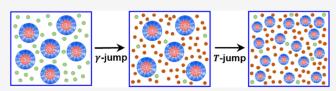
Macromolecules

pubs.acs.org/Macromolecules Article

Effect of Changing Interfacial Tension on Fragmentation Kinetics of Block Copolymer Micelles

3 Supriya Gupta and Timothy P. Lodge*

Cite This: https://doi.org/10.1021/acs.macromol.2c02158


ACCESS I

Metrics & More

Article Recommendations

Supporting Information

4 **ABSTRACT:** Micelle fragmentation, one of the key mechanisms 5 responsible for equilibration of kinetically trapped micelles, is 6 investigated for block copolymer micelles in ionic liquids (ILs). In 7 particular, the role of driving force for micelle fragmentation is 8 studied by altering the solvent quality after micelle preparation, 9 amounting to a jump in interfacial tension γ between solvent and

the micelle core. Direct dissolution of a 1,2-polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) copolymer (M_n = 17.5 kDa and f_{PEO} 11 = 0.38) in the ionic liquid [C_2 mim][TFSI] results in large micelles with average size $\langle R_h \rangle_\circ \approx 68$ nm and dispersity $D \approx 1.27$. The 12 solution of the as-prepared micelles is then diluted by the careful addition of a second ionic liquid [C_{10} mim][TFSI] having lower γ 13 with the micelle core, such that the micelles remain unaffected. The γ and hence the quality of the solvent mixture were controlled by 14 the degree of dilution. The choice of the second solvent is based on the measurement of γ for a series of [C_x mim][TFSI] ILs with 1-15 2-polybutadiene homopolymer, carried out using a pendant drop test. Diluting the micelles by adding another ionic liquid with lower 16 γ tends to decrease the equilibrium micelle size, which, in turn, enhances the driving force for fragmentation of the bigger as-17 prepared micelles, represented by increase in the ratio of aggregation numbers Q/Q_{eq} . Subjecting the diluted micellar solution to 18 temperature-jump to 170 °C followed by thermal annealing leads to fragmentation of the as-prepared micelles to attain a near-19 equilibrium state. The micelles are characterized using an in situ dynamic light scattering (DLS) technique to observe the time 20 evolution of average micelle size, from which the relaxation time is obtained. Additionally, small-angle X-ray scattering (SAXS) and 21 cryogenic transmission electron microscopy (TEM) measurements were carried out to obtain the micelle core size and distribution 22 in the micellar solutions before and after fragmentation. The enhancement in the driving force achieved by controlling the amount of 23 low γ solvent resulted in faster fragmentation; the characteristic fragmentation time decreases monotonically on increasing the size 24 ratio Q/Q_{eq} from 1.2 to 5.

25 INTRODUCTION

26 Block copolymers (BCPs) are fascinating materials due to their 27 ability to self-assemble into a myriad of nanostructures, both in 28 bulk and solution. 2-4 Many studies, both experimental as well 29 as computational, have revealed the rich self-assembly behavior 30 of BCPs. 5-10 The enthalpic energy arising from chemical 31 dissimilarity of the constituent blocks coupled with the 32 conformational entropy of the polymeric chains governs the 33 eventual organization. In particular, spherical micelles with a 34 core-shell structure have been gaining significant attention as a 35 universal carrier for targeted drug delivery. 11,12 In addition to 36 nanomedicine, BCP micelles find practical interest in many 37 biological and industrial applications, such as nanoreactors, in 38 nano-templating, as imaging agents, and as viscosity modifiers 39 for motor oil. 13–16 In solution, the contrast in selectivity of the 40 blocks toward the solvent imparts an amphiphilic character 41 responsible for micellization, and the choice of solvent plays a 42 key role. Careful control of molecular weight, block 43 composition, and chain architecture together with the nature 44 of solvent, temperature, concentration, method of preparation, 45 and addition of homopolymers or ions can provide a variety of 46 micelle structures, such as spheres, worms, vesicles, and 47 bicontinuous structures. ^{17–21} Concurrently, ionic liquids (ILs)

are receiving increasing attention due to their extraordinary 48 physicochemical properties, such as thermal and chemical 49 stability, high temperature windows, and negligible vapor 50 pressure, and tunable cohesive energy density. The use of ILs 51 as solvents for micellization of BCPs was first explored by He et 52 al. 22

While the equilibrium micellar structures attained via self- 54 assembly are relatively well studied, the understanding of the 55 micelle formation and their equilibration processes is still 56 incomplete. To realize the full potential of BCP micelles, an 57 extensive understanding of the dynamics of micelle formation 58 and equilibration processes is essential to optimize structure— 59 property relationships. The equilibration of surfactant micelles 60 has been studied extensively. Sec 25-27 For BCP micelles, theoretical 61 description of the equilibration mechanism supported by 62

Received: October 21, 2022 Revised: January 28, 2023

63 a few experimental studies which generally focus on a single 64 mechanism in isolation, such as chain exchange, ^{31–41} or fusion 65 and fragmentation. ^{42,43} A comprehensive review of the 66 dynamics and equilibration of BCP micelles along with the 67 future scope and challenges has been presented in a recent 68 review. ⁴⁴

For BCP micelles that are significantly larger/smaller than the equilibrium size, the relaxation toward equilibrium state is governed predominantly by fragmentation/fusion mechanisms, neither of which has been studied extensively. Previous studies estimated the rate constants for the fragmentation and fusion processes for poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer micelles using fluorescence decay methods. It was found that for micelles near equilibrium, the rates for fragmentation and fusion processes are on the order of 10⁶ times slower than chain exchange. Recent experiments showed that variation in the length of the triblock copolymers can greatly affect the fragmentation kinetics. It

Experimental studies on the relaxation of as-prepared micelles 83 far from the equilibrium state are limited. For such a study, one 84 needs to prepare micelles that are either significantly smaller or 85 much larger than the equilibrium size in order to capture the 86 regimes of fusion or fragmentation processes, respectively. 87 Eisenberg et al. proposed an interesting approach to prepare micelles of different sizes from a single BCP by altering the sample preparation method. 45-47 Following this protocol, Meli et al. used direct dissolution method to prepare micelles of 1,2polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) in imidazo-92 lium-based ILs, such as 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)imide ([C₂mim][TFSI]) and 1-butyl-94 3-methylimidazolium bis(trifluoromethylsulfonyl)imide 95 ([C₄mim][TFSI]). 48,49 The authors observed that the direct 96 dissolution method produces micellar aggregates significantly 97 larger than the equilibrium size $(Q/Q_{eq} > 1.5)$ where Q and Q_{eq} 98 denote the aggregation numbers for the as-prepared micelles 99 and the equilibrium micelles, respectively. The kinetically 100 trapped as-prepared micelles can be driven toward the 101 equilibrium state under external stimuli, the most common 102 being a temperature-jump. Large micelles were subjected to 103 relaxation upon thermal annealing at an elevated temperature (e.g., 170 °C). During relaxation, the time evolution of average 105 micelle size and distribution were followed using dynamic light 106 scattering (DLS), small-angle X-ray scattering (SAXS), and 107 transmission electron microscopy (TEM) techniques, all of 108 which gave consistent results. Irrespective of the annealing 109 temperature, the decay of micelle size was found to be well 110 described by a compressed exponential form with an "Avrami" exponent $n \approx 2$. The study provided an estimate of the characteristic relaxation time τ . Since time-resolved small-angle 113 neutron scattering experiments on the same system revealed no 114 chain exchange up to at least 200 °C, the observed relaxation 115 time during annealing at 170 °C is presumed to be dominated by 116 fragmentation. Recently, Early et al. conducted experiments on 117 PB-b-PEO micelles in different ILs and employed DLS, SAXS, 118 and TEM to clearly identify the roles of various factors 119 influencing the rate of micelle fragmentation. 50,51 Fragmenta-120 tion being a first-order process, the rate of fragmentation was 121 found to be independent of micellar concentration. Interest-122 ingly, the fragmentation time was reported to be independent of 123 the solvent quality and, therefore, interfacial tension γ , which 124 suggests that the barrier to fragmentation does not involve 125 exposure of micelle core to the surrounding solvent. It should be

noted that micelles were prepared and relaxed in the same 126 solvent and the experiments were performed in a series of 127 solvents to vary the solvent quality. The authors also report a 128 strong dependence of fragmentation rate on BCP molecular 129 weight, consistent with the theoretical prediction of Dormi- 130 dontova. The influence of altering the solvent quality on 131 structure and chain exchange kinetics in BCP micelles has also 132 been investigated extensively. 40,52–56

Recent studies have captured the morphological transition 134 from cylindrical to spherical micelles using time-resolved small- 135 angle neutron (TR-SANS) and X-ray scattering (TR- 136 SAXS). Direct imaging of fusion and fragmentation events 137 provides unique insight into the evolution of micellar structures 138 and their characteristics. Recently, time-resolved TEM 139 imaging of BCP micelles in ILs depicted the evolution of 140 micellar morphology during fragmentation. The TEM 141 imaging indicated a sequential transition from a spherical 142 micelle to a prolate spheroid, then to a "peanut-shaped" micelle 143 followed by the creation of two micelle cores with overlapping 144 coronas, and finally to detachment of coronas to generate two 145 spherical micelles. Similar events were reported earlier by Gao et 146 al. using the dissipative particle dynamics (DPD) simulations. 126

The present study is aimed at understanding the effect of 148 micelle size ratio $Q/Q_{\rm eq}$, an indication of the departure of as- 149 prepared micelles from equilibrium, on the kinetics of 150 fragmentation. The methodology adopted in the prior studies 151 does not allow controlled variation of Q/Q_{eq} over a broad range, 152 and thus the value was fixed, typically $\approx 1.5-2$. Here, we adopt a 153 new sample preparation methodology, which allows us to vary 154 Q/Q_{eq} significantly, by altering the solvent quality after micelle 155 preparation. Micelles are first prepared in a solvent with higher γ 156 followed by dilution with the second solvent with a lower γ value. 157 The choice of the solvents was made based on direct 158 measurements of γ between the solvent and a PB homopolymer. 159 The diluted micellar solution is then subjected to high- 160 temperature annealing to attain equilibration. Dilution by a 161 low γ solvent leads to reduction in equilibrium micelle size $_{162}$ (Q_{eq}) , which in turn increases the ratio Q/Q_{eq} . Micelle sizes 163 before and after fragmentation are characterized by in situ DLS, 164 SAXS, and TEM.

