectively. M. Lian et. al.
in [14] considered assigning same weight to all messages in
one iteration.

With these previous papers, the focus on short block length
codes (N < 1000) may have resulted from the fact that
popular deep learning research platforms, such as Pytorch
and Tensorflow, require impractical amounts of memory to
calculate the gradient when the block length is long. However,
as demonstrated in [11], it is possible to train parameters for
longer block lengths if resources are handled more efficiently.
Abotabl et al. provided an efficient computation framework for
optimizing the offset values in the N-OMS algorithm [11], and
trained an OMS neural network with edge-specific weights,
iteration-specific weights, and a single weight.

A primary contribution of this paper is a family of neural
2-dimensional normalized MinSum (N-2D-NMS) decoders
whose weights are optimized by a neural network based on
node degree. This simplification over previous approaches that
optimize the weights based on node degree leads to a much
simpler optimization that provides excellent FER performance
while still accommodating large block lengths of practical
importance. The main contributions in this paper are:

o An cfficient implementation of the N-NMS architecture.
This part is related to the framework in [11]. We showed
that the memory issued for training long LDPC code
faced by Tensorflow [15] can be mitigated by efficiently
storing the check-to-variable node and variable-to-check
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node messages. Separately, back propagation memory is
also reduced by storing the gradient with respect to check-
to-variable node and variable-to-check node messages
only for the previous iteration rather than all iterations.

o Empirical N-NMS results that show the dynamic weights
exhibit a strong correlation with check node degree,
variable node degree, and iteration.

e A family of N-2D-NMS decoders with various reduced
parameter sets showing how performance varies with
the parameter set selected. The N-2D-NMS decoding
structure is a generalization of [16] to allow variation
with iteration. Simulation results on a (3096,1032) PBRL
code show that N-2D-NMS decoder can achieve the same
FER as N-NMS with significantly fewer parameters. A
N-2D-NMS decoder trained on the (16200,7200) DVBS-
2 LDPC code achieves a lower error floor than belief
propagation.

o A hybrid decoding structure that combines a feedforward
and recurrent structure that shows similar decoding per-
formance as a full feedforward structure, but requires
significantly fewer parameters.

The remainder of the paper is organized as follows: Sec. II
derives the gradients of the loss function with respect to
trainable parameters and neurons of a N-NMS neural network
and proposes an efficient learning representation. Furthermore,
statistics of learned weights are studied in this section. Sec.
IIT introduces the family of N-2D-NMS decoders. Sec. IV
presents and discusses our simulation results and explores a
hybrid decoding structure. Sec. V concludes our work.

II. EFFICIENT IMPLEMENTATION OF N-NMS

A. Forward Propagation

Let H be the parity check matrix of an (n,k) LDPC
code, where n and k represent the codeword length and
dataword length, respectively. We use v; and c¢; to denote
the " variable node and ;" check node, respectively. In
each iteration, an NMS decoder uses the same constant value
to scale all check-to-variable node messages, whereas an N-
NMS decoder assigns distinct multiplicative parameters for
each check-to-variable message in each iteration. In the t**
decoding iteration, N-NMS updates the check-to-variable node

message, ug)_wz the variable-to-check node message, lf}?_,cj,

and posterior of each variable node, ll(,l , by:

’U/g)_w]- = ﬂ((zz,vj) H Sgn(l'gji/i—l))cl)
vr€N(ci)/{v;} 1)
X min ‘ lfffl)c,
vy €N (er) /s } (b1 ve.)
e =ti+ Y ul),, @
cir€N(v ')/{cz‘}
T R ®
¢y €N (vj)

N(c;) represents the set of the variable nodes that are con-
nected to ¢; and N(v;) represents the set of the check nodes
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that are connected to v;. l,ﬁ? is the LLR of channel observation

of v;. ,8((2) v;) are multiplicative weights to be trained. The

. (ERS] . .
decoding process stops when all parity checks are satisfied or
maximum iteration I7 is reached.

