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Abstract—This paper uses the reconstruction-computation-
quantization (RCQ) paradigm to decode low-density parity-check
(LDPC) codes. RCQ facilitates dynamic non-uniform quantiza-
tion to achieve good frame error rate (FER) performance with
very low message precision. For message-passing according to a
flooding schedule, the RCQ parameters are designed by discrete
density evolution. Simulation results on an IEEE 802.11 LDPC
code show that for 4-bit messages, a flooding Min SumRCQ
decoder outperforms table-lookup approaches such as informa-
tion bottleneck (IB) or Min-IB decoding, with significantly fewer
parameters to be stored.

Additionally, this paper introduces layer-specific RCQ, an ex-
tension of RCQ decoding for layered architectures. Layer-specific
RCQ uses layer-specific message representations to achieve the
best possible FER performance. For layer-specific RCQ, this
paper proposes using layered discrete density evolution featuring
hierarchical dynamic quantization (HDQ) to design parameters
efficiently.

Finally, this paper studies field-programmable gate array
(FPGA) implementations of RCQ decoders. Simulation results
for a (9472, 8192) quasi-cyclic (QC) LDPC code show that a
layered Min SumRCQ decoder with 3-bit messages achieves
more than a 10% reduction in LUTs and routed nets and
more than a 6% decrease in register usage while maintaining
comparable decoding performance, compared to a 5-bit offset
Min Sumdecoder.

Index Terms—LDPC decoder, low bit width decoding, hard-
ware efficiency, layered decoding, FPGA.

I. INTRODUCTION

LOW-Density Parity-Check (LDPC) codes [3] have been
implemented broadly, including in NAND flash systems

and wireless communication systems. Message passing al-
gorithms such as belief propagation (BP) and Min Sumare
utilized in LDPC decoders. In practice, decoders with low
message bit widths are desired when considering the limited
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hardware resources such as area, routing capabilities, and
power utilization of FPGAs or ASICs. Unfortunately, low bit
width decoders with uniform quantizers typically suffer a large
degradation in decoding performance [4]. On the other hand,
the iterative decoders that allow for the dynamic growth of
message magnitudes can achieve improved performance [5].

LDPC decoders that quantize messages non-uniformly have
gained attention because they provide excellent decoding per-
formance with low bit width message representations. One
family of non-uniform LDPC decoders use lookup tables
(LUTs) to replace the mathematical operations in the check
node (CN) unit and/or the variable node (VN) unit. S. K. Plan-
jery et al. propose finite alphabet iterative decoders (FAIDs)
for regular LDPC codes in [6], [7], which optimize a single
LUT to describe VN input/output behavior. In [6] a FAID is
designed to tackle certain trapping sets and hence achieves a
lower error floor than BP on the binary symmetric channel
(BSC). Xiao et al. optimize the parameters of FAID using a
recurrent quantized neural network (RQNN) [8], [9], and the
simulation results show that RQNN-aided linear FAIDs are
capable of surpassing floating-point BP in the waterfall region
for regular LDPC codes.

Note that the size of the LUTs in [6]–[9] describing VN be-
havior are an exponential function with respect to node degree.
Therefore, these FAIDs can only handle regular LDPC codes
with small node degrees. For codes with large node degrees,
Kurkoski et al. develop a mutual-information-maximization
LUT (MIM-LUT) decoder in [10], which decomposes a single
LUT with multiple inputs into a series of concatenated 2× 1
LUTs, each with two inputs and one output. This decompo-
sition makes the number of LUTs linear with respect to node
degree, thus significantly reducing the required memory. The
MIM-LUT decoder performs lookup operations at both the
CNs and VNs. The 3-bit MIM-LUT decoder shows a better
FER than floating-point BP over the additive white Gaussian
noise (AWGN) channel. As the name suggests, the individual
2 × 1 LUTs are designed to maximize mutual information
[11]. Lewandowsky et al. use the information bottleneck (IB)
machine learning method to design LUTs and propose an
IB decoder for regular LDPC codes. As with MIM-LUT, IB
decoders also use 2 × 1 LUTs at both CNs and VNs. Stark
et al. extend the IB decoding structure to support irregular
LDPC codes through the technique of message alignment [12],
[13]. The IB decoder shows an excellent performance on a
5G LDPC code [14], [15]. In order to reduce the memory
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requirement for LUTs, Meidlinger et al. propose the Min-IB
decoder, which replaces the LUTs at CNs with label-based
min operation [16]–[19].

Because the decoding requires only simple lookup op-
erations, the LUT-based decoders deliver high throughput.
However, the LUT-based decoders require significant mem-
ory resources when the LDPC code has large degree nodes
and/or the decoder has a large predefined maximum decoding
iteration time, where each iteration requires its own LUTs. The
huge memory requirement for numerous large LUTs prevents
these decoders from being viable options when hardware
resources are constrained to a limited number of LUTs.

Lee et al. [4] propose the mutual information maximiza-
tion quantized belief propagation (MIM-QBP) decoder which
circumvents the memory problem by designing non-uniform
quantizers and reconstruction mappings at the nodes. Both
VN and CN operations are simple mappings and fixed point
additions in MIM-QBP. He et al. in [20] show how to
systematically design the MIM-QBP parameters for quantizers
and reconstruction modules. Wang et al. further general-
ize the MIM-QBP structure and propose a reconstruction-
computation-quantization (RCQ) paradigm [1] which allows
CNs to implement either the min or boxplus operation.

All of the papers discussed above focus on decoders that use
the flooding schedule. The flooding schedule can be preferable
when the code length is short. However, in many practical
settings such as coding for storage devices where LDPC codes
with long block lengths are selected, the flooding schedule
requires an unrealistic amount of parallel computation for
some typical hardware implementations. Layered decoding
[21], on the other hand, balances parallel computations and
resource utilization for a hardware-friendly implementation
that also reduces the number of iterations as compared to a
flooding implementation for the same LDPC code.

A. Contributions

As a primary contribution, this work extends our previ-
ous work on RCQ [1] to provide dynamic quantization that
changes with each layer of a layered LDPC decoder, as is
commonly used with a protograph-based LDPC code. The
original RCQ approach [1], which uses the same quantizers
and reconstructions for all layers of an iteration, suffers from
FER degradation and a high average number of iterations
when applied to a layered decoding structure. The novelty and
contributions in this paper are summarized as follows:

• Layer-specific RCQ Decoding structure. This paper pro-
poses the layer-specific RCQ decoding structure. The
main difference between the original RCQ of [1] and
the layer-specific RCQ decoder is that layer-specific RCQ
designs quantizers and reconstructions for each layer of
each iteration. The layer-specific RCQ decoder provides
better FER performance and requires a smaller number
of iterations than the original RCQ structure with the
same bit width. This improvement comes at the cost of
an increase in the number of parameters that need to be
stored in the hardware.