■ EXPERIMENTAL SECTION

Synthesis and Characterization. A PB-b-PEO sample was 167 synthesized previously via a two-step sequential anionic polymer- 168 ization.⁵¹ The resulting PB-b-PEO diblock copolymer is denoted as 169 BO(9-8), where the numbers in parentheses refer to the number- 170 average molecular weight of each block in kDa. Size exclusion 171 chromatography (SEC) with multiangle light scattering detection 172 (Wyatt Instruments DAWN) was used to obtain the molecular weight 173 (M_n) and the dispersity (D). ¹H nuclear magnetic resonance 174 spectroscopy using a Varian Inova 500 spectrometer was performed 175 in CDCl₃ to calculate the polymer block composition. For BO(9-8), 176 the total $M_n = 17.5$ kDa and D = 1.10, with $M_{n,PB} = 8.6$ kDa, $M_{n,PEO} = 7.8$ 177 kDa, and $f_{\rm PEO}$ = 0.38. The homopolymer 1,2-polybutadiene (PB) used 178 for γ measurements was also synthesized previously using anionic 179 polymerization with $M_n = 4.7$ kDa and D = 1.10. The ILs 1-ethyl-3- 180 methylimidazolium bis(trifluoromethylsulfonyl)imide 99% ([C₂mim]- 181 [TFSI]) and 1-decyl-3-methylimidazolium bis-182 (trifluoromethylsulfonyl)imide 99% ([C_{10} mim][TFSI]) were pur- 183 chased from IoLiTec. ILs were dried under vacuum (<100 mTorr) at 184 60 °C for 60 h prior to use and were characterized by ¹H NMR 185 spectroscopy in DMSO-d₆. The NMR spectra and SEC chromatograms 186 for both polymers and ILs are provided in the Supporting Information, 187 Figures S1-S5.

166

Interfacial Tension Measurement. The interfacial tension γ 190 between the solvent and the core-forming polymer block plays an 191 important role in controlling the size of the micelles at equilibrium. 192 Tuning γ , therefore, alters the equilibrium aggregation number of the 193 micelles (Q_{eq}), which, in turn, controls the size ratio (Q/Q_{eq}) where Q is 194 the mean aggregation number of the micelles. Thus, by varying γ of an 195 as-prepared micellar solution, one can alter the ratio Q/Q_{eq} and study 196 the effect of the thermodynamic driving force on the rate of 197 fragmentation. The γ between PB, which forms the core of the block 198 copolymer micelles, and different ILs was measured using a Kruss DSA-199 30S tensiometer using the pendant drop technique in which a drop of 200 ionic liquid is suspended in a reservoir of PB homopolymer at 70 °C. A 201 schematic of a pendant drop profile is presented in Figure 1. Once

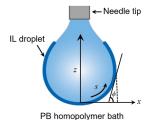


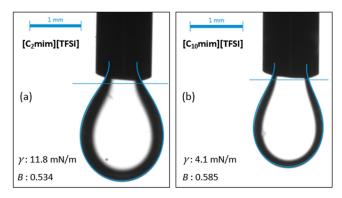
Figure 1. Schematic diagram depicting a typical pendant drop profile.

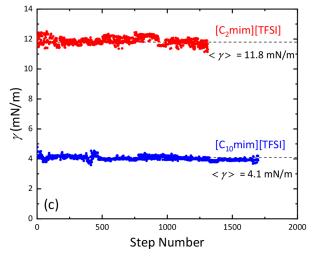
202 stabilized, the shape of the droplet is obtained using the shadow image.
203 Theoretically, the shape is governed by the balance of the gravitational
204 and buoyancy forces together with the interfacial tension force acting
205 on the droplet: ^{63,64}

$$_{206} \quad \Delta \rho \, g \, R_{\circ} = \gamma \, B \tag{1}$$

207 where $\Delta \rho$ is the density difference between the two fluids, ^{50,65} g is the 208 gravitational acceleration, R_{\circ} is the radius of curvature at the apex of the 209 drop, and B is the shape factor. ⁶⁶ The shape factor is obtained by solving 210 three dimensionless first-order ordinary differential equations for the 211 coordinates at the surface of the pendant droplet: ⁶⁴

$$\frac{\mathrm{d}x}{\mathrm{d}s} = \cos\cos\phi \tag{2}$$


$$\frac{\mathrm{d}z}{\mathrm{d}s} = \sin\sin\phi \tag{3}$$


$$\frac{\mathrm{d}\phi}{\mathrm{d}s} = 2 + Bz - \frac{\mathrm{sinsin}\,\phi}{x} \tag{4}$$

Here, s denotes the contour variable, which varies along the drop 216 surface starting with s=0 at the apex. The above equations are 217 supplemented with the initial conditions at the apex of the drop x(0)=218 $z(0)=\phi(0)=0$ (see Figure 1). The drop shape analysis software fits 219 the numerical solution of the above equations to the experimentally 220 captured image and estimates the shape factor B. Finally, γ is calculated 221 via eq 1.

Measurements for multiple droplets were made for a given combination of PB and ionic liquid. Figure 2a,b demonstrates the pendant drop profiles and plot representative values of γ obtained for 225 PB with two ILs, $[C_2 \text{mim}][TFSI]$, and $[C_{10} \text{mim}][TFSI]$, respectively. As the alkyl chain length on the imidazolium ring increases, the γ between PB homopolymer and the ionic liquid decreases as expected. Hence, the ionic liquid with a greater alkyl chain length on its cation progressively becomes less unfavorable to the PB chains. In the context 30 of PB-b-PEO micelles, the IL behaves as a progressively less selective solvent for micelle formation as the size of cationic alkyl length increases, which should result in a smaller Q_{eq} .

Micellar Solution Preparation in Mixed ILs. A master solution with a polymer concentration of 1 wt % was prepared by direct dissolution of BO(9–8) in $[C_2mim][TFSI]$ by stirring for 24–48 h at 236 70 °C. After the micelles are formed, the as-prepared master solution in $[C_2mim][TFSI]$ is then diluted by adding the second ionic liquid, $[C_1mim][TFSI]$ at room temperature, such that the polymer

Figure 2. Pendant drop profiles of ionic liquids in the reservoir of PB; (a) $[C_2 mim][TFSI]$; (b) $[C_{10}mim][TFSI]$. (c) Interfacial tension between 1,2-polybutadiene (PB, $M_n = 4.7 \text{ kDa}$) and $[C_2 mim][TFSI]$, and $[C_{10}mim][TFSI]$ at 70 °C.

concentration drops below 1 wt %. Depending upon the degree of 239 dilution by the second IL, a series of solutions with concentrations 0.9, 240 0.8, 0.75. 0.5, 0.25, 0.15, 0.1, and 0.05 wt % of BO(9-8) are obtained. It 241 is important to note that since the dilution is carried out at room 242 temperature, the process and degree of dilution do not greatly influence 243 the size distribution of the as-prepared micelles. Due to lower γ for 244 [C₁₀mim][TFSI] with the core-forming PB block, the dilution amounts 245 to a γ -jump for the as-prepared micelles. After the γ -jump, the micelles 246 were characterized again by DLS, and then the solution was heated and 247 thermally annealed at 170 °C during which the micelles undergo 248 fragmentation. Figure 3 presents a schematic description of the 249 f3 protocol employed to prepare the micellar solution in mixed ILs. Here, 250 IL1 refers to the first ionic liquid in which micelles are prepared, i.e., 251 [C₂mim][TFSI], and IL2 denotes the second ionic liquid used for 252 dilution of the as-prepared micelles to impose the y-jump, i.e., 253 $[C_{10}mim][TFSI]$. The micelle size distribution is obtained for the as- 254 prepared micelles (the initial state) as well as for the micelles 255 postfragmentation (the final equilibrium state) using DLS. In addition, 256 in situ DLS measurements have also been carried out during 257 fragmentation to monitor the dynamics of micelle size distribution.

