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ABSTRACT: Micelle fragmentation, one of the key mechanisms Y ot B

responsible for equilibration of kinetically trapped micelles, is @ G &)

investigated for block copolymer micelles in ionic liquids (ILs). In o | —> o0 @, | —> |,

particular, the role of driving force for micelle fragmentation is g: Z:; & | y-jump ,'m N :“""’.f't';’ T-jump|

studied by altering the solvent quality after micelle preparation, & o LR 9 "i S:..8...©

amounting to a jump in interfacial tension y between solvent and
the micelle core. Direct dissolution of a 1,2-polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) copolymer (M, = 17.5 kDa and fpgo
= 0.38) in the ionic liquid [C,mim][TFSI] results in large micelles with average size (R;). ~ 68 nm and dispersity D ~ 1.27. The
solution of the as-prepared micelles is then diluted by the careful addition of a second ionic liquid [C,;ymim][TFSI] having lower y
with the micelle core, such that the micelles remain unaffected. The y and hence the quality of the solvent mixture were controlled by
the degree of dilution. The choice of the second solvent is based on the measurement of y for a series of [C,mim][TFSI] ILs with 1-
2-polybutadiene homopolymer, carried out using a pendant drop test. Diluting the micelles by adding another ionic liquid with lower
y tends to decrease the equilibrium micelle size, which, in turn, enhances the driving force for fragmentation of the bigger as-
prepared micelles, represented by increase in the ratio of aggregation numbers Q/Q,,. Subjecting the diluted micellar solution to
temperature-jump to 170 °C followed by thermal annealing leads to fragmentation of the as-prepared micelles to attain a near-
equilibrium state. The micelles are characterized using an in situ dynamic light scattering (DLS) technique to observe the time
evolution of average micelle size, from which the relaxation time is obtained. Additionally, small-angle X-ray scattering (SAXS) and
cryogenic transmission electron microscopy (TEM) measurements were carried out to obtain the micelle core size and distribution
in the micellar solutions before and after fragmentation. The enhancement in the driving force achieved by controlling the amount of
low y solvent resulted in faster fragmentation; the characteristic fragmentation time decreases monotonically on increasing the size
ratio Q/Q.q from 1.2 to §.

B INTRODUCTION

Block copolymers (BCPs) are fascinating materials due to their
ability to self-assemble into a myriad of nanostructures, both in
bulk' and solution.”™* Many studies, both experimental as well
as computational, have revealed the rich self-assembly behavior
of BCPs.” '" The enthalpic energy arising from chemical
dissimilarity of the constituent blocks coupled with the
conformational entropy of the polymeric chains governs the
eventual organization. In particular, spherical micelles with a
core-shell structure have been gaining significant attention as a
universal carrier for targeted drug delivery.'""” In addition to
nanomedicine, BCP micelles find practical interest in many
biological and industrial applications, such as nanoreactors, in
nano- templatlng, as imaging agents, and as viscosity modifiers
for motor oil."*~'® In solution, the contrast in selectivity of the
blocks toward the solvent imparts an amphiphilic character
responsible for micellization, and the choice of solvent plays a
key role. Careful control of molecular weight, block
composition, and chain architecture together with the nature
of solvent, temperature, concentration, method of preparation,
and addition of homopolymers or ions can provide a variety of
micelle structures, such as spheres, worms, vesicles, and
bicontinuous structures.'” > Concurrently, ionic liquids (ILs)
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are receiving increasing attention due to their extraordinary
physicochemical properties, such as thermal and chemical
stability, high temperature windows, and negligible vapor
pressure, and tunable cohesive energy density. The use of ILs
as solvents for micellization of BCPs was first explored by He et
al.”?

While the equilibrium micellar structures attained via self-
assembly are relatively well studied, the understanding of the
micelle formation and their equilibration processes is still
incomplete.””** To realize the full potential of BCP micelles, an
extensive understanding of the dynamics of micelle formation
and equilibration processes is essential to optimize structure—
property relationships. The equilibration of surfactant micelles
has been studied extensively.”>~>” For BCP micelles, theoretical

description of the equilibration mechanism”*~> is supported by
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a few experimental studies which generally focus on a single
mechanism in isolation, such as chain exchange,‘?’l_41 or fusion
and fragmentation."”*? A comprehensive review of the
dynamics and equilibration of BCP micelles along with the
future scope and challenges has been presented in a recent
review.

For BCP micelles that are significantly larger/smaller than the
equilibrium size, the relaxation toward equilibrium state is
governed predominantly by fragmentation/fusion mechanisms,
neither of which has been studied extensively. Previous studies
estimated the rate constants for the fragmentation and fusion
processes for poly(ethylene oxide)-b-poly(propylene oxide)-b-
poly(ethylene oxide) triblock copolymer micelles using
fluorescence decay methods.*” It was found that for micelles
near equilibrium, the rates for fragmentation and fusion
processes are on the order of 10° times slower than chain
exchange. Recent experiments showed that variation in the
length of the triblock copolymers can greatly affect the
fragmentation kinetics. "’