• layer-specific RCQ Parameter Design. This work uses
layer-specific discrete density evolution featuring hierar-
chical dynamic quantization (HDQ) to design the layer-
specific RCQ parameters. We refer to this design ap-
proach as layer-specific HDQ discrete density evolution.
For each layer of each iteration, layer-specific HDQ
discrete density evolution separately computes the PMF
of the messages. HDQ designs distinct quantizers and
reconstructions for each layer of each iteration.

• FPGA-based RCQ Implementations. This paper presents
the Lookup Method, the Broadcast Method and the Drib-
ble Method, as alternatives to distribute RCQ parameters
efficiently in an FPGA. This paper verifies the practical
resource needs of RCQ through an FPGA implementa-
tion of an RCQ decoder using the Broadcast method.
Simulation results for a (9472, 8192) quasi-cyclic (QC)
LDPC code show that a layer-specific Min SumRCQ
decoder with 3-bit messages achieves a more than 10%
reduction in LUTs and routed nets and more than a 6%
reduction in register usage while maintaining comparable
decoding performance, compared to a standard offset Min
Sumdecoder with 5-bit messages.

B. Organization
The remainder of this paper is organized as follows: Sec.

II introduces the RCQ decoding structure and presents an
FPGA implementation of an RCQ decoder. Sec. III describes
HDQ, which is used for channel observation quantization
and RCQ parameter design. Sec. IV shows the design of the
layer-specific RCQ decoder. Sec. V presents simulation results
including FER and hardware resource requirements. Sec. VI
concludes our work.

II. THE RCQ DECODING STRUCTURE

The updating procedure of message passing algorithms
contains two steps: 1) computation of the output message, 2)
communication of the message to the neighboring node. To
reduce the complexity of message passing, the computed mes-
sage is often quantized before being passed to the neighboring
node. We refer to the computed messages as the internal
messages, and communicated messages passed over the edges
of the Tanner graph as external messages.

When external messages are produced by a uniform quan-
tizer, low bit width external messages can result in an early
error floor [22]. Thorpe et al. introduced a non-uniform quan-
tizer in [4]. Their decoder adds a non-uniform quantizer and a
reconstruction mapping to the output and input of the hardware
implementation of each node unit. This approach delivers
excellent decoding performance even with a low external bit
width. The RCQ decoder [1] can be seen as a generalization
of the decoder introduced in [4].

In this section, we provide detailed descriptions of the RCQ
decoding structure. Three FPGA implementation methods for
realizing the RCQ functionality are also presented.

A. Generalized RCQ Unit
A generalized RCQ unit as shown in Fig. 1 consists of the

following three modules:
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Fig. 1. Illustration of a generalized RCQ unit which consists of three modules:
Reconstruction that maps a be-bit value to a bi-bit value, Computation that
performs arithmetic operations, and Quantization that quantizes a bi-bit value
to a be-bit value.

1) Reconstruction Module: The reconstruction module ap-
plies a reconstruction function R(·) to each incoming be-
bit external message to produce a bi-bit internal message,
where bi > be. We denote the bit width of CN and VN
internal message by bi,c and bi,v, respectively. For the flooding-
scheduled RCQ decoder, R(·) is iteration-specific and we use
R

(t)
c (·) and R

(t)
v (·) to represent the reconstruction of check

and variable node messages at iteration t, respectively. In the
layer-specific RCQ decoder, R(·) uses distinct parameters for
each layer in each iteration. We use R

(t,r)
c (·) and R

(t,r)
v (·)

to represent the the reconstruction of check and variable
node messages at layer r of iteration t, respectively. The
reconstruction functions are mappings of the input external
messages to log-likelihood ratios (LLR) that will be used by
the node. In this paper, these mappings are systematically
designed by HDQ discrete density evolution, which will be
introduced in a later section.

For a quantizer Q(·) that is symmetric, an external message
d ∈ Fbe

2 can be represented as [dMSB d̃], where dMSB ∈ {0, 1}
indicates sign and d̃ ∈ Fbe−1

2 corresponds to magnitude. We
define the magnitude reconstruction function R∗(·) : Fbe−1

2 →
Fbi−1
2 , which maps the magnitude of external message, d̃, to

the magnitude of internal message. Without loss of generality,
we restrict our attention to monotonic reconstruction functions
so that

R∗(d̃1) > R∗(d̃2) > 0, for d̃1 > d̃2, (1)

where d̃1, d̃2 ∈ Fbe−1
2 . The reconstruction R(d) can be

expressed by R(d) =
[
dMSB R∗(d̃)

]
. Under the assumption

of a symmetric channel, we have R([0 d̃]) = −R([1 d̃]).
2) Computation Module: The computation module F (·)

uses the bi-bit outputs of the reconstruction module to compute
a bi-bit internal message for the CN or VN output. We denote
the computation module implemented in CNs and VNs by
Fc and Fv, respectively. An RCQ decoder implementing the
min operation at the CN yields a Min Sum(ms) RCQ decoder.
If an RCQ decoder implements belief propagation (bp) via
the boxplus operation, the decoder is called bpRCQ. The
computation module, Fv, in the VNs is addition for both
bpRCQ and msRCQ decoders.

3) Quantization Module: The quantization module Q(·)
quantizes the bi-bit internal message to produce a be-bit
external message. Under the assumption of a symmetric
channel, we use a symmetric quantizer that features sign
information and a magnitude quantizer Q∗(·). The magnitude
quantizer selects one of 2b

e−1 − 1 possible indexes using
the threshold values {τ0, τ1, ..., τmax}, where τj ∈ Fbi

2 for
j ∈ {0, 1, ..., 2be−1−2} and τmax is τjmax for jmax = 2b

e−1−2.
We also require

τi > τj > 0, i > j. (2)

Given an internal message h ∈ Fbi

2 , which can be decomposed
into sign part hMSB and magnitude part h̃, Q∗(h̃) ∈ Fbe−1

2 is
defined by:

Q∗(h̃) =


0, h̃ ≤ τ0
j, τj−1 < h̃ ≤ τj

2b
e−1 − 1, h̃ > τmax

, (3)

where 0 < j ≤ jmax. Therefore, Q(h) is defined by Q(h) =
[hMSB Q∗(h̃)]. The super/subscripts introduced for R(·) also
apply to Q(·).

B. Bit Width of RCQ decoder

The three tuple (be, bi,c, bi,v) represents the precision of
messages in a RCQ decoder. For the msRCQ decoder, it is
sufficient to use only the pair (be, bi,v) because bi,c = be, we
simply denote bi,v by bv. The CN min operation computes the
XOR of the sign bits and finds the minimum of the extrinsic
magnitudes. For a symmetric channel, the min operation can
be computed by manipulating the external messages, because
the external message delivers the relative LLR meaning of
reconstructed values. Since we only use external messages to
perform the min operation, Rc(·) and Qc(·) are not needed for
the msRCQ decoder. Finally, we use ∞ to denote a floating
point representation.