Dynamic Light Scattering (DLS). DLS measurements were 259 carried out to obtain the time variation in average size and size 260 distribution of micelles during fragmentation at 170 °C on a home-built 261 device, including a Brookhaven BI-DS photomultiplier mounted onto 262 an adjustable goniometer, a Lexel Ar $^+$ laser (wavelength 488 nm), and a 263 Brookhaven BI-9000 correlator. The temperature of the micellar 264 solution is controlled to within ± 0.2 °C using an index-matching silicon 265 oil bath. In addition to following micelle size at high temperature during 266 fragmentation, the micelle size and distribution were also obtained at 25 267 °C using a multiangle DLS instrument fitted with a Brookhaven BI- 268 200SM goniometer coupled with a Brookhaven BI-9000AT correlator 269

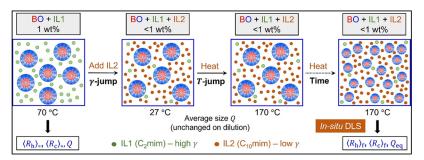


Figure 3. Schematic diagram depicting the protocol to prepare a micellar solution in mixed ILs. The master solution is 1 wt % BO(9–8) in $[C_2 mim][TFSI]$ (IL1). The master sample is carefully diluted by adding $[C_{10} mim][TFSI]$ (IL2) at room temperature such that the original micelles remain unaffected. The dilution step is referred to as a γ-jump. Finally, the diluted samples are thermally annealed at 170 °C (referred to as *T*-jump) to approach an equilibrium state by fragmentation. The kinetics of fragmentation are monitored by in situ DLS measurements.

271 through a 0.45 μ m PTFE syringe filters directly into the oven dried 272 dust-free glass tubes with an inner diameter of 0.51 cm. The glass tubes 273 were subsequently flame-sealed under vacuum (60 mTorr) in order to 274 prevent polymer degradation and moisture contamination. While room 275 temperature DLS measurements were carried out at multiple scattering 276 angles from 60° to 120°, the high-temperature in situ DLS 277 measurements were carried out at a fixed scattering angle of 90°. 278 The normalized measured intensity autocorrelation function $g_2(t)$ was acquired for 1–5 min. The electric field autocorrelation function 280 $g_1(t)$ was obtained from $g_2(t)$ using the Siegert relation 67 $g_1(t) = g_2(t) = g_2(t) = 1$. Fitting the electric field autocorrelation function 282 to a cumulant expansion truncated to second-order, as given below, 283 provides the average decay rate $\overline{\Gamma}$ of the micelles:

270 and 637 nm laser source. DLS samples were prepared by filtering

$$g_1(t) = A \exp(-\overline{\Gamma} t) \left[1 + \frac{\mu_2}{2\overline{\Gamma}^2} (\overline{\Gamma} t)^2 + \cdots \right]$$
 (5)

284

The coefficient of the second-order term provides the variance of the normalized distribution of the decay rates, $\mu_2/\bar{\Gamma}^2$, representing the dispersity of the micelle size distribution. For a reasonably narrow size distribution, the second-order cumulant expansion is sufficient. For any samples exhibiting a bimodal micelle distribution from a regularized positive exponential sum (REPES)⁶⁸ analysis and a high dispersity value from the cumulant analysis, the autocorrelation function $g_1(t)$ was fit to a double-exponential function:

$$g_1(t) = A_1 \exp(-\overline{\Gamma}_1 t) + A_2 \exp(-\overline{\Gamma}_2 t)$$
 (6)

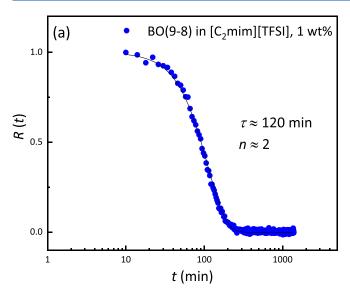
The apparent average hydrodynamic radius was calculated using the Stokes–Einstein equation

$$\langle R_{\rm h} \rangle = \frac{k_{\rm B}T}{6\pi\eta D_{\rm t}} \tag{7}$$

297 where $k_{\rm B}$ is the Boltzmann constant, T is the temperature, $\eta(T)$ is the 298 solvent viscosity, and $D_{\rm t}$ is the translational diffusion coefficient of the 299 micelles. In the dilute limit, $D_{\rm t}$ can be approximated by the measured 300 mutual diffusion coefficient, $D_{\rm m}$, which was calculated using $D_{\rm m} = \overline{\Gamma}/q^2$, 301 where q is the magnitude of the scattering vector defined as $q = (4\pi n/302~\lambda_{\rm o})\sin{(\theta/2)}, \lambda_{\rm o}$ is the wavelength of light in vacuum, n is the refractive 303 index of the solvent, and θ is the scattering angle. For multiangle 304 measurements, $D_{\rm m}$ was calculated from a linear fit of $\overline{\Gamma}$ versus q^2 passing 305 through the origin.

Small-Angle X-ray Scattering (SAXS). SAXS measurements were carried out at the Advanced Photon Source, Argonne National Laboratory, on the Sector 5-ID-D beamline of the DuPont-Northwest-ments were conducted on micellar solutions corresponding to the initial temperature. The samples were loaded into 1.5 mm diameter borosilicate capillaries and sealed with epoxy under an argon atmosphere. For each capillary, the two-dimensional SAXS data were collected using a Rayonix MX170-HS CCD area detector with an 0.5 s

exposure time to X-rays ($\lambda=0.729$ Å), keeping the sample-to-detector 316 distance at 8.5 m. Two-dimensional scattering data were reduced by 317 azimuthal integration to obtain one-dimensional scattering patterns in 318 the form of scattering intensity versus q. The background scattering 319 arising from the surrounding ionic liquid and glass capillary, including 320 an upturn at higher q corresponding to the nanoscale ordering in the 321 solvent, ⁶⁹ was fit to the power law expression $I(q)=A+Bq^{-m}+Cq^2$, 322 where $2 \le m \le 4$. The background intensity was then subtracted from 323 the solution scattering data. In the case of no upturn at higher q, the 324 background intensity was fit to power law with C set to zero. The 325 background-corrected data were analyzed using the Pederson micelle 326 core-shell model with the Percus—Yevick structure factor. ^{70,71}


Transmission Electron Microscopy (TEM). An estimate of the 328 average micelle core radius $\langle R_{
m core}
angle$ and its standard deviation, $\sigma_{
m core}$, was 329 obtained by performing TEM measurements. Both cryo-TEM and 330 liquid-phase-TEM were conducted on micellar solutions corresponding 331 to the initial (before fragmentation) and final (after fragmentation) 332 states. The imaging was performed using FEI Tecnai G2 Spirit Bio- 333 Twin and Field Emission Gun TEM instruments operating at an 334 accelerating voltage of 120 kV with a 4k × 4k Ultrascan CCD camera 335 with a spot size of 3 or larger. 200 mesh copper grids coated with lacey 336 Formvar stabilized with carbon grids, purchased from Ted Pella Inc., 337 were used for the study. Approximately 0.2 μ L of micellar solution was 338 drop-cast on the grid followed by the removal of excess solution using 339 filter paper. While liquid-phase TEM was performed at room 340 temperature, for the cryo-TEM, the sample grids were dipped in liquid 341 nitrogen and were imaged at a temperature of around -190 °C. Each 342 sample was filtered using 0.45 μ m PTFE syringe filter to remove any 343 dust prior to grid preparation. For each sample, more than 10 different 344 spots were imaged to capture at least 300 individual micelles. The 345 images were analyzed using ImageJ software. 346

■ RESULTS AND DISCUSSION

In the following, fragmentation kinetics are studied for the 348 master sample (micelles in a single ionic liquid) as well as the 349 diluted samples (micelles in IL blends). The objective is to 350 examine the effect of the increase in $Q/Q_{\rm eq}$ induced by the jump 351 in γ achieved by dilution. The fragmentation time for the master 352 sample serves as a reference against which the behavior of the 353 diluted samples can be compared in order to uncover the effect 354 of driving force for fragmentation on its kinetics.

Fragmentation Kinetics in a Single Ionic Liquid (IL1). 356 The direct dissolution method typically produces large and 357 somewhat disperse micellar aggregates. In this case, room 358 temperature DLS measurements give the average hydrodynamic 359 radius as $\langle R_{\rm h} \rangle_{\circ} \approx 68$ nm with a dispersity of $D = 1 + \langle \mu_2 / \overline{\Gamma}^2 \rangle_{\circ} \approx 360$ 1.27. The as-prepared micelles are in a kinetically trapped 361 metastable state. Subjecting this master sample to a T-jump 362 followed by thermal annealing at 170 °C provides a strong 363 stimulus, leading to relaxation of micelles toward the equilibrium 364

347

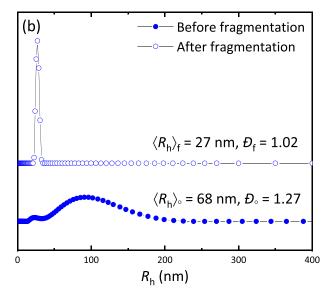
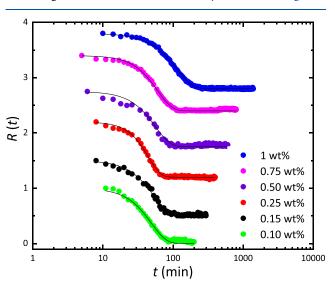


Figure 4. (a) Time variation of the normalized average micelle size for 1 wt % BO(9-8) in pure $[C_2mim][TFSI]$ after T-jump followed by relaxation at 170 °C. Solid line represents the best fit to the Avrami-type equation. (b) Size distribution of as-prepared and steady-state micelles obtained using REPES.

