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Abstract—The Consultative Committee for Space Data Systems
(CCSDS) 141.11-O-1 Line Product Code (LPC) provides a
rare opportunity to compare maximum-likelihood decoding and
message passing. The LPC considered in this paper is intended
to serve as the inner code in conjunction with a (255,239) Reed
Solomon (RS) code whose symbols are bytes of data. This paper
represents the 141.11-O-1 LPC as a bipartite graph and uses
that graph to formulate both maximum likelihood (ML) and
message passing algorithms. ML decoding must, of course, have
the best frame error rate (FER) performance. However, a fixed
point implementation of a Neural-Normalized MinSum (N-NMS)
message passing decoder closely approaches ML performance
with a significantly lower complexity.

Index terms— line product code, LDPC decoders, neural network,
maximum likelihood, FPGA

I. INTRODUCTION

Line codes describe a set of encoding maps used to transmit
digital data. The primary purpose of a line code is to manage
the disparity of a transmission, which is defined as the differ-
ence between the number of transmitted 1s and Os. Managing
bit disparity has the benefit of minimizing DC components
in transmissions which cannot be reliably transmitted over
most long-distance communication channels. In this paper, we
reference the Consultative Committee for Space Data Systems’
(CCSDS) 141.11-O-1 proposed line code, known as the Line
Product Code (LPC) [1].

While often impractical since their complexity scales at
a rate of O(2"), maximum likelihood (ML) decoders repre-
sent the best possible decoding performance. Previous work
including [2] and [3] have proposed methods of reducing
the complexity of ML decoding for linear block codes by
representing them as a trellis and performing Viterbi decoding.
While still on the order of O(2"), these methods drastically
reduce number of required operations, enough so that for a
short blocklength code such as the LPC, ML decoding is
considered.
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Message passing algorithms, such as belief propagation
or MinSum, are low-complexity iterative decoders for linear
block codes. However, message passing algorithms are sub-
optimal because they assume that the Tanner graph defined
by the parity check matrix has no cycles. As a result, for
short block length codes with short cycles, message passing
decoders do not provide satisfying performance.

Recently, numerous works have focused on improving the
performance of message passing decoders with the aid of
neural networks [4]-[12]. Nachmani et al. and Lugosch et
al. in [4], [5], [7] proposed Neural Normalized MinSum
(N-NMS) and Neural Offset MinSum (N-OMS) decoders to
improve the performance of the NMS and OMS decoders.
Unlike NMS and OMS, which use a constant multiplicative
or offset weight, N-NMS and N-OMS assign distinct trainable
weights to each edge in each iteration. Simulations in [4],
[5], [7] show that N-NMS and N-OMS have the capability
to drastically improve the decoding performance of NMS and
OMS for short-blocklength codes. Therefore, this paper aims
to reformulate the LPC as a linear block code to leverage the
recent advancements in neural network-based decoders.

The rest of the paper is organized as follows: Section II
introduces the LPC, how it manages bit disparity, and how it
is encoded. Section III describes how to represent the LPC as a
bipartite graph and how to perform both maximum likelihood
and message passing decoding on it. Section IV details the
process of implementing the considered decoders on a Field
Programmable Logic Array (FPGA). Simulation results and
corresponding discussion are shown in Section V and Section
VI concludes this paper.

II. LINE PRODUCT CODE ENCODING

The LPC encoder operates on blocks of 25 bits denoted
by LPCEncin[24:0]. The most significant bit LPCEncIn[24]
is channel system data denoted as S. The LPC encoder
discards LPCEncIn[23:16] (legacy implementation of the laser
communication terminal encoding process), and maps LP-
CEncIn[15:0] to the following 4 x 4 matrix:
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Fig. 1. Differential encoding to calculate sub-block 1.
where @ = logical XOR
1(0,0) | w(0,1) | u(0,2) | u(0,3)
u(1,0) | uw(l,1) | w(l,2) | w(l,3)
w2,0) | w@21) | w22) | u23)
u(3,0) | u@3,1) | w32 | u323)

The LPC encoder generates the codewords of 24 bits. The

codewords along with S forms a 5 x 5 matrix:

e*(0,0) | e*(0,1) | e*(0,2) | €*(0,3) | ph(0)
e*(1,0) | e*(1,1) | e*(1,2) | €*(1,3) | ph(1)
e*(2,0) | e*(2,1) | €*(2,2) | €*(2,3) | ph(2)
e*(3,0) | e*(3,1) | e*(3,2) | €*(3,3) | ph(3)
pu(0) | pv() | pv(2) | pv(3) S

The encoding of LPC consists of the following steps:

1) Calculate e(4,j) (¢,7 =0,...,3) using LPCEnciIn[15:0]
via differential encoding. In particular, we refer to
{e(i,j)]i = 0,1,57 = 0,...,3} as sub-block 1 and
{e(i,j)|i =2,3,7=0,...,3} as sub-block 2.