C. FPGA Implementation for RCQ

The RCQ FPGA decoder may be viewed as a modification
to existing hardware decoders based on the BP or MS decoder
algorithms, which have been studied extensively [23]–[26].
The RCQ decoders require extra Q(·) and R(·) functions
to quantize and reconstruct message magnitudes. To imple-
ment Q(·) and R(·) functions, we have devised the Lookup,
Broadcast, and Dribble methods. These three approaches are
functionally identical, but differ in the way that the parameters
needed for the Q(·) and R(·) operations are communicated to
the nodes.

1) Lookup Method: The quantization and reconstruction
functions simply map an input message to an output message.
Thus, a simple implementation uses lookup tables imple-
mented using read-only memories (ROMs) to implement all
these mappings. The Q(·) and R(·) functions in every VN
require their own ROMs, implemented using block RAMs.
Because Q(·) and R(·) change with respect to different
iterations and/or layers, one potential drawback of the Lookup
method is a large block RAM requirement.
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Fig. 2. msRCQ magnitude reconstruction module (a) and magnitude quanti-
zation module (b). In FPGA, magnitude reconstruction module is realized by
a multiplexer, and magnitude quantization is realized by comparison functions
and a thermometer-to-binary decoder which realizes the mapping relationship
shown in (c).

2) Broadcast Method: The Broadcast method provides a
scheme where all RCQ parameters are stored centrally in a
control unit, instead of being stored in each VN. Each VN only
takes in the Q(·) and R(·) parameters necessary for decoding
the current iteration and layer, and use logic to perform their
respective operations. Fig. 2 shows an implementation for a 3-
bit RCQ, which uses mere 2 bits for magnitude reconstruction
and quantization. The 2-bit magnitude reconstruction module
is realized by a 4 × 1 multiplexer. The 2-bit magnitude
quantization consists of two steps, first a thermometer code
[27], where the contiguous ones are analogous to mercury in
a thermometer, is generated by comparing the input with all
thresholds, and then the thermometer code is converted to the
2-bit binary form by using a thermometer-to-binary decoder,
which realizes the mapping relationship in Fig. 2c. Two block
RAMS are required in the control unit for the thresholds and
reconstruction values. Small LUTs in each VN implement the
Q(·) and R(·) functions. The main penalty of the Broadcast
method is the additional wiring necessary to route the RCQ
parameters from the central control unit to the VNs.

3) Dribble Method: The Dribble method attempts to re-
duce the number of long wires required by the Broadcast
method. Registers in the VNs save the current thresholds
and reconstruction values necessary for the Q(·) and R(·)
functions. Once again, quantization and reconstruction can be
implemented using the logic in Fig. 2. When a new set of
parameters is required, the bits are transferred (dribbled) one
by one or in small batches from the control unit to the VN
unit registers. Just as in the Broadcast method, two extra block
RAMs and logic for the Q(·) and R(·) functions are required.
The penalty of the Dribble method comes with the extra usage

of registers in the VN units.
We have implemented all methods and explored their re-

source utilization in [2].

III. HIERARCHICAL DYNAMIC QUANTIZATION (HDQ)

This section introduces the HDQ algorithm, a non-uniform
quantization scheme that this paper uses both for quantiza-
tion of channel observations and for quantization of internal
messages by RCQ. Our results show, for example, that HDQ
quantization of AWGN channel observations achieves perfor-
mance similar to the optimal dynamic programming quantizer
of [11] for the binary input AWGN channel, with much lower
computational complexity.

A. Motivation

The quantizer plays an important role in RCQ decoder
design. First, the channel observation is quantized as the input
to the decoder. This section explores how to use HDQ to
quantize the channel observations. Second, the parameters
of R(·) and Q(·) are also designed by quantizing external
messages according to their probability mass function (PMF)
as determined by discrete density evolution. The use of HDQ
to quantize internal messages is described in Section IV.

The HDQ approach designs a quantizer that maximizes mu-
tual information in a greedy or progressive fashion. Quantizers
aiming to maximize mutual information are widely used in
non-uniform quantization design [1], [12], [14]–[20], [28]–
[31]. Due to the interest of this paper, the cardinality of
quantizer output is restricted to 2b, i.e., this paper seeks b-bit
quantizers. Kurkoski and Yagi [32] proposed a dynamic pro-
gramming method to find an optimal quantizer that maximizes
mutual information for a binary input discrete memoryless
channel (BI-DMC) whose outputs are from an alphabet with
cardinality B, with complexity O(B3). The dynamic program-
ming method of [11] finds the optimal quantization, but the
approach becomes impractical when B is large.

In order to quantize the outputs for a channel with large
cardinality B when constructing polar codes, Tal and Vardy
devised a sub-optimal greedy quantization algorithm with
complexity O(B log(B)) [32]. In [28], Lewandowsky et al.
proposed the modified Sequential Information Bottleneck
(mSIB) algorithm to design the channel quantizer and LUTs
for LDPC decoders. mSIB is also a sub-optimal quantization
technique with complexity O(aB), where a is the number
of trials. As a machine learning algorithm, multiple trials are
required for good results with mSIB. Typical values of a range,
for example, from 15 to 70.

HDQ is proposed in [1] as an efficient b-bit quantiza-
tion algorithm for the symmetric BI-DMC with complexity
O
(

2b

log(γ) log(B)
)

. HDQ has less complexity than mSIB and
also the Tal-Vardy algorithm. This section reviews the HDQ
using symmetric binary input AWGN channel as an example.
As an improvement to the HDQ of [1], sequential threshold
search is replaced with golden section search [33].
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B. The HDQ Algorithm

Let the encoded bit x ∈ {0, 1} be modulated by Binary
Phase Shift Keying (BPSK) and transmitted over an AWGN
channel. The modulated BPSK signal is represented as s(x) =
−2x + 1. We denote the channel observation at the receiver
by y where

y = s(x) + z, (4)

and z ∼ N (0, σ2). The joint probability density function of x
and y, f(x, y;σ), is:

f(x, y;σ) =
1

2
√
2πσ2

e−
(y−s(x))2

2σ2 . (5)

HDQ seeks an b-bit quantization of the continuous channel
output y, as in [30]. In practice, often y is first quantized into B
values using high-precision uniform quantization where B ≫
2b, i.e., analog-to-digital (A/D) conversion. Let W be the result
of the A/D output, where W ∈ W and W = {0, 1, ..., B−1}.
The alphabet of B channel outputs from the A/D converter is
then subjected to further non-uniform quantization resulting in
a quantization alphabet of 2b values. We use D to represent
the non-uniform quantizer output, which is comprised of the
b bits D = [D1, ..., Db]. HDQ aims to maximize the mutual
information between X and D.

