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Abstract—In this paper, we consider the problem of variable-
length coding over the class of memoryless binary asymmetric
channels (BACs) with noiseless feedback, including the binary
symmetric channel (BSC) as a special case. In 2012, Naghshvar
et al. introduced an encoding scheme, which we refer to as
the small-enough-difference (SED) encoder, which asymptotically
achieves both capacity and Burnashev’s optimal error exponent
for symmetric binary-input channels. Building on the work of
Naghshvar ef al., this paper extends the SED encoding scheme to
the class of BACs and develops a non-asymptotic upper bound on
the average blocklength that is shown to achieve both capacity
and the optimal error exponent. For the specific case of the
BSC, we develop an additional non-asymptotic bound using a
two-phase analysis that leverages both a submartingale synthesis
and a Markov chain time of first passage analysis. For the BSC
with capacity 1/2, both new achievability bounds exceed the
achievability bound of Polyanskiy ef al. for a system limited to
stop-feedback codes.

Index Terms—Binary asymmetric channels, variable-length
coding, Burnashev’s optimal error exponent, submartingales.

I. INTRODUCTION

EEDBACK does not increase the capacity of memoryless

channels [2], but it can significantly reduce the complex-
ity of communication and the probability of error, provided
that variable-length feedback (VLF) codes are allowed. In
the context of a discrete memoryless channel (DMC) with
noiseless feedback, Burnashev [3] proposed a pioneering two-
phase transmission scheme that obtains the exact optimal error
exponent for all rates below capacity. The first phase is called
the communication phase, during which the transmitter seeks
to increase the receiver’s posterior probability for the transmit-
ted message. The system transitions from the communication
phase to the confirmation phase when the largest posterior
at the receiver exceeds a certain threshold (. During the
confirmation phase, two most distinguishable input symbols
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are used: one for the message with the largest posterior, and
the other for the rest of messages. The confirmation phase
continues until either the transmission terminates or the system
returns to the communication phase. This two-phase encoder
allows Burnashev to obtain an upper bound on the average
blocklength that coincides asymptotically with the converse
bound, thus producing the optimal error exponent. However,
Burnashev did not provide an explicit non-asymptotic bound
on the average blocklength for the DMC.

For the binary symmetric channel (BSC) with noiseless
feedback, Horstein [4] developed a simple, one-phase scheme
that maps each message to a subinterval in [0, 1]. The trans-
mitter sends a O if the subinterval of the true message
lies entirely beneath the median and a 1 if it lies entirely
above the median. If the subinterval includes the median
point, which will eventually happen as the subinterval of
the highest posterior grows, then randomized encoding is
employed. Horstein did not provide a rigorous proof to show
that his scheme achieves capacity. In [5], Burnashev and
Zigangirov showed that Horstein’s scheme achieves the ca-
pacity of the BSC in the fixed blocklength setting. In [6],
Shayevitz and Feder generalized Horstein’s scheme to the
concept of posterior matching, thus validating the capacity-
achieving property of Horstein’s scheme in the variable-length
setting. Since Horstein’s work, several authors, e.g., [7]-[10],
have constructed coding schemes for the BSC with noiseless
feedback under various assumptions in order to attain capacity
or Burnashev’s optimal error exponent.

Error exponent analysis of variable-length coding typically
focuses on asymptotically long average blocklength at a fixed
rate. In contrast, Polyanskiy et al. [11] showed that in the
non-asymptotic regime, variable-length coding with noiseless
feedback can provide a significant advantage in achievable rate
over fixed-length codes. Polyanskiy et al. considered a simple
stop-feedback code that only uses feedback to inform the
encoder of when to terminate of transmission. A compelling
example of this advantage can be seen for the BSC with
capacity 1/2 and target error probability 10~3. With variable-
length coding and stop feedback, the average blocklength
required to achieve 90% of capacity is less than 200, compared
to at least 3100 for the best fixed-blocklength code with
noiseless feedback.

In the non-asymptotic regime, Naghshvar er al. asked the
question of whether having two separate phases of operations
and randomized encoding are necessary to achieve Burna-
shev’s optimal error exponent. In [12], they first presented
a deterministic, one-phase coding scheme that achieves the
optimal error exponent for any symmetric binary-input chan-



nels (including the BSC) with full, noiseless feedback. The
most appealing feature in their scheme is that at each time
instant, the encoder only seeks a two-way partitioning of the
message set such that the probability difference of the two
subsets is “small enough” (see Sec. IV in [12]), and this is
sufficient for their scheme to achieve both capacity and the
optimal error exponent. Since the authors did not provide a
name for their scheme, here we term their scheme as the small-
enough-difference (SED) encoder'. In a subsequent work [13],
Naghshvar et al. applied the extrinsic Jensen-Shannon (EJS)
divergence and submartingale synthesis technique to develop
a non-asymptotic upper bound on the average blocklength
for the SED encoder over symmetric binary-input channels
with noiseless feedback. Recently, Guo et al. [14] developed
an instantaneous SED code for the symmetric binary-input
channels with feedback for real-time communication.

