
1

Random Linear Streaming Codes in the Finite

Memory Length and Decoding Deadline Regime —

Part I: Exact Analysis
Pin-Wen Su, Graduate Student Member, IEEE, Yu-Chih Huang, Member, IEEE,

Shih-Chun Lin, Senior Member, IEEE, I-Hsiang Wang, Member, IEEE,

and Chih-Chun Wang, Senior Member, IEEE,

Abstract—Streaming codes take a string of source symbols
as input and output a string of coded symbols in real time,
which eliminate the queueing delay of traditional block codes
and are thus especially appealing for delay sensitive applications.
Existing works on streaming code performance either focused
on the asymptotic error-exponent analyses, or on the optimal
code construction under deterministic adversarial channel models.
In contrast, this work analyzes the exact error probability of
random linear streaming codes (RLSCs) in the large field size
regime over the stochastic i.i.d. symbol erasure channel model.
A closed-form expression of the error probability of large-field-
size RLSCs is derived under, simultaneously, the finite memory
length and decoding deadline constraints. The result is then used
to examine the intricate tradeoff between memory length (com-
plexity), decoding deadline (delay), code rate (throughput), and
error probability (reliability). Numerical evaluation shows that
under the same code rate and error probability requirements,
the end-to-end delay of RLSCs is 40–48% of that of the optimal
block codes (i.e., MDS codes). This implies that switching from
block codes to streaming codes not only eliminates the queueing
delay completely (which accounts for the initial 50% of the delay
reduction) but also improves the reliability (which accounts for
the additional 2–10% delay reduction).

Index Terms—streaming codes, erasure channels, finite length
analysis, reliability functions, random walk analysis

I. INTRODUCTION

For the fifth generation (5G) mobile communication, the

International Telecommunication Union (ITU) has classified

its services into three categories [3]. Among these three

categories, the design of the ultra-reliable and low latency

communication (URLLC) may be the most challenging. It re-

quires the end-to-end delay to be within 1 ms and, meanwhile,

the reliability should be at least 0.99999 [4]. Such stringent

This work was supported by NSF under Grants CCF-1422997, CCF-
1618475, CCF-1816013, CCF-2008527 and CNS-2107363; by MOST Tai-
wan under Grants 107-2628-E-011-003-MY3, 110-2636-E-009-016 and 110-
2222-E-002-009; and by National Taiwan University under Grant NTU-CC-
111L894402. Part of the results were presented at the 2020 and the 2021
IEEE International Symposium on Information Theory (ISIT) [1], [2].

Pin-Wen Su and Chih-Chun Wang are with the Elmore Family School
of Electrical and Computer Engineering, Purdue University, West Lafayette,
IN 47907, USA (e-mail: su173@purdue.edu; chihw@purdue.edu).

Yu-Chih Huang is with the Institute of Communications Engineering,
National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan (e-mail:
jerryhuang@nctu.edu.tw).

Shih-Chun Lin and I-Hsiang Wang are with the Department of Electrical
Engineering and the Graduate Institute of Communication Engineering, Na-
tional Taiwan University, Taipei 10617, Taiwan (e-mail: sclin2@ntu.edu.tw;
ihwang@ntu.edu.tw).

criteria are hard to meet through the classical ARQ schemes,

or even hybrid ARQ used in 4G LTE systems and it is thus

critical to actively explore different technologies/architectures

that have not been utilized in the existing 4G systems.

One such example is the concept of streaming codes that

are fundamentally different from the block codes that have

been used ubiquitously in wireless communications for the

past decades. Specifically, streaming codes are a class of

sequential coding for which the encoder receives a string

of source packets sequentially and outputs a string of coded

packets in real time. Streaming codes can thus be viewed as

generalizing the basic encoding unit of the convolutional codes

from “bit” to “packet” and synchronizing the operation of the

shift registers in the encoder with the actual arrival, encoding,

and transmission of the packets.1 Recall that for classical block

codes, the encoder has to wait until a certain number of mes-

sages is received before it can start encoding, and the waiting

time is called the queueing delay. In contrast, by synchronizing

the convolutional encoder with the sequential packet arrival,

streaming codes will start sending coded packets immediately

after each packet arrival, which thus eliminates the concept of

queueing delay in block coding. Nonetheless, having shorter

overall delay does not necessarily make streaming codes

a superior choice since the low latency performance of a

scheme can only be evaluated by jointly considering the tuple

of throughput, delay, and error probability (reliability). The

apparent delay advantage of streaming codes over block codes

could be at the cost of worse reliability. To rigorously evaluate

the low latency performance of streaming codes, it is thus

critical to resolve the following conjecture:

Conjecture: For the same code rate, the unique

encoding/decoding architecture of streaming codes

does not negatively impact the error probability

when compared to the classical block codes.

Such a conjecture, if proved affirmatively, will make stream-

ing codes an appealing candidate for the delay sensitive

applications such as tele-/video conferencing, online gam-

ing, live TV, and various other URLLC services in 5G [6].

This work answers this conjecture by first finding a closed-

form error probability expression of random linear streaming

1A more precise statement of the definition of streaming codes used in this
work is provided in Section II. It is worth noting that other definitions of
streaming codes can be found in [5].

2

codes (RLSCs) with finite memory length and deadline/delay

constraints, assuming a sufficiently large finite field size is

used. By numerically comparing the streaming code error

probability derived in this work and the seminal finite length

results of block codes in [7], we resolve this conjecture

affirmatively for the memoryless symbol erasure channel.

A. Existing works based on adversarial channel models

There is a growing body of literature that aims to find

the optimal streaming code rate and code construction. An

early work was proposed by Martinian and Sundberg [8],

which presented a new class of systematic streaming codes

that can perfectly correct any bursty B-erasure within the

predetermined decoding delay2. Since the performance met-

ric/criterion is to design a streaming code with maximal

code rate while guaranteeing error-free decoding under any

burst erasure pattern, we term such a setting the adversarial

channel model, which is different from the stochastic channel

models (e.g., i.i.d. BSC, AWGNC, etc) commonly used in the

physical-layer communication literature [9].

Some follow-up works on streaming codes over adversarial

channel models can be found in [5], [10]–[17]. For example,

the (adversarial) channel error patterns being considered were

expanded from only bursty-erasure [10]–[12] to both bursty-

erasure and isolated-erasures [5], [13]–[15]. Along these ad-

versarial channel settings, both the converse results (the largest

rate beyond which error-free decoding is impossible) and the

matching achievability schemes have been derived. Specific

contributions include new bounding techniques and innovative

capacity-achieving streaming code constructions. In [16] and

[17], the authors considered variable-sized messages for the

adversarial erasure channel and analyzed the largest code rate

that can still admit error-free decoding.

B. Existing works based on stochastic channel models

In contrast with the existing adversarial settings, this work

takes a probabilistic approach and aims to analyze the error

probability of large-field-size RLSCs under the i.i.d. erasure

channel model. Broadly speaking, we use a stochastic channel

model and focus on the probabilistic average, while the

existing works [5], [8], [10]–[17] focused on the worst-case

performance over a predefined deterministic set of erasure

patterns.

While most existing works are based on adversarial chan-

nels, a few of them are based on the same/similar stochas-

tic channel model studied in this work. Specifically, [18]

considered the following setting. For any fixed ratio of the

memory length α over the decoding deadline ∆ that satisfies

β , α
∆ ≥ 1, [18] studied the error exponent when α and

∆ jointly go to infinity while β is fixed. A critical finding

is that if β exceeds a certain threshold β∗ ≥ 1, the error

exponent stops improving and a finite ratio α
∆ = β∗ is as

good as the infinite ratio α
∆ =∞. In contrast, this work does

2In the field of streaming codes, decoding delay refers to the time needed
before the receiver can accumulate enough observed packets for successful
decoding. Under this definition, decoding delay does not include any en-
coder/decoder processing time nor propagation delay.

not impose any constraint on the ratio of the memory length

over the deadline. That is, we characterize the exact large-

field-size error probability under any arbitrary finite α and

∆ combinations while [18] studied the error exponent (decay

rate) when both α and ∆ are asymptotically large.

Almost all existing error probability analyses of sequen-

tial coding followed the basic ideas in the seminal tree-

code analysis [19], which first derived a genie-aided error-

probability lower bound, then derived an achievable error-

probability upper bound using the union bound techniques,

and finally showed that they share the same error exponent

and are thus asymptotically (exponentially) tight. Nonetheless,

while the genie-aided relaxation and the union bound do not

alter the error exponent (decay rate) of the error probability,

they are ill-suited when used to bracket the error probability

for arbitrary finite α and ∆. More specifically, the bounds are

usually of the form e−αE(R)+o(α) for which the little-o term

o(α) can still dramatically alter the value of the expression

for both small and large α values.

C. Contributions of this work

This work studies the exact large-finite-field error probabil-

ity of random linear streaming codes (RLSCs) with arbitrarily

given finite memory length α < ∞ and decoding deadline

∆ <∞ while focusing exclusively on the i.i.d. symbol erasure

channels. The contributions of this work include:

(i) A new definition of information debt that handles the

finite memory and finite deadline setting, a generalization

of the infinite-memory-based definition in [20, Chap-

ter 9]. The idea of information debt was first proposed

by Martinian in 2004 [20]. It can be viewed as how

much additional information we still need to receive

about the current messages before we can decode them

successfully. However, in the original work [20], the

memory length α was assumed to be infinity and there is

no discussion about the impact of finite decoding deadline

∆. For comparison3, this work proposes a new definition

of information debt that further takes into account the

finite memory length and can be readily used to quantify

the impact of finite decoding deadline.

(ii) A new sufficient and necessary characterization of the

error events of large-finite-field RLSCs for any finite

memory length α <∞ and any finite decoding deadline

∆ < ∞ based on the new generalized definition of

information debt.

(iii) A new random-walk-based analysis framework, which

can be of independent research interest. By employing

both the standard stopping-time analysis and some new

non-stopping-time analysis, we have obtained a closed-

form expression of the exact error probability for the

finite α and ∆ regime, which complements the finite-

length block code analysis in [7] for the symbol erasure

channel and is a significant improvement over the existing

error-exponent-only results.

3Contributions (ii) to (iv) are brand new developments that have no similar
counterparts in [20].

3

(iv) The resulting closed-form error-probability expression is

used to examine the intricate tradeoff between memory

length (complexity), decoding deadline (delay), code rate

(throughput), and error probability (reliability) of RLSCs

over a sufficiently large finite field size regime. For

example, numerical evaluation shows that under the same

code rate and same error probability requirement, the end-

to-end delay of RLSCs is 40–48% of that of the MDS

block codes in general. This implies that switching from

block codes to streaming codes not only eliminates the

queueing delay completely (thus 50%) but also improves

the error probability.

In a companying paper “Part II: Asymptotic Constants,

Powers and Decay Rates,” we will build upon the finite-length

results in this work, analyze the asymptotic properties (e.g.,

the error exponent versus the memory length α and versus the

decoding deadline ∆), and derive new approximation formulas

that are sufficiently tight even for small finite lengths. For com-

parison, the exact analysis in this work directly quantifies the

performance of RLSCs in practical application scenarios. The

asymptotic analysis in Part II would tradeoff some precision

at the small α and ∆ values in exchange for further analytical

insights about the intricate dynamics among memory length,

decoding deadline, and error probability.

The rest of this paper is organized as follows. Section II

describes the system model and the problem formulation.

Section III introduces a new and more general information

debt definition, and characterizes the error events in the finite

memory length and decoding deadline regime. Section IV

studies the connection between the exact error probability

analysis and a new random-walk analysis with respect to

information debt. By exploiting the Markov property, we

derive a transition-matrix-based procedure that computes the

exact error probability of RLSCs. In Section V, we provide

a conceptually simpler but numerically unstable computation

based on reversing the Markov Chain. We present the numer-

ical evaluation results in Section VI, and conclude our work

in Section VII.

II. PROBLEM DESCRIPTION

A. Basic Notations

The boldface lower and upper letters denote column vectors

and matrices, respectively, e.g., s(t) denotes a column vector

indexed by t. We use sba to represent the cumulative column

vector sba ,
[
s⊤(a), s⊤(a+ 1), . . . , s⊤(b)

]⊤
, which vertically

concatenates each s(t) with the one of the smallest time index

at the top. We define the projection operator (·)+ , max (0, ·).
Matrix In stands for the n× n identity matrix. We use ~δk to

denote a column vector for which only the k-th entry is one

and all other entries are zero. If the size/dimension of ~δk is

not clear in the context, it will be explicitly stated. Finally, we

use ~1 to denote the column vector of all 1s.

B. System Model

This work considers a slotted streaming-code system such

that in every time slot, the encoder takes the latest source

Random Linear
Encoder G

t

Symbol Erasure
Channel

Optimal
Decoder

DelayDelay
s(t)

y(t)
x(t)

Fig. 1: The block diagram of the random linear streaming

codes with α = 2.

x(1)

=

s(1)

x(2) s(2)

x(3) s(3)

x(4) s(4)

x(5) s(5)

x(t-2) s(t-2)

x(t-1) s(t-1)

x(t) s(t)

K

K

K

K

N

N

N

N

N

N

N

N

𝛼 ൅ 1 K

xଵ௧ sଵ௧Gሺ௧ሻ

Fig. 2: The illustration of the cumulative generator matrix G(t)

in (2) with α = 2. The gray area shows the non-zero entries.

The rest of the area are all zeros.

symbols plus those received in the previous α time slots and

outputs a bunch of coded symbols. The coded symbols then

pass through a symbol erasure channel. At the decoder side,

we assume the optimal decoder, which is usually implemented

via Gaussian elimination. We require that each source symbol

to be successfully decoded by a hard deadline constraint ∆.

Once the deadline is passed, any not-yet-decoded symbol is

considered in error and will be counted in the error probability

analysis.

A detailed description of the system is provided as follows

and the corresponding illustrations are in Figs. 1 to 3.

Encoder: In every time slot t ≥ 1, the encoder receives K
source symbols, denoted by s(t) = [s1(t), s2(t), . . . , sK(t)]

⊤

where each symbol sk(t) is a scalar of q bits and is drawn

independently and uniformly randomly from the finite field

GF(2q). The encoder also stores the α · K symbols in the

previous α slots {s(τ) : τ ∈ [t − α, t)}, where α is the

memory length and is assumed to be a finite integer. Jointly,

it uses the (α + 1)K symbols as input and outputs N coded

symbols x(t) = [x1(t), . . . , xN (t)]
⊤ ∈ (GF(2q))N , see Fig. 1.

Throughout the paper, all the encoding/decoding operations

are defined over GF(2q). Since we focus exclusively on linear

codes, define Gt as the N -by-(min (α+ 1, t) ·K) generator

matrix for slot t, and we have

x(t) = Gts
t
max(t−α,1). (1)

4

y(1)

=

s(1)
y(2) s(2)
y(3) s(3)
y(4) s(4)
y(5) s(5)⋮ ⋮
y(t-2) s(t-2)

y(t-1) s(t-1)

y(t) s(t)

K

K

K

K

C
1

C
2

C
3

C
4

C
5

C
t

C
t-1

C
t-2

𝛼 ൅ 1 K

yଵ௧ sଵ௧Hሺ௧ሻ

Fig. 3: The illustration of the cumulative receiver matrix H(t)

in (4) with α = 2.

It is convenient to also consider xt1, the stacked version

of all x(·) vectors until time t. That is, we can properly

shift and stack the instantaneous matrix Gt to create its

cumulative representation G(t), which we term the cumulative

generator matrix. The cumulative encoding process can then

be represented by

xt1 = G(t)st1 (2)

where G(t) is an (α + 1)-block-diagonal matrix. See Fig. 2

for illustration. When α →∞, matrix G(t) becomes a lower

triangular matrix.

Symbol Erasure Channel: In each time slot t, the source

transmits all N symbols in x(t). A random subset of these

N symbols, denoted by Ct ⊆ {1, 2, · · · , N}, will arrive at the

decoder perfectly and the complement of which is corrupted

heavily and thus considered as erasure. The random set Ct
is i.i.d. across t. We define Ct , |Ct| as the number of

successfully received symbols and define Pi , Pr(Ct = i)
as the probability of receiving i symbols successfully, for

i ∈ {0, 1, 2, · · · , N}.
Received Signal: The received symbols at time t, totally

Ct of them, are denoted by y(t) = [y1(t), . . . , yCt
(t)]
⊤

. We

write

y(t) = Hts
t
max(t−α,1) (3)

where Ht is the projection of Gt onto the random (row index)

set Ct. Like before, we define the cumulative receiver matrix

H(t), and the stacked received signal vector over t time slots

can be represented by

yt1 = H(t)st1. (4)

See Fig. 3 for illustration.

Decodability: We assume exclusively the optimal decoder

at the destination, which is generally implemented via Gaus-

sian elimination. Specifically, for any t ≥ 1, k ∈ [1,K], and a

deadline constraint 0 ≤ ∆ <∞, the symbol sk(t) is decodable

if its value can be computed error-freely (no ambiguity) by the

cumulative observation yt+∆
1 until and including time t+∆.

Otherwise, sk(t) is viewed as an erasure, or say in error. To

algebraically characterize the decodability of the system, we

first use ~δ(t−1)K+k to denote the location vector of symbol

sk(t) at time t + ∆, which is a ((t+∆)K)-dimensional

column vector for which the ((t − 1)K + k)-th entry is one

and all other entries are zero. We then have the following

self-explanatory definitions.

Definition 1. A symbol sk(t) is decodable by time t + ∆
if and only if the transposed vector ~δ⊤(t−1)K+k is in the row

space of H(t+∆).

Definition 2. The vector s(t) is decodable by time t+∆ if all

{sk(t) : k ∈ [1,K]} are decodable by time t+∆. Otherwise,

s(t) is not decodable.

Note that our work focuses on an erasure channel model,

and the decoder knows the location of the erasures and thus has

full knowledge of the random matrix H(t). For comparison,

in a deletion channel model [21], the erasure positions are

unknown at the destination.

Thus far, we describe a general streaming code setup

without specifying how the generator matrix Gt is generated

for each t. In this work, we focus exclusively on

Random linear streaming codes (RLSCs): We assume that

each entry of Gt is chosen uniformly and randomly from

GF(2q), excluding 0. RLSCs are known to be capacity-

achieving when (α,∆) both approach infinity simultaneously,

though could be strictly suboptimal if under an adversarial

channel model with finite deadline ∆ <∞ [20].

The goal of this work is to compute the exact value of the

long term slot error probability of RLSCs under arbitrarily

given finite memory length α and finite deadline ∆. Specifi-

cally, we define the slot error probability by:

p
RLSC(q)
e,[1,T] =

1

T

T∑

t=1

Pr (s(t) is not decodable by time t+∆) .

(5)

We are interested in quantifying the long term slot error

probability under the asymptotically large finite field GF(2q),
which is defined by

pe , lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T] . (6)

The slot error probability is also used as the main perfor-

mance metric in the error exponent analysis of [18]. Also see

the discussion in Section I.

Remark 1: Another metric that could be of interest in

practice is the long-term symbol error probability p
[sym]
e

p[sym]
e , lim

q→∞

lim
T→∞

1

TK

T∑

t=1

K∑

k=1

Pr (sk(t) is not decodable by time t+∆) .

(7)

By definition, p
[sym]
e ≤ pe ≤ K · p

[sym]
e . However, the symbol

error probability is not the focus of this work.

Remark 2: Another existing metric is called the block

error probability [19], which, as suggested by its name, is

significantly different from the slot error probability pe in this

work. A detailed comparison between pe and the block error

probability in [19] is provided in Appendix A.

5

C. Symbols, Slots, Packets, and Their Connections to Actual

Implementation

While our model is motivated by packet-level communi-

cation networks, we deliberately refrain from using the term

packet in our system model. Instead, we use symbol in GF(2q)
as the basic unit of incoming messages, see the Encoder

description in Section II-B. Symbols are also the basic unit

of erasure, such that each symbol is either perfectly received

or completely erased. See the Symbol Erasure Channel

description in Section II-B where the unit of each channel

delivery Ct is also symbols. The term slot is used for the

basic time unit that measures the time interval between two

consecutive arrivals of the messages.

The reason that we use symbols as our basic information unit

is that the term packet has a very clear definition in network

protocols as the basic unit of transport-layer control, network

routing protocols, etc., is thus highly dependent on the actual

implementation, and can be quite confusing if used as part of

the abstract model.

The following are two examples illustrating how to relate

our (symbol, slot)-based model to actual network communi-

cation problems.

Example 1. Suppose each packet contains 1000 bytes, spec-

ified by the underlying network protocol, and the source can

transmit a new packet every 10 ms. We also suppose that

every 10 ms, the application layer at the source node would

like to transmit a small piece of message of 550 bytes (say

a measurement of a remote sensor) and we hope to deliver

that message to the destination within 100 ms. Suppose we

also know that each packet has 40% chance to be completely

erased and 60% chance to be perfectly received. The question

to answer is what is the success probability of delivering a

single 550-byte message within its 100 ms deadline.

The abstract model for this “practical scenario” is as fol-

lows. Each slot is chosen to be 10 ms since we have a new

message arriving every 10 ms. We choose the basic message

unit to be 1 symbol = 50 bytes, which is the greatest common

divider of 1000 and 550 bytes. As a result, at every slot, the

source will receive K = 11 symbols (since each message has

550 bytes), and use them, plus the past message symbols in

the last α slots, to generate N = 20 symbols for transmissions

(since each packet has 1000 bytes). To model the 40% chance

of complete packet erasure, the symbol erasure channel model

has Pr(Ct = 20) = 0.6 and Pr(Ct = 0) = 0.4. The deadline

for decoding each message is set to ∆ = 100/10 = 10 slots.

Example 2. This example is identical to Example 1 except

that a 550-byte message arrives every 50 ms, rather than

10 ms. The question to answer is still what is the success

probability of delivering a single 550-byte message within

its 100 ms deadline but in this scenario the messages are

arriving less frequently. The abstract model for Example 2

is as follows. Each slot is chosen to be 50 ms since we have

a new message arriving every 50 ms. During each slot, we

can send 5 packets, which, jointly, consist of 5000 bytes. We

choose the basic message unit to be 50 bytes, which is the

greatest common divider of 5000 and 550 bytes. As a result,

at every slot, the source will receive K = 11 symbols (since

the message is of 550 bytes), and use them, plus the past

message symbols in the last α slots, to generate N = 100
symbols for transmissions (since in each slot we can send 5
packets for a total of 5000 bytes). To model the 40% chance

of complete packet erasure, the symbol erasure channel model

has Pr(Ct = 20 · b) =
(
5
b

)
0.6b0.45−b, where b ∈ {0, 1, · · · , 5}

is the number of successful packet deliveries within 1 slot

(50 ms). The deadline for decoding each message is set to

∆ = 100/50 = 2 slots.