Experimental studies on the relaxation of as-prepared micelles
far from the equilibrium state are limited. For such a study, one
needs to prepare micelles that are either significantly smaller or
much larger than the equilibrium size in order to capture the
regimes of fusion or fragmentation processes, respectively.
Eisenberg et al. proposed an interesting approach to prepare
micelles of different sizes from a single BCP by altering the
sample preparation method.””™*” Following this protocol, Meli
et al. used direct dissolution method to prepare micelles of 1,2-
polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) in imidazo-
lium-based ILs, such as I-ethyl-3-methylimidazolium bis-
(trifluoromethylsulfonyl)imide ([C,mim][TFSI]) and 1-butyl-
3-methylimidazolium bis(trifluoromethylsulfonyl)imide
([Cymim][TESI]).*** The authors observed that the direct
dissolution method produces micellar aggregates significantly
larger than the equilibrium size (Q/Q.q > 1.5) where Q and Q.
denote the aggregation numbers for the as-prepared micelles
and the equilibrium micelles, respectively. The kinetically
trapped as-prepared micelles can be driven toward the
equilibrium state under external stimuli, the most common
being a temperature-jump. Large micelles were subjected to
relaxation upon thermal annealing at an elevated temperature
(e.g, 170 °C). During relaxation, the time evolution of average
micelle size and distribution were followed using dynamic light
scattering (DLS), small-angle X-ray scattering (SAXS), and
transmission electron microscopy (TEM) techniques, all of
which gave consistent results. Irrespective of the annealing
temperature, the decay of micelle size was found to be well
described by a compressed exponential form with an “Avrami”
exponent n = 2. The study provided an estimate of the
characteristic relaxation time 7. Since time-resolved small-angle
neutron scattering experiments on the same system revealed no
chain exchange up to at least 200 °C, the observed relaxation
time during annealing at 170 °C is presumed to be dominated by
fragmentation. Recently, Early et al. conducted experiments on
PB-b-PEO micelles in different ILs and employed DLS, SAXS,
and TEM to clearly identify the roles of various factors
influencing the rate of micelle fragmentation.””>" Fragmenta-
tion being a first-order process, the rate of fragmentation was
found to be independent of micellar concentration. Interest-
ingly, the fragmentation time was reported to be independent of
the solvent quality and, therefore, interfacial tension y, which
suggests that the barrier to fragmentation does not involve
exposure of micelle core to the surrounding solvent. It should be

noted that micelles were prepared and relaxed in the same
solvent and the experiments were performed in a series of
solvents to vary the solvent quality. The authors also report a
strong dependence of fragmentation rate on BCP molecular
weight, consistent with the theoretical prediction of Dormi-
dontova.”® The influence of altering the solvent quality on
structure and chain exchange kinetics in BCP micelles has also
been investigated extensively. ">~

Recent studies have captured the morphological transition
from cylindrical to spherical micelles using time-resolved small-
angle neutron (TR-SANS) and X-ray scattering (TR-
SAXS).””*® Direct imaging of fusion and fragmentation events
provides unique insight into the evolution of micellar structures
and their characteristics.””" Recently, time-resolved TEM
imaging of BCP micelles in ILs depicted the evolution of
micellar morphology during fragmentation.’ The TEM
imaging indicated a sequential transition from a spherical
micelle to a prolate spheroid, then to a “peanut-shaped” micelle
followed by the creation of two micelle cores with overlapping
coronas, and finally to detachment of coronas to generate two
spherical micelles. Similar events were reported earlier by Gao et
al. using the dissipative particle dynamics (DPD) simulations.®”

The present study is aimed at understanding the effect of
micelle size ratio Q/Q.y, an indication of the departure of as-
prepared micelles from equilibrium, on the kinetics of
fragmentation. The methodology adopted in the prior studies
does not allow controlled variation of Q/Q.q over a broad range,
and thus the value was fixed, typically &~ 1.5—2. Here, we adopt a
new sample preparation methodology, which allows us to vary
Q/ Q. significantly, by altering the solvent quality after micelle
preparation. Micelles are first prepared in a solvent with higher y
followed by dilution with the second solvent with a lower y value.
The choice of the solvents was made based on direct
measurements of y between the solvent and a PB homopolymer.
The diluted micellar solution is then subjected to high-
temperature annealing to attain equilibration. Dilution by a
low y solvent leads to reduction in equilibrium micelle size
(Qeq), which in turn increases the ratio Q/Q.q Micelle sizes
before and after fragmentation are characterized by in situ DLS,
SAXS, and TEM.

B EXPERIMENTAL SECTION

Synthesis and Characterization. A PB-b-PEO sample was
synthesized previously via a two-step sequential anionic polymer-
ization.”" The resulting PB-b-PEO diblock copolymer is denoted as
BO(9-8), where the numbers in parentheses refer to the number-
average molecular weight of each block in kDa. Size exclusion
chromatography (SEC) with multiangle light scattering detection
(Wyatt Instruments DAWN) was used to obtain the molecular weight
(M,) and the dispersity (D). 'H nuclear magnetic resonance
spectroscopy using a Varian Inova 500 spectrometer was performed
in CDCl, to calculate the polymer block composition. For BO(9—38),
the total M,, = 17.5kDa and P = 1.10, with M, p = 8.6 kDa, M, pro = 7.8
kDa, and fpgo = 0.38. The homopolymer 1,2-polybutadiene (PB) used
for y measurements was also synthesized previously using anionic
polymerization with M;, = 4.7 kDa and D = 1.10. The ILs 1-ethyl-3-
methylimidazolium bis(trifluoromethylsulfonyl)imide 99% ([C,mim]-
[TFSI]) and 1-decyl-3-methylimidazolium bis-
(trifluoromethylsulfonyl)imide 99% ([C;omim][TFSI]) were pur-
chased from IoLiTec. ILs were dried under vacuum (<100 mTorr) at
60 °C for 60 h prior to use and were characterized by 'H NMR
spectroscopy in DMSO-d4. The NMR spectra and SEC chromatograms
for both polymers and ILs are provided in the Supporting Information,
Figures S1-SS.
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Interfacial Tension Measurement. The interfacial tension y
between the solvent and the core-forming polymer block plays an
important role in controlling the size of the micelles at equilibrium.
Tuning y, therefore, alters the equilibrium aggregation number of the
micelles (Q.), which, in turn, controls the size ratio (Q/Q,,) where Qis
the mean aggregation number of the micelles. Thus, by varying y of an
as-prepared micellar solution, one can alter the ratio Q/Q., and study
the effect of the thermodynamic driving force on the rate of
fragmentation. The y between PB, which forms the core of the block
copolymer micelles, and different ILs was measured using a Kruss DSA-
30S tensiometer using the pendant drop technique in which a drop of
ionic liquid is suspended in a reservoir of PB homopolymer at 70 °C. A
schematic of a pendant drop profile is presented in Figure 1. Once