While Naghshvar er al. obtained a non-asymptotic up-
per bound on average blocklength for their SED encoder,
the resulting achievability bound falls beneath Polyanskiy’s
achievability bound for a system that only employs stop-
feedback codes. In general, a system, such as the SED encoder,
that employs full, noiseless, instantaneous feedback should
achieve a rate much better than that of a stop-feedback code.
Thus, there is an opportunity to develop tighter lower bounds
on the achievable rate of the SED encoder. Furthermore, the
SED encoder has not yet been extended to a general binary-
input channel with feedback, let alone a general multi-input
DMC with feedback.

As a primary contribution, this paper extends Naghshvar
et al’s SED encoder to the class of binary asymmetric
channels (BACs) with feedback, including the BSC as a special
case, and develops non-asymptotic upper bounds on average
blocklength that are close to the actual performance of SED
encoders. Unlike Naghshvar et al.’s one-phase SED encoder,
our SED encoder for a general BAC is a deterministic, two-
phase encoder that performs a two-way partitioning of the
message set such that the weighted probability difference is
small enough in the communication phase. In the confirmation
phase, the encoder assigns the most distinguishable symbol ex-
clusively to the most likely message. In particular, for the BSC
with feedback, we develop a refined non-asymptotic upper
bound on the average blocklength. Simulations demonstrate
that both associated achievability bounds on rate exceed the
stop-feedback achievability bound of Polyanskiy et al. for the
BSC with capacity 1/2, which is expected since a system with
full, noiseless feedback should perform better than one that is
limited to stop feedback.

In our analysis, the technique for obtaining the bound for a
general BAC involves a submartingale synthesis with optimal
parameters. For the specific case of the BSC, the confirmation
phase can be modeled as a Markov chain with possible
fallbacks to the communication phase. This facilitates a de-
composition of the random process concerning the transmitted
message into two components: a submartingale describing the
first communication phase and a generalized Markov chain
that describes the subsequent behavior (see Section V-F). This

'We first coined this name in our conference paper [1].
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Fig. 1. A BAC(po, p1) with full, noiseless feedback link.

decomposition allows a separate upper bound to be computed
for each of the two components. The upper bound for the
first component is obtained using a surrogate submartingale
construction and a variant of Doob’s optional stopping theo-
rem. The upper bound for the second component is obtained
using time of first-passage analysis on the generalized Markov
chain. Finally, the sum of the two upper bounds yields an upper
bound on the overall average blocklength that turns out to be
tighter than the bound developed using purely submartingale
synthesis when the crossover probability is small.

The remainder of this paper is organized as follows. In
Section II, we formulate the problem of variable-length coding
over a BAC with noiseless feedback and review Naghshvar
et al.’s scheme for symmetric binary-input channels as well
as some previous results. In Section III, we present the SED
encoder for a general BAC with noiseless feedback and a
non-asymptotic upper bound on the corresponding average
blocklength. In the case of the BSC with feedback, Section IV
presents a new upper bound for the SED encoder developed
by leveraging the submartingale synthesis and time of first
passage analysis on Markov chains. Section V contains the
proofs of the main results. In Section VI, we compare our
bounds with the simulated performance of the SED encoder
as well as some previously known results. In Section VII, we
show that the proposed SED encoder achieves both capacity
and the optimal error exponent of the BAC. Section VIII
concludes the paper.

II. PRELIMINARIES
A. Notation and Definitions

Throughout the paper, log(-),1n(-) denote the base-2 and
the natural logarithms, respectively. h(p) = —plog(p) — (1 —
p)log(1 — p), p € [0, 1], denotes the binary entropy function.
Let Py,Qy be two distributions over a finite alphabet ),
the Kullback-Leibler (KL) divergence between Py and Qy

is defined as D(Py[|Qy) £ ¥,y Py (y) log 54 with the

convention that 0log 2 = 0 and blog & = oo for a,b € [0,1]
with b # 0. Let [z]T = max{0,x}. We denote the collection
of all subsets of X by 2%,

B. Problem Setup

Consider the problem of variable-length coding over a
BAC(po,p1) with noiseless feedback, as depicted in Fig.
1. The BAC consists of binary input and output alphabets,
ie, X = Y = {0,1}, and two crossover probabilities,
po £ Pyix(1]0) and p; £ Py x(0[1). As noted in [15], it
suffices to restrict our attention to the regularized case where
po € (0,1/2) and py < p; < 1 — po, as any other case can
be transformed into this case by swapping either the input



or output label. For ease of reference, we say a BAC(pg, p1)
is regularized if the two crossover probabilities satisfy these
conditions. If pg = p1 = p € (0,1/2), we simply write
BSC(p).

Let C' be the capacity of the BAC(py, p1) and let (7, 7} ) be
the corresponding capacity-achieving input distribution. The
following results will be useful in our proofs.