As can be seen in Examples 1 and 2, the definitions of sym-

bols and slots provide great flexibility when modeling different

packet-level communication scenarios. In real world scenarios,

not every quantity is an integer multiple of the other. However,

we can define the slots and symbols that give the closest

integer approximations of the original problem. The results

of our abstract model thus give a close approximation of the

real world performance of any streaming code application.

D. From RLSCs to GMDS Codes

Our work focuses exclusively on the sufficiently large finite

field size regime, see (6). In this subsection, we first define the

generalized MDS condition (GMDS), and show that any code

that satisfies GMDS will have the same slot error probability:

p
GMDS(T)
e,[1,T] ,

1

T

T∑

t=1

Pr
(
s(t) is not decodable by time t+∆

| the code satisfies GMDS(T)
)

(8)

where T is an arbitrary finite integer. (The above definition

will be carefully elaborated in the subsequent paragraphs.) We

then prove that

pe , lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T] = lim

T→∞
p

GMDS(T)
e,[1,T] . (9)

As a result, instead of assuming RLSCs with sufficiently large

GF(2q), we can just assume the code satisfies GMDS. In

this way, all the randomness is a result of random channel

realization, not the random code construction. This shift of

focus from large-finite-field RLSCs to GMDS codes greatly

simplifies the statements and the proofs for the rest of the

paper.

The Generalized MDS Condition (GMDS) consists of two

sub-conditions:

• Sub-condition 1: For any time slot t, all entries in the

per-slot generator matrix Gt are non-zero. Also see the

definition in (1).

• Sub-condition 2: For any finite sequence of pairs {(il, jl) :
l ∈ [1, L]} where L can be any positive integer, define the

corresponding row index set SR = {il : l ∈ [1, L]} and

the column index set SC = {jl : l ∈ [1, L]} and define M

as the submatrix of the cumulative generator matrix G(t)

induced by SR and SC . The matrix M is invertible for any

t and any {(il, jl) : l ∈ [1, L]} satisfying

(i) il1 6= il2 and jl1 6= jl2 for any l1 6= l2, and

(ii) the (il, jl)-th entry of G(t) are non-zero for all l ∈ [1, L].

6

Example 3. Suppose (part of) the cumulative generator matrix

G(t) of an RLSC looks like



1 2 3 4
4 1 2 1
5 1 1 3
2 4 1 3


 . (10)

One can easily verify that such a G(t) is of full rank (assuming

the real-field is used). However, this G(t) does not satisfy

GMDS since if we choose {(il, jl)} = {(1, 2), (2, 3), (3, 4)},
the induced submatrix in the upper-right corner becomes




2 3 4
1 2 1
1 1 3


 , (11)

which is not invertible.

Example 4. Suppose (part of) the G(t) matrix of an RLSC

looks like 


1 2 3 4
0 0 3 1
0 0 0 2
0 0 0 4


 (12)

where some entries are zero due to the finite memory length

constraint, also see the zeros in Fig. 2. It is clear that G(t)

is not of full rank. However, by exhaustively examining all

the sequences of {(il, jl)} satisfying (i) and (ii) in the end of

GMDS, which corresponds to 26 distinct submatrices and by

verifying that all 26 such submatrices are of full rank, we can

conclude that G(t) does satisfy GMDS.

Remark 3: Suppose we replace G(t) by a traditional

(column-based) n×k generator matrix G such that x = G · s
and we assume that all the entries are non-zero, e.g., a Reed-

Solomon code. We now argue that any code that satisfies

GMDS also satisfies the traditional MDS condition. That is,

we first define j1 = 1, j2 = 2, · · · , jk = k. Then for any

set of k distinct rows SR = {i1, i2, · · · , ik}, the k pairs

{(il, jl) : l ∈ [1, k]} satisfy (i) each il (resp. jl) is unique

and (ii) all (il, jl) elements are non-zero because all entries

are non-zero. Since the matrix G satisfies GMDS, the induced

k×k submatrix must be invertible. This shows that any set of

k row vectors of G must be of full rank, which satisfies the

traditional MDS condition. GMDS essentially requires that

the matrix G(t) plus all its submatrices are of the largest

possible rank, even though some portion of G(t) is hardwired

to zero due to the memory length constraint, see Figs. 2 and 3.

Intuitively speaking, GMDS ensures that all symbols arriving

at the destination carry as much information as possible for

any subset of the participating source symbols.

We now formalize the discussion around (8) and (9). We first

note that GMDS does not place any limit on the time index t
being considered. Therefore, it is possible that regardless how

large the finite field GF(2q) is, one cannot find a code that

satisfies GMDS for infinitely many t ∈ [1,∞).
To circumvent this technical difficulty, we define a less

restrictive condition GMDS(T) that only requires the two sub-

conditions of GMDS hold for all t ≤ T +∆ but may or may

not hold for t > T + ∆. The input argument (T) restricts

our focus to a finite cumulative generator matrix G(T+∆),

and GMDS defined earlier can thus be viewed as GMDS(∞).
While the condition GMDS(∞) may be too restrictive, the

condition GMDS(T) is not. In fact, because of the bounded

scope of interest in the GMDS(T) condition, we have the

following simple lemma.

Lemma 1. When the order of the finite field GF(2q)
approaches infinity, the probability of RLSCs satisfying

GMDS(T) approaches one. That is,

lim
q→∞

Pr (RLSCs under GF(2q) satisfy GMDS(T)) = 1 (13)

for all finite T .

Proof: See the discussion of the Schwartz-Zippel theorem in

[22, Theorems 3 and 4].

Later in Propositions 1 and 2 of Section III we show that

if a code satisfies the GMDS(∞) condition, the error event

is only determined by the random channel realization, not by

the actual code structure G(t). Since the error event “s(t) is

not decodable by time t+∆” only depends on the cumulative

generator matrix G(t+∆) and the channel realization from time

1 to t + ∆, Propositions 1 and 2 show that for any fixed T
value, any code that satisfies GMDS(T) will have the same

average slot error probability p
GMDS(T)
e,[1,T] defined in (8).

The above arguments immediately imply that

lim
q→∞

p
RLSC(q)
e,[1,T] = p

GMDS(T)
e,[1,T] , ∀ T <∞. (14)

In other words, over any finite time duration [1, T + ∆],
the performance of RLSCs with sufficiently large q is in-

distinguishable from any code that satisfies the GMDS(T)
condition. One can easily see that (14) implies

lim
T→∞

lim
q→∞

p
RLSC(q)
e,[1,T] = lim

T→∞
p

GMDS(T)
e,[1,T] . (15)

To further strengthen the relationship between RLSCs and

GMDS codes, we prove the following lemma that swaps the

limits of T and q in (15):

Lemma 2. For any arbitrary but fixed α, ∆, and channel

distribution {Pi : i ∈ [0, N]}, the equation (9) is true.

Our proof is constructed by carefully quantifying the impact

of the error event propagation over the time horizon. The

details are provided in Appendix B.

By Lemma 2, we can quantify pe defined in (6), the

error probability of large-finite-field RLSCs, by assuming

GMDS(∞) holds (or just “GMDS holds” as shorthand) even

though technically we are only assuming GMDS(T) for any

arbitrarily given T . One side benefit of assuming GMDS (i.e.,

GMDS(∞)) is that the results of this work are not limited

to RLSCs. One can construct the streaming codes in any

algebraic/deterministic fashion. As long as it satisfies GMDS,

our analysis holds.

Remark 4: With GMDS, RLSCs assumed in this work

can be viewed as a class of MDS convolutional codes [23],

[24]. However, the main metric discussed by the literature on

traditional MDS convolutional codes is the free distance, the

minimum Hamming distance between two legitimate (infinite-

length) codewords. Those works thus did not involve the

7

notion of the error events of each (uncoded) message slot.

Also, while the Hamming weight is loosely connected to the

decoding deadline, most of the works did not have the explicit

notion of decoding deadline. For strongly-MDS convolutional

codes [24], which aims to achieve the maximal free distance

profile, one may only look at the distance within a finite-size

window and hence have a given finite decoding deadline. How-

ever, only analyzing the minimum distance under a truncated

window cannot characterize the error probability accurately.

For example, it is shown in [24] that the free distance increases

with the memory length α. A blind application of such a result

would assume that the error probability always gets better

(smaller) when α becomes larger. However, numerical eval-

uation of our exact error probability analysis in Section VI-A

will show that it is not the case when we have a finite ∆. This

again shows the significant difference between the distance

profile analysis in [24] and our error probability analysis.

III. MAIN RESULT 1: ERROR-EVENT CHARACTERIZATION

A. Information-Debt under Finite Memory

The first main result of this work is to generalize the concept

of information debt Id(t) originally defined in [20], which

considered exclusively the (α,∆) → (∞,∞) setting. After

providing a new and more general Id(t) definition, we use it

to characterize the error events for the α < ∞ and ∆ → ∞
setting in Section III-B and for the α <∞ and ∆ <∞ setting

in Section III-D, respectively.

Definition 3. For any arbitrarily given α <∞ (regardless of

the ∆ value), define a constant ζ , αK + 1 and initialize

Id(0) , 0. For any t ≥ 1, we iteratively compute

Îd(t) , (K − Ct +min (Id(t− 1), αK))
+

(16)

Id(t) , min
(
ζ, Îd(t)

)
(17)

according to the random channel realization {Ct : t}.

Broadly speaking, the information debt Id(t) indicates how

much more information, or equivalently, how many more

linear equations the receiver needs before it can start to decode

successfully. The detailed intuition behind Definition 3 is as

follows. The debt cannot be negative, hence the (·)+ in (16).

Also, since the memory length is α, the maximum debt one

can “carry forward” is at most αK, hence the min(·, αK)
operation in (16). The constant ζ , αK + 1 defines the

absolute “ceiling” of the information debt, hence the min(ζ, ·)
in (17). The difference between ζ = αK+1 and the maximum

allowable debt αK is that the former represents the event

that the information debt exceeds the maximum allowable

debt, i.e., go bankrupt, while the latter represents the event

of touching the maximum allowable debt but still maintaining

good standing. We introduce two minimum operations, one in

(16) and one in (17), to capture the subtle distinction between

the two.

Remark 5: When α→∞, the above definition is equivalent

to the original infinite-memory-based definition in [20].

Remark 6: The iterative definition of Id(t) does not de-

pend on what the code is being used. The results in [20,

Lemma 6] use Id(t) to state the following converse statement

on decodability for any codes: If Id(t) > 0, regardless the

code construction, at least one s(τ) with τ ∈ [1, t] is not

decodable by time t. In this work, we show that if we focus

exclusively on the codes satisfying GMDS, then we can

significantly strengthen the results and use Id(t) to describe the

exact error events and characterize the exact error probability.

In addition to the high-level debt/ceiling-based interpretation,

a more formally stated connection between Id(t) and the

structure of the cumulative receiver matrix H(t) is provided

in Appendix C for the interested readers, particularly in the

description around Fig. 14 and Lemma 15 therein.

Before proceeding, we notice that Id(t) is a random process

indexed by t. The following two sequences of hitting times

{ti : i ∈ [0,∞)} and {τj : j ∈ [0,∞)} will be useful in our

subsequent discussion.

Definition 4. Initialize t0 , 0 and τ0 , 0, and define

iteratively

ti , inf{t′ : t′ > ti−1, Id(t
′) = 0} (18)

τj , inf{t′ : t′ > τj−1, Id(t
′) = ζ} (19)

as the i-th and the j-th time that Id(t) hits 0 and ζ, respectively.

B. The Case of ∆→∞

We now describe how to use the information debt in

Definition 3 and the corresponding hitting times {ti} and {τj}
in Definition 4 to characterize the error events of the RLSCs

when there is no deadline constraint, i.e., ∆→∞.

Proposition 1. Assume GMDS holds. For any fixed i0 ≥ 0, if

there exists no τj ∈ (ti0 , ti0+1), then s(t) is decodable by time

ti0+1 for all t ∈ (ti0 , ti0+1]. If there exists a τj ∈ (ti0 , ti0+1),
define τj∗ as the largest τj within the interval (ti0 , ti0+1)

4.

Then s(t) is decodable by ti0+1 for all t ∈ (τj∗ − α, ti0+1].

Proposition 2. Continuing from the second case of Proposi-

tion 1, none of {s(t) : t ∈ (ti0 , τj∗ −α]} is decodable by time

T , regardless how large we set the decoding time T .

See Appendix C for the proofs of Propositions 1 and 2. A

byproduct of the proof of Proposition 2 is provided below with

the corresponding proof also provided in Appendix C.

Lemma 3. Assume GMDS holds. The slot error probability

pe in (6) and the symbol error probability p
[sym]
e in (7) are

always identical.

The essence of Lemma 3 is that under GMDS the only

way to decode one symbol sk(t) sent during time slot t is to

decode the entire vector s(t) for the same time slot. It is not

possible to selectively decode a subset of symbols within the

vector s(t).

8

o

Decodable

o

𝛼 െ 1

oo oo

𝐾 ൌ 1, 𝛼 ൌ 3, ∆→ ∞

oo o o o o o

Decodable

xx x x x x x x

Error0
0 𝑡ଵ 𝑡ଶ
𝛼Kζ
𝐼ௗሺ𝑡ሻ

Fig. 4: Error-event characterization for ∆→∞.

C. Illustration and Intuition of Propositions 1 and 2

Fig. 4 illustrates an example of the above error-event

characterization. In Fig. 4, Id(t) never hits ζ during the interval

(t0, t1), i.e., all Id(t) are within the maximum allowable debt

αK in this interval. By Proposition 1, s(t) is decodable by

time t1 for all t ∈ (t0, t1]. On the other hand, Id(t) hits ζ
thrice during the interval (t1, t2) and the last time it hits ζ
before going back to 0 at time t2 is at τ3. By Propositions 1

and 2, s(t) is decodable by t2 for all t ∈ (τ3 − 3, t2] and

is not decodable for t ∈ (t1, τ3 − 3]. Note that Propositions 1

and 2 focus exclusively on whether the symbols are eventually

decodable. They thus can be viewed as a no-deadline setting

∆→∞.

The intuition behind is straightforward. Whenever Id(t) hits

0 at time ti0+1, it means that we have observed enough linear

equations, i.e., we have experienced a random realization

with a bunch of large {Ct : t} in (16), and can thus start

decoding from s(ti0+1), s(ti0+1 − 1), · · · , in a backward

fashion. However, if Id(t) ever hits the bankrupt ceiling ζ
during (ti0 , ti0+1), say at time τj∗ , then the temporal coupling

between the earlier symbols {s(t) : t ≤ τj∗ − α} and

the later symbols {s(t) : t > τj∗ − α} is severed. The

backward decoding thus cannot proceed beyond τj∗ − α, see

Propositions 1 and 2. The earlier symbols {s(t) : t ≤ τj∗−α}
are forever “stranded” and cannot be decoded.

While the intuition is clear, the proofs of Propositions 1 and

2 require careful use of GMDS. The proof of the achievability

result Proposition 1 is relatively straightforward as explained

below. Recall that the decodability definition in Definition 1

is based on whether the location vector of sk(t) is in the

row space of the cumulative receiver matrix H(T) or not.

Because of GMDS, one can easily prove that the submatrix

corresponding to the t ∈ (ti0 , ti0+1] or t ∈ (τj∗ − α, ti0+1]
is of full rank. Therefore all location vectors must be in the

row space and the proof is complete. See Appendix C-A for

details.

On the other hand, the proof of the converse in Proposition 2

is much more involved. In particular, it is easy to argue that

the submatrix corresponding to the t ∈ (ti0 , τj∗ −α] is not of

full rank. This shows that at least one location vector of sk(t),
t ∈ (ti0 , τj∗ − α], is not in the row space of the cumulative

receiver matrix H(T). This is how [20, Lemma 6] proves that

4By definition, τj∗ < ti0+1. Furthermore, we always have ti0 +α < τj∗

since by (16) for each time slot Id(t) can increase by at most K and it
takes at least α + 1 slots for Id(t) to start from Id(ti0) = 0 to reach
Id(τj∗) = ζ = αK+1. Jointly it ensures that the interval (τj∗ −α, ti0+1]
is a subset between two consecutive 0-hitting times (ti0 , ti0+1] and is always
non-empty.

at least one s(t) is not decodable regardless code construction,

see Remark 6. Nonetheless, it has not ruled out the possibility

that some location vectors of sk(t) could still be in the row

space of H(T). To prove Proposition 2, one must show that

none of the location vectors of sk(t), t ∈ (ti0 , τj∗ − α]
can possibly be in the row space of H(T), which requires

more in-depth analysis of the random process Id(t) and the

additional condition of GMDS. The majority of the proofs in

Appendix C-B is dedicated to establishing the converse.

D. The Case of Arbitrary ∆ <∞

Propositions 1 and 2 have jointly answered the following

question: which set of slots s(t) is decodable and which set

of slots is not decodable if there is no decoding deadline

requirement, i.e., ∆→∞. We now consider the case of finite

∆ < ∞. For simplicity, we use the statement that s(t) is ∆-

decodable as shorthand for “s(t) is decodable by time t+∆”.

Our goal is to answer the question:

Which set of slots s(t) is ∆-decodable and which

set of slots is not?

By Proposition 1, we quickly have

Corollary 1. Assume GMDS holds. For any fixed i0 ≥ 0, if

there exists no τj ∈ (ti0 , ti0+1), then s(t) is ∆-decodable for

all t satisfying

t ∈ [max(ti0 + 1, ti0+1 −∆), ti0+1]. (20)

If there exists a τj ∈ (ti0 , ti0+1), define τj∗ as the one with

the largest j. Then s(t) is ∆-decodable for all t satisfying

t ∈ [max(τj∗ − α+ 1, ti0+1 −∆), ti0+1]. (21)

Proof: The proof is straightforward. Specifically, Proposition 1

implies that those s(t) can be decoded by time ti0+1, which

is earlier than their individual deadline (t+∆) since (20) and

(21) also imply t+∆ ≥ ti0+1.

Similarly, Proposition 2 implies

Corollary 2. Continuing from Corollary 1, if τj∗ exists, then

slot s(t) is not ∆-decodable for all t satisfying

t ∈ (ti0 , τj∗ − α]. (22)

Proof: The proof is straightforward since Proposition 2 implies

that those symbols are not decodable even if we set ∆→∞.

Therefore, they are not ∆-decodable within a finite deadline

∆ <∞.

Comparing Corollaries 1 and 2, one can see that the

characterization for finite ∆ is not complete since some t value

satisfies none of (20) to (22). To close the gap, we strengthen

Corollary 2 by the following proposition.

Proposition 3. Assume GMDS holds. For any fixed i0 ≥ 0, if

there exists no τj ∈ (ti0 , ti0+1), then s(t) is not ∆-decodable

for all t satisfying

t ∈ (ti0 , ti0+1 −∆). (23)

If there exists a τj ∈ (ti0 , ti0+1) and τj∗ being the one with

the largest j, then s(t) is not ∆-decodable for all t satisfying

t ∈ (ti0 ,max(τj∗ − α+ 1, ti0+1 −∆)). (24)

9

∆-decodable
o

𝛼 െ 1

o oo

𝐾 ൌ 1, 𝛼 ൌ 3, ∆ൌ 4

oo o o o o

∆-decodable

xx x x x x x x

Error

Error Events

NDIT NDIT

xxx

𝛼𝐾ζ
𝐼ௗሺ𝑡ሻ

00 𝑡ଵ 𝑡ଶ

NDIT: Not Decodable In Time

𝑡𝜏௝∗ െ 𝛼 െ 𝑡௜బ
Fig. 5: Error-event characterization for fixed ∆ < ∞. NDIT

stands for not decodable in time and refers to the time slots

s(t) that are eventually decodable, but not before the preset

deadline t+∆.

Proposition 3 strictly subsumes Corollary 2. Jointly Proposi-

tion 3 and Corollary 1 close the gap and tightly characterize the

∆-decodability for finite ∆ < ∞. See Fig. 5 for illustration,

in which we use NDIT as shorthand for not decodable in time.

Essentially, Proposition 3 shows that all those symbols that are

decodable at time ti0+1 according to Proposition 1 cannot be

decoded at a strictly earlier time τ < ti0+1.

See Appendix G for the proof of Proposition 3.

IV. MAIN RESULT 2: EXACT SLOT ERROR PROBABILITY

COMPUTATION

The iterative definition of Id(t) in (16) and (17), and the

assumption of i.i.d. Ct imply that Id(t) is a time-homogeneous

Markov chain with the state space being S = {0, 1, · · · , ζ}.

The ergodicity assumption: Without loss of generality, we

assume that the Markov chain is ergodic. It is possible that

some channel distribution Ct may lead to a reducible Markov

chain. For example, suppose K = 2, N = 4, and Ct = 0, 2
and 4 with probabilities 0.25, 0.5 and 0.25, respectively. The

corresponding Markov chain is reducible since Id(t) only hops

on the “even values” except for the ceiling state ζ. We can

convert it to an equivalent problem of K = 1, N = 2, Ct =
0, 1 and 2 with probabilities 0.25, 0.5 and 0.25, respectively.

For most practical channel distribution Ct, the ergodicity of

Id(t) holds naturally. For ease of description, all the following

lemmas (Lemmas 4 to 8) implicitly assume ergodicity.

Besides, we notice that ti defined in (18) is a Markov

renewal process. To take advantage of the properties of Markov

renewal processes, we define the slots between (ti, ti+1] as

the i-th round. For any fixed i0 ≥ 0, if there exists no

τj ∈ (ti0 , ti0+1), define the interval (ti0 , ti0+1] as a good

round. On the contrary, if there exists a τj ∈ (ti0 , ti0+1), define

the interval (ti0 , ti0+1] as a bad round since the information

debt Id(t) hits the ceiling ζ during this round.