365 state with a narrower size distribution. The time variation of 366 micelle size given by $\langle R_{\rm h}(t) \rangle$ is captured using the in situ DLS 367 measurements carried out at 170 °C. The average hydrodynamic 368 radius $\langle R_{\rm h}(t) \rangle$ is normalized to give the time variation defined as

369

377


$$R(t) = \frac{\langle R_{\rm h}(t) \rangle - \langle R_{\rm h}(\infty) \rangle}{\langle R_{\rm h}(0) \rangle - \langle R_{\rm h}(\infty) \rangle} \tag{8}$$

370 Here, $\langle R_{\rm h}(0) \rangle = \langle R_{\rm h} \rangle_{\rm o}$ and $\langle R_{\rm h}(\infty) \rangle = \langle R_{\rm h} \rangle_{\rm f}$ represent the 371 initial and final average hydrodynamic radii of the micelles, 372 respectively. Figure 4a displays the time decay of the normalized 373 average size of micelles during fragmentation. As in previous 374 reports, the normalized average hydrodynamic radius is found to 375 be well described by the "compressed" exponential function of 376 the form: 49,50

$$R(t) = \exp\left[-\left(\frac{t}{\tau}\right)^n\right] \tag{9}$$

378 where τ denotes the characteristic relaxation time for n fragmentation and n is the exponent. The as-prepared micelles 380 with $\langle R_{\rm h} \rangle_{\circ} \approx 68$ nm fragment to smaller micelles at the steadystate condition (assumed to be near equilibrium) with $\langle R_h \rangle_f \approx$ 382 27 nm. The experimental data for the normalized average radius, 383 R(t), are denoted by symbols in Figure 4a. The experimental size 384 is fit to the compressed exponential described by eq 9 denoted 385 by the solid line with the results $\tau \approx 120$ min and $n \approx 2$. It is 386 important to note that τ is insensitive to the concentration of 387 micelles in a given ionic liquid, as documented previously by Early and Lodge. 50 This is consistent with the predominance of 389 the fragmentation mechanism, which is a first-order process 390 uninfluenced by micelle concentration in the dilute limit. Figure 4b presents the distribution in R_h by REPES before and after 392 fragmentation. The initial broad distribution around the average 393 radius of 68 nm shifts toward a smaller size and attains a nearly 394 monodisperse steady-state condition at the end of the relaxation process (dispersity of 1.02 and average radius of 27 nm). 395

Fragmentation Kinetics in Mixed ILs. DLS Measurements. The 1 wt % master solution of as-prepared micelles of $S_{98} BO(9-8)$ in $[C_2mim][TFSI]$ (IL1) was diluted by adding sys various amounts of $[C_{10}mim][TFSI]$ (IL2) such that the asprepared micelles remain unchanged. Since IL2 exhibits a lower 400 γ with the core-forming PB block compared to IL1, the dilution 401 process amounts to a γ -jump, which modifies the size of the 402 equilibrium micelles. The γ -jump was followed by high- 403 temperature annealing (T-jump) of the diluted solution, and 404 the average micelle size was monitored by in situ DLS. Figure 5 405 f5

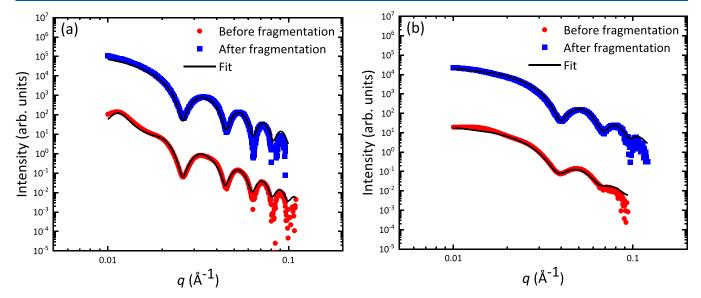


Figure 5. Time dependence of the normalized average hydrodynamic radius R(t) of block copolymer micelles in mixed ILs for various polymer concentrations at a relaxation temperature of 170 °C. Solid lines represent the best fit to the Avrami-type equation. The curves are shifted vertically for clarity.

shows the time-dependence of the normalized average hydro- 406 dynamic radius, R(t), for the master solution after dilution to 407 different extents with IL2. The relaxation curves for different 408 concentrations are shifted vertically for clarity. As the degree of 409 dilution increases, the relaxation curve for the average micelle 410 size shifts to the left, indicating faster relaxation kinetics. For all 411 concentrations, R(t) can be described by the compressed- 412 exponential expression given by eq 9. Fitting of the data provides 413 the data provides 4

Table 1. Parameters for Micelle Fragmentation from DLS

polymer (P) wt %	(P + IL1):IL2	$\langle R_{\rm h} \rangle_{\circ} \ ({\rm nm})$	$_{\odot}$	$\langle R_{\rm h} \rangle_{\rm f} ({\rm nm})$	\mathcal{D}_{f}	au (min)	n
1	1:0	68	1.27	27	1.02	120 ± 20	1.85
0.90	0.90:0.10	70	1.30	27	1.03	66 ± 15	2.01
0.80	0.80:0.20	64	1.31	22	1.04	59 ± 15	2.04
0.75	0.75:0.25	63	1.34	22	1.05	60 ± 15	2.00
0.50	0.50:0.50	67	1.30	26	1.04	56 ± 14	2.01
0.25	0.25:0.75	68	1.24	24	1.01	50 ± 12	1.87
0.15	0.15:0.85	69	1.19	24	1.01	52 ± 12	1.99
0.01	0.10:0.90	67	1.17	23	1.03	49 ± 10	2.00
0.05	0.05:0.95	61	1.17	21	1.03	46 ± 8	1.60

Figure 6. SAXS intensity versus q on logarithmic scales for 1 wt % BO(9–8) in two different single ILs at room temperature: (a) $[C_2 mim][TFSI]$ and (b) $[C_{10} mim][TFSI]$. For each micellar solution, the intensity curves are plotted before and after fragmentation; the final curves are shifted vertically for clarity.

414 the two kinetic parameters, τ and n; Table 1 summarizes the 415 characteristics of the initial and final micelle size distribution as 416 well as τ and n for varying degrees of dilution.

The protocol adopted for dilution plays an important role. For 417 418 the γ -jump to be effective, the initial as-prepared micelles should 419 remain intact and unaltered on addition of the second ionic 420 liquid, $[C_{10}mim][TFSI]$, to prepare the diluted solutions. Thus, all the diluted solutions should contain micelles of nearly the same size and initial aggregation number, Q. Indeed, as seen in Table 1, the initial average size of the micelles is essentially independent of concentration in the IL blends. When the diluted solutions are subjected to relaxation after T-jump, the 426 fragmentation process of the as-prepared micelles takes place in solvents of varying compositions and therefore γ . Thus, the size of the final micelles obtained at the end of the relaxation process is expected to be smaller for the more diluted solutions. This is confirmed by the DLS measurements reported in Table 1. The average hydrodynamic radius of the near-equilibrium 432 micelles is found to gradually diminish from 27 to 21 nm as the micellar solution is progressively diluted from 1 to 0.05 wt %. Furthermore, in all cases, the final micelles are much more 435 narrowly distributed in size with $D \leq 1.05$.

The characteristic time, τ , is around 120 min for the as-437 prepared micelles in [C₂mim][TFSI]. Interestingly, as the 438 micellar solution is diluted by addition of [C₁₀mim][TFSI], the 439 fragmentation process accelerates; as concentration decreases 440 from 1 to 0.9 wt%, τ decreases by a factor of two. Upon further diluting the solution from 0.9 to 0.05%, τ decreases more 441 gradually from 66 to 46 min. As the final micelle size becomes 442 smaller, the driving force for fragmentation, represented by the 443 aggregation number ratio $Q/Q_{\rm eq}$, becomes greater. Thus, faster 444 fragmentation upon dilution can be attributed to enhancement 445 in the driving force. Interestingly, while τ decreases, the 446 exponent n remains ≈ 2 irrespective of the degree of dilution. 447 In summary, a reduction in γ , achieved by addition of lower γ 448 solvent, tends to increase the driving force for fragmentation, 449 which enhances the rate of fragmentation and decreases the final 450 micelle size.

SAXS Measurements. In addition to $\langle R_h \rangle$, it is useful to 452 estimate the average core radius of the micelles $\langle R_{\rm core} \rangle$; the 453 difference provides the average corona thickness of the micelles. 454 The average core radius is also required to estimate the average 455 aggregation number of a micelle, Q. To this end, SAXS 456 measurements were made for micelles before and after 457 relaxation at room temperature. For the master solution of 1 458 wt % BO(9–8) micelles in $[C_2 mim][TFSI]$, Figure 6a shows the 459 f6 scattering intensity I(q) corrected for the background scattering 460 from the solvent in log-log format. The I(q) curves are plotted 461 for micelles before and after the relaxation process; these 462 patterns contain contributions from micelle size, shape, and any 463 intermicellar correlations. The intensity curves for the as- 464 prepared micelles show a small maximum ("structure factor 465 peak") at low q, indicative of the onset of modest interparticle 466 correlation; this maximum disappears after fragmentation. In 467

468 both cases, form factor oscillations from spherical micellar cores 469 are clearly evident. The q value at the first minimum provides an 470 estimate of the micelle core size as $\langle R \text{core} \rangle \approx 4.493/q \text{min}$. On 471 comparing the SAXS curves for micelles before and after 472 fragmentation, it is evident that the first minimum shifts slightly 473 to higher q, indicative of a decrease in $\langle R_{\text{core}} \rangle$ attributed to 474 micelle fragmentation. Similarly, the SAXS patterns for 1 wt % 475 BO(9–8) micelles in pure $[C_{10} \text{min}][\text{TFSI}]$ before and after 476 fragmentation are shown in Figure 6b.