Fact 1. Consider a BAC(po, p1) with capacity achieving input
distribution (n, 7y). Then,

C— poh(p1) _ (1 = p1)h(po) +log(1+2), (1)
1—po—m 1—po—m ’
. 1—-p1(1+2)
= 2
0T A )t 2) ?
= (1—=po)(1+2)—1 3)

(1—=po—p1)(1+2)

h(po)—h(p1)

where z = 27 1-ro—»1 . Furthermore, if po € (0,1/2) and
po <p1 <1—pg, then 0 < 7f < 7§ <L

The proof of Fact 1 is given in Appendix I.

Fact 2 (Theorem 4.5.1, [16]). Consider a DMC with capacity-
achieving input distribution (7§, 77, ..., 7 _,).- For each
ke {0,1,...,1X| =1}, if 7} > O, then,

|xX|—1
D P(Y|X=k;)H S mPYIX=0)| =0 @
=0

Let C'y be the maximal KL divergence between two condi-
tional output distributions, i.e.,

C, = m/aéYD(P(Y|X =2)||P(Y|X =1')). )
We also denote

vex P

Cy £ maxlog mz'ix S Y‘X(ylx). (6)
yey mingex Py x (y|r)

Fact 3. For a regularized BAC(py, p1),

Cy = D(P(YIX = D|IP(Y|X =0)), Q)
P 111 1-—

Csy = log vix( D =lo pl. )

Py x(1]0) 5 o

The proof of Fact 3 is given in Appendix II.

For a regularized BAC, it always holds that 0 < C' < (4 <
C5 < oo. Later, we will see how these quantities are used in
our result.

Let 6 be the transmitted message uniformly drawn from
the message set Q = {1,2,...,M}. The total transmission
time (or the number of channel uses, or blocklength) 7 is a
random variable that is governed by a stopping rule that is a
function of the observed channel outputs. Thanks to the full,
noiseless feedback channel, the transmitter is also informed of
the channel outputs and thus the stopping time.

The transmitter wishes to communicate 6 to the receiver.
To this end, it produces channel inputs X; for ¢t =1,2,...,7
as a function of # and past channel outputs Y?~! =

(Y1,Ys,...,Y;_1), available to the transmitter through the
noiseless feedback channel. Namely,

X, =e(0,Y"Y, t=1,2,...,7, 9)
for some encoding function e; :  x Y71 — X,
After observing 7 channel outputs Y7,Y3,...,Y7, the re-

ceiver makes a final estimate 6 of the transmitted message as
a function of Y7, i.e.,

0=dy), (10)

for some decoding function d : Y7 — €.
The probability of error of the transmission scheme is given
by

P, 2 2{0 + 6}. (11)

For a fixed DMC (i.e., not necessarily restricted to BAC) and
a given € € (0,1/2), the general goal is to find encoding and
decoding rules described in (9), (10), and a stopping time 7
such that P, < e and E[r] is minimized. Let E[7}] be the
minimum average blocklength. The achievable rate is defined
as

a log M

- E[rr]°

€

12)

In [3], Burnashev, for the first time, derived the reliability
function E(R) of variable-length coding over a fixed DMC

for all rates R < C:
R

C. The SED Encoder of Naghshvar et al.

In [12], Naghshvar et al. introduced a novel SED encoder
for symmetric binary-input channels, which we now briefly
describe as follows.

Let p;(t) & Z2{0=i|Y'}, t > 0, be the posterior
probability of § = i given Y'!. Since 6 is uniformly distributed
before transmission, p;(0) = 1/M for all i € €. As noted in
[13], a sufficient statistic for estimating 6 is the belief state
vector given by

p(t) = [p1(t), pa(t), .., pas (1)),

According to the Bayes’ rule, upon receiving Y; = y;, each
pi(t), i € Q, can be updated from p(t — 1) by

p(t) _ pz(t — 1)Py‘X(yt |€t(i, Yt_l))
' Yicapilt =1 Pyix(ye]e(s, Y1)

Thanks to the noiseless feedback, the transmitter will be
informed of y; at time instant £ + 1 and thus can calculate
the same p(¢) before generating X, ;.

The SED encoder for BSC with feedback: upon obtaining
p(t) at time ¢t + 1, the encoder partitions the message set 2
into two subsets Sq(t) and S;(t) such that

13)

t=0,1,...,7. (14

(15)

0 <mo(t) —mi(t) < min p;(t),
1€8S0(t)
where 7, () 2 3, 1y pi(t), = € {0,1}. Once Sy(t) and
S1(t) are obtained, X;11 = 0 if 0 € Sp(t) and X1 = 1
otherwise.

(16)



In the appendix of [12], the authors demonstrated that (16)
is sufficient to guarantee the achievability of both capacity and
the optimal error exponent of the channel.

