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Abstract

Due to the rapidly evolving nature of the Virtual Reality field, many frameworks for
multiuser interaction have become outdated, with few (if any) designed to support mixed
virtual and non-virtual interactions. We have developed a framework that lays an exten-
sible and forward-looking foundation for mixed interactions based upon a novel method
of ensuring that inputs, visuals, and networking can all communicate without needing to
understand the others’ internals. We tested this framework in the development of several
applications and proved that it can easily be adapted to support application requirements
it was not originally designed for.

1 Introduction

Currently, there are very few multiuser Virtual Reality (VR) frameworks available in the litera-
ture. Likewise, much of the formalized work on interactions between multiple VR and non-VR
users remains in its infancy. Novotny et al. [17] is a notable exception to the first issue, pro-
viding a framework for multiuser VR development. However, the VR field is rapidly evolving
and many previous works have become obsolete as newer standards and methodologies emerge.
MuVR [11] serves as a total overhaul of the framework designed by Novotny et al. with ma-
jor emphasis put on supporting the OpenXR [4] standard and adjusting several parts of the
framework to be easily extendable, with an eye toward future support for non-VR users as
well. Towards this aim, we have developed a novel method of ensuring that inputs, visuals, and
networking can all communicate without needing to understand each other thus allowing each
of the before-mentioned systems to be replaced without disrupting the others.

The rest of this paper is structured as follows: Section 2 briefly reviews some of the existing
literature and then dives into library choices that we made, with particular emphasis placed
upon comparisons to existing VR and networking frameworks for Unity [20]. Section 3 details
the design and implementation decisions of the overhaul. Section 4 details two applications
we implemented with MuVR, showing how easily the framework can be extended; and finally
Section 5 wraps up the paper with conclusions and plans for future work.
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2 Background

There are very few multiuser VR frameworks available in the literature. This fact exists in
stark contrast to the fact that many simulations, educational experiences, and entertainment
experiences are now being developed for VR [6, 14, 18]. Thus facilities to ease this development
would be beneficial.

Unity is a commercial game engine with extendable scripting in the C# language. It utilizes
the Object-Oriented Composition paradigm [13] that was common in game engine architecture
from the last decade, where component classes implement various types of encapsulated behavior
that can then be attached to container objects. This extensible model is interfaced with using
a visual environment editor with the ability to visually change properties and create references
to other objects in the environment thus using code to walk the engine’s object hierarchy to
find references is uncommon. Since MuVR is tightly coupled to the Unity ecosystem, migrating
it to another game engine would prove to be nontrivial.

Most proprietary libraries for Unity are distributed as precompiled shared objects. Unity
supports a wide variety of platforms, many of which are not supported by the shared objects
provided by most proprietary libraries. Thus we have striven to avoid such resources as much as
possible, instead utilizing free and open source alternatives that we can compile to any platform
ourselves.

2.1 VR Frameworks

The main criteria used for choosing between the many available VR frameworks was the num-
ber of platforms they support. Additionally, we only considered frameworks that were open
source or included with Unity. Historically, the two leading VR frameworks used with Unity
were Steam VR and the Oculus SDK. The standard SteamVR implements, OpenVR, has been
deprecated in favor of OpenXR, [4], and the Oculus SDK only supports hardware created by
Meta. While both platforms provide a range of useful utilities such as an extensive interactables
library (providing buttons, levers, etc...) and positioning appropriate controllers to indicate the
location of your hands, neither SteamVR nor the OculusSDK are ideal considering the current
rapid proliferation of VR devices.

OpenXR is an open standard from the Khronos group (the same group that maintains the
OpenGL and Vulkan standards) that acts as an abstraction layer between applications and a
large selection of popular XR! devices. However, accessing functionality inherent to a single
device or manufacturer using OpenXR is difficult.

Unity provides the XR Interaction Toolkit [3] (XRIT), a toolkit that provides a platform-
agnostic framework for implementing interactions in VR, however, the framework does not
provide as large of a selection of precreated interactables as its competitors. When combined
OpenXR and XRIT provide a widely supported device-agnostic method of interacting with VR
environments. Thus the combination of OpenXR and XRIT was chosen as the foundation for
MuVR. Table 1 summarizes the differences between the discussed VR frameworks.