Propositions 1 to 3 imply that for GMDS codes, the slot

error event is equivalent to some specific event of the Markov

chain Id(t) where the distribution of the random process Id(t)
depends only on the channel realization Ct, not on the actual

code structure. As a result, the large-finite-field, long term

average slot error probability of RLSCs in (6) can be computed

by the following lemma.

Lemma 4. Assuming operating within the capacity, i.e., K <
E {Ct}, we have

pe = lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T] = lim

T→∞
p

GMDS(T)
e,[1,T] (25)

=
E {LG + LB}

E {ti0+1 − ti0}
(26)

where i0 ≥ 0 is any arbitrary but fixed index,

LG , 1{no τj∈(ti0 ,ti0+1)} · (ti0+1 −∆− 1− ti0)
+
, (27)

LB ,

1{∃τj∈(ti0 ,ti0+1)} · (max(τj∗ − α, ti0+1 −∆− 1)− ti0) ,
(28)

τj∗ is the largest τj within the interval (ti0 , ti0+1), and 1{·}

is the indicator function. The subscripts G and B denote a

good and a bad round, respectively.

Proof: The equalities in (25) follow directly from Lemma 2.

From Propositions 1 to 3, the number of erroneous slots of

GMDS codes in a good round is (ti0+1 −∆− 1− ti0)
+

while

the number of erroneous slots in a bad round is max(τj∗ −
α, ti0+1 −∆− 1)− ti0 . Also, because ti defined in (18) is a

Markov renewal process, we have Lemma 4 by [25, Theorem

3.3] for any arbitrary fixed constant i0 ≥ 0.

To continue, we further rewrite E {LB} by the following

realization-based summation:

LB = LB1
+ LB2

(29)

where LB1
, 1{∃τj∈(ti0 ,ti0+1)} · (τj∗ − ti0) (30)

LB2
,

1{∃τj∈(ti0 ,ti0+1)} · (max (−α, ti0+1 −∆− 1− τj∗)) . (31)

The rest of this section is dedicated to deriving the exact

formulas of E {ti0+1 − ti0}, E {LG}, E {LB1
} and E {LB2

}.
Note that these quantities are based on the random process

Id(t) and are thus functions of the channel distribution Pi =
Pr(Ct = i). They do not depend on the underlying code

structure.

Since the state space of the (time-homogeneous) Markov

chain Id(t) is {0, 1, · · · , ζ}, its transition matrix is of dimen-

sion (ζ + 1)-by-(ζ + 1) and we denote it by Γ = [γi,j].
To slightly abuse the notation, we assume the subscripts

i, j ∈ [0, ζ], rather than the traditional range of [1, ζ +1]. The

value γi,j , the intersection of the i-th row and j-th column

of Γ, is the transition probability from state i to state j, i.e.,

γi,j = Pr (Id(t+ 1) = j | Id(t) = i). The actual value of γi,j
can be easily computed by the encoder parameters N , K, the

channel distribution {Pi}, and the iterative update rules of

Id(t) in (16) and (17). One such example will be provided in

Section VI.

Define φ = [1, 2, . . . , ζ − 1] as the collection of the interior

states, i.e., excluding the boundary states Id(t) = 0 and

Id(t) = ζ. We partition the transition matrix Γ into 9 sub-

matrices:

Γ =




Γ0,0 Γ0,φ Γ0,ζ

Γφ,0 Γφ,φ Γφ,ζ

Γζ,0 Γζ,φ Γζ,ζ


 (32)

10

where Γx,y = [γi,j] , ∀i ∈ x and j ∈ y. Additionally, we

denote A , (Iζ−1−Γφ,φ)
−1, which is an (ζ − 1)-by-(ζ − 1)

square matrix. Define M1 the (ζ + 1)-by-(ζ + 1) matrix that

hardwires the first column of Γ to zeros:

M1 ,




0 Γ0,φ Γ0,ζ

0 Γφ,φ Γφ,ζ

0 Γζ,φ Γζ,ζ


 .

All our formulas will be based on these three matrices Γ, A,

M1, and sometimes their inverse as well. The existence of the

inverses is guaranteed by the ergodicity assumption.

Lemma 5. Recall that ~δ1 is a delta-vector for which only the

first entry is 1 and all other entries are zero. Then,

E {ti0+1 − ti0} =
~δ⊤1 (Iζ+1 −M1)

−1~1. (33)

Proof: It can be computed directly by Markov chain analysis

[25, Chapter 4]. Specifically, because state-0 is positive recur-

rent, for any fixed i0 ∈ [0,∞) we have Pr(ti0 = ∞) = 0.

Therefore, there is no need to consider the corner case of

ti0 =∞ in the rest of the paper. Hence, we have

Pr(ti0+1 − ti0 = k | ti0 <∞) =



Γ0,0 if k = 1,

[
Γ0,φ Γ0,ζ

]([Γφ,φ Γφ,ζ

Γζ,φ Γζ,ζ

])k−2 [
Γφ,0

Γζ,0

]

if k ≥ 2.

(34)

Denote

Q =

[
Γφ,φ Γφ,ζ

Γζ,φ Γζ,ζ

]
.

Since Q is a submatrix of the (probability) transition matrix

Γ, we can always slightly increase the values of some entries

of Q to find a new probability transition matrix P such that

(i) Q and P are of the same dimension; (ii) the summation of

each row of P is 1; (iii) every entry of Q is no larger than that

of P, and (iv) Q 6= P. By the Perron-Frobenius Theorem, the

maximum eigenvalue of P is λmax = 1, and every eigenvalue

σ of Q satisfies |σ| < λmax = 1. Hence,

lim
k′→∞

([
Γφ,φ Γφ,ζ

Γζ,φ Γζ,ζ

])k′
= 0. (35)

As a result,

E {ti0+1 − ti0} = E {ti0+1 − ti0 | ti0 <∞} = Γ0,0+
∞∑

k=2

k ·
[
Γ0,φ Γ0,ζ

]([Γφ,φ Γφ,ζ

Γζ,φ Γζ,ζ

])k−2 [
Γφ,0

Γζ,0

]
,

(36)

which can be simplified to the expression in (33) by basic

matrix operations and by (35). See Appendix H for details.

Lemma 6. The average number of errors in a good round in

(26) in Lemma 4 can be derived by

E {LG} = Γ0,φ (A)
2
(Γφ,φ)

∆
Γφ,0. (37)

Proof: We note that

Pr(ti0+1 − ti0 = k, no τj ∈ (ti0 , ti0+1) | ti0 <∞)

=

{
Γ0,0 if k = 1,

Γ0,φ (Γφ,φ)
k−2

Γφ,0 if k ≥ 2.
(38)

By similar reasons as when proving (35), we have

lim
k′→∞

(Γφ,φ)
k′

= 0. (39)

Rewriting the expectation of (27) as a summation where the

index k = ti0+1 − ti0 , we have

E {LG} = E {LG | ti0 <∞}

=
∞∑

k=2

(k −∆− 1)
+
Γ0,φ (Γφ,φ)

k−2
Γφ,0 (40)

where we notice that when k = 1, we always have

(k −∆− 1)
+

= 0. Simplifying (40) using (39) will give us

(37).

The computation of E {LB1
} and E {LB2

} is much more

involved since τj∗ is the last time Id(t) hits ζ before hitting

0, which is not a stopping time and hence requires careful

treatment. For any t, we use the standard hitting time definition

Ht(x) of x

Ht(x) , inf{τ > 0 : Id(t+ τ) = x}. (41)

We then define the following random variable

Λt , sup{τ ≥ 0 : Id(t+ τ) = ζ and τ ≤ Ht(0)}, (42)

which denotes the last time Id(·) hits ζ before hitting 0. One

can see that Λt is not a stopping time.

For any fixed time slot t, conditioning on the event {Id(t) =
ζ} we have Λt ≥ 0 since the supremum in (42) is over

a non-empty set. By the Markov property, the value of

E {Λt | Id(t) = ζ}, the average number of time slots it takes

for Id(·) going from ζ and hitting the last ζ before hitting 0, is

not a function of t. Note that (42) implies Λt ≤ Ht(0) always

holds, which implies the probability Pr(Λt =∞) = 0. We can

thus compute E {Λt | Id(t) = ζ} by the following recursive

equation

E {Λt | Id(t) = ζ} = Γζ,ζ · (1 + E {Λt | Id(t) = ζ})

+

∞∑

k=2

(k + E {Λt | Id(t) = ζ}) Γζ,φ (Γφ,φ)
k−2

Γφ,ζ (43)

where the index k represents how many time slots it takes

for Id(·) to hit ζ for yet another time without hitting the

value 0. Once Id(·) hits ζ, we can recursively use the quantity

E {Λt | Id(t) = ζ} when computing the expectation. Specifi-

cally, the first term of (43) calculates the scenario of Id(t) = ζ
and in the next time slot Id(t + 1) = ζ is true again. The

summation term of (43) uses the index k ≥ 2 to count the

number of slots for Id(·) to hit ζ again.

11

We are now ready to compute E {LB1
}. By similar argu-

ments, E {LB1
} and E {Λt | Id(t) = ζ} are related through

the following equation:

E {LB1
} = E {LB1

| ti0 <∞}

= Γ0,ζ · (1 + E {Λt | Id(t) = ζ})

+

∞∑

k=2

(k + E {Λt | Id(t) = ζ}) Γ0,φ (Γφ,φ)
k−2

Γφ,ζ (44)

where the first term of (44) calculates the scenario of Id(ti0) =
0 and in the next time slot Id(ti0 + 1) = ζ. In this case,

the expectation of E {LB1
} is linked to E {Λt | Id(t) = ζ}

afterwards. The summation term of (44) uses the index k ≥ 2
to count the number of slots for Id(·) to hit ζ after Id(ti0) = 0.

After Id(·) hits ζ, the expectation of E {LB1
} is linked to

E {Λt | Id(t) = ζ} once again.

Lemma 7. The expectation E {LB1
} in (28) to (30), which

counts how many time slots it takes to go from state-0 to the

last time Id(t) hits ζ before hitting 0 again, can be computed

as follows.

E {LB1
} =(Γ0,ζ + Γ0,φAΓφ,ζ)

(
1 + Γζ,φ (A)

2
Γφ,ζ

1− Γζ,ζ − Γζ,φAΓφ,ζ

)

+ Γ0,φ (A)
2
Γφ,ζ . (45)

Proof: By (39) and (43), we have

E {Λt | Id(t) = ζ} =
Γζ,ζ + Γζ,φ

(
A+ (A)

2
)
Γφ,ζ

1− Γζ,ζ − Γζ,φAΓφ,ζ

. (46)

Substituting (46) into (44), we have (45).

The most involved computation is E {LB2
} due to its

complicated expression in (31) and its involvement of τj∗ , the

last time Id(·) hits ζ before hitting 0, which is not a stopping

time.

Lemma 8. Define ψ , (∆− α− 1)
+

.

E {LB2
} = (Γ0,ζ + Γ0,φAΓφ,ζ) · (Γζ,0 + Γζ,φAΓφ,0)

−1

·

(
−min (∆, α) Γζ,0 − αΓζ,φAΓφ,0

+ Γζ,φ

(
(A)

2
+ (α+ ψ −∆)A

)
(Γφ,φ)

ψ
Γφ,0

)
. (47)

Proof: Using the hitting time Ht(x) definition in (41), for any

fixed constant t we define four associated terms as follows.

term1 , Pr(Ht(0) > Ht(ζ) | Id(t) = 0) (48)

term2 , E{1{Ht(0)<Ht(ζ)} ·max(−α,Ht(0)−∆− 1)

| Id(t) = ζ} (49)

term3 , Pr(Ht(0) < Ht(ζ) | Id(t) = ζ) (50)

term4 , E{max(−α,Ht(0)−∆− 1)

| Id(t) = ζ,Ht(0) < Ht(ζ)}. (51)

Because Id(·) is Markov, the values of term1 to term4 do not

depend on the given constant t ≥ 0. Also, by basic probability

computation we have term4 = term2/term3.

For any fixed finite constant i0 ∈ [0,∞), we now define

term5 , E{max(−α, ti0+1 − τj∗(i0) −∆− 1)

| ti0+1 <∞, ∃τj ∈ (ti0 , ti0+1)} (52)

where we append the parentheses ‘(i0)’ to j∗ to emphasize

that the value of the last ζ-hitting time j∗(i0) , max{j : τj ∈
(ti0 , ti0+1)} depends on i0. It is worth pointing out that term5

is defined for a fixed constant round-index i0 ≥ 0 while term1

to term4 are defined for a fixed constant time-index t ≥ 0.

To continue, we have to prove that term4 = term5. Intu-

itively, we note that the conditional event in (51) means that t
is the last time Id(·) hits ζ before hitting 0, which is equivalent

to t being the last ζ-hitting time τj∗ ∈ (ti0 , ti0+1) for some i0.

Furthermore, it also implies t = τj∗ and ti0+1 = τj∗ +Ht(0).
Jointly, we thus have term4 = term5. See Appendix I for a

rigorous proof.

Next, because Id(t) is strong Markov, for any fixed i0 ∈
[0,∞), by substituting the stopping time t = ti0 into (48), we

have

term1 = Pr(Hti0
(0) > Hti0

(ζ) | ti0 <∞)

= Pr(Hti0
(0) > Hti0

(ζ) | ti0+1 <∞) (53)

= Pr(∃τj ∈ (ti0 , ti0+1) | ti0+1 <∞) (54)

where (53) follows from state-0 being positive recurrent and

thus Pr(ti0+1 =∞) = 0.

For any fixed i0 ∈ [0,∞), we then have

E {LB2
} = E {LB2

| ti0+1 <∞} (55)

= term1 · term5 (56)

= term1 · term4 (57)

= term1 ·
term2

term3
(58)

where (55) follows from Pr(ti0+1 = ∞) = 0; (56) follows

from (31), (52), (54) and basic probability computation; (57)

follows from our previous proof of term4 = term5; and (58)

follows from the definitions in (49) to (51).

The rest of the computation of E {LB2
} is to compute the

values of term1 to term3 via standard Markov chain analysis

[25]. Specifically we have

term1 =Γ0,ζ + Γ0,φAΓφ,ζ (59)

term2 =−min (∆, α) Γζ,0 − αΓζ,φAΓφ,0

+ Γζ,φ

(
(A)

2
+ (α+ ψ −∆)A

)
(Γφ,φ)

ψ
Γφ,0

(60)

term3 =Γζ,0 + Γζ,φAΓφ,0. (61)

See Appendix J for detailed derivation of (59) to (61). Sub-

stituting (59) to (61) into (58) gives us the final expression of

E {LB2
} in (47).

Theorem 1. Assume we operate within the capacity, i.e., K <
E {Ct}. For any finite (α,∆), the large-finite-field slot error

probability pe can be computed by (62), shown at the bottom

of the next page, where ψ , (∆− α− 1)
+

,

Z =−min (∆, α) Γζ,0 − αΓζ,φAΓφ,0

+ Γζ,φ

(
(A)

2
+ (α+ ψ −∆)A

)
(Γφ,φ)

ψ
Γφ,0, (63)

12

and the definitions of the matrices Γ, A, and M1 can be found

in the discussion around (32).

Proof: Directly assembling Lemmas 4 to 8 and (29) to (31)

gives us (62).

By Definitions 1 and 2, (5) and (6), it is clear that pe
is monotonically decreasing versus the deadline ∆. By the

monotone convergence theorem, for any fixed memory length

α, the no-deadline slot error probability (∆ → ∞) can be

computed by

Corollary 3. For any given α, we have

lim
∆→∞

E {LG} = 0 (64)

lim
∆→∞

E {LB2
} = −α · term1. (65)

Since E {LB1
} does not depend on ∆, the no-deadline error

probability lim∆→∞ pe from (26) can be computed by

lim
∆→∞

pe =
E {LB1

} − α · term1

E {ti0+1 − ti0}
(66)

where E {ti0+1 − ti0}, E {LB1
}, and term1 can be calculated

by (33), (45), and (59), respectively.

The proof of this corollary can be found in Appendix K.

V. A CONCEPTUALLY SIMPLER BUT NUMERICALLY

UNSTABLE COMPUTATION

Significant efforts of the pe derivation are made to analyze

the last ζ-hitting time τj∗ within (ti0 , ti0+1), which is not a

stopping time. While the computation is involved, the resulting

formulas in Theorem 1 are numerically stable. For example,

one could compute small pe ≈ 10−14 with ∆ = 500 and the

transition matrix Γ of dimension αK +2 = 20× 5+2 = 102
and pe ≈ 10−6 with ∆ = 394 and the transition matrix Γ of

dimension αK + 2 = 60× 39 + 2 = 2342, see the numerical

evaluation for Case (b) in Section VI-A and the numerical

evaluation in Section VI-D.

In this section, we describe an algebraically equivalent

computation that is simpler in concept. The main idea of the

new computation is based on reversing the Markov chain.

Comparing the formulas in Theorem 1 and the formulas in this

section may lead to new matrix equalities between forward

and backward transition matrices. However, in its current

form, the formula is not numerically stable for small pe, and

further development is still needed. For example, while the

computation of Section IV is numerically stable and can be

applied to Case (b) in Section VI-A with α = 20 and ∆ = 500,

if we apply the computation formulas described in this section,

one would get a negative error probability because of the

numerical precision error.

The new derivation is as follows. Recall that τj∗ is the

last time Id(t) hits the ceiling ζ before going back to state-

0 during (ti0 , ti0+1). Considering the corresponding time-

reversed Markov chain of Id(t), denoted as
←−
Id(t), τj∗ becomes

the first ζ-hitting time during (ti0 , ti0+1), which is a stopping

time with respect to the time-reversed Markov chain
←−
Id(t).

Any expectation/probability computation that involves τj∗ thus

becomes a standard stopping time analysis of the reversed

Markov chain
←−
Id(t).

Following this idea, we re-formulate the slot error proba-

bility in a way similar to Lemma 4:

Lemma 9. Assuming K < E {Ct}, we have

pe = 1− pc = 1−
E
{
LG + LB

}

E {ti0+1 − ti0}
(67)

where pc represents the probability that a slot is ∆-decodable

under the large-finite-field regime and

LG =

1{no τj∈(ti0 ,ti0+1)} · (min(ti0+1 − ti0 , ∆+ 1)) (68)

LB =

1{∃τj∈(ti0 ,ti0+1)} · (min(ti0+1 − (τj∗ − α) , ∆+ 1)) (69)

are the numbers of ∆-decodable slots in a good round and in

a bad round, respectively.

The proof of Lemma 9 is self-explanatory by describing the

complement events of those in Lemma 4.

The denominator E {ti0+1 − ti0} can be found by Lemma 5.

Since the expression of LG in (68) does not involve τj∗ , we

can derive its value in ways similar to Lemma 6:

Lemma 10. The value of E
{
LG
}

in (67) of Lemma 9 can be

derived by

E
{
LG
}
=Γ0,0 + Γ0,φ (A)

2
(
Iζ−1 − (Γφ,φ)

∆−1
)
Γφ,0

+ Γ0,φA
(
Iζ−1 + (Γφ,φ)

∆−1
)
Γφ,0. (70)

Proof: From (38), we rewrite the expectation of (68) as

E
{
LG
}
= E

{
LG | ti0 <∞

}

= 1 · Γ0,0 +
∆∑

k=2

kΓ0,φ (Γφ,φ)
k−2

Γφ,0

+ (∆+ 1)

∞∑

k=∆+1

Γ0,φ (Γφ,φ)
k−2

Γφ,0 (71)

where the index k = ti0+1 − ti0 . Simplifying the above

equation gives us (70).

We now describe how to compute E
{
LB
}

. Recall that Γ
is the transition matrix of the Markov chain Id(t). We denote

pe =
Γ0,φ (A)

2
(
(Γφ,φ)

∆
Γφ,0 + Γφ,ζ

)
+ (Γ0,ζ + Γ0,φAΓφ,ζ)

(
1+Γζ,φ(A)2Γφ,ζ

1−Γζ,ζ−Γζ,φAΓφ,ζ
+ Z

Γζ,0+Γζ,φAΓφ,0

)

~δ⊤1 (Iζ+1 −M1)−1~1
(62)

13

the stationary distribution of the transition matrix Γ as π =
[π0, π1, . . . , πζ]

⊤
, which satisfies

π⊤Γ = π⊤ and π⊤ · ~1 = 1. (72)

Assuming that we are already in the stationary distribution,

the transition probability of the reversed Markov chain
←−
Id(·)

can then be computed by

←−γ i,j = Pr(
←−
Id(
←−
t + 1) = j|

←−
Id(
←−
t) = i)

= Pr(Id(t− 1) = j|Id(t) = i) = πj · γj,i/πi. (73)

Eq. (73) can be written in a matrix form, i.e., the transition

matrix
←−
Γ = [←−γ i,j] of the reversed chain can be found by

←−
Γ = [←−γ i,j] = diag

(
1

π

)
· Γ⊤ · diag (π) (74)

where 1
π

, (1
π0
, · · · , 1

πζ
)⊤. In sum, knowing the forward

transition matrix Γ, which is defined based on the i.i.d.

channel distribution, we can numerically compute the reversed

transition matrix
←−
Γ by first solving π via (72) and then

plugging it into (74). The computation of E
{
LB
}

is then

based on the numerically computed
←−
Γ .

Similar to (32), we partition the transition matrix
←−
Γ into 9

sub-matrices:

←−
Γ =




←−
Γ 0,0

←−
Γ 0,φ

←−
Γ 0,ζ

←−
Γ φ,0

←−
Γ φ,φ

←−
Γ φ,ζ

←−
Γ ζ,0

←−
Γ ζ,φ

←−
Γ ζ,ζ


 , (75)

and denote
←−
A , (Iζ−1 −

←−
Γ φ,φ)

−1.

Lemma 11. Define ψ , (∆− α− 1)
+

. The value of E
{
LB
}

in (67) of Lemma 9 can be computed by

E
{
LB
}

= min (∆ + 1, α+ 1)
←−
Γ 0,ζ + (α+ 1)

←−
Γ 0,φ

←−
A
←−
Γ φ,ζ

+ (∆− α− ψ)
←−
Γ 0,φ

←−
A
(←−
Γ φ,φ

)ψ←−
Γ φ,ζ

+
←−
Γ 0,φ

(←−
A
)2(

Iζ−1 −
(←−
Γ φ,φ

)ψ)←−
Γ φ,ζ . (76)

While the expression of Lemma 11 is long, the proof is

relatively straightforward because the τj∗ is now a stopping

time in terms of the reversed Markov chain
←−
Id(·). The detailed

proof is as follows.

