
Neural Normalized Min-Sum Message-Passing vs.

Viterbi Decoding for the CCSDS Line Product Code

Jonathan Nguyen*, Linfang Wang*, Chester Hulse*, Sahil Dani*, Amaael Antonini*, Todd Chauvin‡,

Dariush Divsalar†, Richard Wesel*

*Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, California 90095

†Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

‡SA Photonics, Los Gatos, California 95032

Email: {nguyen.j, lfwang, chulse, sahildani, amaael, wesel}@ucla.edu,

t.chauvin@saphotonics.com, Dariush.Divsalar@jpl.nasa.gov

Abstract—The Consultative Committee for Space Data Systems
(CCSDS) 141.11-O-1 Line Product Code (LPC) provides a
rare opportunity to compare maximum-likelihood decoding and
message passing. The LPC considered in this paper is intended
to serve as the inner code in conjunction with a (255,239) Reed
Solomon (RS) code whose symbols are bytes of data. This paper
represents the 141.11-O-1 LPC as a bipartite graph and uses
that graph to formulate both maximum likelihood (ML) and
message passing algorithms. ML decoding must, of course, have
the best frame error rate (FER) performance. However, a fixed
point implementation of a Neural-Normalized MinSum (N-NMS)
message passing decoder closely approaches ML performance
with a significantly lower complexity.

Index terms— line product code, LDPC decoders, neural network,
maximum likelihood, FPGA

I. INTRODUCTION

Line codes describe a set of encoding maps used to transmit

digital data. The primary purpose of a line code is to manage

the disparity of a transmission, which is defined as the differ-

ence between the number of transmitted 1s and 0s. Managing

bit disparity has the benefit of minimizing DC components

in transmissions which cannot be reliably transmitted over

most long-distance communication channels. In this paper, we

reference the Consultative Committee for Space Data Systems’

(CCSDS) 141.11-O-1 proposed line code, known as the Line

Product Code (LPC) [1].

While often impractical since their complexity scales at

a rate of O(2n), maximum likelihood (ML) decoders repre-

sent the best possible decoding performance. Previous work

including [2] and [3] have proposed methods of reducing

the complexity of ML decoding for linear block codes by

representing them as a trellis and performing Viterbi decoding.

While still on the order of O(2n), these methods drastically

reduce number of required operations, enough so that for a

short blocklength code such as the LPC, ML decoding is

considered.

This research is supported by SA Photonics and the Air Force Research
Lab (AFRL). Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect views of SA or AFRL. Research was carried out in part at the Jet
Propulsion Laboratory, California Institute of Technology, under a contract
with NASA.

Message passing algorithms, such as belief propagation

or MinSum, are low-complexity iterative decoders for linear

block codes. However, message passing algorithms are sub-

optimal because they assume that the Tanner graph defined

by the parity check matrix has no cycles. As a result, for

short block length codes with short cycles, message passing

decoders do not provide satisfying performance.

Recently, numerous works have focused on improving the

performance of message passing decoders with the aid of

neural networks [4]–[12]. Nachmani et al. and Lugosch et

al. in [4], [5], [7] proposed Neural Normalized MinSum

(N-NMS) and Neural Offset MinSum (N-OMS) decoders to

improve the performance of the NMS and OMS decoders.

Unlike NMS and OMS, which use a constant multiplicative

or offset weight, N-NMS and N-OMS assign distinct trainable

weights to each edge in each iteration. Simulations in [4],

[5], [7] show that N-NMS and N-OMS have the capability

to drastically improve the decoding performance of NMS and

OMS for short-blocklength codes. Therefore, this paper aims

to reformulate the LPC as a linear block code to leverage the

recent advancements in neural network-based decoders.

The rest of the paper is organized as follows: Section II

introduces the LPC, how it manages bit disparity, and how it

is encoded. Section III describes how to represent the LPC as a

bipartite graph and how to perform both maximum likelihood

and message passing decoding on it. Section IV details the

process of implementing the considered decoders on a Field

Programmable Logic Array (FPGA). Simulation results and

corresponding discussion are shown in Section V and Section

VI concludes this paper.