2.2 Networking Frameworks

While the choice of VR framework was fairly straightforward given our goals and SteamVR'’s
recent deprecation, choosing a networking solution proved more difficult. Several Unity net-
working frameworks require that the code for clients and servers be written in different projects;

leXtended Reality (XR) is an umbrella term used to describe both Virtual and Augmented Reality devices.
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Table 1: VR Framework Comparison Summary

Framework Supported Interactables Hand Deprecated
Platforms Library Presence
Open XR + | HTC, Valve, Oculus Basic’ Basic! No
XRIT Microsoft, and Varjo
Steam VR HTC and Valve Yes Yes Yes
Oculus SDK Oculus Yes Yes No

* Includes support for basic grabbable objects that follow the user’s hand.

t Includes support for representing the location of the user’s hand, however it may not properly represent the
type of controller the user is using.

all of these frameworks were rejected since providing a unified framework with a fragmented
codebase produces extra complexity that we decided it would be best to avoid.

The first framework we considered was Photon’s Fusion [2] framework. This was the frame-
work that sparked the platform support requirement, since difficulties were encountered when
using their provided DLLs. Additionally, Fusion’s documentation is lacking, making devel-
opment with the framework a frustrating experience. Alternatively, Fusion is one of the two
considered frameworks (along with Novotny et al.) to provide a matchmaking system for play-
ers to discover each other without requiring an IP address. All of these factors paired with the
existence of a price tag on these services led us to search for other options.

Fish-Networking [9], Mirror [21], and Unity’s Netcode for GameObjects [1] (NCGO) were all
considered next. All of these frameworks are open source and have similar designs, with minor
differences in usability between the three, but nothing major enough to strongly influence a
decision. Mirror supports a purely peer-to-peer-based architecture? while Fish-Networking and
NCGO support a client-server architecture? where the server can either be dedicated or hosted
on one of the clients.

After identifying the several candidate frameworks, a performance benchmark was per-
formed; the results of which along with several other comparison details are explained in Ta-
ble 2. The performance benchmarks were conducted utilizing the methodology outlined in
Fish-Networking’s documentation [8] except: the tick rate for every framework was set to 60
ticks per second, the server was run from within Unity’s editor, and thirty separate client
executables were launched, all on a single machine®. Thirty clients were chosen since more
would result in GPU throttling. Bandwidth information was captured using Wireshark’s [10]
Protocol Hierarchy statistics, filtered to only scan relevant ports, that captured the number of
bytes transferred which were then divided by the timestamp of the last packet scanned to find
the average bandwidth. Since data was captured on a single machine, the bandwidth statistics
represent both sent and received data. All data was captured over a period of five minutes.

Once the benchmarks had been performed, Fish-Networking proved to perform better than
its competition, with similar framerates and significantly reduced bandwidth overhead; and

2In a peer-to-peer architecture like Mirror, data is sent from every connected user to every other connected
user, without the aid of a central authority. Alternatively, in a client-server architecture, users send their data
to a central server which is then responsible for either rejecting it or forwarding it to the other users.

3The machine used to run the benchmarks is custom built with an Intel i7-12700k, EVGA GeForce RTX
3090 with 24GB of dedicated RAM, 32GB 2133MHz Corsair RAM, and a Samsung 980 Pro NVME SSD,
running Unity 2021.3.5f1 set to build executables with the IL2CPP backend. All of the code utilized for these
benchmarks can be found in MuVR’s Git repository spread across several branches whose names all start with
”benchmark/”.

63


https://github.com/hpcvis/MuVR/tree/benchmark/base

MuVR Dahl, Marsh, Lewis, and Harris

Table 2: Networking library comparison over several performance metrics.

Framework Est. Max  AVG Band- Cost Supp. Match-  Voice
ccu* FPS width Arch. making
Fish-Networking 500+ 60.19  0.94 MB/s 0O.S. Hosted/ No No
Dedicated
Mirror 200+ 60.23 2.15 MB/st 0.8. P2p No No
Netcode for Game- Not 59.97  3.42 MB/st 0.8 Hosted/ No Yes?
Objects Published Dedicated
Hosted/
Photon Fusion 2000 25.08 1.82 MB/s  Per User Dedicated/ Yes Yes1
(Shared Topology) P2P

* CCU is an acronym for ConCurrent Users.