Proof: Define Hζ←0 and H0←0 as the (first) ζ-hitting time and

the (first) 0-hitting time of the reversed Markov chain
←−
Id(·),

respectively, conditioning on starting from state-0. It is clear

that

Pr(Hζ←0 = k < H0←0 | ti0 <∞)

=





←−
Γ 0,ζ if k = 1,
←−
Γ 0,φ

(←−
Γ φ,φ

)k−2←−
Γ φ,ζ if k ≥ 2.

(77)

We then note that the event {∃τj ∈ (ti0 , ti0+1)} is equivalent

to the event Pr(Hζ←0 < H0←0) if we focus on the “starting

time instant” of
←−
Id(·) to be ti0+1. Furthermore, we also have

ti0+1 − τj∗ = Hζ←0 under the same starting time instant

ti0+1. Using these two observations and counting the events

of different k values as discussed in (77), we have

E
{
LB
}
= E

{
LB | ti0 <∞

}

= min (∆ + 1, α+ 1)
←−
Γ 0,ζ

+

ψ+1∑

k=2

(α+ k)
←−
Γ 0,φ

(←−
Γ φ,φ

)k−2←−
Γ φ,ζ

+ (∆+ 1)

∞∑

k=ψ+2

←−
Γ 0,φ

(←−
Γ φ,φ

)k−2←−
Γ φ,ζ (78)

where the first term counts the event Pr(Hζ←0 = 1 < H0←0 |
ti0 < ∞); the first summation counts the events Pr(Hζ←0 =
k < H0←0 | ti0 < ∞) with k ≤ ψ + 1; and the second

summation counts the rest of the events. Simplifying the above

equation gives us (76).

Theorem 2. For any finite (α,∆), the slot error probability

pe of large-finite-field RLSCs can be computed by directly

assembling Lemma 5, and Lemmas 9 to 11.

The formula of computing pe using Theorem 2 is numeri-

cally unstable when pe is small since pc in (67) is a value

that is very close to 1. It is possible to further simplify

the formula to improve stability, which is, however, beyond

the scope of this work. Also note that while the concept of

reversing the Markov chain is straightforward, converting Γ to
←−
Γ obscures the near-Toeplitz structure of the original forward

transition matrix Γ. This also makes any subsequent analysis

more difficult. For example, in [1] the asymptote of the error

probability is derived by taking advantage of the near-Toeplitz

structure of the forward Γ, an approach not possible with the

reversed
←−
Γ .

VI. NUMERICAL EVALUATIONS

Theorem 1 can be used to pinpoint the exact slot error

probability pe of any (α,∆) and the results can be used by

system designers when balancing the RLSC complexity α and

latency ∆ tradeoff in practical applications. In the first three

parts of this section, we use the exact pe formula to explore

three important design tradeoffs: (i) error probability versus

memory length, (ii) error probability versus decoding deadline,

and (iii) optimal memory length of a given deadline constraint.

We consider the following cases in our simulation.

Case (a): N = 10, K = 5 and Ct be a binomial distribution

with p = K
N

+ 0.01 = 0.51, i.e., Ct ∼ B(10, 0.51) and Pi =(
10
i

)
pi(1− p)10−i. This case represents a medium rate (1/2),

near-capacity scenario.

Case (b): N = 10, K = 5 and Ct ∼ B(10, 0.55). This case

is also a medium rate (1/2) scenario, but the channel is more

forgivable and we are operating in a scenario far-away from

capacity.

Case (c): N = 10, K = 8 and Ct ∼ B(10, 0.81). This case

represents a high rate (0.8), near-capacity scenario.

Case (d): N = 100, K = 50 and Ct ∼ B(100, 0.51).
This case is similar to Case (a) but considers the scenario

that the source sends 10x more symbols in a single slot. (Or

14

α

0 5 10 15 20 25 30

p
e

10-3

10-2

10-1

100

0.0643 0.0537 0.0542 0.0544

(N, K) = (10, 5), p = 0.51

Simulation
∆ = 10
∆ = 150
∆ = 500
∆ → ∞

(a)

α

0 5 10 15 20 25 30

p
e

10-20

10-15

10-10

10-5

100
(N, K) = (10, 5), p = 0.55

Simulation
∆ = 10
∆ = 150
∆ = 500
∆ → ∞

(b)

α

0 5 10 15 20 25 30

p
e

10-3

10-2

10-1

100
(N, K) = (10, 8), p = 0.81

Simulation
∆ = 10
∆ = 150
∆ = 500
∆ → ∞

(c)

α

0 5 10 15 20 25 30

p
e

10-20

10-15

10-10

10-5

100
(N, K) = (100, 50), p = 0.51

Simulation
∆ = 10
∆ = 150
∆ = 500
∆ → ∞

(d)

Fig. 6: Slot error probability pe versus memory length α.

equivalently the duration of the time unit “slot” is lengthened

by 10 times.)

For the fourth and the last part of this section, we examine

the code rate versus end-to-end delay tradeoff that was con-

sidered in the seminal finite-block length work [7]. To ensure

direct and fair comparison, the fourth part assumes a simpler

packet erasure channel model that is different from the first

three parts so that we can reuse the block code results over

binary erasure channels (BEC) discussed in [7].

A. Error Probability versus Memory Length Tradeoff

Fig. 6 compares the error probability for different α and

∆ values. The diamond markers of “Simulation” are plotted

by running the random process Id(t) from t = 1 to 108,

counting the erroneous slots using Propositions 1 to 3, and

dividing by 108 to calculate the empirical probability5. The

continuous curves are obtained by Theorem 1. For those

5In our simulation, the program is terminated at t = 108. Those slots which
are still unable to determine its decodability at the very end of the simulation
are not counted as erroneous slots.

(N,K,α,∆) and {Pi} which yield large pe (e.g., in Figs. 6a

and 6c we have pe ≥ 10−2), simulation is very accurate

and serves as the ground truth of the analytical results. As

expected, the exact error probability computation matches

the simulation results, which confirms the correctness of our

analysis. For Cases (b) and (d), the pe values are much smaller

(pe ≤ 10−5) and simulation markers still center around the

computed curves but we start to see random variation since

even 108 slots do not guarantee enough precision. Regardless

how small pe is, the computation using Theorem 1 can be

finished within seconds, which demonstrates the power of

having a closed-form probability formula over simple Monte-

Carlo simulation.6

We first observe that in the operate-near-capacity and small

(N,K) settings, Cases (a) and (c), the latency ∆ is the limiting

6The Monte-Carlo simulation is possible only after the new error event
characterization developed in Propositions 1 and 2. If one would like to
actually run RLSCs and use naive Gaussian elimination to check decodability,
the time it takes would quickly explode and some hardware simulation may
be needed.

15

Deadline Constraint (∆)
20 40 60 80 100 120 140

p
e

0.2

0.3

0.4

0.5

0.6

(N, K) = (10, 5), p = 0.51

Large α
Best α

(a)

Deadline Constraint (∆)
20 40 60 80 100 120 140

p
e

10-4

10-2

(N, K) = (10, 5), p = 0.55

Large α
Best α

(b)

Deadline Constraint (∆)
20 40 60 80 100 120 140

p
e

0.15

0.2

0.25

0.3

0.35

0.4
0.45

0.5
0.55

(N, K) = (10, 8), p = 0.81

Large α
Best α

(c)

Deadline Constraint (∆)
20 40 60 80 100 120 140

p
e

10-2

10-1

(N, K) = (100, 50), p = 0.51

Large α
Best α

(d)

Fig. 7: Slot error probability pe versus delay constraint ∆.

factor. That is, while the pe can be made very small when

∆→∞, for a finite but large ∆ = 500, the error probability

pe remains quite large (≥ 10−2) regardless how we set the

memory length α, see Figs. 6a and 6c. When we either operate

away from capacity (Case (b)) or when many symbols are

coded togethers (large N and K in Case (d)), we start to

see small error probability pe ≤ 10−5 with reasonably small

(∆, α) values.

We also note that if we impose a finite deadline constraint

∆, pe no longer improves monotonically7 with α. Take Case

(a) for example. When ∆ = 10 and 150, the best α is 1 and 6,

respectively. When ∆ = 500, we wrote the exact pe values in

Fig. 6a for α = 10, 15, 20 and 25, respectively. The best pe is

0.0537 when α = 15. In all our evaluations, including others

that are not shown, too large the memory length always makes

the pe strictly worse, sometimes by a large degree (see ∆ = 10
and 150) and sometimes just slightly (see ∆ = 500). The

intuition is that larger α means that information is spread over

7Similar finding has been discovered in [18] for a different class of encoder
and decoder in finite length regime.

a longer horizon, which makes it harder to decode a single s(t)
before the deadline t+∆ since we now have too many other

source symbols s(t′), t′ 6= t, that are fully mixed within the

interval [t, t+∆]. A lesson for practical implementation is thus

to avoid choosing unnecessarily large memory length α, which

is both of higher complexity and also of poorer performance.

B. Error Probability versus Deadline Constraint Tradeoff

Fig. 7 investigates the effects of deadline constraint ∆ on the

probability of error. In all our experiments in Fig. 6, the error

probability stops improving after α ≥ 50, we thus use α = 50
as the proxy for the case when α → ∞ in our simulation.

The blue curves in Figs. 7a to 7d plot pe versus ∆ for the

α→∞ case. As expected, the pe decreases monotonically as

the decoding deadline ∆ becomes looser.

In Fig. 6 we observe that for any given ∆, there is an

“optimal α” that can minimize pe. For fixed ∆, we evaluate

all pe values for α = 1 to 50 and select the smallest such

pe. The curve “best α” depicts the resulting pe values using

the optimal α. In the large pe scenarios, Cases (a) and (c),

16

Deadline Constraint (∆)
20 40 60 80 100 120 140

B
es
t
M
em

o
ry

L
en

g
th

(α
)

0

2

4

6
(N, K) = (10, 5), p = 0.51

p
e
Im

p
ro
v
em

en
t
R
a
ti
o
(%

)

0

20

40

60

(a)

Deadline Constraint (∆)
20 40 60 80 100 120 140

B
es
t
M
em

o
ry

L
en

g
th

(α
)

0

10

(N, K) = (10, 5), p = 0.55

p
e
Im

p
ro
v
em

en
t
R
a
ti
o
(%

)

0

5

10

(b)

Deadline Constraint (∆)
20 40 60 80 100 120 140

B
es
t
M
em

o
ry

L
en

g
th

(α
)

0

2

(N, K) = (10, 8), p = 0.81

p
e
Im

p
ro
v
em

en
t
R
a
ti
o
(%

)

0

20

40

(c)

Deadline Constraint (∆)
20 40 60 80 100 120 140

B
es
t
M
em

o
ry

L
en

g
th

(α
)

0

2

4
(N, K) = (100, 50), p = 0.51

p
e
Im

p
ro
v
em

en
t
R
a
ti
o
(%

)

0

5

10

(d)

Fig. 8: Best memory length (α) and pe improvement ratio versus delay constraint ∆.

optimizing α for the given ∆ value can further lower pe by a

significant factor. However, in a low-pe scenario (Cases (b) and

(d)), the pe of the optimal α is indistinguishable to the pe of

large α→∞. Even though the former is still slightly smaller,

the degree of improvement is small. See Figs. 7b and 7d.

C. Optimal Memory Length of a Given Deadline Constraint

The capability of numerically searching for the optimal

memory length α∗(∆) given any fixed deadline constraint ∆
is one of the most interesting achievements unlocked by the

exact pe computation in Theorem 1. It is worth noting that

the optimal α∗(∆) leads simultaneously to both a smaller

pe and lower complexity for any choice of α > α∗(∆). In

some scenarios (Figs. 7a and 7c), the pe reduction benefit is

significant. Nonetheless, in the small error probability regime

(Figs. 7b and 7d), the pe reduction benefit of choosing the

best α∗(∆) becomes negligible. It is worth noting that even

in those scenarios, the complexity saving of using α∗(∆) is

still tangible. That is, the values of α∗(∆) inform the designer

when we should stop increasing the memory length α since

any further increase is a strict waste of complexity.

In this section, we examine the relationship between α∗(∆)
versus ∆ in Fig. 8. We superpose the figure with the improve-

ment ratio of the optimal α, which is calculated by

(pe given α→∞)− (pe given optimal α)

(pe given α→∞)
. (79)

From all four subfigures of Fig. 8, the optimal memory

length α∗(∆) appears to grow linearly as the deadline ∆
increases. A heuristic explanation is that because α is propor-

tional to the number of the future coded symbols influenced by

the source symbols in the current time slot, the optimal α∗(∆)
would maintain a fixed-ratio “balance” between the spread

of the source symbols and the number of received symbols

used for decoding (the decoding deadline). Another critical

observation is that the ratios
α∗(∆)

∆ are very small in all four

cases Figs. 8a to 8d, with the largest being around 12% in

Fig. 8b and the rest being 2% to 5% in Figs. 8a, 8c, and

8d. That is, the optimal memory length α∗(∆) is generally

17

100 ⋯ 100

⋯ ⋯
100 ⋯ 100

100 · 𝑛஻ coded symbols

Queueing delayൌ 𝑛஻ െ 1 slots
Transmission delayൌ 𝑛஻ slots

current batch: 𝐾 · 𝑛஻ message symbols

t

𝐾 𝐾 𝐾 𝐾 𝐾 𝐾
next batch: 𝐾 · 𝑛஻ message symbols

Fig. 9: The illustration of how traditional MDS block codes

handle the sequential arrival setting.

much smaller than the decoding deadline ∆. More rigorous

analytical investigation is left for future work.

In Cases (a) and (c) for which the error probability larger

than 10−1, the pe improvement ratio of the optimal α∗(∆) is

around 10% to 50%. In Cases (b) and (d) for which the error

probability ranging from 10−1 to 10−5, the improvement ratio

is much smaller, 0.01% to 5%. It is worth noting that even for

the latter two cases, the improvement in the ultra-low latency

setting (small ∆) is still relatively significant. See the portion

of ∆ ≤ 30 in Figs. 8b and 8d.

D. Code Rate versus End-to-End Delay Tradeoff

In this subsection, we fix pe ≤ ǫ and plot the code rate

R = K
N

versus delay tradeoff, an important setup considered

in [7] that is among the most influential metric/plot in the

finite-length analysis literature. We consider a packet erasure

channel with erasure probability δ = 0.5 and assume that each

packet has 100 coded symbols.

When cast under the framework in Section II (i.e., define

the duration of a slot to be the time it takes to transmit a

packet of 100 symbols), we set N = 100 and Ct = 0 and 100
with probability 0.5 and 0.5, respectively. We assume a new

message of K symbols arrives for each slot and the RLSC

encoder immediately turns them into a packet of N = 100
coded symbols that will be transmitted in the current time

slot. For each ∆ ∈ [1, 500], we find the largest K∗(∆) such

that the pe computed by Theorem 1 is still ≤ ǫ. The code rate

is then defined as R(∆) = K∗(∆)
N

.

We now describe how traditional MDS block codes handle

this sequential arrival setting. The MDS encoder first queues

nB messages to collect a total of K · nB message symbols.

The equivalent memory length is thus nB − 1 slots. The

queueing leads to a queueing delay of nB − 1 slots since we

assume that each new message s(t) arrives in the beginning

of the slot. Those message symbols are then encoded into

100 · nB coded symbols and are sent in the next nB slots.

The transmission delay is thus nB slots. The code rate of

MDS codes is RMDS(nB) =
nB ·K
nB ·N

= K
100 , and the end-to-end

delay is ∆MDS(nB) = 2nB−1. See Fig. 9 for illustration. For

every nB value, we find the largest K that satisfies the error

probability

pe,MDS = Pr (nB ·K >
∑nB

t=1Ct) ≤ ǫ (80)

and plot the curve (∆MDS(nB), RMDS(nB)) by varying nB ∈
[1, 250]. (The zigzagging behavior in Figs. 10 and 11 is quite

End-to-End Delay (unit: slot)
0 100 200 300 400 500

C
od

e
R

at
e

0

0.1

0.2

0.3

0.4

0.5

Capacity
α = 10 RLSC
α = 20 RLSC
α = 30 RLSC
α = 40 RLSC
Optimal BC

Fig. 10: Rate-delay tradeoff with packet erasure probability

δ = 0.5 and maximal error probability ǫ = 10−3. The markers

denote the points when a larger memory size should be used

to achieve a larger code rate.

common in finite-length analysis [7, Fig. 5].) Note that (80)

is identical to [7, Theorem 38] under the assumption of q
approaches infinity.

Figs. 10 and 11 compare the rate-delay tradeoff between

RLSCs and MDS codes, where the former upper bounds the

allowable pe by 10−3 and the latter upper bounds pe by 10−6.

In Fig. 10, we plot the four different RLSC constructions with

memory length α = 10 to 40. Because we are focusing on the

small error probability regime pe ≤ 10−3, in all our com-

putation, the difference between pe of optimal α∗(∆) versus

pe of α → ∞ is negligible (improvement ratio < 0.1%).

Therefore, one can (falsely) “assume” that the larger α, the

better performance when examining the figure. For example,

we note that the curve of α = 10 in Fig. 10 never exceeds

R = 0.2. That is, with a small memory length α = 10,

any code rate K
N

> 0.2 will never achieve pe ≤ 10−3 no

matter how large we set the deadline ∆. Similarly, the green

curve for α = 20 in Fig. 10 can be as high as R = 0.36
when the deadline ∆ ≥ 109. However, to support code rate

higher than 0.36 (recall that the capacity is 1− δ = 0.5), one

must use even larger α with relatively relaxed delay constraint

∆ ≥ 111. In Fig. 10, we use a marker to describe when a

larger α starts to strictly outperform a smaller α. For example,

the green triangle marker on the curve of α = 20 at the

location of (rate, delay) = (0.12, 12) signifies that for any

rate R > 0.12, the delay performance of α = 20 would be

strictly better (shorter) than the delay performance of α = 10
though the curve of α = 10 is still rising after the location

(rate, delay) = (0.12, 12). An equivalent interpretation is that

for any application with deadline constraint ∆ > 12, the

construction with α = 20 can support higher rate than those

with α = 10 while meeting the same pe ≤ 10−3 constraint.

Similarly, there is an orange circle marker on the α = 30
curve at the location (rate, delay) = (0.32, 57). This shows

that for any rate R > 0.32, the delay performance of α = 30

18

End-to-End Delay (unit: slot)
0 100 200 300 400 500

C
od

e
R

at
e

0

0.1

0.2

0.3

0.4

0.5

Capacity
α = 20 RLSC
α = 30 RLSC
α = 40 RLSC
α = 50 RLSC
α = 60 RLSC
Optimal BC

Fig. 11: Rate-delay tradeoff with packet erasure probability

δ = 0.5 and maximal error probability ǫ = 10−6. The markers

denote the points when a larger memory size should be used

to achieve a larger code rate.

would be strictly better (shorter) than the delay performance

of α = 20 even though the curve of α = 30 is still rising at

that location. One way of using Fig. 10 for practical designs

is that if we aim to operate at rate R = 0.3, a reasonable

choice8 of memory length is α = 20 because, at that rate,

α = 20 strictly outperforms α = 10 while the benefit of

α = 30 will not be visible until (rate, delay) = (0.32, 57).
Fig. 11 is similar to Fig. 10 except for focusing on stricter

error probability pe ≤ 10−6 and we plot α = 20 to 60. If

we compare Figs. 10 and 11, the RLSC with code rate 0.3
and memory length α = 30, which was an overkill for the

pe ≤ 10−3, is now under-performing for the pe ≤ 10−6 when

compared to the α = 40.

The results of both figures show that under the same code

rate and the same pe requirements, the end-to-end delay of

RLSCs, assuming the best α is used, is less than 50% of that of

the MDS block codes in general. We list a few delay reduction

values for different code rates in TABLE I. For example, when

constrained on pe ≤ 10−3, the shortest end-to-end delay of

RLSCs with code rate 0.3 is 46 slots while the shortest end-

to-end delay of the MDS block codes with the same code rate

is 99 slots. The delay of RLSCs is thus only 46.46% of that of

MDS block codes. Similarly, when constrained on pe ≤ 10−6,

to achieve code rate R = 0.3, the shortest end-to-end delay

of RLSCs is 117 slots while the shortest end-to-end delay of

the MDS block codes is 265 slots. The delay of RLSCs is

thus 44.15% of that of MDS block codes. The only exception

is the ultra-low delay instance with code rate R = 0.1 and

ǫ = 10−3. The delay of RLSCs is 11/19 = 57.89% of that of

MDS block codes, a number that is higher than 50%, which

is likely due to the integer effects in such a short delay/block

length example.

8The absolutely optimal memory length α∗(∆) can be found by numeric
search using Theorem 1. In this figure, we only consider α being a multiple
of 10 and do not care about finding the optimal α∗(∆).

ǫ = 10−3 ǫ = 10−6

R Op. SC Op. BC SC/BC Op. SC Op. BC SC/BC

0.1 11 19 57.89% 27 57 47.37%
0.2 19 47 40.43% 50 117 42.74%
0.3 46 99 46.46% 117 265 44.15%
0.4 186 439 42.40% 475 1089 43.62%

TABLE I: The shortest end-to-end delay (unit: slot) and its

ratio given the code rate R and the maximal allowable error

probability ǫ by using optimal RLSCs and optimal MDS codes.

Even though we only report the results for the δ = 0.5
scenario, similar to the reported results in [7], this phenomenon

persists in all our numerical experiments with different δ val-

ues, including δ = 0.2, 0.4, and 0.8. In general, our numerical

evaluation implies that the encoding-on-the-fly structure of

RLSCs not only eliminates the queueing delay completely

(thus 50%) but also achieves slightly better slot error prob-

ability, which allows RLSCs to further shorten the delay by

another 2% to 10% while meeting the same error probability

requirement. One possible explanation of this small gain is

that, in RLSCs, the information spreading factor (memory

length) and the decoding delay are controlled by two separated

parameters while they are determined by a single parameter

(block length) in block coding. This flexibility may benefit to

both encoding and decoding process, and hence we can have

additional latency reduction.