II. LINE PRODUCT CODE ENCODING

The LPC encoder operates on blocks of 25 bits denoted

by LPCEncIn[24:0]. The most significant bit LPCEncIn[24]

is channel system data denoted as S. The LPC encoder

discards LPCEncIn[23:16] (legacy implementation of the laser

communication terminal encoding process), and maps LP-

CEncIn[15:0] to the following 4× 4 matrix:



e(0, 1)

e(0, 0)

e(0, 3)

e(0, 2)

e(1, 1)

e(1, 0)

e(1, 3)

e(1, 2)

u(0, 1)

u(0, 0)

u(0, 3)

u(0, 2)

u(1, 1)

u(1, 0)

u(1, 3)

u(1, 2)

Fig. 1. Differential encoding to calculate sub-block 1.

where ⊕ = logical XOR

u(0, 0) u(0, 1) u(0, 2) u(0, 3)
u(1,0) u(1,1) u(1,2) u(1,3)

u(2,0) u(2,1) u(2,2) u(2,3)

u(3,0) u(3,1) u(3,2) u(3,3)

The LPC encoder generates the codewords of 24 bits. The

codewords along with S forms a 5× 5 matrix:

e∗(0, 0) e∗(0, 1) e∗(0, 2) e∗(0, 3) ph(0)
e∗(1, 0) e∗(1, 1) e∗(1, 2) e∗(1, 3) ph(1)
e∗(2, 0) e∗(2, 1) e∗(2, 2) e∗(2, 3) ph(2)
e∗(3, 0) e∗(3, 1) e∗(3, 2) e∗(3, 3) ph(3)
pv(0) pv(1) pv(2) pv(3) S

The encoding of LPC consists of the following steps:

1) Calculate e(i, j) (i, j = 0, . . . , 3) using LPCEncIn[15:0]

via differential encoding. In particular, we refer to

{e(i, j)|i = 0, 1, j = 0, . . . , 3} as sub-block 1 and

{e(i, j)|i = 2, 3, j = 0, . . . , 3} as sub-block 2.

2) Calculate the horizontal parity bits ph(i) (i = 0, . . . , 3)

and vertical parity bits pv(i) (i = 0, . . . , 3).

3) Apply bit-wise inversion of sub-block 1 and/or 2 in

order to minimize difference between the number of

transmitted ones and zeros, which is also referred as

disparity. We denote e∗(i, j) (i, j = 0, . . . , 3) as the sub-

block bits after inversion process.

The following section describes these three steps in detail.

A. Differential Encoding

Differential encoding is performed on the two sub-blocks

separately. For sub-block 1, initialize e(0, 0) = u(0, 0) and

e(1, 0) = u(1, 0)⊕ e(0, 3):

e(i, j) = u(i, j)⊕ e(i, j − 1), j > 0 (1)

For sub-block 2, initialize e(2, 0) = u(2, 0) e(2, 0) =
u(2, 0) ⊕ e(0, 3) as shown in Fig. 1. The remaining bits can

be derived using equation (1). Fig. 1 shows the differential

encoding on sub-block 1.

B. Horizontal Parity bits

After calculating the {e(0, 0) . . . e(3, 3)} bits, the horizontal

and vertical parity bits must be determined. The horizontal

parity bit ph(0) is always calculated for odd parity of the first

row, meaning

[

ph(0) +
3

∑

k=0

e(0, k)

]

mod2 = 1 (2)

The other three parity bits ph(1), ph(2), and ph(3) are

determined not only by their corresponding rows, but also

by e(0, 0). Specifically, if e(0, 0) = 0, then odd parity is

used for ph(1), ph(2), and ph(3) and its corresponding rows.