<« Needle tip

IL droplet

PB homopolymer bath

Figure 1. Schematic diagram depicting a typical pendant drop profile.

stabilized, the shape of the droplet is obtained using the shadow image.
Theoretically, the shape is governed by the balance of the gravitational
and buoyancy forces together with the interfacial tension force acting
on the droplet:****

ApgR,=y B (1)

where Ap is the density difference between the two fluids,*>®° g is the
gravitational acceleration, Ro is the radius of curvature at the apex of the
drop, and Bis the shape factor.®® The shape factor is obtained by solving
three dimensionless first-order ordinary differential equations for the
coordinates at the surface of the pendant droplet:**

dx

I = cos cos ¢ @)
% = sin sin ¢ 3)
d sinsin ¢

Y =24+Bz- 27

ds ‘ x 4)

Here, s denotes the contour variable, which varies along the drop
surface starting with s = 0 at the apex. The above equations are
supplemented with the initial conditions at the apex of the drop x (0) =
z(0) = ¢ (0) = 0 (see Figure 1). The drop shape analysis software fits
the numerical solution of the above equations to the experimentally
captured image and estimates the shape factor B. Finally, y is calculated
via eq 1.

Measurements for multiple droplets were made for a given
combination of PB and ionic liquid. Figure 2ab demonstrates the
pendant drop profiles and plot representative values of y obtained for
PB with two ILs, [C,mim][TFSI], and [C;;mim][ TFSI], respectively.
As the alkyl chain length on the imidazolium ring increases, the y
between PB homopolymer and the ionic liquid decreases as expected.
Hence, the ionic liquid with a greater alkyl chain length on its cation
progressively becomes less unfavorable to the PB chains. In the context
of PB-b-PEO micelles, the IL behaves as a progressively less selective
solvent for micelle formation as the size of cationic alkyl length
increases, which should result in a smaller Q.

Micellar Solution Preparation in Mixed ILs. A master solution
with a polymer concentration of 1 wt % was prepared by direct
dissolution of BO(9—8) in [C,mim][TFSI] by stirring for 24—48 h at
70 °C. After the micelles are formed, the as-prepared master solution in
[C,mim][TFSI] is then diluted by adding the second ionic liquid,
[C,omim][TFSI] at room temperature, such that the polymer

[Comim][TESI] [Cromim][TFSI]

(a) (b)
y:11.8 mN/m y:4.1 mN/m
B:0.534 B:0.585
[C;mim][TFSI]
: < y> =11.8 mN/m
10 | -
€ 5| ]
S~
2
E el ]
~ .
[Comim][TFSI]
4 RS -~~~ - E
<y>=41mN/m
2+ i
(c)
0 1 1 1

0 500 1000 1500 2000
Step Number

Figure 2. Pendant drop profiles of ionic liquids in the reservoir of PB;
(a) [C,mim][TFSI]; (b) [C,;;mim][TESI]. (c) Interfacial tension
between 1,2-polybutadiene (PB, M, = 4.7 kDa) and [C,mim][TFSI],
and [C,omim][TFSI] at 70 °C.

concentration drops below 1 wt %. Depending upon the degree of 239

dilution by the second IL, a series of solutions with concentrations 0.9,
0.8,0.75.0.5,0.25,0.15, 0.1, and 0.05 wt % of BO(9—8) are obtained. It
is important to note that since the dilution is carried out at room
temperature, the process and degree of dilution do not greatly influence
the size distribution of the as-prepared micelles. Due to lower y for
[C,omim][TFSI] with the core-forming PB block, the dilution amounts
to a y-jump for the as-prepared micelles. After the y-jump, the micelles
were characterized again by DLS, and then the solution was heated and
thermally annealed at 170 °C during which the micelles undergo
fragmentation. Figure 3 presents a schematic description of the
protocol employed to prepare the micellar solution in mixed ILs. Here,
IL1 refers to the first ionic liquid in which micelles are prepared, i.e,,
[C,mim][TFSI], and IL2 denotes the second ionic liquid used for
dilution of the as-prepared micelles to impose the y-jump, ie,
[C,omim][TFSI]. The micelle size distribution is obtained for the as-
prepared micelles (the initial state) as well as for the micelles
postfragmentation (the final equilibrium state) using DLS. In addition,
in situ DLS measurements have also been carried out during
fragmentation to monitor the dynamics of micelle size distribution.
Dynamic Light Scattering (DLS). DLS measurements were
carried out to obtain the time variation in average size and size
distribution of micelles during fragmentation at 170 °C on a home-built
device, including a Brookhaven BI-DS photomultiplier mounted onto
an adjustable goniometer, a Lexel Ar* laser (wavelength 488 nm), and a
Brookhaven BI-9000 correlator. The temperature of the micellar
solution is controlled to within +0.2 °C using an index-matching silicon
oil bath. In addition to following micelle size at high temperature during
fragmentation, the micelle size and distribution were also obtained at 25
°C using a multiangle DLS instrument fitted with a Brookhaven BI-
200SM goniometer coupled with a Brookhaven BI-9000AT correlator
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Figure 3. Schematic diagram depicting the protocol to prepare a micellar solution in mixed ILs. The master solution is 1 wt % BO(9—8) in
[C,mim][TFSI] (IL1). The master sample is carefully diluted by adding [C,,mim][TFSI] (IL2) at room temperature such that the original micelles
remain unaffected. The dilution step is referred to as a y-jump. Finally, the diluted samples are thermally annealed at 170 °C (referred to as T-jump) to
approach an equilibrium state by fragmentation. The kinetics of fragmentation are monitored by in situ DLS measurements.

and 637 nm laser source. DLS samples were prepared by filtering
through a 0.45 ym PTFE syringe filters directly into the oven dried
dust-free glass tubes with an inner diameter of 0.51 cm. The glass tubes
were subsequently flame-sealed under vacuum (60 mTorr) in order to
prevent polymer degradation and moisture contamination. While room
temperature DLS measurements were carried out at multiple scattering
angles from 60° to 120° the high-temperature in situ DLS
measurements were carried out at a fixed scattering angle of 90°.