D. The Decoder of Naghshvar et al.

In [12] and [13], Naghshvar et al. considered the following
possibly suboptimal stopping rule and decoder:

= i : . > —
T = min {t rl;le%(pl(t) >1 e}, a7
0 = arg max p;(7). (18)

ieQ
Clearly, with the above scheme, the probability of error meets
the desired constraint, i.e.,

P = E[l —maxp,(7)] < (19)
Let
: A Pi(t)
Uilt) £ log T2 455 (20)

be the log-likelihood ratio of § = i given Y. Equivalently,
the stopping time in (17) can be written as

1—¢

. .
In this paper, we consider the same possibly suboptimal
stopping rule and decoder as described in (17) and (18). Thus,

the average blocklength E[r] only depends on the encoding
scheme.

7 = min {t : meaé( Ui(t) > log 21

E. Previous Results on Average Blocklength of VLF Codes

In [13], Naghshvar er al. used the EJS divergence and
submartingale synthesis technique to obtain a non-asymptotic
upper bound on the average blocklength of the VLF code
generated by their SED encoder for the symmetric binary-
input channel with feedback.

Theorem 1 (Remark 7, [13]). For a given € € (0,1/2), the
average blocklength of the VLF code generated by Naghshvar
et al’s SED encoder (16) and decoding rule (17) (18) for
symmetric binary-input channels satisfies

log M +loglog L logl +1 9622
Elr] < s Sl I + .
C C cCy
The technique that underlies this result is a two-stage
submartingale resulted from the SED encoding rule.

Lemma 1 ( [12]). Consider the SED encoder described in (16)
for the BSC(p), p € (0,1/2), with feedback. If 0 =i € Q, then
{U;(t)}2, forms a submartingale with respect to the filtration
Fi = o {Y"} satisfying

(22)

E[U;(t+1)|F,0 =4 > U;(t) + C, if Us(t) <0, (23a)
E[U;(t + 1)|F,0 =] = U;(t) + C1,  if Us(t) > 0, (23b)
|Ui(t +1) = Ui(t)| < Coa. (23¢)

The proof of Lemma 1 can be found in [12]. We remark
that the key step that links the SED encoder to the two-stage
submartingale is the introduction and analysis of extrinsic

probabilities. This relation will be fully exploited in the
proof of Lemma 3 (see Section V-A). The next step is to
synthesize the two-stage submartingale in Lemma 1 into a
single submartingale and then apply Doob’s optional stopping
theorem. In [13], with a sophisticated submartingale synthesis,
Naghshvar ef al. obtained the following result.

Lemma 2 (Lemma 8, [13]). Assume that the sequence {&;},°
forms a submartingale with respect to a filtration F;. Further-
more, assume there exist positive constants K1, Ko and Kj
such that

El&1|F) > &+ K1, if & <0, (24a)
E[¢11|F) > &+ Ko, if & >0, (24b)
€41 — &| < K3, if max{&41,&) > 0. (24¢)

Consider the stopping time v =
Then, we have the inequality,

min{t: & > B}, B > 0.

— & 1 1 3K?
Ko éolico<or <K2 B K1> * KKy
Observe that if U;(¢) in Lemma 1 plays the role of & in
Lemma 2, the sequence {U;(t)},~, meets the conditions in
Lemma 2 by setting K1 = C, Ko = (7 and K3 = (.
Thus, by setting B = log 1?, the stopping rule in Lemma 2
coincides with that in (17) and we have the following corollary.

E[v] <

(25)

Corollary 1. For a given € € (0,1/2), the average blocklength
of the VLF code generated by the SED encoder for BSC(p),
p € (0,1/2), with feedback satisfies
1—e¢ 2
log M n log = L 302.
C Ch ccy
Remark 1. In [13], Naghshvar et al. proved a two-stage
submartingale similar to Lemma 1 by considering the average
log-likelihood ratio U (t) of the belief state p(t) rather than
that of the transmitted message (see Appendix II in [I3]).
They showed that the average drift of U (t) is characterized
by the EJS divergence, which can be lower bounded by C
or pCy depending on the sign of U(t), where p € (0,1)
is some constant. Combining their two-stage submartingale
with Lemma 2, they obtained Theorem 1. However, a direct
comparison of the third terms in (22) and (26) immediately
reveals that (26) is a significantly better upper bound on
average blocklength.

E[r] <

(26)

Next, we recall Polyanskiy’s achievability result for an
arbitrary DMC with feedback that utilizes a stop-feedback
code.

Theorem 2 (Theorem 3, [11]). Consider a DMC with transi-
tion probability P(y|z), x € X, y € ). Fix a scalar v > 0.
Let X™ and X" be independent copies from the same process
and let Y™ be the output of the DMC when X™ is the input.
Define a sequence of information density functions

Pyn‘Xn (an|bn)

va™, ™) £ 1o 27
( ) = log e (07) (27)
and a pair of hitting times
Y 2 min{n > 0: (X", Y"™) >~} (28)
Y & min{n > 0: (X", Y"™) >~} (29)



Then, for any M, there exists a VLF code satisfying
E[r] < E[¢],
P, < (M —1)2{¢ <9},

Finally, we recall Polyanskiy’s converse bound for a VLF
code with a non-vanishing error probability e.