For the symmetric binary input AWGN channel, a larger
index w implies a larger LLR, i.e.:

log
PW |X(i|0)
PW |X(i|1) < log

PW |X(j|0)
PW |X(j|1) , ∀i < j. (6)

Based on Lemma 3 in [11], any binary-input discrete memo-
ryless channel that satisfies (6) has an optimal b-bit quantizer
that is determined by 2b−1 boundaries, which can be identified
by their corresponding index values. Denote the 2b − 1 index
thresholds by {ξ1, ξ2, ..., ξ2b−1} ⊂ W . Unlike the dynamic
programming algorithm [11], which optimizes boundaries
jointly, HDQ sequentially finds thresholds according to bit
level, similar to the progressive quantization in [29].

The general b-bit HDQ approach is as follows:
1) We assume an initial high-precision uniform quantizer.

For this case, set the extreme index thresholds ξ0 = 0
and ξ2b = B−1, which are the minimum and maximum
outputs of the uniform quantization.

2) The index threshold ξ2(b−1) is selected as follows to
determine the bit level 0:

ξ2(b−1) = arg max
ξ0<ξ<ξ

2b

I(X;D1) , (7)

where
D1 = 1(W ≥ ξ

(b−1)
2 ). (8)

3) The index thresholds ξ2(b−2) and ξ3∗2(b−2) are selected
as follows to determine bit level 1:

ξ2(b−2) = arg max
ξ0<ξ<ξ

2b−1

I(X;D2|D1 = 0), (9)

ξ3∗2(b−2) = arg max
ξ
2b−1<ξ<ξ

2b

I(X;D2|D1 = 1) , (10)

x

f(x)

al ara′ a′′

Fig. 3. Illustration of one iteration of golden-section search for finding
maximum point of f(x) in the interval [al, ar]. a′ = ar − ar−al

γ
and

a′′ = al +
ar−al

γ
. Because f(a′′) < f(a′), [a′′, ar] is truncated and [al, a

′′]
becomes the new search interval for the next iteration.

and

D2 =

{
1(W ≥ ξ2(b−2)) if D1 = 0

1(W ≥ ξ3∗2(b−2)) if D1 = 1
. (11)

4) In the general case, when the thresholds for k previous
quantization bits have been determined, 2k thresholds
{ξ(j+0.5)2b−k , j = 0, .., 2k − 1} must be selected to
determine the next quantization bit. Each threshold
maximizes I(X;Dk+1|Dk = dk, . . . , D1 = d1) for a
specific result for the k previous quantization bits.

HDQ provides the 2b− 1 index thresholds {ξ1, . . . , ξ2b−1}.
For channel quantization, the index thresholds can be mapped
to channel outputs. For the RCQ decoding, the messages are
LLR values, the LLR magnitude thresholds {τ0, ..., τ2b−1−2}
are calculated from the index thresholds {ξ2b−1+1, . . . , ξ2b−1}
as follows:

τi = log
PW |X(ξ1+i+2b−1 |0)
PW |X(ξ1+i+2b−1 |1) , i = 0, 1, .., 2b−1 − 2. (12)

HDQ also provides the joint probability between code
bit X and quantized message D, P (X,D). The magnitude
reconstruction function R∗(·) is computed as follows:

R∗(d) = log
PXT (0, d+ 2b−1)

PXT (1, d+ 2b−1)
, d = 0, 1, ..., 2b−1 − 1.

(13)

C. Golden-Section Search and Complexity Analysis
After k stages of HDQ, there are 2k quantization regions

each specified by their leftmost and rightmost indices ξℓ and
ξr. The next stage finds a new threshold ξ∗ for each of these 2k

regions. Each ξ∗ is selected to maximize a conditional mutual
information as follows:

ξ∗ = arg max
ξℓ<ξ<ξr

I(ξ), (14)

where

I(ξ) = I (X;Dk+1(ξ)|D1 = d1, . . . , Dk = dk) (15)

=
∑

x,dk+1

P
(
x, dk+1(ξ)|dk1

)
log

P (dk+1(ξ)|x, dk1)
P (dk+1(ξ)|dk1)

(16)
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Fig. 4. A trellis whose paths represent all 2-bit quantizers for a BI-DMC
with 8 outputs. The vertices in column i are possible values for ith threshold
ξi. Each branch in the trellis identifies a quantization region.

for the binary k-tuple dk1 = d1, . . . , dk that defines (ξℓ, ξr).
The probability P

(
x, dk+1(ξ)|dk1

)
is defined as follows:

P
(
x, dk+1(ξ)|dk1

)
=


∑ξ

w=ξl
PXW (x,w)∑ξr

w=ξl
PW (w)

dk+1 = 0∑ξr
w=ξ+1 PXW (x,w)∑ξr

w=ξl
PW (w)

dk+1 = 1
. (17)

Because I(ξ) is concave in ξ, the local maximum can be
found using the golden section search [33], a simple but robust
technique to find extreme point of a unimodal function by
successively narrowing the range of values on a specified
interval. Specifically, Fig. 3 illustrates one iteration of golden-
section search for finding maximum point of f(x) in the
interval [al, ar]. First, find a′ = ar− ar−al

γ and a′′ = al+
ar−al

γ ,

where γ =
√
5+1
2 . Because f(a′′) < f(a′), which suggests

that the maximum point lies in [al, a
′′], the interval [a′′, ar]

is truncated and [al, a
′′] is updated as the next round search

interval. Further details of golden-section search can be found
in [33]. When using the golden-section search to find all 2b−1
thresholds for the b-bit HDQ, I(ξ) will be computed using (15)
a number of times that is proportional to:

logγ(B) +

21∑
i=1

logγ(B2,i) + ...+
2b−1∑
i=1

logγ(Bb,i), (18)

≤ logγ(B) + 2 logγ

(
B

2

)
+ ...+ 2b−1 logγ

(
B

2b−1

)
(19)

=
2b

log(γ)
log(B). (20)

Bj,i is the ith interval length in j − 1 bit level quantization and∑2j−1

i=1 Bj,i = B. Therefore, a b-bit quantization on a B-output
channel using HDQ can be designed in O

(
2b

log(γ) log(B)
)

time.

D. Comparing HDQ with Optimal Dynamic Programming

This subsection provides an example contrasting HDQ with
the dynamic programming solution. Following [11], Fig. 4
gives a trellis whose paths represent all 2-bit quantizers for
a binary input DMC with 8 outputs. The outputs are indexed

C
h
a
n
n
e
l 

O
b
s
e
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a
ti

o
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(a)

(b)

Fig. 5. Fig. (a): Quantization thresholds for dynamic programming, msIB, and
HDQ on the BI-AWGNC as a function of σ2 for B = 2000. Fig. (b): Mutual
information loss between each sub-optimal quantizer and optimal quantizer
for BI-AWGNC as a function of σ2 for B = 2000.

from 0 to 7 and satisfy (6). The vertices in column i are
possible values for ξi, and each path represents a valid quan-
tizer whose thresholds are determined by the vertices in each
column. Each branch in the trellis identifies a quantization
region. For example, the branch connecting vertex ξ0 = 0 to
vertex ξ1 = 2 specifies the leftmost quantization region as
{0,1}, i.e., ξℓ = 0 and ξr = 1.