The normalized measured intensity autocorrelation function g,(t)
was acquired for 1—5 min. The electric field autocorrelation function
g1(t) was obtained from g,(t) using the Siegert relation®’

/)’glz(t) = gz(t) — L. Fitting the electric field autocorrelation function

to a cumulant expansion truncated to second-order, as given below,
provides the average decay rate I" of the micelles:

gl(t) = Aexp(-Tt)|1 + 4(1_“ £ + -

2r? Q)

The coeflicient of the second-order term provides the variance of the
normalized distribution of the decay rates, u,/I”, representing the
dispersity of the micelle size distribution. For a reasonably narrow size
distribution, the second-order cumulant expansion is sufficient. For any
samples exhibiting a bimodal micelle distribution from a regularized
positive exponential sum (REPES)®® analysis and a high dispersity value
from the cumulant analysis, the autocorrelation function g, (t) was fit to
a double-exponential function:

g(t) = Aexp(—Tjt) + Ayexp(-T5t) (6)

The apparent average hydrodynamic radius was calculated using the
Stokes—Einstein equation

kg T
671D,

(Rh> = (7)

where kg is the Boltzmann constant, T is the temperature, 77(T) is the
solvent viscosity, and D, is the translational diffusion coefficient of the
micelles. In the dilute limit, D, can be approximated by the measured
mutual diffusion coefficient, D,,, which was calculated using D, = '/,
where q is the magnitude of the scattering vector defined as q = (47n/
Ae) sin (6/2), A- is the wavelength of light in vacuum, n is the refractive
index of the solvent, and 6 is the scattering angle. For multiangle
measurements, D, was calculated from a linear fit of I versus ¢* passing
through the origin.

Small-Angle X-ray Scattering (SAXS). SAXS measurements were
carried out at the Advanced Photon Source, Argonne National
Laboratory, on the Sector S-ID-D beamline of the DuPont-Northwest-
ern-Dow Collaborative Access Team (DND-CAT). SAXS measure-
ments were conducted on micellar solutions corresponding to the initial
(before fragmentation) and final (after fragmentation) states at room
temperature. The samples were loaded into 1.5 mm diameter
borosilicate capillaries and sealed with epoxy under an argon
atmosphere. For each capillary, the two-dimensional SAXS data were
collected using a Rayonix MX170-HS CCD area detector with an 0.5 s

exposure time to X-rays (4 = 0.729 A), keeping the sample-to-detector
distance at 8.5 m. Two-dimensional scattering data were reduced by
azimuthal integration to obtain one-dimensional scattering patterns in
the form of scattering intensity versus g. The background scattering
arising from the surrounding ionic liquid and glass capillary, including
an upturn at higher g corresponding to the nanoscale ordering in the
solvent,” was fit to the power law expression I(q) = A + Bg™ + Cq?,
where 2 < m < 4. The background intensity was then subtracted from
the solution scattering data. In the case of no upturn at higher g, the
background intensity was fit to power law with C set to zero. The
background-corrected data were analyzed using the Pederson micelle
core-shell model with the Percus—Yevick structure factor.”””"

Transmission Electron Microscopy (TEM). An estimate of the
average micelle core radius (R,,.) and its standard deviation, o, was
obtained by performing TEM measurements. Both cryo-TEM and
liquid-phase-TEM were conducted on micellar solutions corresponding
to the initial (before fragmentation) and final (after fragmentation)
states. The imaging was performed using FEI Tecnai G2 Spirit Bio-
Twin and Field Emission Gun TEM instruments operating at an
accelerating voltage of 120 kV with a 4k X 4k Ultrascan CCD camera
with a spot size of 3 or larger. 200 mesh copper grids coated with lacey
Formvar stabilized with carbon grids, purchased from Ted Pella Inc.,
were used for the study. Approximately 0.2 uL of micellar solution was
drop-cast on the grid followed by the removal of excess solution using
filter paper. While liquid-phase TEM was performed at room
temperature, for the cryo-TEM, the sample grids were dipped in liquid
nitrogen and were imaged at a temperature of around —190 °C. Each
sample was filtered using 0.45 ym PTFEE syringe filter to remove any
dust prior to grid preparation. For each sample, more than 10 different
spots were imaged to capture at least 300 individual micelles. The
images were analyzed using Image] software.

B RESULTS AND DISCUSSION

In the following, fragmentation kinetics are studied for the
master sample (micelles in a single ionic liquid) as well as the
diluted samples (micelles in IL blends). The objective is to
examine the effect of the increase in Q/ Q. induced by the jump
in y achieved by dilution. The fragmentation time for the master
sample serves as a reference against which the behavior of the
diluted samples can be compared in order to uncover the effect
of driving force for fragmentation on its kinetics.
Fragmentation Kinetics in a Single lonic Liquid (IL1).
The direct dissolution method typically produces large and
somewhat disperse micellar aggregates. In this case, room
temperature DLS measurements give the average hydrodynamic
radius as (Ry,). ~ 68 nm with a dispersity of D = 1 + (u,/T)e &
1.27. The as-prepared micelles are in a kinetically trapped
metastable state. Subjecting this master sample to a T-jump
followed by thermal annealing at 170 °C provides a strong
stimulus, leading to relaxation of micelles toward the equilibrium

https://doi.org/10.1021/acs.macromol.2c02158
Macromolecules XXXX, XXX, XXX—XXX

316
317
318
319

33S
336

342

344

345
346

347


https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/Macromolecules?ref=pdf
https://doi.org/10.1021/acs.macromol.2c02158?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as

4

Macromolecules

pubs.acs.org/Macromolecules

(a) e BO(9-8) in [C,mim][TFSI], 1 wt%
1.0 |
..
= 7~ 120 min
“ost n=2
0.0 |
1 10 100 1000

t (min)

(b) —e— Before fragmentation
j —o— After fragmentation
P
I

(Rp)¢=27 nm, B, =1.02
mg‘i«mmmooooooooooorofofo—o—o—oio

(R.). = 68 nm, D. = 1.27

0 100 200 300 400
R, (nm)

Figure 4. (a) Time variation of the normalized average micelle size for 1 wt % BO(9—8) in pure [C,mim][ TFSI] after T-jump followed by relaxation at
170 °C. Solid line represents the best fit to the Avrami-type equation. (b) Size distribution of as-prepared and steady-state micelles obtained using

REPES.