Otherwise, the even parity must be satisfied. Therefore,

[

ph(i) +
3

∑

k=0

e(i, k)

]

mod2 = 1⊕ e(0, 0), i = 1, 2, 3. (3)

C. Vertical Parity Bits

The vertical parity bit pv(0) is always calculated for even

parity of the first row, meaning that

[

pv(0) +
3

∑

k=0

e(k, 0)

]

mod2 = 0 (4)

The other vertical parity bits, pv(1), pv(2), and pv(3)
are calculated using their corresponding rows and e(2, 0). If

e(2, 0) = 0, then even parity is used for pv(1), pv(2), and

pv(3) and its corresponding rows. Otherwise, the odd parity

must be satisfied. Therefore:

[

pv(i) +
3

∑

k=0

e(k, i)

]

mod2 = e(2, 0), i = 1, 2, 3 (5)

D. Minimization of Disparity

The disparity of each sub-block is defined as the difference

between the number of transmitted ones and zeros. The goal

of the LPC encoder is to minimize the disparity of each sub-

block so that a relatively equal number of 0s and 1s are

transmitted. Consequently, sub-block 1, sub-block 2, both,

or neither are inverted at the encoder’s end depending on

the value of the disparity bits of each sub-block. Define

DispSum[i](i = 0, . . . , 3) as the disparity in the 5× 5 matrix,

after the inversion of none, one or both sub-blocks. The

following table lists inversion rules corresponding to each

DispSum[i] bit where i = 0, . . . , 3:

Inversion of

Sub-block 1

Inversion of

Sub-block 2

DispSum[0] No No

DispSum[1] Yes No

DispSum[2] No Yes

DispSum[3] Yes Yes



e∗(0, 3)e∗(0, 2)e∗(0, 1)e∗(0, 0) e∗(1, 3)e∗(1, 2)e∗(1, 1)e∗(1, 0) e∗(2, 3)e∗(2, 2)e∗(2, 1)e∗(2, 0) e∗(3, 3)e∗(3, 2)e∗(3, 1)e∗(3, 0)

ph(0)

1

ph(1)

1

ph(2)

1

ph(3)

c4

pv(0)

c5

pv(1)

1 1

c6

pv(2)

1

c7

pv(3)

c0 c1 c2 c3

pun(1) punc(2)

Fig. 2. Bipartite graph of LPC. The red dashed circles are punctured variable node which indicate the sub-block inversion.

The LPC encoder performs sub-block inversion based on

the rules shown in the previous table that provide minimum

DispSum[i]. Based on these inversion rules, the e∗(i, j)’s are

calculated as follows:

e∗(i, j) =

{

1− e(i, j) Inversion

e(i, j) No Inversion
, (6)

where i = 0, 1 for sub-block 1, i = 2, 3 for sub-block 2,

and j = 0, ..., 3 for both sub-blocks.

III. LINE PRODUCT CODE DECODING

As a linear code, LPC can be represented by a parity check

matrix H and corresponding bipartite graph G. Let v be a

codeword of LPC, and define s(v) by:

s(v) = Hv
T . (7)

Note that for a conventional linear block code, s(v) is

a vector that is independent with v. However, in this case,

there are four distinct s with each one corresponding to a

single inversion rule. One possible solution is to perform

the decoding process using four different s separately. This,

however, will inevitably increase the hardware usage and

decoding latency.

The following section shows that the four matrices can

be combined into one by introducing two punctured variable

nodes which indicate the inversion rule. As a result, decoding

can be performed using only one matrix. The next sections

describes the application of decoding methods including max-

imum likelihood and message passing to the LPC.

A. Parity Check Matrix Representation

Equations (2) through (5) put eight parity check constraints

on e(i, j), horizontal parity bits and vertical parity bits. The

black, solid line portions in Fig. 2 represent the bipartite

graph defined by these eight parity checks. The "box-plus"

symbols and circles represent check nodes and variable nodes,

respectively. Circles with a 1 represent a special variable node

whose value is a constant 1. The eight check nodes are denoted

as c0, ..., c7. The bipartite graph is drawn such that the modulo-

2 sum of all variable nodes connected to each check node must

equal zero. These are known as the parity checks.

Given a valid codeword, incorrectly inverting one sub-block

will cause the new codeword to fail some parity checks. More

specifically, the check nodes that connect to an odd number

of variable nodes in one sub-block will no longer satisfy all

parity checks if that sub-block gets inverted.