VII. CONCLUSION

In this paper, we have studied random linear streaming

codes (RLSCs) over symbol erasure channels. We have pro-

posed a new information debt definition and used it to charac-

terize the error events of RLSCs in the finite memory length

and finite decoding deadline regime. A new random-walk-

based analysis has been derived, which computes the exact

slot error probability via a series of matrix computations

based on the transition matrix of the information debt. The

resulting closed-form error-probability expression is then used

to examine the intricate tradeoff between memory length

(complexity), decoding deadline (delay), code rate (through-

put), and error probability (reliability) of RLSCs. Numerical

evaluation, when paired with the seminal work on the finite-

length block code analysis, shows that under the same code

rate and the same error probability requirement, the end-to-

end delay of RLSCs is 40–48% of that of the MDS block

codes in general. This implies that switching from (random)

linear block codes to random linear streaming codes not only

eliminates the queueing delay completely (thus 50%) but also

achieves strictly better erasure recovery under the same latency

requirement. The exact error probability formula also enables

new in-depth examination of optimal memory length under

any given deadline constraint.

APPENDIX A

DETAILED COMPARISON TO THE BLOCK ERROR

PROBABILITY METRIC

Unlike the metrics pe in (6) and p
[sym]
e in (7) that are based

on (α,∆) pair, the block error probability depends on the

19

(T, α) pair, where T is the block length (unit: slot) and α
is the memory length. To rigorously define the block error

probability, for any given (T, α), consider a finite sequence

s(1) to s(T) of T slots. Each slot s(t) contains K symbols

s1(t) to sK(t) ∈ GF(2q), the same formulation as discussed

previously in Encoder in Section II. The first main difference

is that the last α slots are hardwired to zero. That is, sk(t) = 0
for all t ∈ (T − α, T] and k ∈ [1,K]. For any fixed (T, α)
value, the block error probability is defined as

p[blk]
e ,

Pr (∃t ∈ [1, T] such that s(t) is not decodable by time T) .
(81)

Block error probability is the metric used in [19], which

characterized the error exponent of the block error probability

when α increases to infinity, while assuming the block length

T satisfying

lim
α→∞

T

α
=∞, and lim

α→∞

log(T)

α
= 0. (82)

The block error probability metric was used in the early days

of error correcting code designs, of which the goal was to

use convolutional codes as a mechanism of designing block

codes and thus the focus on the block lengths and the memory

lengths (complexity). In contrast, the slot error probability in

(5) is tailored for modern streaming applications in which

we synchronize the shift-register encoding operations with the

actual symbol arrivals. The operation continues indefinitely

with no zero-padding and no “block” to be considered.

There are multiple fundamental differences between block

error and slot error probabilities. Firstly, one is a block-based

setting (similar to the frame error probability in coding-theory

terminology) and the other is a slot-based setting (similar to

the bit error probability).

Secondly, in the finite-length regime, i.e., when (T, α) are

finite, the code rate in the block-error-probability setting is
(T−α)·K
T ·N , which depends on both T and α since the last α slots

are zero-padded. In contrast, for slot/symbol-error-probability

setting, the code rate is always K
N

. With different code rates,

it is difficult to compare the two different metrics for the finite

(T, α) and finite (α,∆) regimes even if they share the same

(K,N) and the same channel statistics {Pi}.
9

Thirdly, in block error probability computation, because of

zero-padding at the end of the input sequence s(1) to s(T),
different slots may experience different levels of protection and

the block error probability, focusing on the union of the slot

error events, serves only as the upper bound of the potentially

varying slot error probabilities. For comparison, in slot/symbol

error probability computation, see (5) and (6), there is no zero-

padding and the definitions in (6) and (7) naturally focus on

the (stable) long-term slot error probability.

Finally, there is no concept of a uniform (per slot) decoding

deadline ∆ in the block-error-probability setting. In particular,

the very first slot s(1) will not be decoded until time T , thus

9Almost all existing works consider exclusively the asymptotic block error

probability. When (T, α) are large and satisfy (82), the code rate
(T−α)·K

T ·N

converges to K
N

.

ℓ െ 1 𝑇ଵ ൅ 1 ℓ𝑇ଵℓ െ 1 𝑇ଵ ൅ 𝑇ଶ
𝛼 ൅ 1 slots

𝑡𝑡 െ 𝛼
Fig. 12: The illustration of the random set T

RLSC(q)
ℓ,T1,T2

.

experiencing a delay of T −1 slots. The last slot s(T −α) will

also be decoded at time T , thus experiencing a delay of α slots.

As a result, the deadline/delay varies among s(t) for different

t. For comparison, the decoding deadline in the slot-error-

probability setting is set universally for all t, which is thus a

more direct metric for modern delay-oriented applications.

APPENDIX B

PROOF OF LEMMA 2

We prove the equality in Lemma 2 by showing

lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T] ≥ lim

T→∞
p

GMDS(T)
e,[1,T] (83)

and

lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T] ≤ lim

T→∞
p

GMDS(T)
e,[1,T] . (84)

To that end, we introduce the following lemmas.

Lemma 12. For any finite integer T1 > 0,

lim
T→∞

p
RLSC(q)
e,[1,T] ≥ p

RLSC(q)
e,[1,T1]

. (85)

Proof:

lim
T→∞

p
RLSC(q)
e,[1,T]

≥ lim
L→∞

1

L

L∑

ℓ=1

1

T1

ℓT1∑

t=(ℓ−1)T1+1

Pr
(
s(t) is not decodable by time t+∆ WHILE a genie

gives the values of s(τ) for τ ≤ (ℓ− 1)T1 as side info.
)

(86)

= lim
L→∞

1

L

L∑

ℓ=1

p
RLSC(q)
e,[1,T1]

= p
RLSC(q)
e,[1,T1]

. (87)

We have the inequality in (86) since the additional side infor-

mation given by the genie always improves the decodability

of s(t). Note that knowing the side information, the values

of s(τ) for τ ≤ (ℓ− 1)T1, breaks the temporal dependence

between those s(τ) for τ ≤ (ℓ− 1)T1 and those s(τ) for

τ ≥ (ℓ− 1)T1 + 1. Therefore, at time τ = (ℓ − 1)T1 + 1, it

is as if the encoder/decoder has been “reset” and the decoder

is facing the same environment as if at time τ = 1. Also see

the first three paragraphs of Appendix C-A for a more formal

discussion about this argument.

Because the channel is i.i.d., the equality from (86) to (87)

holds. The second equality in (87) holds because p
RLSC(q)
e,[1,T1]

is

not a function of ℓ.

20

Definition 5. For any integer T1 > T2 > 0 and any integer

ℓ > 0, define a random set

T
RLSC(q)
ℓ,T1,T2

,
{
t ∈ [(ℓ− 1)T1 + 1, (ℓ− 1)T1 + T2] such that

s(t′) is decodable by time t for all t′ ∈ [t− α, t]
}
. (88)

That is, T
RLSC(q)
ℓ,T1,T2

focuses on

[(ℓ− 1)T1 + 1, (ℓ− 1)T1 + T2], a sub-interval of the

length-T1 partition [(ℓ− 1)T1 + 1, ℓT1]. See Fig. 12 for

illustration. Then we let T
RLSC(q)
ℓ,T1,T2

contains the slots such that

that slot t and its previous α slots are all decodable at time

t. Obviously T
RLSC(q)
ℓ,T1,T2

is a random set that depends on the

realization of the RLSCs (which affects the level of protection

experienced by each slot) and the realization of the erasure

pattern (which affects the level of noise each slot faces).

Lemma 13. Based on Definition 5, we have

1

T1

ℓT1∑

t=(ℓ−1)T1+1

Pr (s(t) is not decodable by time t+∆)

≤
T2
T1

+ max
τ∈[1,T2]

p
RLSC(q)
e,[1,T1−τ]

+ Pr
(
T

RLSC(q)
ℓ,T1,T2

= ∅
)
. (89)

The intuition of (89) is as follows. Whenever T
RLSC(q)
ℓ,T1,T2

6= ∅,
the RLSCs can decode s(t− α), · · · , s(t) by time t for some

t ∈ [(ℓ− 1)T1 + 1, (ℓ− 1)T1 + T2]. Similar to the previous

genie-based discussion, the temporal dependence between

those s(τ) for τ ≤ t and those s(τ) for τ ≥ t + 1 is then

broken. Therefore, at time τ = t + 1, one can treat that the

encoder/decoder has been “reset” and the decoder is facing

the same environment as if at time τ = 1. However, because

we do not know how large/small such t ∈ T
RLSC(q)
ℓ,T1,T2

would

be, we take the maximum over τ ∈ [1, T2] when evaluating

the error probability in the second term of (89). The first

and the third terms of (89) are based on union bounds that

consider all other scenarios. Specifically, the first term T2/T1
in (89) assumes all s(t) are not decodable by time t+∆ for

t ∈ [(ℓ− 1)T1 + 1, (ℓ− 1)T1 + T2]. The third term counts

the probability that T
RLSC(q)
ℓ,T1,T2

is an empty set, i.e., no such s(t)
exists that breaks the temporal dependence of RLSC decoding.

A detailed and more rigorous proof is as follows.

Proof:

1

T1

ℓT1∑

t=(ℓ−1)T1+1

Pr (s(t) is not decodable by time t+∆)

≤
1

T1

ℓT1∑

t=(ℓ−1)T1+1

(T2∑

τ=1

Pr
(
inf T

RLSC(q)
ℓ,T1,T2

= (ℓ− 1)T1 + τ
)

· Pr
(
s(t) is not decodable by time t+∆

∣∣∣ inf T RLSC(q)
ℓ,T1,T2

= (ℓ− 1)T1 + τ
)
+ Pr

(
T

RLSC(q)
ℓ,T1,T2

= ∅
))

(90)

≤ Pr
(
T

RLSC(q)
ℓ,T1,T2

= ∅
)
+
T2
T1

+

T2∑

τ=1

Pr
(
inf T

RLSC(q)
ℓ,T1,T2

= (ℓ− 1)T1 + τ
)
·

(

1

T1

ℓ·T1∑

t=(ℓ−1)T1+T2+1

Pr
(
s(t) is not decodable by time t+∆

∣∣∣ inf T RLSC(q)
ℓ,T1,T2

= (ℓ− 1)T1 + τ
))

(91)

where (90) follows from the Bayes rule and the union bound,

and (91) upper bounds the terms corresponding to t = (ℓ −
1)T1 + 1 to (ℓ − 1)T1 + T2 by one. We now further upper

bound the terms corresponding to t = (ℓ − 1)T1 + T2 + 1 to

ℓT1. For any arbitrarily given τ ∈ [1, T2], we have

1

T1

ℓT1∑

t=(ℓ−1)T1+τ+1

Pr
(
s(t) is not decodable by time t+∆

∣∣∣ inf T RLSC(q)
ℓ,T1,T2

= (ℓ− 1)T1 + τ
)

(92)

=
1

T1

(
(T1 − τ) p

RLSC(q)
e,[1,T1−τ]

)
≤ p

RLSC(q)
e,[1,T1−τ]

. (93)

The equality in (93) can be obtained as follows. The (in-

dicator of the) event {inf T
RLSC(q)
ℓ,T1,T2

= (ℓ− 1)T1 + τ} is a

stopping time. Since the encoder/decoder has been “reset”

at time (ℓ− 1)T1 + τ and since both the RLSC construc-

tion and the erasure channel are memoryless, by the strong

Markov property, the (random) decoding behavior of time

interval [(ℓ− 1)T1 + τ + 1, ℓT1] is identical to the time in-

terval [1, T1 − τ]. The summation of the conditional error

probabilities in (92) is thus (T1− τ)p
RLSC(q)
e,[1,T1−τ]

, which implies

the equality in (93).

We then note that (i) the left-hand side of (93) cov-

ers a wider range [(ℓ− 1)T1 + τ + 1, ℓT1] than the range

[(ℓ− 1)T1 + T2 + 1, ℓT1] used in (91), and (ii) for any ran-

dom variable X and any non-negative function f(x), we

always have
∑

Pr(X = x)f(x) ≤ maxx f(x). Jointly, these

two facts plus (91) and (93) imply (89).

Lemma 14. There exists a function fUB(T2, q) such that

Pr
(
T

RLSC(q)
ℓ,T1,T2

= ∅
)
≤ fUB(T2, q) for all ℓ, T1 (94)

21

and

lim
T2→∞

lim
q→∞

fUB(T2, q) = 0. (95)

Proof: For any integer T1 > T2 > 0 and any integer ℓ > 0,

recall that G((ℓ−1)T1+T2) is the cumulative generator matrix at

time (ℓ− 1)T1+T2. Define a submatrix G
RLSC(q)

ℓ,T1,T2
as follows.

G
RLSC(q)

ℓ,T1,T2
: the submatrix induced by rows corresponding

to the coded symbols during time interval

[(ℓ− 1)T1 + 1, (ℓ− 1)T1 + T2] (96)

By definition, G
RLSC(q)

ℓ,T1,T2
is a fixed-size matrix but its entries

are randomly chosen according to RLSCs. We now define two

random events:

A
RLSC(q)
ℓ,T1,T2

=
{
G

RLSC(q)

ℓ,T1,T2
satisfies GMDS

}
(97)

Bℓ,T1,T2
=
{
∃t̃ ∈ [(ℓ− 1)T1 + 1, (ℓ− 1)T1 + T2] such that

t̃∑

t′=(ℓ−1)T1+1

Ct′ ≥
(
t̃− ((ℓ− 1)T1) + α

)
K
}

(98)

The main idea is that A
RLSC(q)
ℓ,T1,T2

is a random event of the

RLSC construction being “good”, i.e., satisfying GMDS; and

Bℓ,T1,T2
is a random event about the channel realization being

“good”, i.e., there exists an interval [(ℓ − 1)T1 + 1, t̃] such

that the total number of observations Ct exceeds K times the

sum of the number of slots t̃− (ℓ− 1)T1 plus additional α.

We now argue that

A
RLSC(q)
ℓ,T1,T2

∩ Bℓ,T1,T2
⊆
{
T

RLSC(q)
ℓ,T1,T2

6= ∅
}
. (99)

The intuition is straightforward. That is, when both the code

structure and the channel realization are good, one can decode

all s(τ ′) for τ ′ ∈ [t̃ − α, t̃] where t̃ is the t̃ satisfying

Bℓ,T1,T2
. The reason is that the good code structure plus the

good channel realization guarantees that the corresponding

generator matrix being considered is of full rank. Therefore,

such t̃ ∈ T
RLSC(q)
ℓ,T1,T2

. A more rigorous argument can be derived

by using the terminologies described in the proofs of and right

after Lemma 16 in Appendix C-A.

To prove Lemma 14, we define

fUB(T2, q) , Pr
(
A

RLSC(q)
ℓ,T1,T2

)
+ Pr

(
Bℓ,T1,T2

)
(100)

where A
RLSC(q)
ℓ,T1,T2

and Bℓ,T1,T2
are the complements of A

RLSC(q)
ℓ,T1,T2

and Bℓ,T1,T2
, respectively. Because the construction of RLSCs

is stationary, Pr
(
A

RLSC(q)
ℓ,T1,T2

)
is a function of q and T2, but not

a function of ℓ and T1. Similarly, assuming the channel is

i.i.d., Pr
(
Bℓ,T1,T2

)
is a function of T2, but not a function of

ℓ and T1. That is why (100) is only a function of (T2, q), not

a function of (ℓ, T1).
Ineq. (94) is then a simple result of (99) and the union

bound. To prove (95), we notice that

lim
q→∞

Pr
(
A

RLSC(q)
ℓ,T1,T2

)
= 0 (101)

for any fixed T2 because of Lemma 1. Therefore, proving (95)

is equivalent to proving

lim
T2→∞

Pr
(
Bℓ,T1,T2

)
= 0. (102)

To that end, define a random walk

{
W ((ℓ− 1)T1) , αK

W (t) = (W (t− 1)− Ct +K)
+
, ∀t > (ℓ− 1)T1.

(103)

One can easily verify by definitions (98) and (103) that

Bℓ,T1,T2
= {W (t) = 0, for some t ≤ (ℓ− 1)T1 + T2}.

Recall that we are interested in the within-capacity regime,

i.e., 0 < K < E {Ct}. Therefore, W (t) has a negative drift

and will return to 0 within a finite number of slots almost

surely. This implies

lim
T2→∞

Pr (Bℓ,T1,T2
)

= lim
T2→∞

Pr
(
inf{t ≥ (ℓ− 1)T1 + 1 :W (t) = 0}

≤ (ℓ− 1)T1 + T2
)

(104)

= 1. (105)

As a result, we have (102), which completes the proof.

With Lemmas 12 to 14, we are ready to prove Lemma 2.

We first prove (83) as follows.

Proof: For any arbitrary but fixed T1, we have

lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T] ≥ lim

q→∞
p

RLSC(q)
e,[1,T1]

= p
GMDS(T1)
e,[1,T1]

(106)

where the inequality is by Lemma 12 and the equality is by

Lemma 1. By letting T1 →∞, we have (83).

Next, we prove (84).

Proof: For any arbitrary but fixed T1 > T2, we have

lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T]

= lim
q→∞

lim
L→∞

1

L

L∑

ℓ=1

1

T1

ℓT1∑

t=(ℓ−1)T1+1

Pr (s(t) is not decodable by time t+∆) (107)

≤ lim
q→∞

lim
L→∞

1

L

L∑

ℓ=1

(
T2
T1

+ max
τ∈[1,T2]

p
RLSC(q)
e,[1,T1−τ]

+ fUB(T2, q)

)

(108)

=
T2
T1

+ max
τ∈[1,T2]

p
GMDS(T1−τ)
e,[1,T1−τ]

+ lim
q→∞

fUB(T2, q) (109)

where (107) follows from partitioning the average and sum-

mation into sub-intervals of length T1; (108) follows from

applying Lemmas 13 and 14 to each of the sub-interval; (109)

follows from first noting that the expression of (108) does not

depend on ℓ so we can first remove the averaging operation

over ℓ and then we take the limit of q → ∞, which, when

combined with Lemma 1, gives us (109).

22

𝒞1 𝒞2 𝒞3
s(1) s(2) s(3) s(4) s(5) s(6)

ℛ1
C
1

× × ×× × ×
C
2

× × × × × ×× × × × × ×× × × × × ×
C
3

× × × × × ×× × × × × ×× × × × × ×× × × × × ×

ℛ2
C
4

× × × × × ×× × × × × ×
C
5

× × × × × ×× × × × × ×× × × × × ×
C
6

× × × × × ×× × × × × ×× × × × × ×× × × × × ×× × × × × ×
Fig. 13: An example of H(ti◦+1) with N = 8, K = 3, and

α = 1. The channel realizations are (C1, C2, · · · , C6) =
(2, 3, 4, 2, 3, 5); and the corresponding Id(t) in (17) are

(1, 1, 0, 1, 1, 0). The cross mark “×” shows the non-zero

entries. In this case, ti◦ = 3 and ti◦+1 = 6.

Since (109) holds for all finite T1 > T2, for any fixed finite

T2 we have

lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T]

≤ lim
T1→∞

(
T2
T1

+ max
τ∈[1,T2]

p
GMDS(T1−τ)
e,[1,T1−τ]

+ lim
q→∞

fUB(T2, q)

)

(110)

= lim
T1→∞

p
GMDS(T1)
e,[1,T1]

+ lim
q→∞

fUB(T2, q) (111)

where (111) follows from (i) the limit of p
GMDS(T)
e,[1,T] exists; and

(ii) limq→∞ fUB(T2, q) does not depend on the value of T1.

Finally, we note that the limit limT1→∞ p
GMDS(T1)
e,[1,T1]

does not

depend on the T2 value. Further taking the limit of T2 →∞,

(111) becomes

lim
q→∞

lim
T→∞

p
RLSC(q)
e,[1,T]

≤ lim
T1→∞

p
GMDS(T1)
e,[1,T1]

+ lim
T2→∞

lim
q→∞

fUB(T2, q). (112)

By Lemma 14, we have proved (84).

APPENDIX C

PROOFS OF ERROR EVENTS

A. Proof of Proposition 1

We prove Proposition 1 by induction. Proposition 1 holds

for i0 = −1 since we only start sending s(t) for t ≥ 1 and

any s(t) with t ≤ ti0+1 = 0 is automatically considered to be

decodable.

Suppose Proposition 1 holds for all i0 < i◦, where i◦ is a

non-negative integer. We now consider i0 = i◦ and would

like to decode the slots {s(t) : t ∈ (ti◦ , ti◦+1]} at time

ti◦+1. Considering the cumulative receiver matrix H(ti◦+1),

we divide the rows of H(ti◦+1) into two groups

R1 : rows corresponding to {y(t) : t ∈ (0, ti◦]} (113)

R2 : rows corresponding to {y(t) : t ∈ (ti◦ , ti◦+1]} (114)

and divide the columns of H(ti◦+1) into three groups

C1 : columns corresponding to {s(t) : t ∈ (0, ti◦ − α]}
(115)

C2 : columns corresponding to {s(t) : t ∈ (ti◦ − α, ti◦]}
(116)

C3 : columns corresponding to {s(t) : t ∈ (ti◦ , ti◦+1]}.
(117)

See Fig. 13 for illustration. Our decodability/achievability

scheme uses only the R2 rows and ignore the R1 rows. Since

the memory length is α, the intersection of C1 columns and

R2 rows must be all-zero.

Per our induction assumption, all symbols corresponding

to C2 (or use the term “C2-symbols” as shorthand) can be

successfully decoded using the R1 rows. We can thus remove

the impact of C2-symbols from the equations corresponding

to the R2 rows. In the end, we need to focus only on the

intersection of the C3 columns and R2 rows. See Fig. 13. It is

as if the timeline has been reset, with ti◦ being shifted back

to 0. As a result, to prove that Proposition 1 holds for general

i0, we only need to prove that Proposition 1 holds for i0 = 0.

We now consider the cumulative receiver matrix H(t1),

where t1 is the first time Id(t) hits back 0 after time 0. For

ease of exposition, we denote H(t1) by A. We then introduce

a subroutine called Forward Diagonal Labeling (FDL), which

is described by the following pseudocode.