B. Backward Propagation

In this subsection, we derive the gradient of J with respect

to the trainable weights, 8(‘2—;], the check-to-variable mes-
(vi.cj)

, and variable-to-check message, +

ol ViU
show that in order to calculate the desired gradlents it is

t

sufficient only to store, lvl ,sgn(lgj)ﬂci), sgn(uciﬁvj ), mlnlci,
mln26i, posl; and posl; when performing forward prop-

agation, where

sage, 8<6T . We

c~>v

minl?® = min | 4

“ vjfeN(cl)| Y ’—“1‘ “4)

poslf:i = argmin |ll(1)/—m (5)
v €N (ci)

min2! = min ) 6

ci vj,eN(ci)/{posltCi}‘ vj/—>c1| (6)

pOSZzi = argmin \lv ) e, (7

v EN(ci)/{posif;}

In this paper, multi-loss cross entropy [1] is used as loss

function. In iteration ¢, al(‘?)—J is updated as follows:
v
8J oJ 8J g
ERCIP O 2 o, ®
Vj—Ciq vj ¢y €N (vj)/{ci} Cil —;

is calculated by:

M
aJ oJ
_ o (t)%
—— = u, —— ©)
dﬁc,—w, 8”(:7;—)11]-
where
ulls, = sen(ul, ) x [ulfs, |, (10)
sgn(uls,)) = H sen(ly, e, (1
Uj/EN(ci)/{Uj}

ot : t

W« | _ ) min2;, if v; = posl,,
eS| = { minl’,  otherwise (12)

With chain rule, we obtain the following for %:
8J . aJ
= sgn(ufl”%,) —a— (13)
| 014)1)]‘ a Ci—Vj
oJ
_ (t)*

= sgn(uci_,vj)ﬁ(ci nrY — (14)

clﬁv]

For all variable nodes connected to check node c;, only
posl(t_) and pos2£ti) receive backward information, therefore,

—0J " can be computed as follows:
o,
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Fig. 1. Mean values of messages of FNNMS for a (3096,1032) PBRL code
in each iteration show strong correlations to check and variable node degree.
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(15)
Eqgs. (8-15) indicate that (‘2;] and (?)J can be cal-
auci%vj alu]‘ﬁci

culated iteratively. Therefore, back propagation does not need
to store the gradients with respect to Uc;—v; and lvjﬁci for
all iterations. Both Pytorch and Tensorflow store all iterations
of ug)_m]., lff;)_mi and lg), making them inefficient for this
purpose. However, we showed that the neuron values in each

hidden l?er can be stored compactly using the parameters
l

t t t
lgi)’ sgn 7()]')4)07;)’ sgn(ugiij),
and poslzi, which results in a significant reduction in stor-
age requirements. Using these two strategies, we resolve the

Tensorflow storage obstacle identified by [15].

cot ot t
minl,, min2., posl,,

C. Simulation Results

In this subsection, we use the efficient implementation de-
scribed above to train the weights of N-NMS for a (3096,1032)
protograph-based raptor-like (PBRL) LDPC code. The code
we use is taken from [17] (in [18]). Encoded bits = are mod-
ulated by binary phase shift keying (BPSK) and transmitted
through Additive White Gaussian Noise (AWGN) Channel.
The N-NMS decoder is updated on a flooding schedule and the
maximum number decoding iterations is 10. Define 3(:d) =
{5((22_vj)|deg(ci) = d,} and f(*%) as the mean value of
B(tde) | Fig.1a shows f(%) versus decoding iteration ¢ with
all possible check node degrees. Note that the iteration number
starts at 2 because most of edges have 0 valued messages in the
first iteration as result of puncturing. The simulation shows a
clear relationship between check node degree and f3, i.e. larger
check node degrees correspond to smaller 5. This difference
is significant in the first few iterations. Additionally, 3(*:)
changes significantly in first few iterations for all check node
degrees d..