Therefore {c1, c2, c3} do not satisfy the parity check con-

dition when sub-block 1 gets inverted and {c5, c6, c7} do

not satisfy the parity check condition when sub-block 2 gets

inverted. Two extra variable nodes punc(1) and punc(2) are

introduced in order to make sure that the check nodes still

satisfy the parity check condition after the sub-block inversion.

punc(1) connects the check nodes that have an odd number

of variable node neighbors belonging to sub-block 1. When

sub-block 1 gets inverted, punc(1) equals 1 such that for each

check node connected to punc(1), all variable nodes connected

to that check node sum to zero. Similarly, punc(2) connects

the check nodes that have an odd number of variable node

neighbors belonging to sub-block 2. Fig. 2 shows the complete

bipartite graph of LPC.

B. Maximum Likelihood Decoding via the Parity Check Matrix

In this section, we describe how to utilize Wolf’s work in

[2] to represent the Line Product Code (LPC) as a trellis

for performing maximum likelihood (ML) decoding. Since

ML decoding represents the theoretical limit of decoding

performance, practical decoders which achieve frame error

rates closer to it are more desirable. Furthermore, because the

LPC is a short blocklength code, reduction in complexity via a

trellis representation such as [2] may be feasible to implement

in hardware.

Naive ML decoders simply compare the received codeword

against all valid codewords. As a result, its complexity scales

on the order of 2k where k is the number of information



bits in the codeword. According to the bipartite graph for the

LPC shown in Figure 2, there are 262, 144 unique codewords

making it infeasible in hardware.

As such, we leverage Wolf’s framework in [2] to create

a trellis representation of the LPC. While sacrificing some

parallelism, the final trellis contains only 2, 764 edges which

represents a 94-fold reduction in complexity compared to brute

force ML decoding. To construct the trellis, we follow the

procedure in [2] with one important caveat: we terminate the

trellis at the syndrome of (1, 1, 1, 1, 0, 0, 0, 0) instead of the

all-zeros syndrome. This is because the Line Product Code is

NOT strictly linear due to the use of odd parity (XOR with

a constant 1). This means that the trellis must terminate at a

syndrome with 1s in the indices whose corresponding check

node contains this constant 1, and 0 elsewhere.

Fig. 3. LPC Trellis Derived from Wolf’s Method Following Pruning, with
2942 states and 5372 branches

C. Maximum Likelihood Decoding via the Generator Matrix

The trellis representation of a code can also be constructed

using a trellis oriented generator matrix [3]. A code’s generator

matrix G can be transformed to become "trellis oriented" via

row operations. A permutation of the columns of G yields a

code G′ equivalent to G on memoryless channels [3]. This

permutation may yield a simpler trellis. However, finding

this permutation is known to be an NP-hard problem. Using

heuristics, a permutation that simplifies the trellis may be

found. For example, a graph of a trellis obtained with one

such permutation of the LPC yielded a trellis with 1098 states

and 1908 branches, down from 2942 states and 5372 branches

of the original code.

Fig. 4. LPC Trellis Derived from a Generator Matrix Allowing Permutations,
with 1098 states and 1908 branches

D. Message Passing Decoding

Message passing decoding algorithms, such as belief prop-

agation and MinSum, provide an excellent decoding perfor-

mance for linear block codes with large girths, defined as

length of the shortest cycle in its Tanner graph. For the LPC,

message passing decoders do not perform well, because its

girth is only 4.

Recently, the neural-network-aided message passing de-

coders [4], [5], [7] have shown substantial improvements

compared to conventional message passing decoders. Neural-

network-aided message passing decoders assign distinct

weights to each message in each iteration, such that the

decoder can overcome trapping sets with short cycle lengths.