T Old stress test demos have shown Mirror supporting 480 concurrent users, however this has not been
tested in practice.

i Due to how Mirror and Netcode for GameObjects calculate their tick rate, these numbers are not based on
exactly 60 ticks per second (we found it was between 55 and 60) whereas the other frameworks are.

§ Provided by separate subscription priced Vivox package.
€ Provided by separate subscription priced Photon Voice package.

thus reduced bandwidth utilization indicating that more information can be exchanged before
network infrastructure becomes overloaded. The benchmark utilized appears to be designed
to fairly showcase Fish-Networking’s performance superiority with a minimal amount of bias;
that being said, we acknowledge that there is an unlikely potential of biasing in the results that
we missed. With all features considered, including several of Fish-Networking’s nicer usability
features, Fish-Networking became the clear choice to base MuVR upon.

3 Design & Implementation

3.1 Ownership

In most applications, when networking provides a latency spike, it is an annoying irritant that
is usually ignored, however, in VR even a minor latency spike is substantially more noticeable.
The increased immersion makes many people more sensitive to issues with the simulation, and
a momentary lack of movement due to a latency spike increases Transport Delay as described
by Stoner et al. [19], which could easily invoke a bout of simulator sickness. To account for
this discrepancy, all physics simulations and other interactions in MuVR are performed client
authoritatively®. This client authoritative structure poses an important question: For any given
object, who should simulate it?

Fish-Networking, and every other considered networking framework, supports the concept
of object ownership. One particular user owns the object, and thus is responsible for simu-
lating its behavior. However, these implementations typically only allow for ownership to be
transferred between users upon object creation or some other manually invoked event. MuVR
elaborates upon this feature by allowing ownership to be assigned to certain volumes of space
and automatically transferred upon interaction.

Ownership management in MuVR is orchestrated by a Unity component appropriately
named OwnershipManager. Since ownership management is facilitated by a component, it is
an opt-in feature, thus certain objects (notably the UserAvatars discussed in the next section)

4Performed on the local client’s machine, with the results relayed to other clients through the server. In
contrast to a server authoritative model where all of the simulations are performed on the server and then
propagated to the clients.
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can simply belong to a single user without any possibility of transfer. The OwnershipManager
has two main responsibilities: first, it is assumed that if someone is actively interacting with
an object, they own it and are responsible for its simulation. Second, we facilitate a simplified
version of Kawano and Yonekura’s Allocated Topographical Zone [15] (AtoZ) algorithm that
we call Ownership Volumes.

Early implementations of Ownership Volumes were afflicted with an interesting bug where
the small amount of jitter present when a physics simulation changes owners would cause an
object to re-enter the volume it just departed, which often resulted in a jittery loop of repeated
ownership transfers that could last for up to several seconds. We solved this issue by adding
a short window of time lasting 10 ticks, approximately 78 milliseconds, after an ownership
transfer occurs during which another ownership transfer can not occur.

Ownership Volumes, unlike AtoZ’s regions which dynamically morph based on users’ po-
sitions, are predefined fixed regions of space. This allows for more fine-grained control over
exactly where ownership transfers will occur. Ownership Volumes have several methods of de-
ciding who owns them. The two primary methods, oldest user and newest user, rely on collisions
to detect when users enter or exit the volume. Additional methods are provided where own-
ership is assigned to the objects creator and ownership is not managed by the component but
instead managed manually, similar to how ownership is managed by default in Fish-Networking.

3.2 Clear Separation of Inputs, Visuals, and Networking

One of MuVR’s major priorities is laying a foundation for integrating mixed VR and non-
VR users into the same shared environment. For this to be possible there needs to be a
separation between the visuals displayed to users, which are then synchronized over the network,
and the inputs driving those visuals. To facilitate this, we have developed a novel slot-based
system where pose data (three-dimensional positions and rotations) can be stored in named
slots. Originally, this Pose-Slot System featured 12 slots, head and pelvis, along with left and
right shoulders, elbows, wrists, knees, and ankles that should be capable of representing the
majority of human poses (without regard to finger positions). We then discovered that for some
applications some of these points are unnecessary and several additional points would be useful,
thus we generalized to a system where a variable number of named slots can be associated with
pose data.