2) Calculate the horizontal parity bits ph(i) (i =0,...,3)
and vertical parity bits pv(é) (i =0,...,3).

3) Apply bit-wise inversion of sub-block 1 and/or 2 in
order to minimize difference between the number of
transmitted ones and zeros, which is also referred as
disparity. We denote e* (4, 5) (i,j = 0, ..., 3) as the sub-
block bits after inversion process.

The following section describes these three steps in detail.

A. Differential Encoding

Differential encoding is performed on the two sub-blocks
separately. For sub-block 1, initialize e(0,0) = u(0,0) and
e(1,0) = u(1,0) @ e(0,3):

e(i,j) = u(i,j) ®e(i,j—1), j>0 (1

For sub-block 2, initialize e(2,0) = u(2,0) e(2,0) =
u(2,0) @ e(0,3) as shown in Fig. 1. The remaining bits can
be derived using equation (1). Fig. 1 shows the differential
encoding on sub-block 1.

B. Horizontal Parity bits

After calculating the {e(0,0)...e(3,3)} bits, the horizontal
and vertical parity bits must be determined. The horizontal
parity bit ph(0) is always calculated for odd parity of the first
row, meaning

3
[ph(O) + ) e(0, k)} mod2 = 1 )

k=0

The other three parity bits ph(1), ph(2), and ph(3) are
determined not only by their corresponding rows, but also
by ¢(0,0). Specifically, if ¢(0,0) = 0, then odd parity is
used for ph(1), ph(2), and ph(3) and its corresponding rows.
Otherwise, the even parity must be satisfied. Therefore,

3
{ph(i) + ) eli, k:)] mod2 = 16 ¢(0,0), i =1,2,3. (3)
k=0

C. Vertical Parity Bits

The vertical parity bit pv(0) is always calculated for even
parity of the first row, meaning that

3
[PU(O) + Z e(k, O)] mod2 = 0 4)

k=0

The other vertical parity bits, pv(1), pv(2), and pv(3)
are calculated using their corresponding rows and e(2,0). If
e(2,0) = 0, then even parity is used for pv(1), pv(2), and
pv(3) and its corresponding rows. Otherwise, the odd parity
must be satisfied. Therefore:

3
{pv(i) +) e(k,i)}m0d2 =¢(2,0), i=1,2,3 (5
k=0

D. Minimization of Disparity

The disparity of each sub-block is defined as the difference
between the number of transmitted ones and zeros. The goal
of the LPC encoder is to minimize the disparity of each sub-
block so that a relatively equal number of Os and 1s are
transmitted. Consequently, sub-block 1, sub-block 2, both,
or neither are inverted at the encoder’s end depending on
the value of the disparity bits of each sub-block. Define
DispSum[i](: = 0, ..., 3) as the disparity in the 5 X 5 matrix,
after the inversion of none, one or both sub-blocks. The
following table lists inversion rules corresponding to each
DispSum[i] bit where ¢ = 0,...,3:

Inversion of | Inversion of

Sub-block 1 | Sub-block 2
DispSum[0] No No
DispSum[1] Yes No
DispSum|2] No Yes
DispSum(3] Yes Yes
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Fig. 2. Bipartite graph of LPC. The red dashed circles are punctured variable node which indicate the sub-block inversion.

The LPC encoder performs sub-block inversion based on
the rules shown in the previous table that provide minimum
DispSum[i]. Based on these inversion rules, the e* (7, j)’s are
calculated as follows:

Inversion
No Inversion ’

wre 1—e(i,5)
e (1,5) = . 6
(4,7) { e(4, §) (6)
where ¢ = 0,1 for sub-block 1, 7 = 2,3 for sub-block 2,
and j = 0, ..., 3 for both sub-blocks.

III. LINE PRODUCT CODE DECODING

As a linear code, LPC can be represented by a parity check
matrix H and corresponding bipartite graph G. Let v be a
codeword of LPC, and define s(v) by:

s(v) = Hv™. 7

Note that for a conventional linear block code, s(v) is
a vector that is independent with v. However, in this case,
there are four distinct s with each one corresponding to a
single inversion rule. One possible solution is to perform
the decoding process using four different s separately. This,
however, will inevitably increase the hardware usage and
decoding latency.