365 state with a narrower size distribution. The time variation of
366 micelle size given by (R,(t)) is captured using the in situ DLS
367 measurements carried out at 170 °C. The average hydrodynamic
368 radius (R (t)) is normalized to give the time variation defined as

_ (Ry(t)) = (Ry(o0))
369 1= (Ry(0)) = (Ry(0)) (8)

370 Here, (R;(0)) = (Ry) and (R,( o0 )) = (Ry); represent the
371 initial and final average hydrodynamic radii of the micelles,
372 respectively. Figure 4a displays the time decay of the normalized
373 average size of micelles during fragmentation. As in previous
374 reports, the normalized average hydrodynamic radius is found to
375 be well described by the “compressed” exponential function of
376 the form:*>°

- 1o = EXP[_GH )

378 where 7 denotes the characteristic relaxation time for
379 fragmentation and n is the exponent. The as-prepared micelles
380 with (R, ). &~ 68 nm fragment to smaller micelles at the steady-
381 state condition (assumed to be near equilibrium) with (R )¢ ~
382 27 nm. The experimental data for the normalized average radius,
383 R(t), are denoted by symbols in Figure 4a. The experimental size
384 is fit to the compressed exponential described by eq 9 denoted
385 by the solid line with the results 7 &% 120 min and n & 2. It is
386 important to note that 7 is insensitive to the concentration of
387 micelles in a given ionic liquid, as documented previously by
388 Early and Lodge.”” This is consistent with the predominance of
389 the fragmentation mechanism, which is a first-order process
390 uninfluenced by micelle concentration in the dilute limit. Figure
391 4b presents the distribution in R, by REPES before and after
392 fragmentation. The initial broad distribution around the average
393 radius of 68 nm shifts toward a smaller size and attains a nearly
394 monodisperse steady-state condition at the end of the relaxation
395 process (dispersity of 1.02 and average radius of 27 nm).

396 Fragmentation Kinetics in Mixed ILs. DLS Measure-
397 ments. The 1 wt % master solution of as-prepared micelles of
398 BO(9-8) in [C,mim][TFSI] (IL1) was diluted by adding
399 various amounts of [C;ymim][TFSI] (IL2) such that the as-

(=)}

3

- o

prepared micelles remain unchanged. Since IL2 exhibits a lower 400
y with the core-forming PB block compared to IL1, the dilution 401
process amounts to a y-jump, which modifies the size of the 402
equilibrium micelles. The y-jump was followed by high- 403
temperature annealing (T-jump) of the diluted solution, and 404
the average micelle size was monitored by in situ DLS. Figure S 405 5

4

N

< 2f i
o 1wth
o 0.75wt%
1k ® 0.50 wt% -
e 0.25wt%
® 0.15wt%
0.10 wt%
ot . .
1 1000 10000
t (m|n)

Figure S. Time dependence of the normalized average hydrodynamic
radius R(#) of block copolymer micelles in mixed ILs for various
polymer concentrations at a relaxation temperature of 170 °C. Solid
lines represent the best fit to the Avrami-type equation. The curves are
shifted vertically for clarity.

shows the time-dependence of the normalized average hydro- 406
dynamic radius, R(¢), for the master solution after dilution to 407
different extents with IL2. The relaxation curves for different 4o0s
concentrations are shifted vertically for clarity. As the degree of 409
dilution increases, the relaxation curve for the average micelle 410
size shifts to the left, indicating faster relaxation kinetics. For all 411
concentrations, R(t) can be described by the compressed- 412
exponential expression given by eq 9. Fitting of the data provides 413 t1
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Table 1. Parameters for Micelle Fragmentation from DLS

polymer (P) wt % (P +IL1):IL2 (Ry)- (nm) D (Ry)¢ (nm) Dy 7 (min) n
1 1:0 68 127 27 1.02 120 + 20 1.85
0.90 0.90:0.10 70 1.30 27 1.03 66 + 15 2.01
0.80 0.80:0.20 64 1.31 22 1.04 59 + 15 2.04
0.75 0.75:0.25 63 1.34 22 1.05 60 + 15 2.00
0.50 0.50:0.50 67 1.30 26 1.04 56 + 14 2.01
0.25 0.25:0.75 68 1.24 24 1.01 50 + 12 1.87
0.15 0.15:0.85 69 1.19 24 1.01 52412 1.99
0.01 0.10:0.90 67 1.17 23 1.03 49 + 10 2.00
0.05 0.05:0.95 61 117 21 1.03 46+ 8 1.60
10’ T T 10’ T T
10° | (a) ® Before fragmentation 10° b (b) ® Before fragmentation ]
10° m  After fragmentation 10k ®m  After fragmentation
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@ 10°F 1 &7 0F 1
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Figure 6. SAXS intensity versus q on logarithmic scales for 1 wt % BO(9—8) in two different single ILs at room temperature: (a) [C,mim][TFSI] and
(b) [C,mim][TFSI]. For each micellar solution, the intensity curves are plotted before and after fragmentation; the final curves are shifted vertically

for clarity.

the two kinetic parameters, 7 and n; Table 1 summarizes the
characteristics of the initial and final micelle size distribution as
well as 7 and n for varying degrees of dilution.

