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Abstract— Anxiety and depression, collectively known as
internalizing disorders, begin as early as the preschool years and
impact nearly 1 out of every S children. Left undiagnosed and
untreated, childhood internalizing disorders predict later health
problems including substance abuse, development of comorbid
psychopathology, increased risk for suicide, and substantial
functional impairment. Current diagnostic procedures require
access to clinical experts, take considerable time to complete, and
inherently assume that child symptoms are observable by
caregivers. Multi-modal wearable sensors may enable
development of rapid point-of-care diagnostics that address
these challenges. Building on our prior work, here we present an
assessment battery for the development of a digital phenotype
for internalizing disorders in young children and an early
feasibility case study of multi-modal wearable sensor data from
two participants, one of whom has been clinically diagnosed with
an internalizing disorder. Results lend support that sacral
movement responses and R-R interval during a short stress-
induction task may facilitate child diagnosis. Multi-modal
sensors measuring movement and surface biopotentials of the
chest and trapezius are also shown to have significant
redundancy, introducing the potential for sensor optimization
moving forward. Future work aims to further optimize sensor
placement, signals, features, and assessments to enable
deployment in clinical practice.

Clinical Relevance— This work considers the development
and optimization of technologies for improving the identification
of children with internalizing disorders.

Keywords— digital medicine, anxiety, depression, wearable
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I. INTRODUCTION

Childhood internalizing disorders (anxiety and depression)
are common, impairing, and have the potential to disrupt
development well into adulthood [1]-[3]. Children 8 years
and younger are at heightened risk for being overlooked,
because they cannot reliably report their own emotional
suffering [4]. Current screening tools include lengthy parent-
report surveys which inherently under-report symptoms as
child thoughts and emotions are difficult to identify even by
adults who know the children best [5], [6]. Given these
barriers and limited access to expert clinical assessment in
most communities [7], there is an urgent need for objective,
accurate, and low-burden tools for detecting anxiety and
depression in young children.
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In our previous work [8]-[13], we presented preliminary
data indicating that digital phenotyping could enable
detection of early childhood internalizing disorders.
Movement and speech data were collected via a single belt-
worn wearable sensor and a video camera, respectively, as the
child engaged in one of four brief behavioral tasks intended
to induce anxiety, fear, or pleasure according to NIMH
Research Domain Criteria (RDoC) criteria [14]. Our current
on-going study builds on that work by considering additional
physiological measures, including skin temperature,
electromyography (EMGQ), electrodermal activity (EDA), and
electrocardiography (ECG) across multiple behavioral tasks
to improve screening accuracy, and to examine multiple
forms and locations of wearables to address barriers in
deploying this approach for broad research and clinical use.

Herein, we introduce the KID (Kiddie Internalizing
Disorder) Study and examine preliminary data of two
biomarkers, movement and R-R interval, during a fear task
for candidate features that may detect children with
internalizing psychopathology. We also identify redundant
sensor signals that point to future reductions in sensor array
complexity that will simplify deployment. The overarching
goal of this work is to demonstrate feasibility and potential
directions for future work in pre-school aged children.

II. METHODS

Participants (children aged 4-8 years old, and their
caregiver) were recruited from community advertisements
across the state of Vermont, over-selected for children with
elevated anxiety screening scores. Involvement included one
3-hour laboratory visit. After consenting, the child was
outfitted with wearable sensors and brought to a separate
room while the caregiver was administered a gold-standard
semi-structured diagnostic interview about their child’s
mental health (KSADS-PL), and completed surveys regarding
demographics and mental health on both their child and
themselves. Simultaneously, the child engaged in the
behavioral assessment battery comprised of four mood
induction tasks which represent RDoC Positive (Bubbles and
Reward tasks) and Negative (Approach and Speech tasks)
Valence domains that underly a breadth of internalizing
disorders [15], [16]. Mood induction tasks are consistent with
activities that children conduct during their everyday lives
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playing with siblings or in school-settings. Rest periods, for
physiological recovery, occur before and after each task.

1. Approach Task (30 seconds): Induces anxiety in young
children [8] via potential threat. Child is led into a novel,
dimly lit room toward an unknown and hidden object.