To characterize the near-equilibrium micelles resulting from fragmentation, SAXS measurements were also carried out for the diluted solutions after fragmentation. Figure 7 displays the SAXS

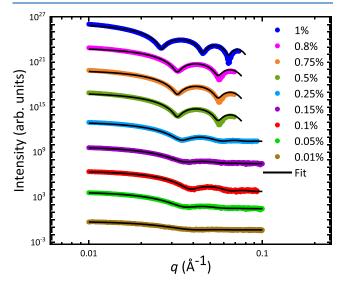


Figure 7. SAXS intensity versus q on logarithmic scales for BO(9–8) at different degrees of dilution in mixed ILs. The intensity curves are plotted for the solution of micelles at the steady-state (i.e., equilibrium state attained after fragmentation). The curve for concentration of 1% represents the master solution, and the rest of the curves represent the diluted samples by adding second ionic liquid. The curves are shifted vertically by a factor of 10^3 for clarity. Measurements were acquired at room temperature after quenching each sample in a water bath. Solid lines represent fit using core-shell model.

480 intensity curves, corrected for background intensity, for 481 solutions with varying degrees of dilution. As the degree of 482 dilution increases, the first minimum shifts toward higher q, 483 indicating smaller average micelle cores. The reduction in 484 equilibrium micelle size with dilution is attributed to the 485 decrease in γ by addition of the second ionic liquid. In addition 486 to shifting the first minimum, the general character of I(q) is also 487 altered by dilution. In particular, the multiple distinguishable 488 minima, clearly identifiable for relatively high concentrations, 489 are suppressed and eventually eliminated by dilution. This could 490 be the result of significantly lower signal-to-noise or a 491 broadening of the final micelle core size distribution; the DLS 492 results in Table 1 suggest the former is the dominant effect.

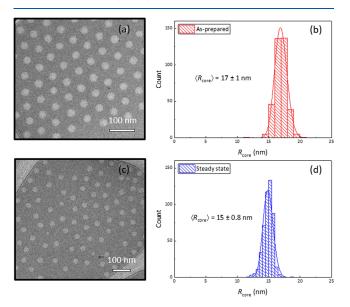

The micelle characteristics estimated from SAXS measure-494 ments are summarized in Table 2. The micelle core radius 495 $\langle R_{\rm core} \rangle_{\rm f}$ is estimated by fitting the SAXS intensity curves. The 496 aggregation number of the final micelles, $Q_{\rm eq}$ is calculated using 497 $\langle R_{\rm core} \rangle_{\rm f}$ assuming no solvent in the core. $Q/Q_{\rm eq}$, the ratio of 498 aggregation numbers of initial (as-prepared) and final 499 (equilibrium) micelles, represents the measure of driving force 500 for fragmentation. Micelles in a surrounding medium of 501 progressively lower γ are found to have relatively smaller core

Table 2. Micelle Characteristics after Fragmentation from SAXS

polymer (P) (wt %)	(P + IL1):IL2	$\langle R_{\rm core} \rangle_{\rm f} \ ({\rm nm})$	$\sigma_{ m core} \ ({ m nm})$	$Q_{\rm eq}$	Q/Q_{eq}
1	1:0	17.1	0.5	1280	1.1
0.90	0.90:0.10	16.4	0.6	1130	1.2
0.80	0.80:0.20	14	0.5	700	2
0.75	0.75:0.25	14	0.6	700	2
0.50	0.50:0.50	13.2	0.8	600	2.3
0.25	0.25:0.75	13.2	0.8	585	2.3
0.15	0.15:0.85	12.5	1.2	500	2.7
0.10	0.10:0.90	11.8	0.9	420	3.2
0.05	0.05:0.95	11	0.7	340	4
0.01	0.01:0.99	10.5	0.8	295	4.6

sizes at equilibrium. This reduction in $\langle R_{\rm core} \rangle$ implies a lower 502 aggregation number, $Q_{\rm eq}$. As seen in Table 2, $Q_{\rm eq}$ decreases from 503 around 1280 for the 1 wt % solution in IL1 to around 270 for the 504 0.01 wt % micellar solution. The reduction in $Q_{\rm eq}$ with lowing γ is 505 found to follow a power-law relation $Q_{\rm eq} \sim \gamma^{6/5}$ as shown in 506 Figure S11. The experimentally obtained dependence of $Q_{\rm eq}$ on 507 γ is broadly consistent with the scaling predictions. The average 509 micelle size before fragmentation remains the same, corresponding to the as-prepared micelles. The average aggregation number 511 before fragmentation, determined from the SAXS pattern in 512 Figure 6a, is $Q \approx 1350$. A reduction in $Q_{\rm eq}$ by dilution, therefore, 513 implies enhancement in the driving force for fragmentation.

Transmission Electron Microscopy. To gain further insight 515 on micelle core size and shape, cryo-TEM was performed on 516 micelle solutions before and after fragmentation. For the master 517 solution, Figure 8a,b presents electron micrographs before and 518 68 after thermal annealing, respectively. The electron density 519 contrast between PB (core-forming chains with lower electron 520 density) and PEO-plus-ionic liquid (corona-forming chains and 521 solvent with higher electron density) enables the micelle cores to 522 appear as distinct bright regions embedded in a dark matrix. The 523

Figure 8. Cryo-TEM micrographs and the corresponding histograms of 1 wt % BO(9–8) in $[C_2mim][TFSI]$ (master solution). Bright spots indicate micelle core (PB chains). (a,b) As-prepared micelles (before fragmentation); (c,d) after thermal annealing (after fragmentation).

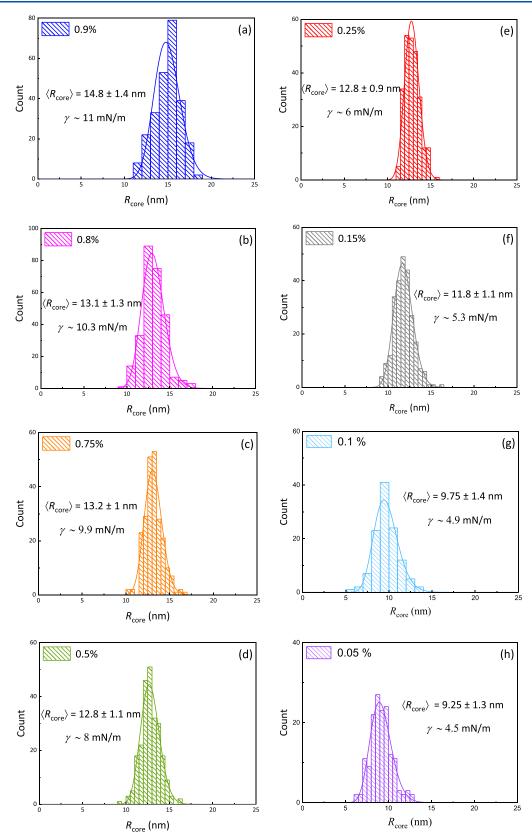


Figure 9. Histograms corresponding to the TEM images presented in Figure S9 for distribution of core diameter of BO(9-8) micelles after fragmentation in mixed ILs at different polymer concentration. (a) 0.9%; (b) 0.8%; (c) 0.75%; (d) 0.5%; (e) 0.25%; (f) 0.15%; (g) 0.1%; and (h) 0.05%.

micrographs clearly show that the micelle cores are spherical in $\ensuremath{^{524}}$

525 shape. Image analysis yielded histograms of micelle core size,

using ca. 200-600 micelles for each solution, with the bin size

526

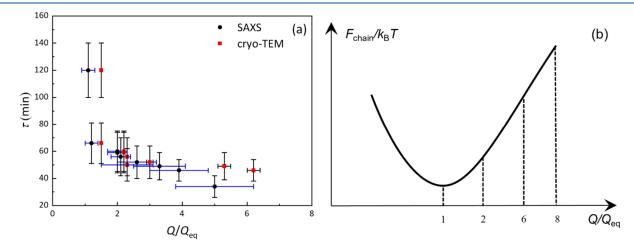
set to 2 nm. The discrete distributions were fit to a lognormal 527

s28 distribution, indicated by the solid lines in the figure. The s29 average micelle core diameter $\langle R_{\rm core} \rangle$ and standard deviation s30 $\sigma_{\rm core}$ are noted in the histograms. The as-prepared BO(9–8) s31 micelles in pure $[C_2{\rm mim}][{\rm TFSI}]$ have $\langle R_{\rm core} \rangle$ of 17 \pm 1 nm. s32 After fragmentation, the $\langle R_{\rm core} \rangle$ decreases to 15 \pm 0.8 nm, while s33 the spherical shape persists. SAXS measurements estimated the s34 $\langle R_{\rm core} \rangle$ of as-prepared micelles to be 17.4 nm. Thus, the average s35 core size estimates from the TEM analysis are in close agreement s36 with those obtained from the SAXS.