The protocol adopted for dilution plays an important role. For
the y-jump to be effective, the initial as-prepared micelles should
remain intact and unaltered on addition of the second ionic
liquid, [C,;mim][TFSI], to prepare the diluted solutions. Thus,
all the diluted solutions should contain micelles of nearly the
same size and initial aggregation number, Q. Indeed, as seen in
Table 1, the initial average size of the micelles is essentially
independent of concentration in the IL blends. When the diluted
solutions are subjected to relaxation after T-jump, the
fragmentation process of the as-prepared micelles takes place
in solvents of varying compositions and therefore y. Thus, the
size of the final micelles obtained at the end of the relaxation
process is expected to be smaller for the more diluted solutions.
This is confirmed by the DLS measurements reported in Table
1. The average hydrodynamic radius of the near-equilibrium
micelles is found to gradually diminish from 27 to 21 nm as the
micellar solution is progressively diluted from 1 to 0.05 wt %.
Furthermore, in all cases, the final micelles are much more
narrowly distributed in size with B < 1.0S.

The characteristic time, 7, is around 120 min for the as-
prepared micelles in [C,mim][TFSI]. Interestingly, as the
micellar solution is diluted by addition of [C,omim][ TFSI], the
fragmentation process accelerates; as concentration decreases
from 1 to 0.9 wt%, 7 decreases by a factor of two. Upon further

diluting the solution from 0.9 to 0.05%, 7 decreases more
gradually from 66 to 46 min. As the final micelle size becomes
smaller, the driving force for fragmentation, represented by the
aggregation number ratio Q/ Q. becomes greater. Thus, faster
fragmentation upon dilution can be attributed to enhancement
in the driving force. Interestingly, while 7 decreases, the
exponent n remains ~ 2 irrespective of the degree of dilution.
In summary, a reduction in ¥, achieved by addition of lower y
solvent, tends to increase the driving force for fragmentation,
which enhances the rate of fragmentation and decreases the final
micelle size.

SAXS Measurements. In addition to (Ry), it is useful to
estimate the average core radius of the micelles (R..); the
difference provides the average corona thickness of the micelles.
The average core radius is also required to estimate the average
aggregation number of a micelle, Q. To this end, SAXS
measurements were made for micelles before and after
relaxation at room temperature. For the master solution of 1
wt % BO(9—8) micelles in [C,mim ][ TFSI], Figure 6a shows the
scattering intensity I(q) corrected for the background scattering
from the solvent in log—log format. The I(q) curves are plotted
for micelles before and after the relaxation process; these
patterns contain contributions from micelle size, shape, and any
intermicellar correlations. The intensity curves for the as-
prepared micelles show a small maximum (“structure factor
peak”) at low g, indicative of the onset of modest interparticle
correlation; this maximum disappears after fragmentation. In
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468 both cases, form factor oscillations from spherical micellar cores
469 are clearly evident. The g value at the first minimum provides an
470 estimate of the micelle core size as (Rcore) & 4.493/qmin. On
471 comparing the SAXS curves for micelles before and after
472 fragmentation, it is evident that the first minimum shifts slightly
473 to higher ¢, indicative of a decrease in (R...) attributed to
474 micelle fragmentation. Similarly, the SAXS patterns for 1 wt %
475 BO(9—8) micelles in pure [C,omim][TFSI] before and after
476 fragmentation are shown in Figure 6b.

477 To characterize the near-equilibrium micelles resulting from
478 fragmentation, SAXS measurements were also carried out for the
479 diluted solutions after fragmentation. Figure 7 displays the SAXS

107 r T T
X o 1%
A ° 0.8% 1
107 \N\ o 0.75%1
g r ® 05% 1
= r ® 0.25%1
:3 - : \\ e 0.15% :
o | . o ]
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Z ., 3 ® 0.05%]
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Figure 7. SAXS intensity versus q on logarithmic scales for BO(9—8) at
different degrees of dilution in mixed ILs. The intensity curves are
plotted for the solution of micelles at the steady-state (i.e., equilibrium
state attained after fragmentation). The curve for concentration of 1%
represents the master solution, and the rest of the curves represent the
diluted samples by adding second ionic liquid. The curves are shifted
vertically by a factor of 10° for clarity. Measurements were acquired at
room temperature after quenching each sample in a water bath. Solid
lines represent fit using core-shell model.

480 intensity curves, corrected for background intensity, for
481 solutions with varying degrees of dilution. As the degree of
482 dilution increases, the first minimum shifts toward higher g,
483 indicating smaller average micelle cores. The reduction in
484 equilibrium micelle size with dilution is attributed to the
485 decrease in y by addition of the second ionic liquid. In addition
486 to shifting the first minimum, the general character of I(q) is also
487 altered by dilution. In particular, the multiple distinguishable
488 minima, clearly identifiable for relatively high concentrations,
489 are suppressed and eventually eliminated by dilution. This could
490 be the result of significantly lower signal-to-noise or a
491 broadening of the final micelle core size distribution; the DLS
492 results in Table 1 suggest the former is the dominant effect.