Procedure 1 Forward Diagonal Labeling (FDL)

1: Input: A matrix A with the number of rows and columns

denoted by rows(A) and cols(A), respectively. We use

Ax,y to denote the (x, y)-th entry of A.

2: Initialization: i = j = 0, SL = ∅
3: while i < rows(A) do

4: i← i+ 1
5: if {j′ : j < j′ ≤ cols(A) and Ai,j′ 6= 0} 6= ∅ then

6: j ← min{j′ : j < j′ ≤ cols(A) and Ai,j′ 6= 0}
7: SL = SL ∪ {(i, j)}.
8: else

9: break

10: end if

11: end while

12: Output: SL

See Fig. 14 for illustration. In Fig. 14, we consider an

example of N = 8, K = 3, and α = 1. The first 7 channel

realizations are (C1, C2, · · · , C7) = (1, 2, 1, 0, 3, 2, 8). The

corresponding (Id(1), Id(2), · · · , Id(7)) are (2, 3, 4, 4, 3, 4, 0)
and the intermediate values Îd(t) in (16) are (2, 3, 5, 6, 3, 4, 0).
The first 0-hitting time is t1 = 7. Since the ceiling ζ =

23

× × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

C
1

C
2

C
3

C
5

C
6

C
7

𝐀 ≜ Hሺ௧భሻ
s(1) s(2) s(3) s(6)s(5)s(4) s(7)

Fig. 14: An example of A , H(t1) with N = 8,

K = 3, and α = 1. The channel realizations are

(C1, C2, · · · , C7) = (1, 2, 1, 0, 3, 2, 8); the corresponding

Id(t) in (17) are (2, 3, 4, 4, 3, 4, 0); the corresponding Îd(t)
in (16) are (2, 3, 5, 6, 3, 4, 0); the 0-hitting time is t1 = 7; and

the ζ-hitting time are τ1 = 3, τ2 = 4 and τ3 = 6. The cross

mark “×” shows the non-zero entries. The blue circles denote

the output set SL of the FDL subroutine.

αK+1 = 4, there are three ζ-hitting times τ1 = 3, τ2 = 4 and

τ3 = 6 in the interval (t0, t1). The blue circles denote the SL
set, the output of FDL. The intuition of the FDL subroutine

is to label “the non-zero diagonal elements” of A. Whenever

the diagonal labeling of FDL hits a zero-entry, the subroutine

shifts the diagonal line to the right and continues such labeling.

The labeling stops once it hits either the row limit of the matrix

(Line 3), or when there is no non-zero entries on the right of

the next line of the latest element (i, j) of SL (Line 8). That

is, even if we allow for shifting the diagonal line further to

the right, we still cannot proceed any further.

Using the FDL set SL, we can define the following func-

tions. Recall that A , H(t1) has exactly cols(A) = t1K
columns, which are labeled as 1 to t1K, respectively, and

has exactly rows(A) = rows
(
H(t1)

)
=
∑t1
t′=1 |y(t

′)| =∑t1
t′=1 Ct′ rows, which are labeled as 1 to

∑t1
t′=1 Ct′ , respec-

tively. Define jFDL(0) , 0. For any i ∈ [1, rows(A)], define

jFDL(i) ,

{
j if (i, j) ∈ SL,

∞ if no such j satisfying (i, j) ∈ SL.
(118)

Note that because of the construction of FDL, we either have

a unique j such that (i, j) ∈ SL or no such j. As a result,

jFDL(i) is well-defined and is essentially a mapping from i to

j based on SL. Also, for any i, define the rightmost non-zero

element jnz.max(i) as follows

jnz.max(i) , max{j ∈ [1, t1K] : Ai,j 6= 0} (119)

where we use the special convention max ∅ = ∞. For

any arbitrary row index i, according to the structure of the

cumulative generator matrix in Fig. 2, we have

jnz.max(i) = tK (120)

where t is the unique value that satisfies

t−1∑

t′=1

Ct′ < i ≤
t∑

t′=1

Ct′ . (121)

The intuition of (120) and (121) is straightforward. For the row

corresponding to y(t), see (121), the largest non-zero entry

must be at the (tK)-th because the latest source symbol vector

that can participate in y(t) is s(t). We thus have (120). In both

(118) and (119), we use∞ to represent the non-existence case.

Finally, define the very last row of those entries in SL by

iend , max{i : (i, j) ∈ SL}. (122)

With the above definitions of SL, jFDL(·), jnz.max(·), and iend,

we can now establish the relationship between Id(t) and the

structure of the cumulative receiver matrix A = H(t1).

Lemma 15. Consider any arbitrarily given t ∈ [1, t1), the

intermediate step of the information debt Îd(t) defined in (16)

satisfies

Îd(t) = tK −max

(
(t− α− 1)K, jFDL(

t∑

t′=1

Ct′)

)
> 0.

(123)

Furthermore, the following (in)equalities always hold:

t1−1∑

t′=1

Ct′ < iend ≤
t1∑

t′=1

Ct′ ; (124)

jFDL(iend) = jnz.max(iend) = t1K <∞; (125)

jFDL(i) < jnz.max(i) ≤ t1K, ∀i ∈ [1, iend). (126)

The proof of this lemma is a straightforward exercise of

mathematical induction but the detailed steps are rather tech-

nical. We thus relegate the proof to Appendix D. This lemma is

the most critical part of the proofs of Propositions 1 and 2. In

the sequel, we further elaborate the physical meanings behind

this lemma.

Ineqs. (124) and (125) form a pair and characterize how the

FDL subroutine ends when applied to the matrix A = H(t1).

Specifically, (124) implies that when the FDL subroutine ends,

the last row (the iend-th row) must correspond to y(t1), the

rows received during the last time instant t1. Hence, by (120)

and (121), we immediately have jnz.max(iend) = t1K. The

equality jFDL(iend) = jnz.max(iend) in (125) further implies that

the FDL subroutine ends because the corresponding jFDL(i)
value finally hits the last column. In our example of Fig. 14, the

very last blue circle indeed corresponds to a row of y(7), since

t1 = 7, and the last column (the t1K = 21-th column). This

phenomenon is characterized rigorously by (124) and (125).

Ineq. (126) implies that before the last row iend, the FDL

subroutine will never hit the “max-boundary” of the non-zero

entries jnz.max. Such a phenomenon can be observed in Fig. 14,

in which there is always at least one cross mark on the right

of each blue circle, except for the very last blue circle that

coincides with the very last cross mark.

24

The physical meaning of (123) is more subtle. For any t ∈
[1, t1), we discuss the case when Ct > 0 and omit the corner

case discussion of Ct = 0. Suppose Ct > 0 for an arbitrarily

given t. Eq. (123) can be reduced to

Îd(t) = tK − jFDL(
t∑

t′=1

Ct′) (127)

= jnz.max(

t∑

t′=1

Ct′)− jFDL(

t∑

t′=1

Ct′) > 0. (128)

The reason is that with Ct > 0, the rows with their row indices

inside (
∑t−1
t′=1 Ct′ ,

∑t

t′=1 Ct′] correspond to the observation

y(t). Since the y(t) is generated by s(t− α) to s(t), see (3),

the very first non-zero column of the rows of y(t) must be the

((t − α − 1)K + 1)-th column. Since jFDL(·) always outputs

a non-zero entry, we thus have

jFDL(

t∑

t′=1

Ct′) ≥ (t− α− 1)K + 1. (129)

Eq. (123) thus becomes (127). The next equality (128) then

follows from (120) and (121). The new (128) (focusing

exclusively on the case of Ct > 0) shows that when focusing

on the last row of each y(t), the value of Îd(t) is exactly

the distance between the max-boundary and location of the

FDL entry jFDL(·). Such a phenomenon can be observed in

Fig. 14. For example, consider the time slot t = 5. Since

(C1, C2, C3, C4, C5) = (1, 2, 1, 0, 3), the 7-th row corresponds

to the last observed symbol in time 5. In this example, we have

jFDL(7) = 12 and jnz.max(7) = 15. Their difference is indeed

Îd(5) = 3 as predicted by (128).

Remark 7: The condition “Ct > 0” is to ensure that the

received symbols y(t) are not empty at the time of interest t.
As for the case of Ct = 0, i.e., no received symbol y(t) at time

t, the corresponding rows become “hidden/invisible” from the

cumulative receiver matrix H(t). See t = 4 in Fig. 14. That is

why we need an additional max operation in (123).

An immediate result of Lemma 15 is

Lemma 16. If Id(t) does not hit ζ during the interval (0, t1],
i.e., {j : τj ∈ (0, t1]} = ∅, the FDL set SL labels an

uninterrupted diagonal line connecting the two locations (1, 1)
and (t1K, t1K). That is,

SL = (1, 1) 99K (t1K, t1K)

, {(1, 1), (2, 2), · · · , (t1K, t1K)}. (130)

Otherwise, let τj∗ denote the last ζ-hitting time during the

interval (0, t1]. The following uninterrupted diagonal line

connecting (istart, jstart) and (iend, jend) is part of the FDL

output set SL, where

(istart, jstart) 99K (iend, jend)

, {(istart, jstart), (istart + 1, jstart + 1), · · · , (iend, jend)} (131)

and

istart =
∑τj∗

t′=1 Ct′ + 1;

jstart = (τj∗ − α)K + 1;

jend = t1K;

iend = max{i : (i, j) ∈ SL} = istart + jend − jstart. (132)

Note that the term iend was first defined in (122), which

is the last row index in SL. The second half of Lemma 16

thus describes the last uninterrupted diagonal line segment in

SL, for which the starting point must be the first observation

(row) after time τj∗ , see istart, and its first non-zero element, see

jstart, and the ending point must be the very last point in SL.

The phenomenon described in Lemma 16 can be observed in

Fig. 14. Specifically, in the example of Fig. 14, we have τj∗ =
τ3 = 6. Lemma 16 predicts the last uninterrupted diagonal line

segment to be the one connecting (istart, jstart) = (10, 16) and

(iend, jend) = (15, 21), which is consistent with the observation

in Fig. 14. We leave its proof to Appendix E.

The rest of the decodability proof is straightforward. If

{j : τj ∈ (0, t1]} is empty, then there are exactly t1K rows

and t1K columns in the diagonal line defined in (130). We

consider the submatrix of H(t1) induced by the rows of 1
to t1K and denote it by B. By GMDS, B is invertible and

we can decode all symbols in {s(t) : t ∈ (0, t1]} using the

observations corresponding to rows 1 to t1K.

Similarly, if {j : τj ∈ (0, t1]} is not empty, by the

expressions of jstart and jend in (132) there are exactly (t1 −
(τj∗ − α))K rows and (t1 − (τj∗ − α))K columns in the

diagonal line defined in (132). We consider the submatrix of

H(t1) induced by the rows of istart to iend defined in (132) and

denote it by B. Because the memory length is α, the jstart in

(132) is the first non-zero entry for the istart-th row in H(t1).

Therefore, all the columns of B that is strictly before jstart

must be all-zero. As a result, the last uninterrupted diagonal

line in (132) spans across all non-zero columns of B. By

GMDS, we can decode all symbols {s(t) : t ∈ (τj∗ − α, t1]}
(those symbols corresponding to all the non-zero columns in

B) using the observations corresponding to rows
∑τj∗

t′=1 Ct′+1
to
∑τj∗

t′=1 Ct′ + (t1 − (τj∗ − α))K (all the rows in B). The

proof of Proposition 1 is complete. In our running example

of Fig. 14, we can decode s(6) and s(7), i.e., columns 16 to

21, using rows 10 to 15 since there exists an uninterrupted

diagonal line connecting locations (10, 16) to (15, 21).

B. Proof of Proposition 2

The proof of Proposition 2 is much more involved since

we have to prove that some s(t) is not decodable no matter

how many observations y(t) (and thus how many rows) we

have. To that end, we first perform the following set of lossless

simplifications.

1) A Series of Lossless Simplifications:

Lemma 17. Proposition 2 holds for general i0 ≥ 0 if and

only if Proposition 2 holds for i0 = 0.

Proof: The proof is similar to the arguments used in the

beginning of Appendix C-A. For any given i0 > 0, we first

25

rename i0 as i◦ so that it is compatible to the discussion in

Appendix C-A. Suppose an arbitrarily given decoder would

like to start decoding those s(t) in (ti◦ , ti◦+1] by some large

time T satisfying T ≥ ti◦+1. We again divide the rows into

two groups R1 and R2, where R1 is defined as (113) but we

lightly modified R2 in (114) to the following definition:

R2 : rows corresponding to {y(t) : t ∈ (ti◦ , T]}. (133)

That is, we expand the R2 set since we are trying to decode

at time T instead of at time ti◦+1. Similarly, we divide the

columns into three groups C1, C2, and C3, where C1 and C2
are defined as (115) and (116), respectively, but we lightly

modified C3 in (117) to the following definition:

C3 : columns corresponding to {s(t) : t ∈ (ti◦ , T]} (134)

where we again expand the column set C3 because of the focus

on time T . See Fig. 13 for illustration.

Having proved that Proposition 1 holds for general i◦ ≥ 0,

all the vectors in the time slots (ti◦−α, ti◦] must be decodable

by time ti◦ . As a result, when decoding any t ∈ (ti◦ , ti◦+1]
at time T , we can first decode those symbols in {s(t′) : t′ ∈
(ti◦−α, ti◦]}. We then note that removing the impact of those

symbols is equivalent to removing the corresponding columns

in C2. We now analyze the intersection of (R1,R2) rows and

(C1, C3) columns.

Since the memory length is α < ∞, the intersection

between the R2 rows and C1 columns must be all-zero. Also,

since we consider causal systems, the intersection between the

R1 rows and the C3 columns must be all-zero. As a result, the

only intersection is between R1 and C1 and between R2 and

C3. After removing the C2 columns, the cumulative receiver

matrix H(T) is thus separated into a block diagonal form
[

H1 0

0 H2

]
(135)

where H1 (resp. H2) is the intersection of (R1, C1) (resp.

(R2, C3)). Therefore, the decoder can decode s(t), t ∈
(ti◦ , ti◦+1] using both R1 and R2 if and only if it can decode

those s(t) using exclusively theR2 rows. However, if we focus

only on decoding using R2 rows, it is as if the timeline has

been reset, with ti◦ being shifted back to 0. As a result, to

prove Proposition 2 holds for general i◦, we only need to

prove Proposition 2 holds for i◦ = 0.

Focusing on i0 = 0, we now prove

Lemma 18. For any T ≥ t1, any t ∈ (0, t1 − α] and k ∈
[1,K], symbol sk(t) is decodable by time T if and only if

sk(t) is decodable by t1.

Proof: For any T ≥ t1, by Proposition 1 the vectors

{s(t′) : t′ ∈ (t1 − α, t1]} are decodable by time t1 and

are thus decodable by time T . Using the decoded vectors

{s(t′) : t′ ∈ (t1 − α, t1]} as side information, we can

cancel their impact/interference in the observations, which

effectively removes the corresponding columns from H(T).

Since the memory length is α <∞, the intersection between

the rows corresponding to the observations after time t1,

{y(t′) : t′ ∈ (t1, T]}, and the columns corresponding to

{s(t′) : t′ ∈ (0, t1 − α]} is all-zero. Besides, since the system

is causal, the intersection between the rows corresponding to

the observations until time t1, {y(t′) : t′ ∈ (0, t1]}, and

the columns corresponding to {s(t′) : t′ ∈ (t1, T]} is all-

zero. As a result, after removing the columns corresponding

to {s(t′) : t′ ∈ (t1 − α, t1]}, the cumulative receiver matrix

H(T) is separated into a block diagonal form as in (135).

Therefore, the decoder can decode sk(t), t ∈ (0, t1−α] using

y(t′), t′ ∈ [1, T] if and only if it can decode sk(t) using only

the rows corresponding to {y(t′) : t′ ∈ [1, t1]}.
Reusing the definitions of A = H(t1) and iend in the proof

of Proposition 1, we can further strengthen Lemma 18 to

Lemma 19. The location vector of sk(t) is in A = H(t1)

if and only if the location vector sk(t) is in the row space

of the first iend rows of A. That is, we can discard the last

(
∑t1
t′=1 Ct′ − iend) rows when trying to decode sk(t) from

H(t1).

Proof: We notice that the decodability proof in the end of

Appendix C-A shows that we can use the first iend rows of

matrix A = H(t1) to decode all the symbols sk(t) satisfying

k ∈ [1,K] and t ∈ (t1 − α, t1]. We then observe that all the

non-zero entries of the last (
∑t1
t′=1 Ct′−iend) rows correspond

to the same set of (already decodable) symbols sk(t), t ∈ (t1−
α, t1], k ∈ [1,K]. Therefore, the last (

∑t1
t′=1 Ct′ − iend) rows

do not provide any additional information when compared to

the first iend rows. The proof of this lemma is complete.

The main proof of Proposition 2 will be built upon the

lossless simplification Lemmas 17 to 19.

2) Main Proof of Proposition 2: We note that Proposition 2

focuses exclusively on the case that there exists τj ∈ (0, t1].
In this case, we first apply the Forward Diagonal Labeling

(FDL) subroutine in Appendix C-A to obtain the label set SL
and the last row index iend value. Define Aiend

as the submatrix

induced by the first iend rows of A = H(t1), i.e., removing the

last (
∑t1
t′=1 Ct′ − iend) rows of A. See Fig. 15 for illustration.

We also construct another set S̃L from the FDL output set SL
as follows.

S̃L =

{
(i, j + 1) : i ≤

τj∗∑

t′=1

Ct′ , and (i, j) ∈ SL

}

∪

{
(i, j) : i >

τj∗∑

t′=1

Ct′ , and (i, j) ∈ SL

}
(136)

That is, (i, j + 1) is added to the new set if (i, j) ∈ SL and

i ≤
∑τj∗

t′=1 Ct′ while the same (i, j) is inserted in S̃L if (i, j) ∈
SL and i >

∑τj∗

t′=1 Ct′ . In our example of Fig. 15, we use the

green circles to represent the new set S̃L. We then have

Lemma 20. Ai,j 6= 0 for all (i, j) ∈ S̃L. Furthermore, all

elements in S̃L have distinct row indices and have distinct

column indices.

Per the construction of the FDL routine, Ai,j 6= 0 for all

(i, j) ∈ SL and each element of SL has distinct row and

column indices. Note that S̃L is derived from SL by shifting

the upper half of SL by one location to the right, see Fig. 15.

Lemma 20 then shows that the new set S̃L (similar to the

original set SL) still contains diagonal elements (no two j1

26

× × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

× × × × × ×

C
1

C
2

C
3

C
5

C
6

C
7

𝐀 ≜ Hሺ௧భሻ𝐀𝒊𝐞𝐧𝐝 s(1) s(2) s(3) s(6)s(5)s(4) s(7)

Fig. 15: The same example of Fig. 14. The red box indicates

the submatrix Aiend
being considered; the blue circles denote

the output set SL of the FDL subroutine; and the green circles

represent the new set S̃L.

and j2 are identical) and all those diagonal elements are non-

zero.

The proof of Lemma 20 is technical and is relegated to

Appendix F. The intuition is, however, quite straightforward

and is explained as follows. Eq. (126) shows that jFDL(i) <
jnz.max(i). That is, there is at least one more non-zero entry

on the immediate right of (i, jFDL(i)) ∈ SL. As a result, the

shifted version of (i, jFDL(i) + 1) ∈ S̃L will still be non-zero

and form distinct diagonal elements as well.

We are now ready to prove the following lemma, which,

when combined with Lemmas 17 to 20, leads to Proposition 2.

Lemma 21. Suppose there exists a τj ∈ (0, t1). Define

τj∗ as the largest τj within the interval (0, t1). For any

t ∈ (0, τj∗ − α] and any k ∈ [1,K], the location vector of

sk(t) is not in the row space of Aiend
.

Proof: For any fixed t ∈ (0, τj∗ − α] ⊂ (0, t1) and any k ∈
[1,K], instead of directly showing that the location vector of

sk(t) is not in the row space of Aiend
, we show that for any iend-

dimensional observation vector yiend
, the following equation

Aiend
st11 = yiend

(137)

has two root vectors ŝt11 and s̃t11 satisfying ŝk(t) 6= s̃k(t),
where ŝk(t) (resp. s̃k(t)) is the value corresponding to the

symbol of interest sk(t) in the vector ŝt11 (resp. s̃t11). In other

words, the sk(t) value cannot be uniquely determined by (137)

and the proof of Lemma 21 is complete.

To that end, define j◦ = (t− 1)K + k as the column index

of sk(t) being considered. We can then isolate the impact of

the j◦-th column and write

(Aiend
\aj◦) · (s

t1
1 \sk(t)) = yiend

− sk(t) · aj◦ (138)

where (Aiend
\aj◦) is the matrix after removing the j◦-th

column from Aiend
and (st11 \sk(t)) is the cumulative vector

after removing the entry corresponding to sk(t). In the sequel,

we prove that (Aiend
\aj◦) is always of full row rank regardless

how we choose t ∈ (0, τj∗ − α] and k ∈ [1,K], which implies

that for any arbitrary sk(t) value satisfying t ∈ (0, τj∗ − α]
and k ∈ [1,K] we can always find a companying (st11 \sk(t))
that satisfies (138), and hence sk(t) is not decodable.

Consider two cases that depend on the value of j◦ = (t −
1)K+k. Case 1: Suppose there is no i such that (i, j◦) ∈ SL.

In this case, it is straightforward that (Aiend
\aj◦) is of full row

rank since all the (i, j) entries of SL are still in the matrix

(Aiend
\aj◦) and the matrix is of full row rank due to GMDS.

Case 2: Suppose there exists an i◦ such that (i◦, j◦) ∈ SL.

We now argue that the corresponding i◦ must satisfy i◦ ≤∑τj∗

t′=1 Ct′ . Suppose not, the i◦-th row must corresponding to

an observation y(t′) satisfying t′ > τj∗ . Because we only

have finite memory length α, the j◦-th position, which is non-

zero per our construction, must satisfy j◦ ≥ (τj∗ − α)K + 1.