Theorem 3 (Theorems 4 and 6, [11]). Consider a DMC with
0 < C < (1 < oo. Then any VLF code with M codewords
and target error probability € satisfying 0 < ¢ < 1—1/M
satisfies both

(30)
3D

E[7]
1 €
> sup <logM—F &)—minq F , = log M )
0<e< Mt [C e { e 3 }
1—e¢ A€ h(e)
+ cr 10ge(1—§)_071 , (32)
and
E[r] > (I—e¢ logCM - h(e)’ (33)
where
Fy(w) £ wlog(M —1) + h(z),z €[0,1], (34
M 2 min Prix(ler) (0,1). (35)

Y,T1,%2 Py|X(y|.’L‘2)

III. ACHIEVABLE RATES FOR BAC WITH FEEDBACK

In this section, we introduce the SED encoder for a reg-
ularized BAC(po,p1) with noiseless feedback and develop
a non-asymptotic upper bound on its average blocklength.
Equivalently, this yields a lower bound on the achievable rate
of the regularized BAC with feedback.

For a general regularized BAC(py, p1), Naghshvar et al.’s
SED encoder no longer applies. As an extension, we propose
the following deterministic, two-phase SED encoder for a
regularized BAC(po, p1) with feedback.

The SED encoder for regularized BAC(pg,p1) with
feedback: upon obtaining p(t) at time ¢ + 1, let ¢ =
argmax;cq p;(t). If p;(t) < 77, the encoder partitions the
message set {2 into two subsets So(t) and S;(¢) such that

. e my
— min p;(t) < —me(t) —m(t) < = min p;(t). (36)
1€81(t) 5 g i€So(t)

If p;(t) > 7, the encoder exclusively assigns S (t) = {1} and
So(t) = Q\{i}. Once Sy(t) and S; (t) are obtained, X¢11 =0
if 6 € Sp(t) and X;11 = 1 otherwise.

Remark 2. First, we see thgt in the second case where p;(t) >
7}, the partition Sy (t) = {i}, So(t) = Q\{¢} still meets (36).
Second, if pg = p1, then n§, = w7 = 1/2 and (36) becomes

— min pi(t) < m(t) — m(t) < min p;(). 37
ienéi?wp’()—m() m()_ier{lqg)r(lt)pz() (37)

Clearly, this is a relaxation of (16) if the maximum posterior
probability p;(t) < 1/2. If p;(t) > 1/2, (16) is met if and
only if So(t) = {i} and Sy(t) = Q\ {i}. In [12], Naghshvar
et al. showed that this assignment will yield (23b). However,

Algorithm 1 Original SED Encoding Algorithm
Require: max;cq p; < 773
1: Sy +{1,2,...,M} and S + &;
2m — 1, m — 0, AN« 7f/75, 0 A Pmino
minieso Pis and Pmin,1 < 0;

3: while (5 < _pmin,l) || (5 > )\pmin,O) do
4 if 0 < —pmin,1 then
5: J - argmin,cg, pi;
6: S()<—SoU{j} and 51%51\{]},
7: Mo < To + Py and7r1<—7r1—pj;
8 end if
9: if 6 > >\pmin,0 then
10: J < argmin,c g pi;
11: S()<—So\{]} and Sl<—SlU{j};
12: Ty <= To — Py and7r1<—7r1+pj;
13: end if
14: 0 >\7TO — T1, Pmin,0 < miniESo Pis Pmin,1 <
minges, Pis

15: end while
16: for e <+ 1,2,..., M do
17: ei(i, YI71) = 0, lfz € 5o

1, ifie s

18: end for

following their analysis, one can show that S(t) = {i} and
So(t) = Q\ {e} also yield (23b). Therefore, our SED encoder
serves as a generalization of Naghshvar et al’s encoder.

The motivation behind our SED encoder is that Lemma 1
now holds for the regularized BAC with feedback. For the sake
of completeness, we state this result in a separate lemma.

Lemma 3. Consider the SED encoder for a regularized
BAC(po,p1) with feedback. If 6 = i € Q, then {U;(t)},~,
forms a submartingale with respect to the filtration F, =
o {Y'*} satisfying

E[U( )\ftaa—@] :U(t)‘FCl, if Us(t) > 0, (38b)
|U;(t 4+ 1) — U;(t)] < Co. (38¢)

Proof: The proof fully exploits the properties of the
extrinsic probabilities. See Section V-A for more details. H
Since Lemma 2 is developed from a poor choice of parame-
ters, here we perform a submartingale synthesis with optimized
parameters to obtain the best possible upper bound on E[7] for
a regularized BAC with feedback.

Theorem 4. For a given € € (0,1/2), the average blocklength
of the VLF code generated by the SED encoder for a regular-
ized BAC(po, p1) with feedback satisfies

1-2-C —

logM 1 1
+C (c‘q)
(39)

C 01
Proof: See Section V-B. [ |
In the following, we show that the condition required by
our SED encoder is always attainable at each time ¢. This is
accomplished by solving a particular minimization problem.