2. Speech Task (3 minutes): Adapted version of the Trier
Social Stress Task for children (TSST-C [9]). Child asked
to tell a 3-minute story that will be judged based on how
interesting it is. An unexpected buzzer interrupts the child
at 90 and 150 seconds. Following the task, children are
given positive feedback.

3. Bubbles Task (3 minutes): Adapted version of the LAB-
TAB bubble task meant to elicit positive affect [17] via
hedonic response to reward. Child plays with bubbles
from a bubble machine for 3 minutes. Administrator gives
positive reflective feedback (i.e., “This is fun!”).

4. Reward Task (1 minute): Adapted version of the delay
task [18]. Child is offered a small, desirable toy after a
delay of 1 minute to induce anticipatory positive affect.

After completing the behavioral assessment battery,
children are administered an 1Q test (Differential Abilities
Scale), and free play until their caregiver has completed all
surveys. Families are compensated for their participation.
Caregivers are also given the results of the diagnostic
interview after consensus diagnosis has been discussed.

Prior to assessment, the child is outfitted with five MC10
BioStamps, an Empatica E4, and a smartphone equipped with
a custom data collection app (Fig. 1). BioStamps placed on
the trapezius (trap), chest, and extensor digitorum record
surface biopotential (EMG/ECG), accelerometer, and
gyroscope data. BioStamps placed on the thigh and lower
back (sacrum) record just accelerometer and gyroscope data.
Study activities were approved by the local institutional
review board.

III. RESULTS

Herein, we present BioStamp data from two of the four
tasks (Approach and Speech) and consider child diagnostic
status from the gold-standard diagnostic interview. In so
doing, we identify candidate signal features, not available in
our prior work [9], which may aid in the detection of
internalizing disorders in young children. We also identify
information common across BioStamp sensors which could
point to future reductions in sensors required for deployment.

A. Candidate Diagnostic Features

Figure 2 presents sacral movement and R-R interval data
collected during the Speech Task from two children in the
KID Study: one child affected by multiple internalizing
disorders (Female, 8.5 years old, Diagnosed Generalized
Anxiety Disorder, Separation Anxiety Disorder, Specific
Phobia Disorder) and one child unaffected by any
internalizing disorders (Male, 5.5 years old).

Sacral movement, as characterized by angular velocity
magnitude (AVM), was different between the affected and
unaffected children during the Speech Task. While the time
series data (Fig. 2, top panel) indicates that the amplitude and

frequency of movements are similar throughout the task, the
5 seconds following each of the unexpected buzzers (vertical
cyan lines, Fig. 2) reveal significant differences. The affected
child appears to respond more significantly to the buzzers
(Fig. 2, middle panel) as indicated by larger sacral angular
velocity magnitudes (Mann-Whitney U-test p<<0.001 for both
periods). While sacrum data are reported here, these same
relationships were observed in data from the trap and chest.
Interestingly, experimenter annotations after watching a
recording of the Speech Tasks indicate that neither child had
an observable movement response to the buzzers. Thus, the
wearable sensors may be picking up on easily unnoticed,
subtle movements.

We also derived R-R intervals from the BioStamp chest
ECG signal (via [19]). Median R-R interval from a baseline
period at the start of the behavioral assessment battery was
used to normalize the Speech task R-R interval values for each
child (Fig. 2, bottom). If a child’s heart rate was higher than
baseline during the Speech Task, we would expect values less
than zero (shorter R-R interval). Both the unaffected child and
affected child had R-R intervals that were significantly below
zero (Wilcoxon signed-rank, p<.001), and thus elevated heart
rates were observed during the Speech task. However, the
median difference from baseline for the affected child is
significantly larger than for the unaffected child (0.062 vs
0.016 seconds).
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Figure 1. Three types of multi-modal sensors are attached to each child: 5
MCI10 BioStamps; 1 Empatica E4 wrist device; and 1 smartphone attached
via a custom elastic waistbelt. The BioStamps that measure surface
biopotential, accelerometer, and gyroscope data are indicated in blue with a
red dotted outline. The BioStamps that measure just accelerometer and
gyroscope data are indicated in blue without an outline.
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Figure 2. Timeseries angular velocity magnitude (top panel) for the unaffected
child (purple) and affected child (blue) with timing of the surprising buzzers
indicated with cyan vertical lines. Significant differences in amplitude of
movement response to each buzzer were identified between children (middle
panel). Baseline adjusted ECG-derived RR-interval timeseries (bottom panel)
from the chest BioStamp also exhibit differences between children during the
Speech Task.