The following section shows that the four matrices can
be combined into one by introducing two punctured variable
nodes which indicate the inversion rule. As a result, decoding
can be performed using only one matrix. The next sections
describes the application of decoding methods including max-
imum likelihood and message passing to the LPC.

A. Parity Check Matrix Representation

Equations (2) through (5) put eight parity check constraints
on e(i,7), horizontal parity bits and vertical parity bits. The
black, solid line portions in Fig. 2 represent the bipartite
graph defined by these eight parity checks. The "box-plus"
symbols and circles represent check nodes and variable nodes,
respectively. Circles with a 1 represent a special variable node

whose value is a constant 1. The eight check nodes are denoted
as cg, ..., c7. The bipartite graph is drawn such that the modulo-
2 sum of all variable nodes connected to each check node must
equal zero. These are known as the parity checks.

Given a valid codeword, incorrectly inverting one sub-block
will cause the new codeword to fail some parity checks. More
specifically, the check nodes that connect to an odd number
of variable nodes in one sub-block will no longer satisfy all
parity checks if that sub-block gets inverted.

Therefore {c1,ca,c3} do not satisfy the parity check con-
dition when sub-block 1 gets inverted and {cs,cg,c7} do
not satisfy the parity check condition when sub-block 2 gets
inverted. Two extra variable nodes punc(l) and punc(2) are
introduced in order to make sure that the check nodes still
satisfy the parity check condition after the sub-block inversion.
punc(1l) connects the check nodes that have an odd number
of variable node neighbors belonging to sub-block 1. When
sub-block 1 gets inverted, punc(1) equals 1 such that for each
check node connected to punc(1), all variable nodes connected
to that check node sum to zero. Similarly, punc(2) connects
the check nodes that have an odd number of variable node
neighbors belonging to sub-block 2. Fig. 2 shows the complete
bipartite graph of LPC.

B. Maximum Likelihood Decoding via the Parity Check Matrix

In this section, we describe how to utilize Wolf’s work in
[2] to represent the Line Product Code (LPC) as a trellis
for performing maximum likelihood (ML) decoding. Since
ML decoding represents the theoretical limit of decoding
performance, practical decoders which achieve frame error
rates closer to it are more desirable. Furthermore, because the
LPC is a short blocklength code, reduction in complexity via a
trellis representation such as [2] may be feasible to implement
in hardware.

Naive ML decoders simply compare the received codeword
against all valid codewords. As a result, its complexity scales
on the order of 2* where k is the number of information



bits in the codeword. According to the bipartite graph for the
LPC shown in Figure 2, there are 262, 144 unique codewords
making it infeasible in hardware.

As such, we leverage Wolf’s framework in [2] to create
a trellis representation of the LPC. While sacrificing some
parallelism, the final trellis contains only 2,764 edges which
represents a 94-fold reduction in complexity compared to brute
force ML decoding. To construct the trellis, we follow the
procedure in [2] with one important caveat: we terminate the
trellis at the syndrome of (1,1,1,1,0,0,0,0) instead of the
all-zeros syndrome. This is because the Line Product Code is
NOT strictly linear due to the use of odd parity (XOR with
a constant 1). This means that the trellis must terminate at a
syndrome with 1s in the indices whose corresponding check
node contains this constant 1, and O elsewhere.

Fig. 3. LPC Trellis Derived from Wolf’s Method Following Pruning, with
2942 states and 5372 branches

C. Maximum Likelihood Decoding via the Generator Matrix

The trellis representation of a code can also be constructed
using a trellis oriented generator matrix [3]. A code’s generator
matrix G can be transformed to become "trellis oriented" via
row operations. A permutation of the columns of G yields a
code G’ equivalent to G on memoryless channels [3]. This
permutation may yield a simpler trellis. However, finding
this permutation is known to be an NP-hard problem. Using
heuristics, a permutation that simplifies the trellis may be
found. For example, a graph of a trellis obtained with one
such permutation of the LPC yielded a trellis with 1098 states
and 1908 branches, down from 2942 states and 5372 branches
of the original code.

Fig. 4. LPC Trellis Derived from a Generator Matrix Allowing Permutations,
with 1098 states and 1908 branches

D. Message Passing Decoding

Message passing decoding algorithms, such as belief prop-
agation and MinSum, provide an excellent decoding perfor-

mance for linear block codes with large girths, defined as
length of the shortest cycle in its Tanner graph. For the LPC,
message passing decoders do not perform well, because its
girth is only 4.