However, this contradicts the construction j◦ = (t−1)K+k ≤
(τj∗−α)K since we focus on t ∈ (0, τj∗ − α] and k ∈ [1,K].
By contradiction, we must have i◦ ≤

∑τj∗

t′=1 Ct′ .
We now “stitch” together the original set SL and the shifted

set S̃L in (136) in the following way. Specifically, we define

Ŝ = {(i, j) ∈ SL and j < j◦} ∪
{
(i, j) ∈ S̃L and j > j◦

}
.

By this definition, we quickly have (i) the set Ŝ does not

contain any entry that is in the j◦-th column of Aiend
; (ii) all

the entries of Aiend
that correspond to Ŝ are non-zero since all

the entries of Aiend
corresponding to SL (resp. S̃L) are non-

zero; and (iii) all the row and column indices of Ŝ are unique

due to Lemma 20.

Finally, we also have (iv)

∣∣∣Ŝ
∣∣∣ = rows(Aiend

) = iend. That is,

every row of Aiend
has exactly one entry in Ŝ. The reason is

that in Case 2 we assume there exists an i◦ such that (i◦, j◦) ∈
SL and i◦ ≤

∑τj∗

t′=1 Ct′ . Since S̃L consists of the elements

on the right of SL for any row i◦ ≤
∑τj∗

t′=1 Ct′ , we have

(i◦, j◦) /∈ S̃L. As a result, by stitching half of SL and half

of S̃L, we ensure that the new set Ŝ has the same number of

rows as both SL and S̃L, which is rows(Aiend
) = iend.

By properties (ii) to (iv) and GMDS, the submatrix of Aiend

induced by Ŝ is of full row rank. Therefore the(Aiend
\aj◦)

must of full row rank due to property (i) of Ŝ. Hence the value

of sk(t) cannot be uniquely determined by (138). This implies

that sk(t) cannot be determined uniquely by the observation

yiend
.

Note that Lemma 21 immediately implies Proposition 2 and

Lemma 3. The proof is complete.

APPENDIX D

PROOF OF LEMMA 15

The proof of Lemma 15 involves careful analysis of the

results of FDL, thus see Fig. 14 for reference. While the

intuition is relatively straightforward as discussed right after

Lemma 15, the proof involves very technical application of

mathematical induction that can only be rigorously stated via

detailed/unambiguous definitions and case studies. An inter-

ested reader is encouraged to construct additional examples

similar to Fig. 14 and use them to examine the statements of

27

Lemma 15 and gain further intuition before delving into the

detailed proofs in this appendix.

First, we prove (123) by induction. Substituting (17) in (16),

Îd(t) can be expressed as

Îd(t) =
(
K − Ct +min

(
Îd(t− 1), αK

))+
. (139)

We now prove (123) for the case of t = 1 < t1. Note that

the condition 1 < t1 implies Îd(1) > 0 since if Îd(1) = 0,

we would have Id(1) = 0 and the first 0-hitting time becomes

t1 = 1. Recall that in every time slot t ≥ 1, the number of

incoming source symbols is K, and Ct coded symbols are

successfully received at the destination. This implies that the

cumulative receiver matrix H(t) gains K columns and Ct rows

when compared to H(t−1). For t = 1, H(1) is a C1-by-K
matrix and Îd(t − 1) = Îd(0) = 0. By (139) and because

t = 1 < t1 implies Îd(1) > 0, we have

Îd(1) = (K − C1)
+ > 0 ⇐⇒ Îd(1) = K − C1 > 0.

When t = 1, the right hand side of (123) becomes

1 ·K −max (−αK, jFDL(C1)) = K − C1. (140)

where the equality follows from jFDL(C1) = C1 ≥ 0 since

the cumulative receiver matrix H(1) at time 1 is a fat matrix

due to K > C1 and the FDL subroutine would just return the

uninterrupted diagonal line starting from (1, 1) without any

shift operation. Hence, (123) holds for t = 1 < t1.

Next, we assume that (123) holds for all t′ ∈ [1, t− 1] for

some t < t1. Note that the condition t < t1 implies Îd(t
′) > 0

for all t′ ∈ [1, t] because Id(t
′) (and Îd(t

′)) must not hit 0
before t1. The inequality part of (123) is thus proved. We

then prove that the formula in (123) indeed describes the Îd(t)
value.

Since (123) holds for t− 1, we have

Îd(t− 1) =

(t− 1)K −max

(
(t− α− 2)K, jFDL(

t−1∑

t′=1

Ct′)

)
> 0.

(141)

We split the proof into two cases. Case 1: Ct = 0 and

Case 2: Ct > 0. In Case 1: Ct = 0, we clearly have

jFDL(
∑t−1
t′=1 Ct′) = jFDL(

∑t

t′=1 Ct′). See t = 4 in Fig. 14

for example. By plugging (141) into (139), we have

Îd(t)

= K − 0 + min

(
(t− 1)K

−max
(
(t− α− 2)K, jFDL(

t−1∑

t′=1

Ct′)
)
, αK

)
(142)

= K +min

(
(α+ 1)K, (t− 1)K − jFDL(

t∑

t′=1

Ct′), αK

)

(143)

= tK −max

(
(t− α− 1)K, jFDL(

t∑

t′=1

Ct′)

)
(144)

where (143) follows from basic algebra and Ct = 0; and

(144) follows from basic algebra and the observation that

(α+1)K ≥ αK. By (144), we have proved (123) for Case 1.

Case 2: Ct > 0. Again by plugging (141) into (139), we

have

Îd(t) = K − Ct +min

(
αK, (t− 1)K − jFDL(

t−1∑

t′=1

Ct′)

)

(145)

= tK −max

(
(t− α− 1)K, jFDL(

t−1∑

t′=1

Ct′)

)
− Ct > 0

(146)

following similar simplification steps as in (142) to (144).

We now analyze the value of jFDL(
∑t

t′=1 Ct′) in (123) by

tracing the steps of the FDL subroutine. Specifically, we have

jFDL(
∑t−1
t′=1 Ct′) < (t − 1)K by the “> 0” inequality in the

induction assumption (141). Recall that if the FDL ends before

reaching row
∑t−1
t′=1 Ct′ , we will have the corresponding

jFDL(
∑t−1
t′=1 Ct′) = ∞. As a result, at row

∑t−1
t′=1 Ct′ , the

FDL subroutine is still continuing. See Lines 5 to 7 of the FDL

pseudocode. Therefore, at the next row i =
∑t−1
t′=1 Ct′ +1, we

must have

jFDL((

t−1∑

t′=1

Ct′) + 1) =

max
(
(t− α− 1)K + 1, jFDL(

t−1∑

t′=1

Ct′) + 1
)
. (147)

The reason is as follows. At row i =
∑t−1
t′=1 Ct′ , the FDL

outputs jFDL(
∑t−1
t′=1 Ct′). At the next row i =

∑t−1
t′=1 Ct′ +

1, the FDL will first check whether the location j =
jFDL(

∑t−1
t′=1 Ct′)+1 is non-zero. If so, the FDL would output

jFDL(
∑t−1
t′=1 Ct′ + 1) = jFDL(

∑t−1
t′=1 Ct′) + 1. If not, the

FDL would output the first non-zero element on the right of

jFDL(
∑t−1
t′=1 Ct′) + 1. Since the first non-zero element of row

i =
∑t−1
t′=1 Ct′ +1 is at the location (t−α−1)K+1, by com-

paring the values of jFDL(
∑t−1
t′=1 Ct′)+1 and (t−α−1)K+1,

we have (147).

We now argue that at row
∑t

t′=1 Ct′ , the FDL subroutine

has not ended yet. To that end, we notice that by Lines 8

and 9 of the FDL pseudocode, the FDL subroutine ends if

there exists an i ∈ (
∑t−1
t′=1 Ct′ ,

∑t

t′=1 Ct′] such that jFDL(i) =
jnz.max(i). That is, the diagonal line jFDL(i) hits the rightmost

non-zero element jnz.max(i) at or before the (
∑t

t′=1 Ct′)-th
row. We then make the following two observations. Firstly,

for all i ∈ (
∑t−1
t′=1 Ct′ ,

∑t

t′=1 Ct′] we have jnz.max(i) = tK by

(120) and (121). Secondly, when i = (
∑t−1
t′=1 Ct′)+1 we have

(147). As a result, there exists an i ∈ (
∑t−1
t′=1 Ct′ ,

∑t

t′=1 Ct′]
such that jFDL(i) = jnz.max(i) if and only if

max
(
(t− α− 1)K, jFDL(

t−1∑

t′=1

Ct′)
)
+ Ct ≥ tK (148)

where the left-hand side describes the location of the diagonal

line until row
∑t

t′=1 Ct′ and the right-hand side describes the

location of the rightmost non-zero element. However, (146)

implies NOT (148). As a result, at row
∑t

t′=1 Ct′ , the FDL

28

subroutine has not ended yet. Because the FDL subroutine has

not ended at row
∑t

t′=1 Ct′ , we have

jFDL(

t∑

t′=1

Ct′)

= max
(
(t− α− 1)K, jFDL(

t−1∑

t′=1

Ct′)
)
+ Ct <∞. (149)

Finally, the inequality jFDL(
∑t

t′=1 Ct′) < ∞ implies

that the corresponding element is non-zero. Since at row∑t

t′=1 Ct′ , the leftmost non-zero element is at location (t −
α− 1)K + 1. We thus also have

jFDL(
t∑

t′=1

Ct′) ≥ (t− α− 1)K + 1. (150)

By plugging (149) into (123) and using (150) to remove the

max operation in (123), the expression of (123) is identical

to (146). We have thus completed the proof of Case 2. By

mathematical induction, we have thus proved (123) for all t <
t1.

As for (124), since Îd(t1−1) > 0 and Îd(t1) = 0, by (139)

we have

Ct1 ≥ K +min
(
Îd(t1 − 1), αK

)
> 0. (151)

This implies that we have Ct1 ≥ 1 additional rows beneath

row
∑t1−1
t′=1 Ct′ . Note that when proving (123), we have

already shown that the FDL subroutine will not end at row

i ≤
∑t1−1
t′=1 Ct′ nor before. Since we have Ct1 ≥ 1 additional

rows beneath row
∑t1−1
t′=1 Ct′ , we only need to prove that we

can still find at least one non-zero entry in the next new row

i =
∑t1−1
t′=1 Ct′ + 1, which will imply that FDL can proceed

to the next row and thus
∑t1−1
t′=1 Ct′ < iend. The inequality

iend ≤
∑t1
t′=1 Ct′ is trivially true because the right-hand side

is the total number of rows.

From (123) when t = t1 − 1,

Îd(t1 − 1) = (t1 − 1)K

−max
(
(t1 − α− 1)K, jFDL(

t1−1∑

t′=1

Ct′)
)
> 0, (152)

which implies (t1 − 1)K > jFDL(
∑t1−1
t′=1 Ct′). Since the

location of the rightmost non-zero entry for the next row

i =
∑t1−1
t′=1 Ct′+1 is jnz.max(i) = t1K > jFDL(

∑t1−1
t′=1 Ct′), the

FDL subroutine can successfully proceed from row
∑t1−1
t′=1 Ct′

to the next row i =
∑t1−1
t′=1 Ct′ + 1. Eq. (124) is thus proved.

To prove (125), we first note that by (124),
∑t1−1
t′=1 Ct′ <

iend ≤
∑t1
t′=1 Ct′ and hence jnz.max(iend) = t1K. Next, we

note that by Lines 3, 8 and 9 of the FDL pseudocode,

the FDL subroutine ends only if either condition (i) iend =∑t1
t′=1 Ct′ and jFDL(iend) < cols(A) = t1K, or condition (ii)

jFDL(iend) = jnz.max(iend) = t1K holds.

We then prove it by contradiction that condition (i) can

never be true. Assume that condition (i) holds. Extending from

(147), we have

jFDL(iend) = jFDL(

t1∑

t′=1

Ct′) = jFDL(

t1−1∑

t′=1

Ct′ + Ct1) (153)

= max
(
(t1 − α− 1)K, jFDL(

t1−1∑

t′=1

Ct′)
)
+ Ct1 < t1K.

(154)

By basic algebra, (154) can be rewritten as

Ct1 < min
(
(α+ 1)K, t1K − jFDL(

t1−1∑

t′=1

Ct′)
)
. (155)

However, by plugging (152) into (151), we have

Ct1

≥ K +min

(
min

(
αK, (t1 − 1)K − jFDL(

t1−1∑

t′=1

Ct′)
)
, αK

)

(156)

= min
(
(α+ 1)K, t1K − jFDL(

t1−1∑

t′=1

Ct′)
)
, (157)

which contradicts (155). Hence, (125) always holds.

Finally, to prove (126), we split our discussion into two

groups: i ∈ [1,
∑t1−1
t′=1 Ct′] and i ∈ (

∑t1−1
t′=1 Ct′ , iend). For any

i ∈ [1,
∑t1−1
t′=1 Ct′], there exists a unique t < t1 that satisfies

Ct > 0 and (121). We thus have

jnz.max(i)− jFDL(i) = tK − jFDL(i)

≥ tK − jFDL(

t∑

t′=1

Ct′) (158)

≥ tK −max

(
(t− α− 1)K, jFDL(

t∑

t′=1

Ct′)

)
(159)

= Îd(t) > 0 (160)

where (158) follows from jFDL(·) being an increasing function;

(159) follows by adding a max operation into the formula;

and (160) follows from (123) and from the fact that Îd(t
′) >

0 for all t′ < t1. Ineq. (126) is thus proved for those i ∈
[1,
∑t1−1
t′=1 Ct′].

For i ∈ (
∑t1−1
t′=1 Ct′ , iend), the rows being considered are

corresponding to time t1. As a result, jnz.max(i) = t1K.

Because jFDL(·) is a strictly increasing function, we also have

jFDL(i) < jFDL(iend) for those i < iend. Using these two

observations, one can easily derive (126) as a simple corollary

of (125). The proof of (126) for those i ∈ (
∑t1−1
t′=1 Ct′ , iend) is

complete.

APPENDIX E

PROOF OF LEMMA 16

We note that the FDL labeling between row i and row (i+1)
is “interrupted” if and only if the matrix entry at location

(i + 1, jFDL(i) + 1) is zero, which means that Line 6 of the

FDL subroutine has to choose a new “interrupted” location

29

jFDL(i + 1) > jFDL(i) + 1 for the (i + 1)-th row, rather than

the “consecutive” location jFDL(i+ 1) = jFDL(i) + 1.

We first consider any two consecutive rows i and (i+1) of

the same observation y(t). Recall that iend is the very last row

in SL, we thus have (i+1) ≤ iend. Note that (i, jFDL(i)) ∈ SL
is a non-zero entry since FDL only outputs non-zero entries.

Since both rows belong to the same observation y(t), we must

have (i+1, jFDL(i)) is also a non-zero entry because how we

encode during each time slot, see (3). Since the non-zeros of

each row (in particular, row (i+ 1)) must be consecutive and

since jnz.max(i + 1) ≥ jnz.max(i) > jFDL(i) due to (126), the

entry (i+1, jFDL(i) + 1) must be non-zero. This thus implies

that there must not be any interruption between rows i and

(i+ 1) if both rows belong to the same y(t).

We now consider the case that rows i and (i+1) belong to

two different slots y(t) and y(t′), respectively. An equivalent

statement is that

∃ t̃ < t1 such that (161)

i =

t̃∑

t′=1

Ct′ < i+ 1 ≤
t̃+1∑

t′=1

Ct′ . (162)

Suppose the condition of the first half of Lemma 16 holds,

i.e., there is no ζ-hitting time τj in (0, t1]. In this case, we

have 0 < Id(t) ≤ αK, or equivalently 0 < Îd(t) ≤ αK for

all t ∈ (0, t1). By (123), we have

Îd(t) = tK −max
(
(t− α− 1)K, jFDL(

t∑

t′=1

Ct′)
)

= min
(
(α+ 1)K, tK − jFDL(

t∑

t′=1

Ct′)
)
≤ αK (163)

which implies that jFDL(
∑t

t′=1 Ct′) ≥ (t − α)K for all t ∈
(0, t1). Since our t̃ satisfies t̃ < t1, we have

jFDL(i) + 1 = jFDL(

t̃∑

t′=1

Ct′) + 1 ≥ (t̃− α)K + 1. (164)

Since row i + 1 belongs to the observation y(t̃ + 1) at time

t̃ + 1, see (162), the leftmost non-zero entry of row (i + 1)
is at location (t̃− α)K + 1. Eq. (164) then implies the entry

(i + 1, jFDL(i) + 1) is non-zero. As a result, there must be

no interruption between rows i and (i + 1). The first half of

Lemma 16 is proved.

Consider the second half of Lemma 16. There exists at least

one τj ∈ (0, t1). Define τj∗ as the one with the largest j.

This implies that Îd(τj∗) > αK and Îd(t) ≤ αK for all

t ∈ (τj∗ , t1]. By identical arguments as in the first half of

proof, the diagonal line segment from row istart =
∑τj∗

t′=1 Ct′+
1 to iend = max{i : (i, j) ∈ SL} must be consecutive (or

equivalently “uninterrupted”). Since we always have jend =
jFDL(iend) = t1K by (125), the remaining step is to show that

jstart = (τj∗ − α)K + 1.

To that end, we notice that we must have Cτj∗+1 > 0. The

reason is that if Cτj∗+1 = 0, we will have Îd(τj∗ +1) > αK,

which contradicts that τj∗ is the last ζ-hitting time. We also

note that Îd(τj∗) > αK and (123) together imply

Îd(τj∗) = τj∗K −max
(
(τj∗ − α− 1)K, jFDL(

τj∗∑

t′=1

Ct′)
)

= min
(
(α+ 1)K, τj∗K − jFDL(

τj∗∑

t′=1

Ct′)
)
> αK (165)

which in turn implies that

jFDL(

τj∗∑

t′=1

Ct′) < (τj∗ − α)K. (166)

Our goal is to find the value of jstart = jFDL(
∑τj∗

t′=1 Ct′ + 1).
By Lines 5 and 6 of the FDL pseudocode, we must have

jFDL(

τj∗∑

t′=1

Ct′ + 1)

= max
(
jFDL(

τj∗∑

t′=1

Ct′) + 1, ((τj∗ + 1)− α− 1)K + 1
)

(167)

where the first term of the max operation, jFDL(
∑τj∗

t′=1 Ct′)+
1, represents that the next diagonal element following

(
∑τj∗

t′=1 Ct′ , jFDL(
∑τj∗

t′=1 Ct′)), and the second term of the

max operation represents the first non-zero element of row∑τj∗

t′=1 Ct′ + 1 since Cτj∗+1 > 0 implies that for the rows

corresponding to time τj∗+1, the leftmost non-zero element is

at the (((τj∗+1)−α−1)K+1)-th column. The max operation

in (167) essentially checks whether the next diagonal element

is non-zero. If so, jFDL(
∑τj∗

t′=1 Ct′+1) = jFDL(
∑τj∗

t′=1 Ct′)+1.

If not, the FDL routine labels the first non-zero element at the

(((τj∗ +1)−α−1)K+1)-th column. By (166), we thus have

jstart = jFDL(
∑τj∗

t′=1 Ct′ + 1) = (τj∗ − α)K + 1. The proof of

the second half of Lemma 16 is complete.

APPENDIX F

PROOF OF LEMMA 20

The construction of S̃L “shifts the elements to the right”

when and only when i ≤
∑τj∗

t′=1 Ct′ . Consider any such i. By

(126), we have jFDL(i) < jnz.max(i) with strict inequality. Note

that by the construction of the RLSC encoder, the non-zero

elements in each row are always consecutive. As a result, the

“right-neighbor element” Ai,jFDL(i)+1 6= 0 and we have proved

the first half of Lemma 20.

For the second half of the lemma, because SL has distinct

row indices, per our construction (136) S̃L also contains

distinct row indices. As for the column indices, we first

note that for any (i1, j1), (i2, j2) in SL, we always have

i1 < i2 ⇔ j1 < j2. If we focus only on those i ≤
∑τj∗

t′=1 Ct′ ,
the corresponding j (the column indices) are all distinct since

S̃L contains the next-right neighbor of the (i, j) in SL for

all i ≤
∑τj∗

t′=1 Ct′ . Similarly, if we focus only on those

i >
∑τj∗

t′=1 Ct′ , the corresponding j (column indices) are all

distinct since S̃L retains the (i, j) pairs in SL for all i >∑τj∗

t′=1 Ct′ . As a result, we only need to prove that for the new

set S̃L, the column index j1 when i1 =
∑τj∗

t′=1 Ct′ is strictly

30

𝐾 ൌ 1, 𝛼 ൌ 3, ∆ൌ 4
Error Events

764 11108 95 12 1413 161531 2

ζ𝛼𝐾
0 0 𝑡x

𝐼ௗሺ𝑡ሻ

Fig. 16: An example for Case 1 in the proof of Proposition 3

when focusing at t = 2. The new Ĩd(t
′) (the brown dash-dotted

curve) has the same realization as the original Id(t
′) (the black

curve) for t′ ≤ t+∆ = 6. During t′ ∈ [t+∆+1, t+∆+α] =
[7, 9], Ĩd(t

′) stays flat. For t′ ≥ t + ∆ + α = 9, Ĩd(t
′) first

increments until hitting ζ and then decrements until hitting 0.

smaller than the column index j2 when i2 =
∑τj∗

t′=1 Ct′ + 1.

Also see Fig. 15 in which we desire the last shifted green

circle to be strictly on the left of the first non-shifted green

circle.

It turns out that we have already established this fact when

proving the second half of Lemma 16. Specifically, because

j1 in S̃L is obtained by the shifted position in SL, we have

j1 = jFDL(

τj∗∑

t′=1

Ct′) + 1. (168)

Also, because j2 in S̃L is obtained by the original position in

SL, we have

j2 = jFDL(

τj∗∑

t′=1

Ct′ + 1). (169)

By (166) and (167), we have j1 < j2. This shows that all

column indices of S̃L are distinct.

APPENDIX G

PROOF OF PROPOSITION 3

It is easy to verify that when ∆→∞, Proposition 3 implies

Proposition 2. As a result, Proposition 3 can be viewed as

a stronger version of Proposition 2. In the sequel, we prove

Proposition 3 by bootstrapping the results of Proposition 2.