This paper considers a neural normalized MinSum (N-NMS)

decoder with a flooding schedule. In the tth decoding iteration,

N-NMS updates the check-to-variable node message, u
(t)
cj→vi ,

the variable-to-check node message, l
(t)
vi→cj , and posterior of

each variable node, l
(t)
vi , by:

u(t)
ci→vj

= β
(t)
(ci,vj)

×
∏

vj′∈N (ci)/{vj}

sgn(l(t−1)
vj′→ci)

× min
vj′∈N (ci)/{vj}

∣

∣

∣
(l(t−1)
vj′→ci)

∣

∣

∣

, (8)

l(t)vj→ci = lchvi
+

∑

ci′∈N (vj)/{ci}

u(t)
ci′→vj

, (9)

l(t)vj
= lchvi

+
∑

ci′∈N (vj)

u(t)
ci′→vj

. (10)

N (ci) represents the set of the variable nodes connected to

ci and N (vj) represents the set of the check nodes that are

connected to vj . lchvj
is the LLR of the channel observation of

vj . β
(t)
(ci,vj)

are multiplicative weights to be trained. The de-

coding process terminates when all parity checks are satisfied

or when the maximum iteration count, IT , is reached. In this

paper, we follow the steps of [12] to train the neural network.

IV. HARDWARE IMPLEMENTATION OF MESSAGE PASSING

DECODERS

Despite ML decoding being the most optimal, its compu-

tational complexity for both the parity check and generator

matrix derived trellises is too high to meet timing constraints

for practical hardware implementation. Table I shows the

worst case number of operations for each decoding method

considered here. An operation is defined as an addition or

multiplication, in the case of belief propagation (BP), we

consider arctan, exp, and log as a single operation since

they are typically implemented via a Lookup Table (LUT).

Table I indicates that message passing algorithms, except

belief propagation, utilize significantly fewer operations than

ML decoders, indicating that they are the most feasible to

implement on hardware. It should also be noted that the Table

I assumes that the message passing decoders always run for 8

iterations. In reality, for higher Eb/N0 (around 7.5 dB for the

LPC), the number of required iterations approaches 1, making

message passing even more attractive. As such, our focus for

this section will be on the N-NMS decoder, with MS and NMS

decoders included for the purpose of comparison. The field-

programmable gate array (FPGA) device used for hardware

implementation was the Zynq ZCU106 MPSoC.



CN CN

v2c msg c2v msg

VN VN VN

instantiated
check nodes

registers

instantiated
variable nodes

Fig. 5. Block Diagram of FPGA architecture.

The overall architecture consists of a bank of registers

storing messages between check and variable nodes, and small

modules to perform check node (CN) and variable node (VN)

operations, as seen in Figure 5. The overall decoder controls

the timing and coordinates the messages passed between the

check and variable node modules for each decoding iteration.

It also controls the terminating point by checking if the

codeword estimate is valid or if the maximum number of

iterations has been reached.

The initial FPGA implementation is a simple MinSum de-

coder, where check nodes search for the two minimums among

its messages, and variable nodes compute simple summations.

MinSum will be used as baseline to compare against the Nor-

malized MinSum (NMS) and Neural-Normalized MinSum (N-

NMS) implementations. However, in order to implement the

N-NMS decoder, we must dynamically assign edge weights

depending on the iteration of the decoder. This task is divided

between 2 modules: the main decoder and the check node

module. The multiplicative edge weights are first quantized to

a 6-2 scheme, meaning the first 6 bits represent the integer

part of the number and the last 2 bits represent the fractional

part. Testing and simulations on the LPC showed that the 6-2

quantization achieved a satisfactory middle ground between

accuracy and bit width.

Once the edge weights are quantized, they are stored

in Block RAM (BRAM). The structure of the BRAM can

represented as a 2-D matrix where each element represents

a register that stores an 8-bit quantized edge weight. The

index of a certain edge weight in the matrix also contains

information regarding the iteration count and edge number

in the bipartite graph. The main decoder module uses this

information to assign weights to the proper edge depending

on the iteration count. After the check node module calculates

the check-to-variable node message, it then multiplies that by

the incoming edge weight. The fixed point FER curves in

the following section are generated using C++ simulations.

To match the FPGA implementation, all edge weights and

calculated messages are quantized according to the 6-2 scheme

discussed earlier.