1- 55270

E[r] <



Algorithm 2 Greedy SED Encoding Algorithm
Require: max;cq p; < 77;

I: J1 < argmax;cq ps;

2: Sp {]1} and S; + @;

3 Mo < pjy, M < 0 and A« 75 /7§

4: for s < 2,3,..., M do

5 Js 4= ArgMAaX;con\ (5, j._,} Pi>

6 if 71 > A\mg then

7: SQ<—S()U{]'S};

8 To < To + Pj.5

9 else

10: S1 %S1U{js};

11: Ty 4 T1 + P43

12: end if

13: end for

14: for i < 1,2,..., M do

15: e(i, Y71 = 0, lfl €
1, ifie s

16: end for

Theorem 5. For a regularized BAC with capacity-achieving
input distribution (7%, 7%), let X\ = 7%/7; € (0,1]. For
a given belief state vector p = [p1,p2,...,pu| satisfying
max;eq p; < w5, define the following objective function
f:22 5 R:

F(8) £ A(m1(S) = M0(9)) L (5)2Amo(9)}

+ (Am0(S) — 1(9)) Lmy (8)<Aro(5)}> (40)

where m(S) £ Y ,cqpi and m(S) £ Yico\s Pi- Assume
S5 C Q minimizes (40). Then, the partition (S5, \ S§)
satisfies (36).

Proof: See Section V-C. [ |
Theorem 5 implies that when the maximum posterior of
p(t) does not exceed 7§, it is always possible to identify a
two-way partition of ) that satisfies (36). In fact, our proof
already reveals such a partitioning algorithm as described in
Algorithm 1. The algorithm is initialized with a partition of
Q that fails to meet (36) and then successively constructs
a new partition from the previous one to reduce f(S). The
termination condition is exactly given by (36). Theorem 5
guarantees that the termination will always be triggered at
some point.
Finally, we present a greedy two-way partitioning algorithm
as described in Algorithm 2 that provably meets (36). We state
this result in the following theorem.

Theorem 6. Let (1, 7}) be the capacity-achieving input dis-
tribution for a regularized BAC. Let p = [p1,p2, ..., pum) be
the belief state vector for Algorithm 2 satisfying max;cq p; <
w3. Let (Sp, S1) be the partition of Q generated by Algorithm
2. Then, (So, S1) meets the SED condition in (36).

Proof: See Section V-D. ]

Remark 3. Both Algorithms 1 and 2 have complexity of
order O(M log M), making them not suitable for practical
implementation.

IV. ACHIEVABLE RATES FOR BSC WITH FEEDBACK

In this section, we present our refined non-asymptotic upper
bound on the average blocklength by adopting a SED encoder
for the BSC(p) with feedback. Both Naghshvar et al.’s encoder
and ours will yield the same result.

With the SED encoder and the BSC(p), we obtain a refined
upper bound on the average blocklength, as stated below.

Theorem 7. Let ¢ = 1 — p. For a given ¢ € (0,1/2), the
average blocklength of the VLF code generated by the SED
encoder over the BSC(p) with feedback, p € (0,1/2), satisfies

logM log2q logi=c+C
E[T] < 0og 0g 2q g € 2
C qC Ch
14820 g\ ] e 9-C
27020 q02 o 1—e 41
+ 2 < C Cl 1_ 2_02 ( )
This result is a consequence of two supporting lemmas.
To aid our discussion, let ¢ = 1 — p and let us consider
two stopping times for §# = ¢ when U;(t) first crosses 0 and
log =<, respectively,
v; & min{t : U;(t) > 0}, 42)
1 —
7; = min {t : Us(t) > log 6} . (43)
€

Clearly, v; < 7;. v; and 7; represent the stopping times when
pi(t) first crosses 1/2 and 1 — €, respectively. By Lemma 10,
both v; and 7; are almost surely finite.

We are now in a position to introduce the two supporting
lemmas. First, note that

| M M

E[r] = i ;E[TW =i < yYi ;E[Tiw =i, 44)
where the inequality follows since 7 < 7; for all 7 € 2. Next,
for E[r;|0 = i], it can be rewritten as

E[Tile = 7,} = E[Vlw = Z] + E[Ti — l/l|(9 = Z]

(45)

(40)
The intuition behind this decomposition is that E[v;|6 = ]
corresponds to the average blocklength in the first commu-
nication phase (i.e., U;(t) from log(1/(M — 1)) to 0), and
E[r; — vi|0 = 4,U;(v;) = u] corresponds to the expected
additional time spent in the confirmation phase with fallbacks
to the communication phase. Here, u represents the value at
which U;(t) arrives when it crosses threshold O for the first
time.

Our next step is to develop upper bounds on E[v;]0 = i]
and E[r; — 4|0 = i,U;(v;) = u] that are independent from
0 = i and U,;(v;) = u. Thus, summing up the two bounds will
yield an upper bound on E[7;|6 = 7], hence an upper bound
on E[7] using (44). We state our results in Lemmas 4 and 5.