In order to investigate the relationship between weights and
variable node degree given a check node degree and iteration
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TABLE I
VARIOUS N-2D-NMS DECODERS AND
REQUIRED NUMBER OF PARAMETERS PER ITERATION

The number of Required
Type ﬁt) a@ Parameters per Iteration
(16200,7200) (3096,1032)
DVBS-2 code | PBRL code
No Weight Sharing
01[1] /3((2’%_) 1 4.8 %105 1.60 * 10*
Weight Sharing Based on Node Degree
(®)
1 B(d.gc;),d.(vj)) - 1 13 41
; T
2 5((d;ag<ci>> Xdeg(v,)) 8 15
;
3 Bldeg(er)) - ! 4 8
4 1 % (deg(v,)) 4 7
Weight Sharing Based on Protomatrix
s g0 1 - 101
(Ls].1#])
6 F1%) . 1 _ 17
(s |
7 1 o - 25
(1#])
Weight sharing based on Iteration Lian2019-jh,Abotabl2019-wt
s | 8W [ v ] ! [ 1

number, we further define f(tde:de) — {[1’((? o ldeg(ei) =

de,deg(v;) = d,}. We denote §9%) to be the average
value of f(t:de:dv) Fig 1b gives the average value of weights
corresponding to various check and variable node degrees
at iteration 4. Simulation results show that, given a specific
iteration ¢’ and check node degree d’,, larger d!, correspond to
smaller 3(t"de-dy).

In conclusion, the weights of N-NMS are correlated with
check node degree, variable node degree, and iteration. Thus,
node degrees should affect the weighting of messages on their
incident edges when decoding irregular LDPC codes. Inspired
by recent neural network decoders, we propose a family of
N-2D-NMS decoders in this paper.

III. NEURAL 2D NORMALIZED MINSUM DECODERS

Based on the previous discussion, it is intuitive to consider
assigning the same weights to messages with same check
node degree and/or variable node degree. In this section, we
propose neural 2-dimensional normalized MimSum (N-2D-
NMS) decoders which has the following form:

u®,, =" T s h,)
v EN(ei)/{v;} ,  (16)
~ min lf,t_l)c-
UjIGN(Ci)/{UJ}‘( 7 1)
Gomra T @
c;r €EN(v;)/{ci}

,Bit) and o' are the multiplicative weights assigned to check
and variable node messages, respectively. Table I lists different
types of N-2D-NMS decoders, each identified in the first
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column by a type number. As a special case, we denote N-
NMS as type 0. Columns 2 and 3 describe how each type
assigns ,8£t) and ait), respectively. The subscript * is replaced
in Table I with the information needed to identify the specific
weight depending on the weight sharing methodology.

Types 1-4 assign the same weights based on node degree.
In particular, Type 1 assigns the same weight to the edges
that have same check node and variable node degree. Type
2 considers the check node degree and variable node degree
separately. As a simplification, type 3 and type 4 only consider
variable node degree and check node degree, respectively.

Dai. et. al in [19] studied weight sharing based on the edge
type of MET-LDPC codes, or protograph-based codes. We also
consider this metric for types 5, 6, and 7. Type 5 assigns the
same weight to edges with the same edge type, i.e. edges
that belong to the same position in protomatrix. In Table. I,
f is the lifting factor. Types 6 and 7 assign parameters based
only on the horizontal (protomatrix row) and vertical layers
(protomatrix column), respectively. Finally, type 8 assigns a
single weight parameter for each iteration, as in [11], [14].

To further reduce the number of parameters, we consider
a hybrid training structure that utilizes a neural network
combining a feedforward module with a recurrent module .
The corresponding decoder uses distinct trained parameters
for cach of the first I’ decoder iterations and reuses the
same parameters for for the remaining Iy — I’ iterations.
The motivation for the hybrid decoder is that the values of
the trainable parameters change negligibly during the last few
iterations, as illustrated in Sec. IV. Therefore, using the same
parameters for the last few iterations doesn’t cause a large
performance degradation.

A (3096,1032) PBRL code and the (16200,7200) DVBS-2
[20] standard LDPC code are considered in this paper, and
the number of parameters per iteration required for various
N-2D-NMS decoders of these two codes are listed in column
4 and 5 in Table. I, respectively. It is shown that the number
of parameters required by node-degree based weight sharing
is less than that required by protomatrix based weight sharing.

IV. SIMULATION RESULTS

In this section, we investigate the decoding performance of
various N-2D-NMS decoders for LDPC codes with different
block lengths. All encoded bits are modulated by BPSK and
transmitted through the AWGN channel. The LDPC codes and
optimized weights in this paper can downloaded in [17].