V. SIMULATION RESULTS

A. Frame Error Rates for Various Decoders

In this section, we showcase our floating point simulation

results for the Frame Error Rate (FER) of various decoding

methods. The maximum likelihood FER was simulated using

TABLE I
COMPARISON OF DECODING COMPLEXITY VIA NUMBER OF OPERATIONS.

Decoder Worst case number of operations

BP* 10,192

standard MS* 3,200

NMS* / N-NMS* 3,616

ML (Brute force) 524,288

ML (Generator matrix trellis) 6,130

* Message passing algorithms are assumed to always run for 8 iterations

the trellis method described in sections III-B and III-C. Addi-

tionally, in line with practical limitations on actual decoding

hardware, we limit the number of decoding iterations to two

and eight. At high Eb/N0, most received codewords are low-

noise, making the average number of iterations approach 1.

However, errors involving trapping sets require more iterations

to correct which explains the gap between the 2 and 8 iteration

decoders.

The N-NMS decoder performed the closest to Maximum

Likelihood out of the three decoders considered, even beating

out Belief Propagation. These results line up with the findings

of [12]. To summarize, via its training process, the N-NMS

decoder was able to adapt its weights to the particular structure

of the LPC unlike belief propagation or normalized MinSum.

In particular, the N-NMS weights are specifically trained to

mitigate the decoding loss caused by trapping sets. With the

LPC being such a short block-length code, its cycles have

particularly small girths making N-NMS the ideal decoding

method for it.

F
ra

m
e
 E

rr
o
r 

R
a
te

 (
F

E
R

)

Fig. 6. FER for various floating point decoding methods capped at 2 and 8
decoding iterations

B. Quantization Loss for Fixed Point Decoders

In Table II, we observe a noticeable increase in the Look

Up Tables (LUTs) used by the N-NMS implementations as

compared to the baseline MS and NMS ones. However, it

is important to note that the N-NMS decoders also perform

better than their counterparts. So, essentially, we are trading

extra hardware utilization for better performance.

The 6-2 quantization used on our FPGA is inherently

different than typical software simulations which utilize 64-



F
ra

m
e
 E

rr
o
r 

R
a
te

 (
F

E
R

)

Fig. 7. Floating vs fixed point FER for the N-NMS decoder capped at 2 and
8 decoding iterations

TABLE II
DECODER FER PERFORMANCE AND RESOURCE USAGE

decoder Eb/No (dB)a LUT Reg.

baseline MS (8) 9.93 4953 (100%) 2201 (100%)

NMS 9.63 5205 (105%) 2201 (100%)

N-NMS(1b) 13.36 5793 (117%) 2201 (100%)

N-NMS(2) 10.54 5784 (117%) 2206 (100%)

N-NMS(4) 9.28 5795 (117%) 2201 (100%)

N-NMS(8) 9.17 5796 (117%) 2206 (100%)
aEstimated

(

Eb

No

)

to achieve FER of 10−7
.

b(n) number of iterations spent decoding.

bit floating point numbers. Since we utilize fewer bits in

our fixed point implementation, its precision is comparatively

diminished to floating point and we expect some deterioration

in FER. The purpose of the simulations shown in Figure 7

is to demonstrate that with the N-NMS decoder, utilizing a

fixed point quantization as opposed to floating point presents

an almost negligible loss in frame error rate.

C. Reed Solomon Frame Error Rate

As noted in the CCSDS specification, the LPC serves as the

inner code in conjunction to a (255,239) Reed-Solomon (RS)

operating on GF(256). Since the RS code has 16 parity bytes, it

can correct for up to 8 byte errors. Considering that the LPC

encodes 2 bytes of data at a time, the RS code can correct

for up to 4 LPC frame errors. Given the FER of the LPC,

the corresponding FER of the RS code can be modeled via a

binomial expression: PRS(e) = 1 − P (X < 5), where X ∼
B(128, PLPC(e)). Figure 8 shows the Reed Solomon FER

for the N-NMS fixed and floating point implementations at

various Eb/N0 with the LPC as the inner code.