The dynamic programming algorithm determines vertices
of all columns jointly, whereas HDQ identifies the vertices
in a greedy way, by first finding the vertex in column 2 to
maximize I(X;D1) and then vertices in column 1 and 4 to
maximize I(X;D2|D1 = d1). Hence, the greedy approach of
HDQ only searches part of trellis and therefore is sub-optimal.
However, our simulations show that HDQ finds the quantizer
that perform closely to the optimal one.
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E. Simulation Result

This section provides simulation results for quantizing sym-
metric binary input AWGN channel observations. The simu-
lations compare HDQ to the optimal dynamic programming
result as well as to two sub-optimal approaches: mSIB with
20 and 70 trials and the greedy quantization algorithm describe
in [28]. For all the quantization approaches, the channel
observations are first quantized uniformly into B = 2000
points between −2 and 2.

Fig. 5a gives the thresholds as a function of σ2 for HDQ,
dynamic programming, mSIB with 20 and 70 trials, and
greedy quantization. The quantization thresholds for HDQ,
dynamic programming, and mSIB are indistinguishable in
Fig. 5a. HDQ has significantly lower complexity than both
dynamic programming and mSIB. The thresholds for greedy
quantization algorithm of [32] deviate noticeably from the
thresholds found by the other approaches.

In order to quantify the performance of sub-optimal quan-
tizers, we define ∆I as follows:

∆I = Idp(X;D)− Isub(X;D), (21)

where Idp(X;D) and Isub(X;D) are the mutual information
between code bit X and quantized value D as obtained by dy-
namic programming and sub-optimal quantizers, respectively.
Fig. 5b plots ∆I as a function of σ2 for each sub-optimal
quantizer. All three sub-optimal quantizers perform quite well
with ∆I < 10−3 bits. However, HDQ and mSIB achieve
∆I < 10−6, significantly outperforming the greedy approach
of [32].

IV. HDQ DISCRETE DENSITY EVOLUTION AND RCQ
PARAMETER DESIGN

Discrete density evolution [34] is a technique to analyze the
asymptotic performance of an LDPC ensemble. In this section,
we present HDQ discrete density evolution, which is used
for designing the quantization thresholds and reconstruction
mappings of RCQ decoders and analyzing decoding perfor-
mance under an RCQ framework. As HDQ discrete density
evolution for LDPC decoders with a flooding-schedule has
been described thoroughly in our precursor conference paper
[1], this section is focused on HDQ discrete density evolution
for LDPC decoders with a layered schedule. Specifically,
this section considers layer-specific msRCQ decoding on QC-
LDPC codes.

A. Decoding a Quasi-Cyclic LDPC Code with a Layered
Schedule

QC-LDPC codes are structured LDPC codes characterized
by a parity check matrix H ∈ F(n−k)×n

2 which consists of
square sub-matrices with size S, which are either the all-
zeros matrix or a cyclic permutation of the identity matrix.
These cyclic permutations are also called circulants that are
represented by σi to indicate that the rows of the identity
matrix are cyclically shifted by i positions. Thus an M × U
base matrix Hp can concisely define a QC-LDPC code, where
each element in Hp is either 0 (the all-zeros matrix) or σi

(a circulant). QC-LDPC codes are perfectly compatible with

horizontal layered decoding by partitioning CNs into M layers
with each layer containing S consecutive rows. This ensures
that each VN connects to at most one CN in each layer.

Denote the ith CN and jth VN by ci and vj respectively.
Let u(t)

ci→vj be the LLR message from ci to its neighbor vj in
tth iteration and lvj

be the posterior of vj . In the tth iteration,
a horizontal-layered Min Sumdecoder calculates the messages
u
(t)
ci→vj′ and updates the posteriors lvj′ as follows:

lvj′ ← lvj′ − u(t−1)
ci→vj′

∀j′ ∈ N (ci), (22)

u(t)
ci→vj′

=

 ∏
j̃∈N (ci)/{j′}

sign(lvj̃
)


× min

j̃∈N (ci)/{j′}
|lvj̃
|, ∀j′ ∈ N (ci),

(23)

lvj′ ← lvj′ + u(t)
ci→vj′

∀j′ ∈ N (ci). (24)

N (ci) denotes the set of VNs that are neighbors of ci. For
a QC-LDPC code with a long block length, layered decoding
is preferable for hardware implementations because parallel
computations of each of (22), (23), and (24) exploit the QC-
LDPC structure.

B. Representation Mismatch Problem

The RCQ decoding structure in [1] can be used with a
layered schedule as discussed in Sec. IV-A. Fig. 6a illustrates
the paradigm for an msRCQ decoder with a layered schedule.
The Q

(t)
v and R

(t)
v are designed by the HDQ discrete density

evolution as in [1]. Even though the msRCQ decoder has better
FER performance than the standard Min Sumdecoder under
a flooding schedule [1], under a layered schedule, msRCQ
has worse FER performance than standard Min Sumand also
requires more iterations. These performance differences are
shown below in Fig. 9 of Sec. V. This subsection explains
how the performance degradation of the RCQ decoder under
the layered schedule is caused by the representation mismatch
problem.

Consider a regular LDPC code defined by a parity check
matrix H . In iteration t, define the PMF between code bit x
and external CN messages u

(t)
ci→vj as P

(t)
(ci,vj)

(X,D), where
X = {0, 1} and D = {0, ..., 2be − 1}. One underlying
assumption of HDQ discrete density evolution is that all CN
messages have the same PMF in each iteration, i.e., for any
(ci, vj) and (ci′ , vj′) that satisfy Hi,j = Hi′,j′ = 1:

P
(t)
(ci,vj)

(X,D) = P
(t)
(ci′ ,vj′ )

(X,D). (25)

(25) implies that the message indices of different CN have the
same LLR representation, i.e.:

log
P

(t)
(ci,vj)

(0, d)

P
(t)
(ci,vj)

(1, d)
= log

P
(t)
(ci′ ,vj′ )

(0, d)

P
(t)
(ci′ ,vj′ )

(1, d)
, d ∈ {0, ..., 2be − 1}.