493 The micelle characteristics estimated from SAXS measure-
494 ments are summarized in Table 2. The micelle core radius
495 (Reore)s is estimated by fitting the SAXS intensity curves. The
496 aggregation number of the final micelles, Q. is calculated using
497 (Reore)p assuming no solvent in the core. Q/Q.y, the ratio of
498 aggregation numbers of initial (as-prepared) and final
499 (equilibrium) micelles, represents the measure of driving force
so0 for fragmentation. Micelles in a surrounding medium of
s01 progressively lower y are found to have relatively smaller core

Table 2. Micelle Characteristics after Fragmentation from
SAXS

poymer 1) B+ R O o
Z::: %) IL1):1L2 (nm) (nm) Qg Qe
1 1:0 17.1 0.5 1280 1.1
0.90 0.90:0.10 16.4 0.6 1130 1.2
0.80 0.80:0.20 14 0.5 700 2
0.75 0.75:0.25 14 0.6 700 2
0.50 0.50:0.50 13.2 0.8 600 2.3
0.25 0.25:0.75 13.2 0.8 585 2.3
0.15 0.15:0.85 12.5 1.2 500 2.7
0.10 0.10:0.90 11.8 0.9 420 3.2
0.05 0.05:0.95 11 0.7 340 4
0.01 0.01:0.99 10.5 0.8 295 4.6

sizes at equilibrium. This reduction in (R.,.) implies a lower so2
aggregation number, Q... As seen in Table 2, Q. decreases from 503
around 1280 for the 1 wt % solution in IL1 to around 270 for the so4
0.01 wt % micellar solution. The reduction in Q,, with lowing yis sos
found to follow a power-law relation Q. ~ yqs/ 5 as shown in 506
Figure S11. The experimentally obtained dependence of Q.4 on so7
y is broadly consistent with the scaling predictions.” It is sos
important to note that for all the diluted samples, the average so09
micelle size before fragmentation remains the same, correspond- 510
ing to the as-prepared micelles. The average aggregation number s11
before fragmentation, determined from the SAXS pattern in s12
Figure 6a,is Q = 1350. A reduction in Qg by dilution, therefore, 513
implies enhancement in the driving force for fragmentation. 514
Transmission Electron Microscopy. To gain further insight s1s
on micelle core size and shape, cryo-TEM was performed on 516
micelle solutions before and after fragmentation. For the master 517
solution, Figure 8a,b presents electron micrographs before and s1s s
after thermal annealing, respectively. The electron density 519
contrast between PB (core-forming chains with lower electron s20
density) and PEO-plus-ionic liquid (corona-forming chains and s21
solvent with higher electron density) enables the micelle cores to 522
appear as distinct bright regions embedded in a dark matrix. The 523
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Figure 8. Cryo-TEM micrographs and the corresponding histograms of
1 wt % BO(9-8) in [C,mim][TFSI] (master solution). Bright spots
indicate micelle core (PB chains). (a,b) As-prepared micelles (before
fragmentation); (c,d) after thermal annealing (after fragmentation).
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Figure 9. Histograms corresponding to the TEM images presented in Figure S9 for distribution of core diameter of BO(9—8) micelles after
fragmentation in mixed ILs at different polymer concentration. (a) 0.9%; (b) 0.8%; (c) 0.75%; (d) 0.5%; (e) 0.25%; (f) 0.15%; (g) 0.1%; and (h)

0.05%.

micrographs clearly show that the micelle cores are spherical in

524

525 shape. Image analysis yielded histograms of micelle core size,

using ca. 200—600 micelles for each solution, with the bin size
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528 distribution, indicated by the solid lines in the figure. The
529 average micelle core diameter (R_,.) and standard deviation
530 Ocore are noted in the histograms. The as-prepared BO(9—8)
531 micelles in pure [C,mim][TFSI] have (R,.) of 17 + 1 nm.
s32 After fragmentation, the (R_,,.) decreases to 15 + 0.8 nm, while
533 the spherical shape persists. SAXS measurements estimated the
534 (R o) Of as-prepared micelles to be 17.4 nm. Thus, the average
535 core size estimates from the TEM analysis are in close agreement
536 with those obtained from the SAXS.

537 TEM analysis was also conducted on the diluted micellar
538 solutions after fragmentation. Figure 9a—h presents histograms
539 for the diluted solutions at steady-state; the corresponding
s40 electron micrographs are provided in the Supporting Informa-
s41 tion, Figure S9. The drop in polymer concentration from 1 to 0.1
s42 wt % yields a decreasing y, which results in smaller micelles at
s43 equilibrium as clearly depicted in Figure 9a—h; overall (R ...)
s44 decreases from around 15 to 9 nm. As can also be seen from the
s4s micrographs (Figure S9), the contrast apparently becomes
s46 weaker due to the changing electron density in the blended ILs.
547 The micelle core sizes obtained from TEM are generally in
s48 good agreement with those obtained from SAXS. As with SAXS
549 measurements, the average core radius can be used to calculate
ss0 Q as listed in Table 3. As noted earlier, for any diluted sample,

hat

st

Table 3. Micelle Characteristics after Fragmentation from
Cryo-TEM

POIZ"ner (P) (P + (Reore)t Ocore Q/

wt %) IL1):1L2 (nm) (nm) (% Qq
1 1:0 15 0.8 861 1.5
0.90 0.90:0.10 14.8 1.4 827 1.5
0.80 0.80:0.20 13.1 1.3 573 2.2
0.75 0.75:0.25 132 1 580 2.2
0.50 0.50:0.50 12.8 1.1 535 2.3
0.25 0.25:0.75 12.8 0.9 535 2.3
0.15 0.15:0.85 11.8 1.1 419 3
0.10 0.10:0.90 9.75 1.4 236 5.3
0.05 0.05:0.95 9.25 1.3 202 6.2

ss1 the aggregation number of the initial as-prepared micelles, Q,
ss2 remains the same and the aggregation number for micelles
553 postfragmentation, Q., decreases as the extent of dilution

increases. Thus, the size ratio Q/Q., increases over a broad ss4
range from 1.5 to around 6.2. 555

It is important to note that the transformation from larger to sss
smaller spherical micelles increases the interfacial area per chain. ss7
Hence, the process is not driven by a change in interfacial ss8
tension; nor is it related to the Rayleigh instability. Rather, relief sso
of chain stretching is likely the mechanism responsible for seo
fragmentation.”°" The change in solvent changes the distance s61
to equilibrium but not the direction. Even in the case of no s62
change in solvent quality, micelles still relax by fragmentation as s63
shown in Figure 4a. It should also be noted that the initial as- se4
prepared micelles are not unstable, but actually deeply ses
metastable, with a barrier exceeding 20 KT.*° 566