We prove it by contradiction. We first consider Case 1:

there exists no τj ∈ (ti0 , ti0+1). Given any arbitrary deadline

constraint ∆ < ∞ and arbitrary memory length α < ∞,

assume that s(t) is ∆-decodable, i.e., decodable at time t+∆,

for some t ∈ (ti0 , ti0+1 −∆). This implies that regardless of

the realization of {Id(·)} after time t+∆, slot s(t) will remain

decodable after time t+∆ since it is already decodable at time

t+∆.

Note that t+∆ < ti0+1 because Proposition 3 in this case

focuses on t ∈ (ti0 , ti0+1 −∆). At time t + ∆, the random

process Id(t) thus has not hit 0 since time t+∆ < ti0+1. As a

result, we can always replace the realization10 of {Id(t
′) : t′ ∈

[t+∆+ 1,∞)} by a new realization {Ĩd(t
′) : t′ ∈ [t+∆+

10Since Id(t) is determined by the channel realization Ct, we can alter the
realization of Id(t) by altering the realization of Ct. In our construction, the

realization of {Id(·)} before t+∆ remains intact, i.e., Id(t
′) = Ĩd(t

′) for
all t′ ∈ [0, t+∆].

1,∞)} satisfying simultaneously (i) Ĩd(t
′) = Id(t+∆) for all

t′ ∈ [t+∆+1, t+∆+α]; (ii) Ĩd(t
′) = Ĩd(t

′−1)+1 for all t′ ≥
t+∆+α+1 until Ĩd(t

′) = ζ; and (iii) after the τ ′ satisfying

Ĩd(τ
′) = ζ, i.e., we have a new ζ-hitting time τ̃j = τ ′, we let

Ĩd(t
′) = K · (α+ 1− t′ + τ̃j) for all t′ ∈ (τ̃j , τ̃j + α+ 1]. In

other words, the new realization of Ĩd(t
′) will remain the same

for α slots, then increment continuously until hitting ζ, and

then decrement until hitting 0. See Fig. 16 for illustration. One

can see that with the new realization Ĩd(t
′), the new hitting

times t̃i0+1 and τ̃j∗ (there is only one τ̃j ∈ (ti0 , t̃i0+1)) always

satisfy t ≤ τ̃j∗ − α. By Proposition 2, s(t) is not decodable

under the new realization Ĩd(t
′) no matter how large we set

the decoding time T , which contradicts our initial assumption

that s(t) is ∆-decodable under Id(t
′) and thus under Ĩd(t

′).
The proof of Case 1 is complete.

Case 2: There exists a τj∗ ∈ (ti0 , ti0+1). By Corollary 2,

s(t) is not ∆-decodable for all t ∈ (ti0 , τj∗ − α + 1). As a

result, to prove (24) we only need to prove that s(t) is not

∆-decodable for all t ∈ (ti0 , ti0+1 −∆). Suppose s(t) is ∆-

decodable for some t ∈ (ti0 ,max(τj∗−α+1, ti0+1−∆)). This

implies that regardless of the realization of {Id(·)} after time

t+∆, slot s(t) will remain decodable after time t+∆ since it is

already decodable at time t+∆. In an almost identical fashion

as in Case 1, we replace the realization of Id(t
′) including and

after time t+∆+ 1 such that the new realization Ĩd(t
′) will

have a new ζ-hitting time τ̃j∗ and a new 0-hitting time t̃i0+1

satisfying t+α ≤ τ̃j∗ . By Proposition 2, s(t) is not decodable

under Ĩd(t
′) no matter how large we set the decoding time

T , which contradicts the initial assumption that s(t) is ∆-

decodable under Id(t
′) and Ĩd(t

′). The proof of Case 2 is

complete.

APPENDIX H

SIMPLICATION OF (36)

To prove (33) and (36) are identical, we first note that for

any 2× 2 block matrix

B =

[
B1 B2

0 B3

]
, (170)

if B1 and B3 are invertible,

B−1 =

[
B−11 −B−11 B2B

−1
3

0 B−13

]
. (171)

Again, we denote

Q =

[
Γφ,φ Γφ,ζ

Γζ,φ Γζ,ζ

]
.

From (33),

E {ti0+1 − ti0}

= ~δ⊤1

([
1 −Γ0,φ −Γ0,ζ

0 Iζ −Q

])−1
~1 (172)

= ~δ⊤1

[
1
[
Γ0,φ Γ0,ζ

]
(Iζ −Q)

−1

0 (Iζ −Q)
−1

]
~1 (173)

= 1 +
[
Γ0,φ Γ0,ζ

]
(Iζ −Q)

−1 ~1. (174)

31

Because Γ is a probability transition matrix, the sum of each

row is always one. We thus have

Γ0,0 = 1−
[
Γ0,φ Γ0,ζ

]
~1 (175)

[
Γ⊤φ,0 Γ⊤ζ,0

]⊤
= (~1−Q~1). (176)

Substituting (175) and (176) into (36), we have

E {ti0+1 − ti0}

=
(
1−

[
Γ0,φ Γ0,ζ

]
~1
)

+

∞∑

k=2

k
[
Γ0,φ Γ0,ζ

]
Qk−2

(
~1−Q~1

)
(177)

= 1 +
[
Γ0,φ Γ0,ζ

] ∞∑

k=1

Qk−1~1 (178)

= 1 +
[
Γ0,φ Γ0,ζ

]
(Iζ −Q)

−1 ~1 (179)

where (178) follows from basic rearrangements of the terms

in the summation. Jointly, (174) and (179) prove that (36) can

be simplified to the expression in (33).

APPENDIX I

PROOF OF term4 = term5

To formalize the intuitive idea in the proof of Lemma 8 and

especially to reconcile that (51) is defined for a fixed t and

(52) is defined for a fixed i0, we first use the strong Markov

property to substitute the t in term4 by the j0-th ζ-hitting time

τj0 , for any arbitrarily given constant j0 ∈ [1,∞). We then

have

term4 = E{max(−α,Hτj0
(0)−∆− 1)

| τj0 <∞, Hτj0
(0) < Hτj0

(ζ)}. (180)

For the given j0 ∈ [1,∞), we also define the event

Aj0 , {τj0 <∞ and ∀t ∈ (τ1, τj0), Id(t) 6= 0}. (181)

Note that Aj0 is measurable with respect to the filtration Fτj0
induced by the stopping time τj0 , i.e., at time τj0 we can

unambiguously determine whether we are in the event Aj0
or not. Since Aj0 ∈ Fτj0 , by the strong Markov property,

knowing what has happened until time τj0 will not affect the

future after τj0 . We thus have

term4 = E{max(−α,Hτj0
(0)−∆− 1)

| Hτj0
(0) < Hτj0

(ζ),Aj0}. (182)

Define the following random set:

J , {j ≥ 1 : τj <∞, Hτj (0) < Hτj (ζ)} (183)

which contains all the j values such that after ζ-hitting time

τj , the Markov chain Id(t) hits 0 before hitting ζ again. We

define J , minJ as the first such j. Here we again use the

convention that min ∅ = ∞. For example, {J < ∞} is thus

the event that there exists at least one τj <∞ such that after

τj the process Id(t) hits 0 before hitting ζ again.

Using this definition, we can rewrite the conditioning event

in (182) as

{Hτj0
(0) < Hτj0

(ζ)} ∩ Aj0 = {J = j0} (184)

by the definition of Aj0 in (181). As a result, we have

term4 = E{max(−α,HτJ
(0)−∆− 1) | J = j0} (185)

= E{max(−α,HτJ
(0)−∆− 1) | J <∞} (186)

where (185) follows from (182) by rewriting the conditional

event by its equivalent event in (184); and (186) follows from

the fact that the value of (185) is the same for any fixed finite

j0 ∈ [1,∞) value.

We now simplify term5 in a similar way. Specifically, for

any fixed i0 ∈ [0,∞) we define the event

Bi0 , {no τj ∈ (0, ti0)}. (187)

Note that Bi0 is measurable with respect to the filtration

Fti0 induced by the stopping time ti0 . By the strong Markov

property and similar reasons as when proving (182) we have

term5 = E{max(−α, ti0+1 − τj∗(i0) −∆− 1)

| ti0+1 <∞, ∃τj ∈ (ti0 , ti0+1),Bi0}. (188)

Define the following random set:

I = {i ≥ 0 : ti+1 <∞, ∃τj ∈ (ti, ti+1)} (189)

which contains all the i values such that the i-th round is a

bad round, i.e., Id(t) hits ζ during two consecutive 0-hitting

time ti and ti+1. We define I , min I as the first bad round

i. Here we again use the convention that min ∅ = ∞. Using

this definition, we can rewrite the conditioning event in (188)

as

{ti0+1 <∞, ∃τj ∈ (ti0 , ti0+1)} ∩ Bi0 = {I = i0}. (190)

As a result, we have

term5 = E{max(−α, tI+1 − τj∗(I) −∆− 1) | I = i0}

(191)

= E{max(−α, tI+1 − τj∗(I) −∆− 1) | I <∞}

(192)

where (191) follows from using the equivalent conditional

event in (190), and (192) follows from the fact that the value

of (191) is the same for any fixed finite i0 ∈ [0,∞) values.

The final step is to note that the conditional events in (186)

and (192) are actually the same event. To prove that we will

show that J < ∞ implies I < ∞ and vice versa. For the

forward direction, if J < ∞, there is at least one τj < ∞
such that after time τj the Id(t) hits 0 before hitting ζ again.

This implies that there exists an i ∈ [0,∞) value such that

ti < ∞ and τj ∈ (0, ti), which in turn implies that there

exists an i′ < ∞ such that ti′+1 < ∞ and τj ∈ (ti′ , ti′+1)
and thus I <∞. For the backward direction, if I <∞, there

is at least an i ∈ [0,∞) value such that ti+1 < ∞ and there

exists τj ∈ (ti, ti+1). For the largest such τj within (ti, ti+1),
after time τj , the process Id(t) must hit 0 before hitting ζ
again, which implies J <∞.

Under the conditional event {J < ∞} = {I < ∞}, the

two random variables HτJ
(0) and (tI+1−τj∗(I)) describe the

same (random) phenomenon of the Markov chain Id(t). That

is, both of them consider the event “Id(t) hits ζ and then hits 0
before hitting ζ for another time”; focus only on the first such

32

occurrence since time 0; and measure how many slots it takes

between hitting ζ and hitting 0 in that particular occurrence.

As a result, (186) and (192) must be identical, and we have

term4 = term5.

APPENDIX J

PROOFS OF term1 TO term3 COMPUTATION

To compute term1 in (48), we notice that for any arbitrary

k ∈ [1,∞), we have

Pr(Ht(0) > Ht(ζ) = k | Id(t) = 0)

=

{
Γ0,ζ if k = 1,

Γ0,φ (Γφ,φ)
k−2

Γφ,ζ if k ≥ 2.
(193)

The value of term1 is the sum of the probability of all events

with k ∈ [1,∞). Hence we have

term1 = Γ0,ζ +

∞∑

k=2

(
Γ0,φ (Γφ,φ)

k−2
Γφ,ζ

)
. (194)

Simplifying the summation using (39) leads to (59).

To compute term2 in (49), we notice that for any arbitrary

k ∈ [1,∞), we have

Pr(Ht(0) = k < Ht(ζ) | Id(t) = ζ)

=

{
Γζ,0 if k = 1,

Γζ,φ (Γφ,φ)
k−2

Γφ,0 if k ≥ 2.
(195)

By summing over all events with k ∈ [1,∞), we can compute

the value of term2 by

term2

= −min (∆, α) · Γζ,0 +
∆−α∑

k=2

(
−αΓζ,φ (Γφ,φ)

k−2
Γφ,0

)

+

∞∑

k=max(∆−α+1,2)

(
(k −∆− 1) Γζ,φ (Γφ,φ)

k−2
Γφ,0

)

(196)

where the first term considers the event k = 1; the first

summation handles the events when the value of max(−α, k−
∆ − 1) = −α in (49); and the second summation is for the

case of max(−α, k − ∆ − 1) = k − ∆ − 1. Simplifying the

above equation using (39) gives us (60).

For term3 in (50), we can evaluate the value by partitioning

the events based on (195). We thus have

term3 = Γζ,0 +

∞∑

k=2

(
Γζ,φ (Γφ,φ)

k−2
Γφ,0

)
. (197)

Simplifying the summation using (39) leads to (61).

APPENDIX K

PROOF OF COROLLARY 3

By definition, the expectation of (27) is a monotonically

decreasing function with respect to ∆. Since Pr(ti0+1− ti0 =
∞) = 0, the limit when ∆ goes to infinity must be zero.

Hence, we have (64). The result implies that no error occurs in

a good round under no decoding deadline assumption, which

is consistent with the propositions derived in Section III-B.

For lim∆→∞ E {LB2
}, recall that E {LB2

} = term1 ·
term2/term3. Only term2 involves ∆. When ∆→∞, term2

can be written as

lim
∆→∞

term2 = −αΓζ,0 − αΓζ,φAΓφ,0

+ Γζ,φ

(
(A)

2 −A
)(

lim
∆→∞

(Γφ,φ)
ψ
)
Γφ,0. (198)

By (39), the value of lim
∆→∞

(Γφ,φ)
ψ

is zero. We thus have

lim
∆→∞

term2 = −α (Γζ,0 + Γζ,φAΓφ,0) = −α · term3.

(199)

Hence, we have

lim
∆→∞

E {LB2
} = lim

∆→∞

term1 · term2

term3
= −α · term1. (200)

REFERENCES

[1] P.-W. Su, Y.-C. Huang, S.-C. Lin, I.-H. Wang, and C.-C. Wang, “Error
rate analysis for random linear streaming codes in the finite memory
length regime,” in 2020 IEEE International Symposium on Information

Theory (ISIT), 2020, pp. 491–496.
[2] ——, “Random linear streaming codes in the finite memory length and

decoding deadline regime,” in 2021 IEEE International Symposium on

Information Theory (ISIT), 2021, pp. 730–735.
[3] M. Series, “IMT Vision–Framework and overall objectives of the future

development of IMT for 2020 and beyond,” Recommendation ITU, vol.
2083, Sep. 2015.

[4] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, “Ultra-reliable and
low-latency communications in 5G downlink: Physical layer aspects,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 124–130, Jun. 2018.

[5] S. L. Fong, A. Khisti, B. Li, W. Tan, X. Zhu, and J. Apostolopoulos,
“Optimal streaming codes for channels with burst and arbitrary era-
sures,” IEEE Transactions on Information Theory, vol. 65, no. 7, pp.
4274–4292, Jul. 2019.

[6] M. Nikhil Krishnan, V. Ramkumar, M. Vajha, and P. Vijay Kumar,
“Simple streaming codes for reliable, low-latency communication,”
IEEE Communications Letters, vol. 24, no. 2, pp. 249–253, 2020.

[7] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Transactions on Information Theory,
vol. 56, no. 5, pp. 2307–2359, May 2010.

[8] E. Martinian and C.-E. W. Sundberg, “Burst erasure correction codes
with low decoding delay,” IEEE Transactions on Information Theory,
vol. 50, no. 10, pp. 2494–2502, Oct. 2004.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
Wiley-Interscience, 2006.

[10] E. Martinian and M. Trott, “Delay-optimal burst erasure code construc-
tion,” in 2007 IEEE International Symposium on Information Theory,
2007, pp. 1006–1010.

[11] A. Khisti and J. P. Singh, “On multicasting with streaming burst-erasure
codes,” in 2009 IEEE International Symposium on Information Theory,
Jun. 2009, pp. 2887–2891.

[12] A. Badr, A. Khisti, and E. Martinian, “Diversity embedded streaming
erasure codes (DE-SCo): Constructions and optimality,” IEEE Journal

on Selected Areas in Communications, vol. 29, no. 5, pp. 1042–1054,
May 2011.

[13] A. Badr, A. Khisti, W. Tan, and J. Apostolopoulos, “Streaming codes
with partial recovery over channels with burst and isolated erasures,”
IEEE Journal of Selected Topics in Signal Processing, vol. 9, no. 3, pp.
501–516, Apr. 2015.

[14] A. Badr, P. Patil, A. Khisti, W. Tan, and J. Apostolopoulos, “Layered
constructions for low-delay streaming codes,” IEEE Transactions on

Information Theory, vol. 63, no. 1, pp. 111–141, Jan. 2017.
[15] M. N. Krishnan and P. V. Kumar, “Rate-optimal streaming codes for

channels with burst and isolated erasures,” in 2018 IEEE International

Symposium on Information Theory (ISIT), Jun. 2018, pp. 1809–1813.
[16] M. Rudow and K. V. Rashmi, “Streaming codes for variable-size

arrivals,” in 2018 56th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), Oct. 2018, pp. 733–740.
[17] ——, “Online versus offline rate in streaming codes for variable-size

messages,” in 2020 IEEE International Symposium on Information

Theory (ISIT), Jun. 2020.

33

[18] S. C. Draper and A. Khisti, “Truncated tree codes for streaming data:
Infinite-memory reliability using finite memory,” in 2011 8th Interna-

tional Symposium on Wireless Communication Systems, Nov. 2011, pp.
136–140.

[19] A. Viterbi, “Error bounds for convolutional codes and an asymptoti-
cally optimum decoding algorithm,” IEEE Transactions on Information

Theory, vol. 13, no. 2, pp. 260–269, Apr. 1967.
[20] E. Martinian, “Dynamic information and constraints in source and chan-

nel coding,” Ph.D. dissertation, Massachusetts Institute of Technology,
2004.

[21] M. Mitzenmacher, “A survey of results for deletion channels and related
synchronization channels,” Probability Surveys, vol. 6, pp. 1–33, 2009.

[22] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, pp. 4413–
4430, Oct. 2006.

[23] P. Piret and T. Krol, “MDS convolutional codes,” IEEE Transactions on

Information Theory, vol. 29, no. 2, pp. 224–232, 1983.
[24] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-

MDS convolutional codes,” IEEE Transactions on Information Theory,
vol. 52, no. 2, pp. 584–598, 2006.

[25] R. Durrett, Essentials of Stochastic Processes, 3rd ed. Springer, 2016.

Pin-Wen Su received the B.S. degree in Electrical and Computer Engineering
from National Chiao Tung University, Hsinchu, Taiwan, in 2014, and the
M.S. degree in Communication Engineering from National Taiwan University,
Taipei, Taiwan, in 2016. She is currently pursuing the Ph.D. degree with
the Elmore Family School of Electrical and Computer Engineering, Purdue
University, West Lafayette, IN, USA. Her research interests include infor-
mation and coding theory, communication theory, and signal processing for
communications.

Yu-Chih Huang (M’14) received the Ph.D. degree in electrical and computer
engineering from Texas A&M University (TAMU) in 2013. From 2013 to
2015, he was a Postdoctoral Research Associate with TAMU. In 2015,
he joined the Department of Communication Engineering, National Taipei
University, Taiwan, as an Assistant Professor and was promoted to an
Associate Professor in 2018. In 2020, he joined the Institute of Commu-
nications Engineering, National Chiao Tung University (NCTU), Taiwan.
He is currently an Associate Professor at National Yang Ming Chiao Tung
University (the merger of National Yang Ming University and NCTU in
2021). His research interests are in information theory, coding theory, wireless
communications, and statistical signal processing. He received the 2018
IEEE Information Theory Society Taipei Chapter and IEEE Communications
Society Taipei/Tainan Chapter’s Best Paper Award for Young Scholars and
was a recipient of the MOST Young Scholar Fellowship 2020. He is currently
serving as an Associate Editor for IEEE Communications Letters.

Shih-Chun Lin (Senior Member, IEEE) received the B.S. and Ph.D. degrees
in electrical engineering from the National Taiwan University, Taipei, Taiwan,
in 2000 and 2007, respectively. He was a Visiting Student with The Ohio
State University, Columbus, OH, USA, in 2007. From 2011 to 2012, he was
with the National Taipei University of Technology. From 2012 to 2021, he
was with the National Taiwan University of Science and Technology, Taipei.
In August 2021, he joined the National Taiwan University as an Associate
Professor. His research interests include information theory, communications,
and cyber-physical security. He was a TPC Member of the IEEE ICC from
2018 to 2022. He received the Best Paper Award for Young Authors from the
IEEE IT/COM Society Taipei/Tainan Chapter in 2015 and twice the Project
for Excellent Junior Research Investigators from the Ministry of Science and
Technology, Taiwan, in 2015 and 2018. He serves as the TPC Co-Chair for
IEEE ICC Workshop on B5G-URLLC 2019 and the Publication Chair for the
IEEE GLOBECOM 2020.

I-Hsiang Wang received the B.Sc. degree in electrical engineering from
National Taiwan University, Taiwan, in 2006. He received a Ph.D. degree in
electrical engineering and computer sciences from the University of California
at Berkeley, USA, in 2011. From 2011 to 2013, he was a postdoctoral
researcher at Ècole Polytechnique Fèdèrale de Lausanne, Switzerland. Since
2013, he has been at the Department of Electrical Engineering in National
Taiwan University, where he is now an associate professor. His research
interests include network information theory, networked data analysis, and
statistical learning. He was a finalist of the Best Student Paper Award of IEEE
International Symposium on Information Theory, 2011. He received the 2017
IEEE Information Theory Society Taipei Chapter and IEEE Communications
Society Taipei/Tainan Chapters Best Paper Award for Young Scholars.

Chih-Chun Wang (M’06–SM’15) received the B.E. degree in EE from the
National Taiwan University, Taipei, Taiwan, in 1999, and the M.S. and Ph.D.
degrees in EE from Princeton University in 2002 and 2005, respectively.

He worked with Comtrend Corporation, Taipei, as a Design Engineer
in 2000 and spent the summer of 2004 with Flarion Technologies, NJ,
USA. In 2005, he was a Post-Doctoral Researcher with the Department of
Electrical Engineering, Princeton University. He joined Purdue University in
2006 and became a Professor in 2017. He is a Professor with the Elmore
Family School of Electrical and Computer Engineering, Purdue University.
His current research interests are in the low latency 5G wireless networks
and the corresponding protocol design, information theory, networks coding,
and cyber-physical systems. Other research interests of his fall in the general
areas of networking, optimal control, information theory, detection theory, and
coding theory. He received the National Science Foundation Faculty Early
Career Development (CAREER) Award in 2009. He served as the Technical
Co-Chair for the 2017 IEEE Information Theory Workshop. He served as an
Associate Editor for IEEE Transcations on Information Theory from 2014 to
2017.