(26)

The msRCQ decoder with a flooding schedule obeys (25)
and (26) because the VN messages to calculate different
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uc→vj

R(t−1)(·)

Q(t)(·)

min

R(t)(·)

lvj

be bits

bv bits

bv bits

bv bits

be bits

be bits

VN unit CN unit

R(t)

Q(t)

Memory

(a)

uc→vj

R(t−1,r)(·)

Q(t,r)(·)

min

R(t,r)(·)

lvj

be bits

bv bits

bv bits

bv bits

be bits

be bits

VN unit CN unit

R(t,1)

Q(t,1)

Layer 1

Memory

R(t,2)

Q(t,2)

Layer 2

Memory

R(t,M)

Q(t,M)

Layer M

Memory

. . .

(b)

Fig. 6. Two layered decoders. Fig. (a) uses the same RCQ parameters for
each layer as with the msRCQ design for a flooding decoding in [1]. Fig.
(b) shows the proposed layer-specific msRCQ decoder in [2], which features
separate RCQ parameters for each layer.

CN messages have the same distribution. Therefore, it is
sufficient for a decoder with a flooding schedule to use the
iteration-specific reconstruction function R(t) for all external
CN messages. However, for a decoder with a layered schedule,
the VN messages to calculate CN messages from different
layers have different distributions. For the decoder with a
layered schedule, l(t)vj→ci is calculated by:

l(t)vj→ci = l(ch)vj
+

∑
{i′|i′∈N (vj),i′<i}

u(t)
ci′→vj

+
∑

{i′|i′∈N (vj),i′>i}
u(t−1)
ci′→vj

,
(27)

Unlike a decoder using a flooding schedule, which updates
l
(t)
vj→ci only using CN messages in iteration t − 1, decoders

using a layered schedule use messages from both iteration
t− 1 and iteration t. The VN messages computed in different
layers utilize different proportions of check-to-variable node
messages from iterations t − 1 and t. Since the check-to-
variable node messages from different iterations have different
reliability distributions, the VN messages from different layers
also have different distributions. Therefore (25) and (26)

no longer hold true, and a single R(t)(·) is insufficient to
accurately describe CN messages from different layers.

In conclusion, the Representation Mismatch Problem refers
to inappropriately using a single R(t) and single Q(t) for
all layers in iteration t of a layered decoding schedule. This
issue degrades the decoding performance of layer-scheduled
RCQ decoder. On the other hand, the conventional fixed-point
decoders that do not perform coarse non-uniform quantization,
such as standard Min Sumdecoder, are not affected by the
changing the distribution of messages in different layers and
hence don’t have representation mismatch problem.

C. Layer-Specific RCQ Design

Based on the analysis in the previous subsection, R and Q
should adapt for the PMF of messages in each layer, in order
to solve the representation mismatch problem. This motivates
us to propose the layer-specific RCQ decoding structure in this
paper, as illustrated in Fig. 6b. The key difference between the
RCQ decoder and layer-specific RCQ decoder is that layer-
specific RCQ designs quantizers and reconstruction mappings
for each layer in each iteration. We use R(t,r) and Q(t,r) to
denote the reconstruction mapping and quantizer for decoding
iteration t and layer r, respectively. As illustrated in Fig. 6b,
layer-specific RCQ specifies R and Q for each layer to handle
the issue that messages in different layers have different PMFs.
This leads to a significant increase in the required memory
because the memory required to store R(t,r) and Q(t,r) is
proportional to the product of the number of layers and the
number of iterations required for decoding the QC-LDPC
code.

Designing Q(t,r)(·) and R(t,r)(·) for layer-specific msRCQ
requires the message PMF for each layer in each iteration.
However, HDQ discrete density evolution [1], which performs
density evolution based on ensemble, fails to capture layer-
specific information. In this section, we propose a layer-
specific HDQ discrete density evolution based on base matrix
Hp of QC-LDPC code. In layer-specific HDQ discrete density
evolution, the joint PMF between code bit X and external
message D from check/variable nodes are tracked in each
layer in each iteration. We use P (t,r)(X,Dc), X ∈ {0, 1},
Dc ∈ {0, ..., 2be−1} to represent the joint PMF between code
bit and CN message in layer m and iteration t. Similarly, VN
messages are denoted by P (t,r)(X,Dv).

1) Initialization: For an AWGN channel with noise vari-
ance σ2, the LLR of channel observation y is l = 2

σ2 y. For
the msRCQ decoder with bit width (be, bv), the continuous
channel LLR input is uniformly quantized into 2b

v
regions.

Each quantization region has a true log likelihood ratio, which
we refer to as ld, so that we have an alphabet of bv real-
valued log likelihood ratios Dch = {l0, ..., l2bv−1}. Using these
values, the joint PMF between the code bit X and channel
LLR message Dch ∈ {0, ..., 2bv − 1} is:

PXDch(x, d) = PD(d)
e(1−x)ld

eld + 1
, X ∈ {0, 1}, ld ∈ Dch .

(28)

The distribution PXDch(x, d) is used for the HDQ discrete
density evolution design. The actual decoder does not use
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the real-valued likelihoods ld but rather uses bv-bit channel
LLRs obtained by uniformly quantizing continuous channel
LLR values.

2) Variable Nodes PMF Calculation: Given a base matrix
Hp, with entry Hp(r, c) at row r and column c, define the
sets of active rows R(c) for a specified column c and active
columns C(r) for a specified row r as follows:

R(c) = {r|Hp(r, c) ̸= 0}, C(r) = {c|Hp(r, c) ̸= 0}. (29)

In iteration t and layer r, consider the joint PMF between a
code bit X corresponding to a VN in the circulant Hp(r, c)
and the vector D, which includes the channel message Dch

for X and the check node messages Dc incident to that VN.
This PMF is calculated by:

P (t,r,c)
v (X,D) = P (X,Dch)⊡

(
⊡k∈R(c)

k<r

P (t,k)(X,Dc)

)
⊡

(
⊡k∈R(c)

k>r

P (t−1,k)(X,Dc)

)
,

(30)

⊡ is defined as follows:

P (x, [d1, d2]) = P (X1, D1)⊡ P (X2, D2) (31)

≜
1

PX(x)
PX1D1

(x, d1)PX2D2
(x, d2), (32)

x ∈ {0, 1}, d1, d2 ∈ {0, ..., 2b
e−1}. When |R(c)| is large, the

alphabet D of possible input message vectors D is large with
|D| = 2b

v+(|R(c)|−1)be . To manage the complexity of HDQ
discrete density evolution, message vectors D with similar log
likelihoods are clustered via one-step-annealing as in [1] for
(30).

The layer-specific msRCQ decoder uses layer-specific pa-
rameters, and for each layer the marginal distribution on
the computed variable node messages will be distinct. The
marginal distribution used by HDQ at layer r is computed as
follows:

P̃ (t,r)
v =

{
1

|C(r)|P
(t,r,c)
v (X,D) | c ∈ C(r)

}
(33)

where P (t,r)(X,Dv) and Q(t,r)(·) can be obtained by quan-
tizing P̃

(t,r)
v using HDQ:[

P (t,r)(X,Dv), Q(t,r)(·)
]
= HDQ

(
P̃ (t,r)

v , 2b
e
)
, (34)

where HDQ is defined as a function that realizes be-bit HDQ
on P̃

(t,r)
v and generates P (t,r)(X,Dv) and Q(t,r) as outputs.