We remark that the technique for developing an upper bound
on E[v;|0 = i] makes use of a surrogate submartingale, thus
allowing us to obtain a tighter constant term. In order to upper
bound E[r; — v;]|60 = 4, U;(v;) = u], we first observe that the
behavior of U;(t) in the confirmation phase can be modeled



as a Markov chain with a fallback self loop on the initial state.
This loop represents the probability that U;(¢) first falls back to
the communication phase and then returns to the confirmation
phase. Next, we formulate the problem as solving a particular
expected first-passage time on a Markov chain. The solution of
this problem yields the desired upper bound. Detailed analysis
can be found in the proof of each lemma.

Lemma 4. The average blocklength E[v;] of a SED encoder
over the BSC(p), p € (0,1/2), with feedback satisfies
logM  log2q
C qC
Proof: See Section V-E. [ |

Lemma 5. Consider the SED encoder for the BSC(p), p €
(0,1/2), with feedback. It holds that

Elr; — v|0 =i, Ui(v) = u]

Elu|0 = i] < : (47)

S log 2 € —C.
< logle +CQ+2_C202 1+ qgc'zq_i 1—§2 2
- Ch C Ch 1-2-C2
(48)
Proof: See Section V-F. ]
V. PROOFS

In this section, we prove our main results.

A. Proof of Lemma 3

Several steps in the proof of Lemma 3 are analogous to that
in [12], for instance, the introduction of the extrinsic proba-
bilities. However, the distinction is that we will fully exploit
the properties of the extrinsic probabilities that motivates our
SED encoder for the BAC with feedback.

Let 6 = ¢ € Q be fixed. For brevity, let x; be the input
symbol for § = i at time ¢ + 1. Let F; = o(Y'?) denote the
filtration generated by Y. Thus, given F; and 0 = i, Y; 11 is
distributed according to P(Y|X = z;). Hence,

E[U;(t + 1) — U;(t)| Fe, 0 = 1]

B V(1o LD o pilt)
= %Py‘x(ylmz) <10g 1_ Pz‘(t+ 1) log 1- Pi(t))

= > Pyix(ylas)

yey

pi(t) Py | x (y]zs)
Z:L'EX Trz(t)PY\x(y|1')

pi(t)

log 1— pi(t) Py x (ylzi) —log 1 —pi(t) “49)
Soex 7 (O Py x (y]7)
Py x (ylzi)
= > Pyix(ylzi)log - (50)
yze;/ | Zze_)g ’/Tz,z(t)PY\X(yLr)
=D(P(Y|X = ;)| P(Y)), (51)

where in (50), by letting * = 1 — x, we introduce the extrinsic
probabilities defined by

UED (t) — Pi (t>
L—pi(t) 7
Tz, (t)
1—pi(t)’

(1>

Ty i(t) (52)

2
>

(53)

T ;i (t)

and in (51), Y is the output induced by the channel P(Y|X)

for an input X distributed according to (70,4 (1), 1,4 (t)).
Next, we prove the following key lemmas that connect our

SED encoder to the two-stage submartingale in Lemma 3.

Lemma 6. The SED encoder for the regularized BAC(po,p1)
with capacity-achieving input distribution (njj,77) satisfies
Tu,i(t) < m., where x; is the input symbol for 6 = i at
time t + 1.

Proof: Let 1 = arg max;cq p;j(t). We distinguish two
cases: p;(t) < my and p;(t) > 77.

When p;(t) < 7}, we further discuss two subcases: z; = 0
and z; = 1. If z; = 0, then 7 € Sy(¢). Invoking the second
inequality in (36), we have
70,i(t) —m5 = (mo + 71) 70, (t) — g
w1 70,i(t) — o (1 — o,(t))
mi70,i(t) — mo7,i(t)

T (2L (r(t) - pi(8) ~ (1))

C L= pit) \ 7
_ M (™ ~ min pi(t) —
ST <7r3 (mo(t) i pj (t)) 7ﬁ(t))
<0. (54)
If z; =1, then ¢ € S1(t). In a similar fashion,
S ()t O ) =
Fralt) =7 = 7 (10 = i) = Temo(t))
™5 : ™
<0 t) — () — “Lo(t
S T (O = i s(0) = Zomot)
<0 (55)

Therefore, Lemma 6 holds for p;(t) < 7.

When p;(t) > 7}, by the encoding rule, Si(t) = {i} and
So(t) = Q\{i}. If i = 4, then S; () = {i} and Sy(t) = Q\{i}.
Thus, 71;(t) = 0 < «f. If ¢ # i, then i € Sy(t). Since
m(t) = p;(t) > 77, it follows that my(t) < 7. Combining
with the fact that 7 ;(t) < mo(t), we conclude that 7o ;(t) <
my. Therefore, Lemma 6 also holds in this case.

Summarizing the above two cases, we conclude that Lemma
6 holds in general. [ ]

Next, we borrow a useful lemma on the KL divergence
proved in [13].