B. Sensor Redundancy

Figure 3 presents examples of movement and biopotential
data recorded from the trap and chest sensors during the
Speech (R-R) and Approach (movement) Tasks. The angular
velocity magnitude from the chest and trap sensors is highly
correlated (Fig. 3, middle and bottom left, Pearson r=0.96,
p<0.001). Interestingly, the surface biopotential signals from
these device locations both exhibited clear R-waves that could
be used for computing instantaneous heart rate and heart rate
variability. To this end, the R-R interval time series extracted
from each device are also highly correlated (Fig. 3, top and
bottom right, Pearson 1=0.74, p<0.001). Remaining
differences in the R-R timeseries between sensors are likely
due to corruption of the ECG signal from the trap sensor by
muscle contractions. These can be reduced considerably with
appropriate signal processing in future work [20].

IV. DiscusSIiON

In this study, we demonstrate the feasibility of using
wearable instrumentation during a behavioral assessment

battery for young children (4-8 years) to identify candidate
digital features for detecting internalizing disorders and
examine instrumentation optimization. We have extended
previous work by collecting data from multiple sensor
modalities and body locations. These data have never been
collected synchronously in children, and particularly with
patch-based wearable sensors.

0.7
G}
«n 0.6
<
2
g 0.5
©
c 04
]
£
0.3 ;
- —— Trapezius
— ECG
0.2
0 10 20 30 40 50 60 70 80 90 100110120130140150160170180
Seconds Elapsed
2120
E’ —— Trapezius
2 100 — ECG
3
£ 80
g
= 60
2z
3 40
Q
>
5 20
S
g o0
0 5 10 15 20 25 30
Seconds Elapsed
120 - 0.7
' 100
2 . 0.6
m A =
o . =}
g 2
< g
0.5
= "
> 3
< <
“‘;” (&)
o 0.4
£
o
0.3
0 20 40 60 80 100 120 0.3 0.4 0.5 0.6 0.7

Trapezius AVM (degs/sec) Trap RR (U)

Figure 3. Signal redundancy for movement and R-R interval between trap and
chest BioStamps. R-R interval (timeseries top, scatter plot bottom right) and
movement (timeseries middle, scatter plot bottom left) are highly correlated
between the two devices during the Speech and Approach tasks.

Herein, we identified candidate features of anxiety during
the Speech Task. Our results suggest that increased movement
in response to startling stimuli (buzzer sounds) may be a
significant discerning feature. This is supported by our
previous finding that increased vocal pitch in response to
buzzers was a discerning feature of internalizing disorders [9].
Similarly, previous studies have identified eyeblink magnitude
in response to unexpected stimuli was a discerning feature of
phobia-related anxiety disorders in adults [21]. Our results also
suggest that R-R interval reactivity during the Speech Task
may be a significant discerning feature. This is supported by
previous work demonstrating heightened cortisol reactivity in
adults with internalizing disorders [23]. Collectively, these
results demonstrate that the proposed instrumentation is
feasible for use in children and provides physiological
measures that may prove useful for building machine learning-



based methods for detecting internalizing disorders in young
children.

We identified a possible point of redundancy in our
wearable sensor array. The strong signal correlations of the
chest and trap sensors indicate the potential for removing the
chest sensor and considering just the trap. This would enable
simultaneous collection of heart rate, heart rate variability, trap
EMG, and torso movement data using a single device. This
reduction may be especially relevant for our very young
participants, as several of them have noted that the sensor
adhesive feels too strong for their sensitive skin.

V. CONCLUSION

These findings will inform our research in this on-going
study geared toward developing a digital tool for detecting
childhood internalizing disorders. Overall, startle movement
reactivity and R-R interval reactivity during the Speech Task
are identified as candidate features for future modeling
efforts. Decreasing the number of wearable sensors now
appears plausible for more feasible deployment. These
findings further our work toward better identification and
tracking of internalizing mental health disorders across
childhood aligning with initiatives by the NIMH Strategic
Plan for Research 2021, the American Academy of Pediatrics
and US Preventative Services Task Force.
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