Effect of Thermodynamic Driving Force on Fragmen- s¢7
tation Kinetics. The direct dissolution method generates block ses
copolymer micelles that are significantly larger than the s¢9
equilibrium size, i.e.,, Q/Qeq > 1. The relaxation of as-prepared s70
micelles to approach equilibrium under a T-jump is dominated 571
by micelle fragmentation under the conditions of the present s72
study. The size ratio of micelles before and after relaxation, Q/ s73
Q. can be treated as the measure of driving force for the s74
fragmentation process. In prior studies, the micelles were 575
prepared and then allowed to relax under a T-jump in the same s76
solvent. The solvent quality represented by its interfacial tension 577
with the core-forming block influences the equilibrium size of 578
the micelles as micelle size is directly related to y. When micelles s79
are prepared and fragmented in the same solvent, either pure or sso
mixed ILs, the value of y influences both Q and Q.4 in the same ss1
way. Thus, irrespective of the nature of solvent quality, the ratio ss2
Q/Q.q remains nearly unaffected.’ The protocol adopted in 583
prior studies, therefore, does not allow one to isolate the role of ss4
the driving force for fragmentation in its kinetics. In the present sss
protocol, dilution of the master solution with the second ionic ss6
liquid enables control of the size ratio Q/Q,q over a broad range. ss7

Figure 10a depicts the effect of Q/Q.q on the relaxation time 7. s fi0
The increase in driving force results in significantly faster sso
fragmentation kinetics. The decrease in relaxation time is much s90
sharper for Q/Qeq ~ 1.2 — 5, and particularly for Q/Q.q < 2. For so1
Q/Qeq > 5, the characteristic relaxation time approaches a s92
plateau value, corresponding to the relaxation time for micelle 593
equilibration in pure [C,,;mim][TFSI] (IL2). Faster fragmenta- 594
tion of bigger micelles can be explained with the help of micelle s9s
free energy. For Q/Q.q > 2, the as-prepared micelles are much s96
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Figure 10. (a) Variation of fragmentation time, 7, with the micelle size ratio Q/ Q. based on SAXS and cryo-TEM results. The error bars represent the
standard error from the fits in 7 and in Q (propagated from R_,..). (b) Schematic free energy plot.
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597 bigger than the equilibrium size and experience significant
s98 crowding of corona chains leading to higher free energy
599 associated with corona stretching. The conformational energy
600 cost dominates the interfacial energy associated with the
601 creation of smaller micelles and provides the thermodynamic
602 driving force for fragmentation. As Q/Q., increases, the
603 thermodynamic driving force increases, resulting in faster
604 fragmentation even though the initial micelles are farther away
605 from the equilibrium size. Quite possibly these micelles undergo
606 a cascade of fragmentation events, which are progressively
607 slower as Q/Q.q approaches 2 from above. Alternatively, these
608 micelles could undergo spontaneous fragmentation into multi-
609 ple “daughter micelles,” essentially simultaneously. In order to
610 distinguish these two possibilities, in situ time-resolved TEM
611 measurements are needed.

612 A qualitative free energy landscape for micelles in the
613 neighborhood of Q/Q., > 1 is shown in Figure 10b. For
614 micelles with Q/Q.q > 1.2—2, fragmentation is energetically
615 favorable as it produces smaller micelles with collective energy
616 smaller than the initial state. For micelles with Q/ Qeq < 2, the
617 fragmentation is relatively less favorable as it produces some
618 micelles below the equilibrium size with higher total energy than
619 the equilibrium micelle. In this size range, the process of
620 fragmentation is not necessarily a net downhill process and
621 should therefore slow down considerably.

—

—

622 B SUMMARY

623 The kinetics of fragmentation in block copolymer micelles was
624 investigated to explore the role of the thermodynamic driving
625 force. Spherical micelles of PB-b-PEO were prepared by direct
626 dissolution in an ionic liquid. Relaxation of the as-prepared
627 micelles (aggregation number Q > Qeq) to attain an equilibrium
628 state (aggregation number = Qeq) predominantly through
629 fragmentation was studied. Importantly, we varied the driving
630 force for fragmentation, represented by Q/Q.q by strategic
631 mixing of different ILs as solvents. The choice of a pair of ILs to
632 be used for mixing was made based on the measured y of the
633 solvent with the micelle core, which was determined using a
634 pendant drop technique. The micelles prepared in a given
63s solvent ([C,mim][TFSI]) were subjected to fragmentation in a
636 series of surrounding media of progressively lower selectivity.
637 Altering the solvent quality was accomplished by addition of the
638 second solvent ([C,omim][TFSI]) with a lower y with the core-
639 forming PB block compared to the first solvent. The reduction in
640 y of the solvent mixture leads to the formation of smaller micelles
641 postfragmentation. By controlling the amount of low y solvent
642 being added to the micellar solution, the size ratio Q/ Q.4 varied
643 from 1.2 to S.

644 The average micelle size during the equilibration process
645 obtained using in situ DLS at 170 °C was described using a
646 compressed exponential expression, and the characteristic
647 fragmentation time was obtained. SAXS and TEM were used
648 to quantify the average core size before and after fragmentation
649 with consistent results. Assuming “dry” micellar cores, these
650 measurements gave access to the aggregation numbers of the
6s1 micelles. As the size difference between the as-prepared and
652 equilibrium micelles became wider (indicated by higher values
6s3 for the ratio Q/Q.,), the fragmentation time was found to
654 decrease. Thus, an increase in the driving force for fragmentation
6ss tends to systematically enhance the rate of fragmentation. The
656 faster fragmentation of larger micelles can be understood in
657 terms of increasingly crowded corona chains. It is not yet
6s8 possible to distinguish whether larger micelles undergo a

®©

=

=

-

cascade of fragmentation events to achieve Q., or whether 659
larger micelles fragment into more than two “daughter” micelles. 660
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