Note that (33) and (34) realize implicit message alignment in
[13] such that the internal messages from any c ∈ C(r) use
same set of thresholds for quantization and the same external
messages from any c ∈ C(r) have same LLR interpretations,
regardless of node degree.

3) Check Nodes PMF Calculation: Let l(t,r)v (d) be the LLR
of external VN message d in layer r and iteration t. As an
LLR, this CN input l(t,r)v (d) has the following meaning:

l(t,r)v (d) = log
P

(t,r)
XDv(0, d)

P
(t,r)
XDv(1, d)

, d = 0, ..., 2b
e − 1. (35)

Given input messages d1, d2 ∈ Dv, the CN min operation
produces the following output:

lout
MS =min

(
|l(t,r)v (d1)|, |l(t,r)v (d2))|

)
× sgn(l(t,r)v (d1))× sgn(l(t,r)v (d2)).

(36)

Under the symmetry assumption, there is a dout ∈ Dv that has
the LLR computed as lout

MS:

lout
MS = log

P
(t,r)
XDv(0, dout)

P
(t,r)
XDv(1, dout)

. (37)

Define the follow function:

dout = MS(d1, d2), (38)

where dout, d1, d2 ∈ Dv. (38) holds if and only if (36) and
(37) and are both satisfied.

Define the binary operation ⊛ by:

P̃XD(x, d) = P (X1, D1)⊛ P (X2, D2) (39)

≜
∑

d1,d2:MS(d1,d2)=d
x1,x2:x1

⊕
x2=x

PX1D1
(x1, d1)PX2D2

(x2, d2).

(40)

The joint PMF between code bit and external CN message
in layer r and iteration t can be updated by:

P (t,r)(X,Dc) = P (t,r)(X,Dv)⊛ ...⊛ P (t,r)(X,Dv) (41)

≜ P (t,r)(X,Dv)⊛(|C(r)|−1). (42)

R(t,r)(·) can be directly computed using P (t,r)(X,Dc):

R(t,r)(d) = log
P

(t,r)
XDc (0, d)

p
(t,r)
XDc(1, d)

, d ∈ {0, ..., 2be − 1}. (43)

D. Threshold

At any specified Eb

No
, layer-specific HDQ discrete density

evolution constructs the R(t,r)(·) and Q(t,r)(·) functions for
each layer r at each iteration t and also computes the
mutual information I(t,r)

(
Eb

No

)
between a code bit and its

corresponding variable node message in each layer r at each
iteration t. An important design question is which value of
Eb

No
to use to construct the R(t,r)(·) and Q(t,r)(·) functions

implemented at the decoder, which necessarily will work over
a range of Eb

No
values in practice. Define the threshold of a

layer-specific RCQ decoder given a base matrix with M layers
and maximum number of decoding iterations IT as:

Eb

No

∗
= inf

{
Eb

No
: I(IT ,r)

(
Eb

No

)
> 1− ϵ, ∀r ∈ [1,M ]

}
,

(44)

i.e., Eb

No

∗
is the smallest Eb

No
that achieves a mutual information

between the code bit and the external message that is greater
that 1−ϵ for each layer. Our simulation results show that Eb

No

∗

for ϵ = 10−4 produced R(t,r)(·) and Q(t,r)(·) functions that
deliver excellent FER performance across a wide Eb

No
range.
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(b) Decoders with fixed point messages

Fig. 7. Fig. (a): FER performance of 4-bit msRCQ and bpRCQ decoders
with floating point message representations use at the VNs. Fig. (b):FER
performance of fixed point 4-bit msRCQ decoders, compared with other non-
uniform quantization decoders.

V. SIMULATION RESULT AND DISCUSSION

This section presents RCQ and layer-specific RCQ decoder
designs for two example LDPC codes and compares their FER
performance with existing conventional decoders such as BP,
Min Sum, and state-of-the-art non-uniform decoders, such as
an IB decoder. All decoders are simulated using the AWGN
channel, and at least 100 frame errors are collected for each
point. We also compare hardware requirements for an example
LDPC code.

A. IEEE 802.11 Standard LDPC Code

We first investigate the FER performance of RCQ decoders
with a flooding schedule using an IEEE 802.11n standard
LDPC code taken from [35]. This code has n = 1296,

k = 648, and the maximum number of decoding iterations
was set to 50.

Fig. 7a shows the FER curves of 4-bit bpRCQ and
msRCQ decoder with floating-point internal messages, i.e.,
bpRCQ(4,∞,∞) and msRCQ(4,∞), respectively . The nota-
tion of ∞ represents floating-point message representation.
Denote floating point BP nad Min Sum by BP(∞) and Min
Sum(∞), respectively. The 4-bit bpRCQ decoder has at most
0.1 dB degradation compared with the floating-point BP
decoder, and outperforms floating-point BP at high Eb

No
. The

4-bit msRCQ performs better than conventional Min Sumand
even surpasses BP at high Eb

No
. The lower error floor of msRCQ

decoder as compared to standard BP follows from the slower
message magnitude convergence rate as compared to standard
BP. This is similar to improved error floors achieved by the
averaged BP (ABP) [35], which decreases the rate of increase
of message magnitudes by averaging the posteriors l

(t)
v in

consecutive iterations. As shown in Fig. 7a, ABP also delivers
a lower error floor than standard BP.

The slow magnitude convergence rate of msRCQ decoder
can be explained as follows. For conventional Min Sumde-
coder, the magnitude of each check node message is always
equal to the magnitude of an input variable node message for
that CN. This is not true for the msRCQ decoder. msRCQ
compares the relative LLR meanings of input messages and
returns an external message by implementing the min opera-
tion. However, the external message is then reconstructed at
the VN to an internal message magnitude that is in general
different from the message magnitudes that were received by
the neighboring CN.

For the example of a degree-3 CN, (45) computes the
likelihood associated with a message lt that is outputted from
the min operation applied to the other two input messages
indexed by i and j:

lt = log

∑
{(i,j)|t=MS(i,j)} P (0, i)P (0, j) + P (1, i)P (1, j)∑
{(i,j)|t=MS(i,j)} P (1, i)P (0, j) + P (0, i)P (1, j)

.