A. (16200,7200) DVBS-2 LDPC code

Fig. 2 gives the FER performances of various LDPC decoder
for (16200,7200) DVBS-2 LDPC code. All of the decoders
are flooding shceduled and maximum decoding iteration is 50.
It is shown that N-NMS decoder outperforms BP at 1.3dB,
with a lower error floor. The N-2D-NMS decoders of types 1
and 2 have a slightly better performance than N-NMS. Type
4 outperforms type 3, because the variable node weights of
investigated code have a larger dynamic range than check node
weights, as shown in Fig. 2.
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Fig. 2. FER performances of various LDPC decoder for (16200,7200) DVBS-
2 LDPC code.
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Fig. 3. Fig. (a) shows that the weights of the Type-2 N-2D-NMS decoder for
the (16200,7200) DVBS-2 LDPC code only change significantly in the first
20 iterations. Fig. (b) illustrates that the Hybrid Type-2 N-2D-NMS decoder
with I’ = 20 shows comparable decoding performance to the full feedforward
decoder. Fig.(c) shows that the weights of the Type-2 N-2D-NMS decoder for
the (16200,7200) DVBS-2 LDPC code converge to 0.885.

Fig. 3a shows the B(deg ) and agdlg(v ) of type-2 N-
2D-NMS decoder, which agree with our oi)servanon in the
previous section, i.e., in each decoding iteration, larger degree
node corresponds to a smaller value. Besides, the weights
change negligibly after iteration 20. Thus, the hybrid N-2D-
NMS decoder of type 2 with I’ = 20 delivers comparable

performance to the full feedforward decoding structure, as
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Fig. 4. FER performance for various N-2D-NMS decoders for a (3096,1032)
PBRL LDPC code compared with N-NMS (type 0) and NMS.

shown in Fig. 3b. Fig. 3c shows that the parameters of type
8 converge to 0.885, which is close to the single weight of
NMS decoder. As shown in Fig.2, by only assigning iteration-
specific parameters, N-2D-NMS decoder of type 8 appears an
early error floor at 1.20 dB.

B. (3096,1032) PBRL LDPC Code

Fig. 4 compares the FER performance of various N-2D-
NMS decoders with the N-NMS (type 0) and NMS. All
of the decoders are implemented using a layered schedule
with a maximum of 10 decoding iterations. The simulation
results show that N-NMS has more than 0.5 dB improvement
over the NMS decoder. N-2D-NMS decoders of types 1-
7 are also simulated. Note that types 1, 2 and 5 have the
same decoding performance as the N-NMS decoder, but the
number of parameters is reduced by 99.7%, 99.9% and 99.3%,
respectively. Thus, weight-sharing metrics based on check and
variable node degree, or based on horizontal and vertical layer
deliver lossless performance with respect to N-NMS. N-2D-
NMS decoders of types 4 and 6 have a degradation of around
0.05 dB compared to N-NMS. N-2D-NMS decoders of types
5 and 7 have a degradation of around 0.2 dB compared with
N-NMS. Thus, for the (3096,1032) PBRL code of Fig. 4,
assigning weights based only on check nodes can gain more
benefit than assigning weights only based on variable node.

V. CONCLUSION

This paper investigates MinSum LDPC decoders for which
the normalization weights are optimized by a neural network.
An initial neural network assigns a different weight to every
edge. The statistics of the trained parameters show that the
trained parameters depend on node degree. In particular, the
trained weights have a smaller value for the neurons corre-
sponding to a larger check/variable node degree. Neural 2D
normalized MinSum (N-2D-NMS) decoders are introduced in
this paper with various weight-sharing techniques to reduce
the number of parameters that must be trained. Simulation
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results on the (16200,7200) DVBS-2 standard LDPC code
and a (3096,1032) PBRL code show that the N-2D-NMS
decoder achieves comparable decoding performance to a N-
NMS decoder but with dramatically fewer trained parameters.
Furthermore, N-2D-NMS decoders can achieve a lower error
floor than BP for some LDPC codes. Finally, this paper pro-
poses a hybrid neural network with both feedforward and re-
current modules for further parameter reduction. The decoding
performance and parameter reduction of the hybrid structure
depends on the length of feeedforward neural network.
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