Recently, the neural-network-aided message passing de-
coders [4], [5], [7] have shown substantial improvements
compared to conventional message passing decoders. Neural-
network-aided message passing decoders assign distinct
weights to each message in each iteration, such that the
decoder can overcome trapping sets with short cycle lengths.
This paper considers a neural normalized MinSum (N-NMS)
decoder with a flooding schedule. In the ' decoding iteration,
N-NMS updates the check-to-variable node message, ug)ﬁm,
the variable-to-check node message, l,(]?ﬁcj, and posterior of

each variable node, lq(fi), by:

ulf),, = 58%) x 11 (t—1)

sgn(lvjr —C; )

v eN(:l)/{)U]} , (8)
X min ’ lut_fl e
vaEN(Ci)/{'uJ-} ( J _Ll)

ey €N(v;)/{ei}

W) =1+ Y ul) .,
cr €N (v;)

(10)

N (c;) represents the set of the variable nodes connected to
¢; and N (v;) represents the set of the check nodes that are
connected to v;. lf)i1 is the LLR of the channel observation of

vj. ﬁ((zz’vj) are multiplicative weights to be trained. The de-
coding process terminates when all parity checks are satisfied
or when the maximum iteration count, I, is reached. In this
paper, we follow the steps of [12] to train the neural network.

IV. HARDWARE IMPLEMENTATION OF MESSAGE PASSING
DECODERS

Despite ML decoding being the most optimal, its compu-
tational complexity for both the parity check and generator
matrix derived trellises is too high to meet timing constraints
for practical hardware implementation. Table I shows the
worst case number of operations for each decoding method
considered here. An operation is defined as an addition or
multiplication, in the case of belief propagation (BP), we
consider arctan, exp, and log as a single operation since
they are typically implemented via a Lookup Table (LUT).
Table I indicates that message passing algorithms, except
belief propagation, utilize significantly fewer operations than
ML decoders, indicating that they are the most feasible to
implement on hardware. It should also be noted that the Table
I assumes that the message passing decoders always run for 8
iterations. In reality, for higher E,/Ny (around 7.5 dB for the
LPC), the number of required iterations approaches 1, making
message passing even more attractive. As such, our focus for
this section will be on the N-NMS decoder, with MS and NMS
decoders included for the purpose of comparison. The field-
programmable gate array (FPGA) device used for hardware
implementation was the Zynq ZCU106 MPSoC.
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Fig. 5. Block Diagram of FPGA architecture.

The overall architecture consists of a bank of registers
storing messages between check and variable nodes, and small
modules to perform check node (CN) and variable node (VN)
operations, as seen in Figure 5. The overall decoder controls
the timing and coordinates the messages passed between the
check and variable node modules for each decoding iteration.
It also controls the terminating point by checking if the
codeword estimate is valid or if the maximum number of
iterations has been reached.

The initial FPGA implementation is a simple MinSum de-
coder, where check nodes search for the two minimums among
its messages, and variable nodes compute simple summations.
MinSum will be used as baseline to compare against the Nor-
malized MinSum (NMS) and Neural-Normalized MinSum (N-
NMS) implementations. However, in order to implement the
N-NMS decoder, we must dynamically assign edge weights
depending on the iteration of the decoder. This task is divided
between 2 modules: the main decoder and the check node
module. The multiplicative edge weights are first quantized to
a 6-2 scheme, meaning the first 6 bits represent the integer
part of the number and the last 2 bits represent the fractional
part. Testing and simulations on the LPC showed that the 6-2
quantization achieved a satisfactory middle ground between
accuracy and bit width.

Once the edge weights are quantized, they are stored
in Block RAM (BRAM). The structure of the BRAM can
represented as a 2-D matrix where each element represents
a register that stores an 8-bit quantized edge weight. The
index of a certain edge weight in the matrix also contains
information regarding the iteration count and edge number
in the bipartite graph. The main decoder module uses this
information to assign weights to the proper edge depending
on the iteration count. After the check node module calculates
the check-to-variable node message, it then multiplies that by
the incoming edge weight. The fixed point FER curves in
the following section are generated using C++ simulations.
To match the FPGA implementation, all edge weights and
calculated messages are quantized according to the 6-2 scheme
discussed earlier.

V. SIMULATION RESULTS

A. Frame Error Rates for Various Decoders

In this section, we showcase our floating point simulation
results for the Frame Error Rate (FER) of various decoding
methods. The maximum likelihood FER was simulated using

TABLE 1
COMPARISON OF DECODING COMPLEXITY VIA NUMBER OF OPERATIONS.