(45)

Note that the boxplus operation is computed as follows :

li ⊞ lj = log
P (0, i)P (0, j) + P (1, i)P (1, j)

P (0, i)P (1, j) + P (1, i)P (0, j)
. (46)

Comparing with (46), it can be seen that (45) applies the
boxplus operation to the probability of the group of messages
that share same value for MS(i, j). Applying the boxplus
operation to the group of messages produces a value that lies
between the extremes of the messages produced by individual
boxplus operations. This grouping process lowers the maxi-
mum output magnitude and therefore decreases the message
magnitude growth rate in an iterative decoding process. As
noted in [36], a possible indicator of the emergence of error
trapping sets may be a sudden magnitude change in the values
of certain variable node messages, or fast convergence to an
unreliable estimate. Therefore, slowing down the convergence
rate of VN messages can decrease the frequency of trapping
set events. Both msRCQ decoder and A-BP in [35] reduce
the the convergence rate of VN messages and hence deliver a
lower error floor.
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Fig. 8. Average magnitudes of l
(t)
v vs. iteration for BP, ABP, Min Sumand

msRCQ for Fig. 6a simulation at Eb
No

= 2.6 dB.

The effect of averaging can be seen in Fig. 8, which gives
the average magnitude of l(t)v for four decoders with a noise-
corrupted all-zero codeword at Eb

No
= 2.6 dB as the input. The

oscillation pattern of the BP decoder has been reported and
discussed in [36]. As shown in Fig. 7a, ABP also outperforms
belief propagation when Eb

No
is high.

Fig. 7b compares msRCQ(4,10) with other non-uniform
quantization LDPC decoders. Simulation results show that
both IB [28] and Min-IB [17] decoders exhibit an error
floor after 2.40dB. The MIM-QMS [37] decoder has a
similar decoding structure to msRCQ. Note that MIM-QMS
requires the determination of the internal bit width used by
the VNs before designing quantization and reconstruction
parameters, so reducing the bit width of VNs requires another
design cycle. In contrast, for the purposes of HDQ discrete
density evolution design process, msRCQ assumes that the
internal VN messages are real-valued. This assumption is
an approximation since the internal VN messages will have
finite precision in practical implementations. During actual
decoding, the reconstruction operation R(·) produces a high-
precision representation for use in computations at the VN.
We found that assuming real-valued internal messages in the
design process introduces negligible loss for practical inter-
nal message sizes while greatly simplifying the design. Our
simulation results in 7b confirm that high precision internal
messages have FER performance that is very close to real-
valued internal messages. The RCQ decoder has more efficient
memory usage than LUT-based decoders. For the investigated
non-uniform LDPC code, 4-bit IB and 4-bit Min-IB require
14.43k and 10.24k bits, respectively, for storing LUTs per
iteration, whereas msRCQ(4,12) and msRCQ(4,10) require
165 bits and 135 bits only.

B. (9472, 8192) QC-LDPC code
In this section we consider a rate-0.8649 quasi-regular

LDPC code, with all VNs having degree 4 and CNs having
degree 29 and 30, as might be used in a flash memory
controller. We study this (9472, 8192) QC-LDPC code using
various decoders with a layered schedule. The layer number
of the investigated LDPC code is 10.
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Fig. 9. Fig. (a): FER performance of fixed point L-msRCQ decoders for
(9472, 8192) LDPC code. Fig. (b): FER performance of fixed point L-msRCQ
decoders for (9472, 8192) LDPC code.

Fig. 9a shows the FER curves of various decoders. The
maximum number of decoding iterations of all studied de-
coders is 10. The layer-specific msRCQ(4,8) outperforms
msRCQ(4,10) by 0.04 dB, which shows the benefit of opti-
mizing layer and iteration specific RCQ parameters. The layer-
specific msRCQ(3,8) delivers similar decoding performance
to msRCQ(4,10). The decoding performance of 2-bit layer-
specific msRCQ has a 0.2 dB degradation compared with
the 4-bit layer-specific msRCQ decoder. Fig. 9a also shows
a fixed point offset Min Sum(OMS) decoder with offset factor
0.5. At a FER of 10−8, OMS(6,8) and OMS(5,7) outperform
layer-specific msRCQ(3,8) by 0.02 dB, yet are inferior to
layer-specific msRCQ(4,8) by 0.02 dB. Fig. 9b shows the
average decoding iteration times for some of the decoders
studied in Fig. 9a. At high Eb

No
, the msRCQ(4,10) decoder

requires the largest average number of iterations to complete
decoding. On the other hand, layer-specific msRCQ(4,8) has a
similar decoding iteration time to OMS(5,7) and BP(∞) in this
region. Layer-specific msRCQ(3,8) requires a slightly higher
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TABLE I
HARDWARE USAGE OF VARIOUS DECODING STRUCTURE FOR (9472,8192) QC-LDPC CODE

Decoding Structure LUTs Registers BRAMS Routed Nets
OMS(5,7) (baseline) 21127 12966 17 29202

layer-specific RCQ(4,8) 20355(↓ 3.6% ) 13967(↑ 7.0%) 17.5(↑ .03%) 28916(↓ 1%)
layer-specific RCQ(3,8) 17865(↓ 15.4%) 12098(↓ 6.7%) 17(−) 25332(↓ 13.3%)

average number of iterations than layer-specific msRCQ(4,8)
and OMS(5,7).

We implemented OMS and layer-specific msRCQ decoders
with different bit widths on the programmable logic of a Xilinx
Zynq UltraScale+ MPSoC device for comparison. Each design
meets timing with a 500 MHz clock. The broadcast method
described in [2] is used for RCQ design. Table I summarizes
the hardware usage of each decoder. Simulation result shows
that layer-specific msRCQ(4,8) has a similar hardware usage
with OMS(5,7), and layer-specific msRCQ(3,8) has more than
a 10% reduction in LUTs and routed nets and more than a 6%
reduction in registers, compared with OMS(5,7).

VI. CONCLUSION

This paper investigates the decoding performance and re-
source usage of RCQ decoders. For decoders using the flood-
ing schedule, simulation results on an IEEE 802.11 LDPC
code show that a 4-bit msRCQ decoder has a better decoding
performance than LUT based decoders, such as IB decoders
or Min-IB decoders, with significantly fewer parameters to
be stored. It also surpasses belief propagation in the high
Eb

No
region because a slower message convergence rate avoids

trapping sets. For decoders using the layered schedule, conven-
tional RCQ design leads to a degradation of FER performance
and higher average decoding iteration time. Designing a layer-
specific RCQ decoder, which updates parameters in each layer
and iteration, improves the performance of a conventional
RCQ decoder under a layered schedule. Layer-specific HDQ
discrete density evolution is proposed to design parameters
for RCQ decoders with a layered schedule. FPGA implemen-
tations of RCQ decoders are used to compare the resource
requirements of the decoders studied in this paper. Simulation
results for a (9472, 8192) QC LDPC code show that a layer-
specific Min SumRCQ decoder with 3-bit messages achieves
a more than 10% reduction in LUTs and routed nets and a
more than 6% register reduction while maintaining compa-
rable decoding performance, compared to a 5-bit offset Min
Sumdecoder.
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