TEM analysis was also conducted on the diluted micellar solutions after fragmentation. Figure 9a—h presents histograms for the diluted solutions at steady-state; the corresponding electron micrographs are provided in the Supporting Information, Figure S9. The drop in polymer concentration from 1 to 0.1 wt % yields a decreasing γ , which results in smaller micelles at equilibrium as clearly depicted in Figure 9a—h; overall $\langle R_{\rm core} \rangle$ decreases from around 15 to 9 nm. As can also be seen from the micrographs (Figure S9), the contrast apparently becomes weaker due to the changing electron density in the blended ILs. The micelle core sizes obtained from TEM are generally in good agreement with those obtained from SAXS. As with SAXS measurements, the average core radius can be used to calculate Q as listed in Table 3. As noted earlier, for any diluted sample,

Table 3. Micelle Characteristics after Fragmentation from Cryo-TEM

polymer (P) (wt %)	(P + IL1):IL2	$\langle R_{\rm core} \rangle_{\rm f} \ ({\rm nm})$	$\sigma_{ m core} \ ({ m nm})$	$Q_{\rm eq}$	Q/ Q _{eq}
1	1:0	15	0.8	861	1.5
0.90	0.90:0.10	14.8	1.4	827	1.5
0.80	0.80:0.20	13.1	1.3	573	2.2
0.75	0.75:0.25	13.2	1	580	2.2
0.50	0.50:0.50	12.8	1.1	535	2.3
0.25	0.25:0.75	12.8	0.9	535	2.3
0.15	0.15:0.85	11.8	1.1	419	3
0.10	0.10:0.90	9.75	1.4	236	5.3
0.05	0.05:0.95	9.25	1.3	202	6.2


551 the aggregation number of the initial as-prepared micelles, Q, 552 remains the same and the aggregation number for micelles 553 postfragmentation, $Q_{\rm eq}$, decreases as the extent of dilution

increases. Thus, the size ratio Q/Q_{eq} increases over a broad 554 range from 1.5 to around 6.2.

It is important to note that the transformation from larger to 556 smaller spherical micelles increases the interfacial area per chain. 557 Hence, the process is not driven by a change in interfacial 558 tension; nor is it related to the Rayleigh instability. Rather, relief 559 of chain stretching is likely the mechanism responsible for 560 fragmentation. 51,61 The change in solvent changes the distance 561 to equilibrium but not the direction. Even in the case of no 562 change in solvent quality, micelles still relax by fragmentation as 563 shown in Figure 4a. It should also be noted that the initial as-564 prepared micelles are not unstable, but actually deeply 565 metastable, with a barrier exceeding 20 kT. 49,50

Effect of Thermodynamic Driving Force on Fragmen- 567 tation Kinetics. The direct dissolution method generates block 568 copolymer micelles that are significantly larger than the 569 equilibrium size, i.e., Q/Qeq > 1. The relaxation of as-prepared 570 micelles to approach equilibrium under a T-jump is dominated 571 by micelle fragmentation under the conditions of the present 572 study. The size ratio of micelles before and after relaxation, Q/573Q_{eq}, can be treated as the measure of driving force for the 574 fragmentation process. In prior studies, the micelles were 575 prepared and then allowed to relax under a T-jump in the same 576 solvent. The solvent quality represented by its interfacial tension 577 with the core-forming block influences the equilibrium size of 578 the micelles as micelle size is directly related to γ . When micelles 579 are prepared and fragmented in the same solvent, either pure or 580 mixed ILs, the value of γ influences both Q and Q_{eq} in the same 581 way. Thus, irrespective of the nature of solvent quality, the ratio $_{582}$ $Q/Q_{\rm eq}$ remains nearly unaffected. The protocol adopted in $_{583}$ prior studies, therefore, does not allow one to isolate the role of 584 the driving force for fragmentation in its kinetics. In the present 585 protocol, dilution of the master solution with the second ionic 586 liquid enables control of the size ratio $Q/Q_{\rm eq}$ over a broad range. 587

Figure 10a depicts the effect of $Q/Q_{\rm eq}$ on the relaxation time τ . 588 f10 The increase in driving force results in significantly faster 589 fragmentation kinetics. The decrease in relaxation time is much 590 sharper for $Q/Q_{\rm eq} \approx 1.2-5$, and particularly for $Q/Q_{\rm eq} \leq 2$. For 591 $Q/Q_{\rm eq} > 5$, the characteristic relaxation time approaches a 592 plateau value, corresponding to the relaxation time for micelle 593 equilibration in pure $[C_{10} {\rm mim}][{\rm TFSI}]$ (IL2). Faster fragmenta-594 tion of bigger micelles can be explained with the help of micelle 595 free energy. For $Q/Q_{\rm eq} > 2$, the as-prepared micelles are much 596

Figure 10. (a) Variation of fragmentation time, τ , with the micelle size ratio Q/Q_{eq} based on SAXS and cryo-TEM results. The error bars represent the standard error from the fits in τ and in Q (propagated from R_{core}). (b) Schematic free energy plot.

597 bigger than the equilibrium size and experience significant 598 crowding of corona chains leading to higher free energy 599 associated with corona stretching. The conformational energy 600 cost dominates the interfacial energy associated with the 601 creation of smaller micelles and provides the thermodynamic 602 driving force for fragmentation. As $Q/Q_{\rm eq}$ increases, the 603 thermodynamic driving force increases, resulting in faster 604 fragmentation even though the initial micelles are farther away 605 from the equilibrium size. Quite possibly these micelles undergo 606 a cascade of fragmentation events, which are progressively 607 slower as $Q/Q_{\rm eq}$ approaches 2 from above. Alternatively, these 608 micelles could undergo spontaneous fragmentation into multi-609 ple "daughter micelles," essentially simultaneously. In order to 610 distinguish these two possibilities, in situ time-resolved TEM 611 measurements are needed.

612 A qualitative free energy landscape for micelles in the 613 neighborhood of $Q/Q_{\rm eq} > 1$ is shown in Figure 10b. For 614 micelles with $Q/Q_{\rm eq} \geq 1.2-2$, fragmentation is energetically 615 favorable as it produces smaller micelles with collective energy 616 smaller than the initial state. For micelles with $Q/Q_{\rm eq} \leq 2$, the 617 fragmentation is relatively less favorable as it produces some 618 micelles below the equilibrium size with higher total energy than 619 the equilibrium micelle. In this size range, the process of 620 fragmentation is not necessarily a net downhill process and 621 should therefore slow down considerably.

622 SUMMARY

623 The kinetics of fragmentation in block copolymer micelles was 624 investigated to explore the role of the thermodynamic driving 625 force. Spherical micelles of PB-b-PEO were prepared by direct 626 dissolution in an ionic liquid. Relaxation of the as-prepared 627 micelles (aggregation number $Q > Q_{eq}$) to attain an equilibrium 628 state (aggregation number $\approx Q_{eq}$) predominantly through 629 fragmentation was studied. Importantly, we varied the driving 630 force for fragmentation, represented by Q/Q_{eq} , by strategic 631 mixing of different ILs as solvents. The choice of a pair of ILs to 632 be used for mixing was made based on the measured γ of the 633 solvent with the micelle core, which was determined using a 634 pendant drop technique. The micelles prepared in a given 635 solvent ([C₂mim][TFSI]) were subjected to fragmentation in a 636 series of surrounding media of progressively lower selectivity. 637 Altering the solvent quality was accomplished by addition of the 638 second solvent ([C₁₀mim][TFSI]) with a lower γ with the core-639 forming PB block compared to the first solvent. The reduction in γ of the solvent mixture leads to the formation of smaller micelles 641 postfragmentation. By controlling the amount of low γ solvent 642 being added to the micellar solution, the size ratio Q/Q_{eq} varied 643 from 1.2 to 5.

The average micelle size during the equilibration process obtained using in situ DLS at 170 °C was described using a compressed exponential expression, and the characteristic fragmentation time was obtained. SAXS and TEM were used with consistent results. Assuming "dry" micellar cores, these measurements gave access to the aggregation numbers of the micelles. As the size difference between the as-prepared and equilibrium micelles became wider (indicated by higher values for the ratio $Q/Q_{\rm eq}$), the fragmentation time was found to decrease. Thus, an increase in the driving force for fragmentation. The faster fragmentation of larger micelles can be understood in terms of increasingly crowded corona chains. It is not yet spossible to distinguish whether larger micelles undergo a

cascade of fragmentation events to achieve $Q_{\rm eq}$ or whether 659 larger micelles fragment into more than two "daughter" micelles. 660

661

676

683

685

686

688

689

690

706

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at 663 https://pubs.acs.org/doi/10.1021/acs.macromol.2c02158.

 1 H NMR spectra of BO(9–8), [C₂mim][TFSI], and 66S [C₁₀mim][TFSI], SEC-RI traces of PB(5 k), and BO(9–666 8) in THF, SAXS profile of BO(9–8) in bulk, SAXS 667 patterns of pure [C₂mim][TFSI] and [C₁₀mim][TFSI] 668 and their mixtures, REPES results of BO(9–8) in mixed 669 ILs, cryo-TEM micrographs of BO(9–8) micelles after 670 fragmentation at different degrees of dilution in mixed 671 ILs, room temperature LP-TEM micrographs of BO(9–672 8) in [C₂mim][TFSI], Q_{eq} vs γ for BO(9–8) in mixed ILs, 673 ionic liquid parameters, and core-shell contrast values 674 (PDF)

AUTHOR INFORMATION

Corresponding Author

Timothy P. Lodge – Department of Chemistry and Department 678 of Chemical Engineering and Materials Science, University of 679 Minnesota, Minneapolis, Minnesota 55455-0431, United 680 States; Orcid.org/0000-0001-5916-8834; Email: lodge@ 681 umn.edu 682

Author

Supriya Gupta — Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States; orcid.org/0000-0002-0105-3855

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.macromol.2c02158

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by the National Science $\,^{692}$ Foundation Polymers Program through Award DMR-2103630. $\,^{693}$ Dr. Julia Early provided the polymer used in the study. SAXS $\,^{694}$ experiments were performed at the 5-ID-D beamline of the $\,^{695}$ DND-CAT at the Advanced Photon Source, Argonne National $\,^{696}$ Laboratory. The authors acknowledge Prof. Lorraine Francis for $\,^{697}$ providing access to the KRÜSS DSA-30S tensiometer for the $\,^{698}$ measurement of γ , and Prof. Lynn Walker for helpful $\,^{699}$ discussions. Part of this work was carried out in the $\,^{700}$ Characterization Facility, College of Science and Engineering, $\,^{701}$ University of Minnesota, which receives partial support from the $\,^{702}$ NSF through the MRSEC (Award no. DMR-2011401) and the $\,^{703}$ NNCI (Award no. ECCS-2025124) programs. We also thank $\,^{704}$ Dr. Wei Zhang for help with the TEM imaging.