Decoder Worst case number of operations
BP* 10,192
standard MS* 3,200
NMS* / N-NMS* 3,616
ML (Brute force) 524,288
ML (Generator matrix trellis) 6,130

* Message passing algorithms are assumed to always run for 8 iterations

the trellis method described in sections III-B and III-C. Addi-
tionally, in line with practical limitations on actual decoding
hardware, we limit the number of decoding iterations to two
and eight. At high E} /Ny, most received codewords are low-
noise, making the average number of iterations approach 1.
However, errors involving trapping sets require more iterations
to correct which explains the gap between the 2 and 8 iteration
decoders.

The N-NMS decoder performed the closest to Maximum
Likelihood out of the three decoders considered, even beating
out Belief Propagation. These results line up with the findings
of [12]. To summarize, via its training process, the N-NMS
decoder was able to adapt its weights to the particular structure
of the LPC unlike belief propagation or normalized MinSum.
In particular, the N-NMS weights are specifically trained to
mitigate the decoding loss caused by trapping sets. With the
LPC being such a short block-length code, its cycles have
particularly small girths making N-NMS the ideal decoding
method for it.
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Fig. 6. FER for various floating point decoding methods capped at 2 and 8
decoding iterations

B. Quantization Loss for Fixed Point Decoders

In Table II, we observe a noticeable increase in the Look
Up Tables (LUTs) used by the N-NMS implementations as
compared to the baseline MS and NMS ones. However, it
is important to note that the N-NMS decoders also perform
better than their counterparts. So, essentially, we are trading
extra hardware utilization for better performance.

The 6-2 quantization used on our FPGA is inherently
different than typical software simulations which utilize 64-
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Fig. 7. Floating vs fixed point FER for the N-NMS decoder capped at 2 and
8 decoding iterations

TABLE 11

DECODER FER PERFORMANCE AND RESOURCE USAGE

decoder Eb/No (dB)* LUT Reg.
baseline MS (8) 9.93 4953 (100%) 2201 (100%)
NMS 9.63 5205 (105%) 2201 (100%)
N-NMS(1P) 13.36 5793 (117%) 2201 (100%)
N-NMS(2) 10.54 5784 (117%) 2206 (100%)
N-NMS(4) 9.28 5795 (117%) 2201 (100%)
N-NMS(8) 9.17 5796 (117%) 2206 (100%)

2Estimated (%) to achieve FER of 10~ 7.
b(n) number of iterations spent decoding.

bit floating point numbers. Since we utilize fewer bits in
our fixed point implementation, its precision is comparatively
diminished to floating point and we expect some deterioration
in FER. The purpose of the simulations shown in Figure 7
is to demonstrate that with the N-NMS decoder, utilizing a
fixed point quantization as opposed to floating point presents
an almost negligible loss in frame error rate.

C. Reed Solomon Frame Error Rate

As noted in the CCSDS specification, the LPC serves as the
inner code in conjunction to a (255,239) Reed-Solomon (RS)
operating on GF(256). Since the RS code has 16 parity bytes, it
can correct for up to 8 byte errors. Considering that the LPC
encodes 2 bytes of data at a time, the RS code can correct
for up to 4 LPC frame errors. Given the FER of the LPC,
the corresponding FER of the RS code can be modeled via a
binomial expression: Prg(e) =1 — P(X < 5), where X ~
B(128, Prpc(e)). Figure 8 shows the Reed Solomon FER
for the N-NMS fixed and floating point implementations at
various E}, /Ny with the LPC as the inner code.

VI. CONCLUSION

This paper compares both the feasibility and decoding
performance of maximum likelihood (ML), belief propagation,
standard MinSum, normalized MinSum, and Neural Normal-
ized MinSum (NNMS) decoders on the Line Product Code
(LPC). An initial exploration of ML decoding was consid-
ered due to the LPC’s short blocklength. However, attempted
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Fig. 8. Reed Solomon Code FER for Floating vs Fixed point N-NMS and
Maximum Likelihood Decoding on the LPC

simulation on an FPGA board showed that, even with com-
plexity reduction via a trellis, ML decoding failed to meet
timing requirements. In lieu of this, we considered message
passing algorithms, while less optimal than ML decoding,
can be performed iteratively and with fewer operations than
it. Simulation results on the LPC show that, with sufficient
iterations, these message passing algorithms approach the
frame error rate achieved by ML decoding. In particular, the
NNMS decoder, with only 8 iterations, show only a 0.5 dB
loss compared to ML making it the most promising decoder
considered here.
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