VI. CONCLUSION

This paper compares both the feasibility and decoding

performance of maximum likelihood (ML), belief propagation,

standard MinSum, normalized MinSum, and Neural Normal-

ized MinSum (NNMS) decoders on the Line Product Code

(LPC). An initial exploration of ML decoding was consid-

ered due to the LPC’s short blocklength. However, attempted

F
ra

m
e
 E

rr
o
r 

R
a
te

 (
F

E
R

)

Fig. 8. Reed Solomon Code FER for Floating vs Fixed point N-NMS and
Maximum Likelihood Decoding on the LPC

simulation on an FPGA board showed that, even with com-

plexity reduction via a trellis, ML decoding failed to meet

timing requirements. In lieu of this, we considered message

passing algorithms, while less optimal than ML decoding,

can be performed iteratively and with fewer operations than

it. Simulation results on the LPC show that, with sufficient

iterations, these message passing algorithms approach the

frame error rate achieved by ML decoding. In particular, the

NNMS decoder, with only 8 iterations, show only a 0.5 dB

loss compared to ML making it the most promising decoder

considered here.

REFERENCES

[1] “Optical high data rate (HDR) communication — 1064 nm,” Consul-
tative Committee for Space Data Systems (CCSDS), Washington, DC,
USA, 2008.

[2] J. Wolf, “Efficient maximum likelihood decoding of linear block codes
using a trellis,” IEEE Transactions on Information Theory, vol. 24, no. 1,
pp. 76–80, 1978.

[3] V. Pless, W. C. Huffman, and R. A. Brualdi, Handbook of coding theory.
Amsterdam: Elsevier, 1998.

[4] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in 2016 54th Annual Allerton Conference

on Communication, Control, and Computing, Sep. 2016, pp. 341–346.
[5] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” in 2017

IEEE Inter. Symp. on Info. Theory (ISIT), Jun. 2017, pp. 1361–1365.
[6] E. Nachmani, E. Marciano, D. Burshtein, and Y. Be’ery, “RNN

decoding of linear block codes,” CoRR, vol. abs/1702.07560, 2017.
[Online]. Available: http://arxiv.org/abs/1702.07560

[7] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein, and
Y. Be’ery, “Deep learning methods for improved decoding of linear
codes,” IEEE J. Sel. Top. Sig. Pro., vol. 12, no. 1, pp. 119–131, Feb.
2018.

[8] F. Liang, C. Shen, and F. Wu, “An iterative BP-CNN architecture for
channel decoding,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 1, pp.
144–159, Feb. 2018.

[9] X. Wu, M. Jiang, and C. Zhao, “Decoding optimization for 5G LDPC
codes by machine learning,” IEEE Access, vol. 6, pp. 50 179–50 186,
2018.

[10] L. Lugosch and W. J. Gross, “Learning from the syndrome,” in 2018

52nd Asilomar Conf. on Signals, Systems, and Computers, Oct. 2018,
pp. 594–598.

[11] W. Lyu, Z. Zhang, C. Jiao, K. Qin, and H. Zhang, “Performance
evaluation of channel decoding with deep neural networks,” in 2018

IEEE Inter. Conf. on Comm. (ICC), May 2018, pp. 1–6.
[12] L. Wang, S. Chen, J. Nguyen, D. Dariush, and R. Wesel, “Neural-

network-optimized degree-specific weights for ldpc minsum decoding,”
arXiv preprint arXiv:2107.04221, 2021.

http://arxiv.org/abs/1702.07560

	Introduction
	Line Product Code Encoding
	Differential Encoding
	Horizontal Parity bits
	Vertical Parity Bits 
	Minimization of Disparity

	Line Product Code Decoding
	Parity Check Matrix Representation
	Maximum Likelihood Decoding via the Parity Check Matrix
	Maximum Likelihood Decoding via the Generator Matrix
	Message Passing Decoding

	Hardware Implementation of Message Passing Decoders
	Simulation Results
	Frame Error Rates for Various Decoders
	Quantization Loss for Fixed Point Decoders
	Reed Solomon Frame Error Rate

	Conclusion
	References