These pose-slots act as a unified layer of glue code where various input methods can store
pose data and then a single visual representation can use well known skeleton, Inverse Kine-
matic, or straightforward pose copying techniques to position the visuals [7, 16]. In MuVR’s
current design the visuals are responsible for synchronizing their state across the network, thus
the Network Layer need not have any awareness of the Input Layer.

3.2.1 UserAvatar

The UserAvatar serves two major purposes. First, it tracks the object’s current owner and if the
local user is also the current owner it creates appropriate input controls for them. Whenever
the ownership of an object changes, we reperform this check, always ensuring that only the
current owner has input control. This system is designed to support multiple types of input
depending on the medium of the user.

Second, it acts as the storage location for pose-slots. The Pose-Slot System is implemented
using a dictionary mapping strings to referable pose data. Behind the scenes, links to this
dictionary are converted to direct references to the associated pose data so that no runtime
performance is lost using this system.
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Arbitrary property storage can easily be added through inheritance with convenient access
to an event function that is called after input is spawned, which is useful if there is any additional
non-generalizable glue code that needs to be executed. Combined with the utilities provided
by SyncPoses, the UserAvatar provides a powerful, generalized, and extendable input storage
utility.

3.2.2 SyncPose

SyncPose is also a Unity component that is used to load or store data from or to the User Avatar,
possibly with an offset. SyncPoses attached to objects in the Input Layer read the location of
objects with local input control and then store them in one of the UserAvatar’s pose-slots.
Similarly, SyncPoses attached to objects in the Visual Layer load the location of objects from
the UserAvatar and apply that location to objects in the visual representation. To facilitate
this, SyncPoses take a reference to a prefab version of the UserAvatar they are synchronizing
with and provide a custom graphical interface to make selecting pose-slots simple.

Additionally, SyncPoses support locking each axis of the position and each Euler axis of the
rotation so that they are not copied. This provides the capability of synchronizing from the
position of one object and then copying one of the rotational axis of another object into the
same pose-slot.

3.2.3 Network Synchronization

After input data has been transferred to the Visual Layer, positional information must be
propagated to other clients on the network. Fish-Networking provides a NetworkTransform
component that synchronizes position, rotation, and scale across the network; however, for
objects not based upon the UserAvatar model, Fish-Networking does not provide any client
authoritative method of synchronizing physics properties.

Thus, we implemented a NetworkRigidbody component that synchronizes the physics prop-
erties (velocity, angular velocity, gravity, and drag) utilized by Unity’s physics simulation sys-
tem. Due to the Client Authoritative nature of MuVR, these properties are only necessary
when an ownership transfer occurs; however, we discovered that the delay encountered when
synchronizing these properties during such an event, paired with the nondeterministic nature
of Unity’s physics system would produce unpredictable changes in the object’s trajectory after
an ownership transfer.

Likewise, we discovered that utilizing an unreliable method of delivery produced similar
unpredictable changes. Behind the scenes, Fish-Networking uses an unreliable UDP-based C#
transport that provides its own optional reliability layer with a design very similar to TCP,
but without dedicated congestion control. Thus, we use Fish-Networking’s reliability mode to
synchronize velocity and angular velocity to all clients every tick. While other less frequently
changed properties are reliably synchronized whenever a change is detected.

The UserAvatar-based design at MuVR’s core has many moving parts, however, most of
them are not unique. Figure 1, provides a visual summary of how these components interact.
The figure’s color-coded lines clearly illustrate how each layer morphs its input data into a form
the next layer can understand without needing to have any awareness of the original form.

3.3 Voice

The final aspect of MuVR’s design worth mentioning is its voice communication implemen-
tation. We wanted a voice implementation that was simple and did not rely on any costly
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Figure 1: A visual overview of the components used to link inputs, visuals, and networking.
Inputs (depicted in solid black) are applied to various objects in the environment. SyncPoses
then transfer modified position information (depicted in dashed blue) from the Input Layer to
the Visual Layer via the UserAvatar. Finally, global position data (depicted in dotted red)
is sent through the network and used to set the position of this user as seen by other users.
Simultaneously, interactions adjust properties of the physics simulation which are propagated
to the rest of the network via a NetworkRigidbody and NetworkTransform.

thirdparty subscription services. UniVoice [5] met all of these requirements, however, its non-
Unity idiomaticity and entirely separate networking stack were less than desirable.