REFERENCES

(1) Bates, C. M.; Bates, F. S. 50th Anniversary Perspective: Block 707 Polymers—Pure Potential. Macromolecules **2017**, 50, 3–22. 708 (2) Gohy, J. F. Block Copolymer Micelles. Adv. Polym. Sci. **2005**, 190, 709 65–136. 710 (3) Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. 711 Soc. Rev. **2012**, 41, 5969–5985. 712 (4) Tritschler, U.; Pearce, S.; Gwyther, J.; Whittell, G. R.; Manners, I. 713

50th Anniversary Perspective: Functional Nanoparticles from the 714

Macromolecules Article pubs.acs.org/Macromolecules

- 715 Solution Self-Assembly of Block Copolymers. *Macromolecules* **2017**, 50, 716 3439-3463.
- (5) Bates, F. S.; Fredrickson, G. H. Block Copolymers—Designer Soft 717 718 Materials. Phys. Today 2000, 52, 32.
- (6) Leibler, L. Theory of Microphase Separation in Block 720 Copolymers. Macromolecules 1980, 13, 1602-1617.
- (7) Matsen, M. W.; Schick, M. Stable and Unstable Phases of a 721 722 Diblock Copolymer Melt. Phys. Rev. Lett. 1994, 72, 2660-2663.
- (8) Fredrickson, G. H. The Equilibrium Theory of Inhomogeneous 723 724 Polymers; Oxford University Press, 2013.
- (9) Noolandi, J.; Hong, K. M. Theory of Block Copolymer Micelles in 725 726 Solution. Macromolecules 1983, 16, 1443-1448.
- (10) Gupta, S.; Chokshi, P. Self-Organization of a 4-Miktoarm Star 727 728 Block Copolymer Induced by Cylindrical Confinement. Soft Matter 729 **2021**, 17, 4929-4941.
- (11) Ge, Z.; Liu, S. Functional Block Copolymer Assemblies 730 731 Responsive to Tumor and Intracellular Microenvironments for Site-732 Specific Drug Delivery and Enhanced Imaging Performance. Chem. Soc. Rev. 2013, 42, 7289-7325.
- (12) Hubbell, J. A. Enhancing Drug Function. Science 2003, 300, 595-734 735 596
- (13) Elsabahy, M.; Heo, G. S.; Lim, S. M.; Sun, G.; Wooley, K. L. 736 Polymeric Nanostructures for Imaging and Therapy. Chem. Rev. 2015, 738 115, 10967-11011.
- (14) Monteiro, M. Nanoreactors for Polymerizations and Organic 739 740 Reactions. Macromolecules 2010, 43, 1159-1168.
- (15) Krishnamoorthy, S.; Pugin, R.; Brugger, J.; Heinzelmann, H.; 742 Hinderling, C. Nanopatterned Self-Assembled Monolayers by Using 743 Diblock Copolymer Micelles as Nanometer-Scale Adsorption and Etch 744 Masks. Adv. Mater. 2008, 20, 1962-1965.
- (16) Wang, T. Y.; Tsiang, R. C. C.; Liou, J. S.; Wu, J.; Sheu, H. C. 745 746 Preparation and Characterization of a Star-Shaped Polystyrene-b-747 Poly(Ethylene-co-Propylene) Block Copolymer as a Viscosity Index
- 748 Improver of Lubricant. J. Appl. Polym. Sci. 2001, 79, 1838–1846. (17) Halperin, A. Polymeric Micelles: A Star Model. Macromolecules 749 750 **1987**, 20, 2943-2946.
- (18) Halperin, A.; Tirrell, M.; Lodge, T. P. Tethered Chains in 752 Polymer Microstructures. Adv. Polym. Sci. 1992, 100, 31-71.
- (19) Nagarajan, R.; Ganesh, K. Block Copolymer Self-Assembly in 753 Selective Solvents: Spherical Micelles with Segregated Cores. J. Chem. 754 755 Phys. 1989, 90, 5843-5856.
- (20) Pépin, M. P.; Whitmore, M. D. Monte Carlo and Mean Field 757 Study of Diblock Copolymer Micelles. Macromolecules 2000, 33, 8644-758 8653.
- (21) Zhulina, E. B.; Adam, M.; LaRue, I.; Sheiko, S. S.; Rubinstein, M. 759 760 Diblock Copolymer Micelles in a Dilute Solution. Macromolecules 2005, 761 38, 5330-5351.
- (22) He, Y.; Li, Z.; Simone, P.; Lodge, T. P. Self-Assembly of Block 762 763 Copolymer Micelles in an Ionic Liquid. J. Am. Chem. Soc. 2006, 128,
- (23) Denkova, A. G.; Mendes, E.; Coppens, M. O. Non-Equilibrium 766 Dynamics of Block Copolymer Micelles in Solution: Recent Insights 767 and Open Questions. Soft Matter 2010, 6, 2351-2357.
- (24) Zana, R. Dynamics in Micellar Solutions of Amphiphilic Block 769 Copolymers. In Dynamics of Surfactant Self-Assemblies: Micelles, 770 Microemulsions, Vesicles, and Lyotropic Phases; Hubbard, A. T., Ed.;
- Taylor & Francis Group/CRC Press: Boca Raton, 2005; pp 161-231.
- (25) Aniansson, E. A. G.; Wall, S. N. Kinetics of Step-Wise Micelle 773 Association. J. Phys. Chem. 1974, 78, 1024-1030.
- (26) Aniansson, E. A. G.; Wall, S. N. Kinetics of Step-Wise Micelle 775 Association. Correction and Improvement. J. Phys. Chem. 1975, 79, 776 857-858.
- (27) Aniansson, E. A. G.; Wall, S. N.; Almgren, M.; Hoffmann, H.; 777 778 Kielmann, I.; Ulbricht, W.; Zana, R.; Lang, J.; Tondre, C. Theory of the
- 779 Kinetics of Micellar Equilibria, and Quantitative Interpretation of
- 780 Chemical Relaxation Studies of Micellar Solutions of Ionic Surfactants. 781 J. Phys. Chem. 1976, 80, 905-922.
- (28) Halperin, A.; Alexander, S. Polymeric Micelles: Their Relaxation 783 Kinetics. Macromolecules 1989, 22, 2403-2412.