Before we can discuss the adjustments we made to UniVoice, a basic understanding of its
architecture is required. UniVoice is based on four main classes: an IChatroomNetwork that is
responsible for transporting voice data, an TAudioSource that is responsible for acquiring voice
data, an IAudioOutputFactory that is responsible for creating an audio output for every relevant
peer, and finally a ChatroomAgent that manages the previous three. The ChatroomAgent
supports separating users into rooms, limiting the pool of other relevant users to only the users
within the same room.

The first change we made was implementing a Fish-Networking-based ChatroomNetwork.
It utilizes Fish-Networking’s remote procedure calls to transfer data between users, invoking
subscribable events at either end so that other interested objects can listen to the data. Fur-
thermore, a dictionary is kept in sync between all of the connected users that maps room names
to lists of connections currently within those rooms. Behind the scenes, UniVoice ensures that
audio is only sent to users within the same room as the sender.

In terms of improving Unity idiomaticity, we implemented a component that allows easy
selection of audio input sources from within the Unity editor. The Fish-Networking-based
VoiceChatroom is implemented as a component that can be easily referenced using Unity’s
graphical editor and provides several extra convenience functions that set up an agent using
the VoiceChatroom; all referenceable using Unity’s editor.
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4 Applications

Once we had developed our basic implementation, we needed to test it in an actual application.
We began by implementing a Ping-Pong like game with only a subset of the full game’s rules,
the source code for this application is available in MuVR’s GitHub repository [11]. We then
integrated our framework into an existing project, performed as a joint partnership with the
University of Nevada, Reno’s Mining & Metallurgical Engineering department, that needed
multi-user functionality.

4.1 Mining Applications

The addition of multiuser functionality allowed us to collaborate with mining researchers on a
training simulation. This simulation is designed to teach mining truck drivers how to utilize a
new proximity warning system to avoid collisions with equipment and personnel they can not
see. This integration greatly challenged our original pose-slot implementation.

Instead of only needing to translate input for a human body, we also had to synchronize
several properties associated with a mining dump truck whose Visual and Input Layers are
depicted in Figure 2. This caused us to realize the inadequacies of our original fixed pose-slot
mapping and led to its replacement with the current dynamic system.

Figure 2: The mining dump truck’s Visual Layer (left) and Input Layer (right).

In addition to extra poses that now needed to be tracked, we also had a car controller
that needed direct access to wheel meshes for both physics and animation purposes. Similarly,
several audio and haptic feedback utilities needed to be synchronized in both the Input and
Visual Layers. Instead of rewriting all of this functionality ourselves, we used the UserAvatar’s
flexible extension ability to link these properties for us. Figure 3 lists all of the code necessary
to facilitate this additional linkage.

5 Future Work and Conclusion

Looking to the future several aspects of MuVR could be improved. The most notable one being
how the physics simulation handles ownership transfers. While we have been able to greatly
reduce the jitter this entails, we have not been able to eliminate it. Perhaps a Predictive
Behavioural Model [12] could be used to ease this issue.

Furthermore, while a foundation has been laid for work on mixed VR and non-VR interac-
tions, we have not even scratched the surface of the work that must be done in this field. Factors
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using UnityEngine;
using UnityStandardAssets. Vehicles.Car;

public class TruckControlLinker : InputControlLinker {
public CarController car;
public Telemetry telemetry; // Haptic feedback

}

public class TruckAvatar : UserAvatar {
public GameObject [] wheelMeshes;
public Alarm alarm;
public NetworkCarAudio carAudio;

protected override void OnlnputSpawned(GameObject input) {
var linker = GetComponentInChildren<TruckControlLinker >();
linker .car. m_WheelMeshes = wheelMeshes;
linker.car.Start ();

carAudio.carController = linker.car;
alarm . telemetry = linker.telemetry;

Figure 3: The code used to link additional properties of the Mining Dump Truck. Every public
attribute of these classes is set using Unity’s visual editor.

such as compelling interactions in both VR and non-VR, and appropriate body presence for
both mediums still need to be developed.

In conclusion, Novotny et al. created a useful framework for multiuser VR experiences. We
have followed their example and expanded upon the foundation they laid. MuVR has been
designed to be simple and extendable. These claims have been tested and proved by using the
framework for the development of several applications, one having requirements the framework
was not originally designed to support. We hope this framework will prove to be a great boon
to other developers and the VR field as a whole.
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