- (29) Halperin, A. On Micellar Exchange: The Role of the Insertion 784 Penalty. Macromolecules 2011, 44, 5072-5074.
- (30) Dormidontova, E. E. Micellization Kinetics in Block Copolymer 786 Solutions: Scaling Model. Macromolecules 1999, 32, 7630-7644. 787
- (31) Wang, Y.; Balaji, R.; Quirk, R. P.; Mattice, W. L. Detection of the 788 Rate of Exchange of Chains between Micelles Formed by Diblock 789 Copolymers in Aqueous Solution. Polym. Bull. 1992, 28, 333-338.
- (32) Cao, T.; Munk, P.; Ramireddy, C.; Tuzar, Z.; Webber, S. E. 791 Fluorescence Studies of Amphiphilic Poly(Methacrylic Acid)-Block- 792 Polystyrene-Block-Poly(Methacrylic Acid) Micelles. Macromolecules 793 1991, 24, 6300-6305.
- (33) Smith, C. K.; Liu, G. Determination of the Rate Constant for 795 Chain Insertion into Poly(Methyl Methacrylate)-Block-Poly- 796 (Methacrylic Acid) Micelles by a Fluorescence Method. Macromolecules 797 1996, 29, 2060-2067.
- (34) Willner, L.; Poppe, A.; Allgaier, J.; Monkenbusch, M.; Richter, D. 799 Time-Resolved SANS for the Determination of Unimer Exchange 800 Kinetics in Block Copolymer Micelles. Europhys. Lett. 2001, 55, 667-801
- (35) Won, Y.-Y.; Davis, H. T.; Bates, F. S. Molecular Exchange in 803 PEO-PB Micelles in Water. Macromolecules 2003, 36, 953-955. 804
- (36) van Stam, J.; Creutz, S.; De Schryver, F. C.; Jérôme, R. Tuning of 805 the Exchange Dynamics of Unimers between Block Copolymer 806 Micelles with Temperature, Cosolvents, and Cosurfactants. Macro- 807 molecules 2000, 33, 6388-6395.
- (37) Lu, J.; Bates, F. S.; Lodge, T. P. Remarkable Effect of Molecular 809 Architecture on Chain Exchange in Triblock Copolymer Micelles. 810 Macromolecules 2015, 48, 2667-2676.
- (38) Choi, S.; Lodge, T. P.; Bates, F. S. Mechanism of Molecular 812 Exchange in Diblock Copolymer Micelles: Hypersensitivity to Core 813 Chain Length. Phys. Rev. Lett. 2010, 104, No. 047802.
- (39) Zhao, D.; Ma, Y.; Lodge, T. P. Exchange Kinetics for a Single 815 Block Copolymer in Micelles of Two Different Sizes. Macromolecules 816 2018, 51, 2312-2320.
- (40) Ma, Y.; Lodge, T. P. Chain Exchange Kinetics in Diblock 818 Copolymer Micelles in Ionic Liquids: The Role of χ . Macromolecules 819 2016, 49, 9542-9552.
- (41) Seeger, S. C.; Dorfman, K. D.; Lodge, T. P. Free Energy 821 Trajectory for Escape of a Single Chain from a Diblock Copolymer 822 Micelle. ACS Macro Lett. 2021, 10, 1570-1575.
- (42) Rharbi, Y. Fusion and Fragmentation Dynamics at Equilibrium in 824 Triblock Copolymer Micelles. Macromolecules 2012, 45, 9823-9826. 825
- (43) Landazuri, G.; Fernandez, V. V. A.; Soltero, J. F. A.; Rharbi, Y. 826 Length of the Core Forming Block Effect on Fusion and Fission 827 Dynamics at Equilibrium in PEO-PPO-PEO Triblock Copolymer 828 Micelles in the Spherical Regime. Macromolecules 2021, 54, 2494-829 2505. 830
- (44) Lodge, T. P.; Seitzinger, C. L.; Seeger, S. C.; Yang, S.; Gupta, S.; 831 Dorfman, K. D. Dynamics and Equilibration Mechanisms in Block 832 Copolymer Particles. ACS Polym. Au 2022, 397.
- (45) Zhang, L.; Eisenberg, A. Thermodynamic vs Kinetic Aspects in 834 the Formation and Morphological Transitions of Crew-Cut Aggregates 835 Produced by Self-Assembly of Polystyrene-b-Poly(Acrylic Acid) Block 836 Copolymers in Dilute Solution. Macromolecules 1999, 32, 2239-2249. 837
- (46) Desbaumes, L.; Eisenberg, A. Single-Solvent Preparation of 838 Crew-Cut Aggregates of Various Morphologies from an Amphiphilic 839 Diblock Copolymer. Langmuir 1999, 15, 36-38.
- (47) Cameron, N. S.; Corbierre, M. K.; Eisenberg, A. 1998 E.W.R. 841 Steacie Award Lecture: Asymmetric Amphiphilic Block Copolymers in 842 Solution: A Morphological Wonderland. Can. J. Chem. 1999, 77, 1311-843
- (48) Meli, L.; Lodge, T. P. Equilibrium vs Metastability: High- 845 Temperature Annealing of Spherical Block Copolymer Micelles in an 846 Ionic Liquid. Macromolecules 2009, 42, 580-583.
- (49) Meli, L.; Santiago, J. M.; Lodge, T. P. Path-Dependent 848 Morphology and Relaxation Kinetics of Highly Amphiphilic Diblock 849 Copolymer Micelles in Ionic Liquids. Macromolecules 2010, 43, 2018-850 2027.

- 852 (50) Early, J. T.; Lodge, T. P. Fragmentation of 1,2-Polybutadiene-853 Block-Poly(Ethylene Oxide) Micelles in Imidazolium-Based Ionic 854 Liquids. *Macromolecules* **2019**, *52*, 7089–7101.
- 855 (51) Early, J. T.; Block, A.; Yager, K. G.; Lodge, T. P. Molecular 856 Weight Dependence of Block Copolymer Micelle Fragmentation 857 Kinetics. J. Am. Chem. Soc. 2021, 143, 7748–7758.
- 858 (52) Wang, E.; Zhu, J.; Zhao, D.; Xie, S.; Bates, F. S.; Lodge, T. P. 859 Effect of Solvent Selectivity on Chain Exchange Kinetics in Block 860 Copolymer Micelles. *Macromolecules* **2019**, *53*, 417–426.
- 861 (53) Zhao, D.; Wang, E.; Lodge, T. P. Hybridization of a Bimodal 862 Distribution of Copolymer Micelles. *Macromolecules* **2020**, 53, 7705–863 7716.
- 864 (54) Lund, R.; Willner, L.; Stellbrink, J.; Radulescu, A.; Richter, D. 865 Role of Interfacial Tension for the Structure of PEP–PEO Polymeric 866 Micelles. A Combined SANS and Pendant Drop Tensiometry 867 Investigation. *Macromolecules* **2004**, *37*, 9984–9993.
- 868 (55) Wang, E.; Lu, J.; Bates, F. S.; Lodge, T. P. Effect of Corona Block 869 Length on the Structure and Chain Exchange Kinetics of Block 870 Copolymer Micelles. *Macromolecules* **2018**, *51*, 3563–3571.
- 871 (56) Lund, R.; Willner, L.; Richter, D.; Dormidontova, E. E. 872 Equilibrium Chain Exchange Kinetics of Diblock Copolymer Micelles: 873 Tuning and Logarithmic Relaxation. *Macromolecules* **2006**, 39, 4566–874 4575.
- 875 (57) Lund, R.; Willner, L.; Richter, D.; Lindner, P.; Narayanan, T. 876 Kinetic Pathway of the Cylinder-to-Sphere Transition in Block 877 Copolymer Micelles Observed in Situ by Time-Resolved Neutron 878 and Synchrotron Scattering. ACS Macro Lett. 2013, 2, 1082–1087.
- 879 (58) Wang, L.; Huang, H.; He, T. Rayleigh Instability Induced 880 Cylinder-to-Sphere Transition in Block Copolymer Micelles: Direct 881 Visualization of the Kinetic Pathway. *ACS Macro Lett.* **2014**, *3*, 433–882 438.
- 883 (59) Zhou, Y.; Yan, D. Real-Time Membrane Fusion of Giant Polymer 884 Vesicles. *J. Am. Chem. Soc.* **2005**, *127*, 10468–10469.
- 885 (60) Parent, L. R.; Bakalis, E.; Ramírez-Hernández, A.; Kammeyer, J. 886 K.; Park, C.; de Pablo, J.; Zerbetto, F.; Patterson, J. P.; Gianneschi, N. C. 887 Directly Observing Micelle Fusion and Growth in Solution by Liquid-888 Cell Transmission Electron Microscopy. *J. Am. Chem. Soc.* **2017**, *139*, 889 17140–17151.
- 890 (61) Early, J. T.; Yager, K. G.; Lodge, T. P. Direct Observation of 891 Micelle Fragmentation via In Situ Liquid-Phase Transmission Electron 892 Microscopy. *ACS Macro Lett.* **2020**, *9*, 756–761.
- 893 (62) Gao, J.; Li, S.; Zhang, X.; Wang, W. Computer Simulations of 894 Micelle Fission. *Phys. Chem. Chem. Phys.* **2010**, 12, 3219–3228.
- 895 (63) Bashforth, F.; Adams, J. C. An Attempt to Test the Theories of 896 Capillary Action by Comparing the Theoretical and Measured Forms of 897 Drops of Fluid; University Press, 1883.
- 898 (64) Berry, J. D.; Neeson, M. J.; Dagastine, R. R.; Chan, D. Y.; Tabor, 899 R. F. Measurement of Surface and Interfacial Tension using Pendant 900 Drop Tensiometry. J. Colloid Interface Sci. 2015, 454, 226–237.
- 901 (65) Tariq, M.; Serro, A. P.; Mata, J. L.; Saramago, B.; Esperança, J. 902 M.; Lopes, J. N. C.; Rebelo, L. P. N. High-Temperature Surface 903 Tension and Density Measurements of 1-Alkyl-3-Methylimidazolium 904 Bistriflamide Ionic Liquids. Fluid Phase Equilib. 2010, 294, 131–138.
- 905 (66) Bond, W.; Newton, D. A. Bubbles, Drops, and Stokes' Law. 906 London, Edinburgh Dublin Philos. Mag. J. Sci. 1928, 5, 794–800.
- 907 (67) Brown, W. Dynamic Light Scattering: The Method and Some 908 Applications (Monographs on the Physics and Chemistry of Materials; 49); 909 Clarendon Press; Oxford University Press: Oxford (England); New 910 York, 1993.
- 911 (68) Jakeš, J. Testing of the Constrained Regularization Method of 912 Inverting Laplace Transform on Simulated Very Wide Quasielastic 913 Light Scattering Autocorrelation Functions. *Czech. J. Phys.* **1988**, *38*, 914 1305–1316.
- 915 (69) Araque, J. C.; Hettige, J. J.; Margulis, C. J. Modern Room 916 Temperature Ionic Liquids, a Simple Guide to Understanding Their 917 Structure and How It May Relate to Dynamics. *J. Phys. Chem. B* **2015**, 918 *119*, 12727–12740.
- 919 (70) Guinier, A.; Fournet, G.; Yudowitch, K. L. Small-Angle Scattering 920 of X-Rays; Wiley: New York, 1955.

(71) Pedersen, J. S. Determination of Size Distributions from Small- 921 Angle Scattering Data for Systems with Effective Hard-Sphere 922 Interactions. J. Appl. Crystallogr. 1994, 27, 595–608.