Lemma 7 (Lemma 1, [13]). For any two distributions P
and Q on a set Y and o € [0,1], D(P|laP + (1 — o)Q)
is decreasing in o

As an application of Lemma 7, let P = P(Y|X = x;),
Q =PY|X = &) and o = 7, (). (51) can be lower
bounded by

D(P(Y|X = z;)|[|P(Y)) = D(P||aP + (1 — 2)Q) (56)

> D(Pl|m;, P +73,Q) (5]
=C, (58)

where (57) follows from Lemma 6 and (58) follows from Fact
2. Therefore, with the SED encoder, it always holds that

E[U;(t + 1)|F, 0 = i] > U;(¥) + C. (59)



As a result, (38a) is proved.

In particular, if U;(t) > 0, this is equivalent to p;(t) > 1/2
and thus ¢ is the index with the maximum posterior. Using Fact
1 that 7} < 1/2, it follows that max;cq p;(t) = pi(t) > 7}.
Thus, the SED encoder will exclusively assign S1(t) = {i}
and So(t) = Q\ {i}, resulting in 71 ;(¢) = 0 and

D(P(Y|X = 2;)||[P(Y)) = D(P(Y|X = 1)||P(Y|X = 0))
— (60)

where (60) follows from Fact 3. Therefore, (38b) is proved.
We also remark that for Y, ; =y,

Py x(yl1)

Us(t +1) = Uy(t) +log =720 e yat) > 0. (61)
(t+1) (t) Py x (w]0) (t)
Hence, C; can be thought of as the average drift of U, (¢) for
Ui(t) > 0.
To prove (38c), we note that when Y, =y,
\Us(t +1) = Ui(t)]
. 1 )
= |log 7pl(t + ) —lo _Pit (t)
L—pi(t+1) 1 —pi(t)
— |log pi)Pyix(yles1(B.Y")) 11— pi(t)
22 PO Pyix(y e (4, Y1) pi(t)
P; i, Y
— log p}f(\t))((y ler1(2,Y")) — )
Zjﬂ mPY\X(y lee+1(4,Y"))
zex P
< log 2eex Prix(vl7) (63)
mingcx Py|x (y|r)
Hence, we have
maxgex Py|x (y|r)
|U;(t + 1) — U;(¢)| < maxlog (64)

yey minge x PY\X(ZU|33) ’

which completes the proof of (38c).

B. Proof of Theorem 4

The proof of Theorem 4 involves a submartingale synthesis
with optimized parameters and a variant of Doob’s optional
stopping theorem. Throughout the proof, we fix § = i € Q
to avoid writing the conditioning § = ¢ unless otherwise
specified.

Let the sequence {U;(¢)}32,, be the two-stage submartingale
defined in (38) with respect to filtration {F;}$°, as a result
of the SED encoding over a regularized BAC(pg, p1). Let us

consider a sequence {n(t)}s2, defined as
0 = A+ BO g i U <o, 65)
M7 e Ui L B0y () > 0,

where s > 0 and A > 0 are two constants. For our purposes,
we require that s and A meet the following two equations.

1 1
Al=e7®) =Gy (5 - | = o
(1—e%) CQ((] Cl> b (©0
ple—sloglfiéo —|—(1—p1)6_510g% =1. (67)

The motivation behind these equations is to select the best
parameters that make {n(t)}{2, a submartingale. This will

become clearer as our proof proceeds. Solving (66) and (67)
for s and A yields

s=1In2,

e 11
A=15a (C_a)'

Lemma 8. The sequence {n(t)}2, with parameters s and A
satisfying (66) and (67) forms a submartingale with respect
to the filtration {F;}52,.

Proof: We will show that E[n(t 4+ 1)|F;] > n(t). There
are two cases.
Case I (U;(t) < 0): there are two subcases. If U;(t+1) > 0,
then from (38c), U;(t + 1) < Cs. Consider the function
1 1
f(ﬂf) é A — Aefsx — <C — CVI) Z,
where s and A satisfy equations (66) and (67). Since f(0) = 0,
f(C2) = 0 due to (66), and f(z) is a concave function, it
follows that f(x) > 0 for z € (0,C2). Let U;(t + 1) play the
role of x. Using f(U;(t + 1)) > 0, we obtain

Uit+1)

(68)
(69)

(70)

nit+1) = —Ae™sVit+D) 4 o (t+1)

>—A+%—(H—l). (71)
If U;(t+ 1) <0, then

n(t—&-l):—A—l—w—(t—i—l). (72)

Hence, regardless of the sign of U;(t + 1), it holds that
Ef(t + 1)|F) > E| — A+ %H) —(t+ 1)‘]—}] (73)
>4t TOEE 4y (74)
=n(t), (75)

where (74) follows from (38a).
Case 2 (U;(t) > 0): there are two subcases. If U;(t+1) < 0,
using f(x) defined in (70), f(U;(t 4+ 1)) < 0. Therefore,

n(t+1):—A+%—(t+1) (76)
> e BUED ) )
If U;(t +1) > 0, then 1
nt+1) = —Ae—sVilt+h) 4 % —(t+1). (78)
Hence, regardless of the sign of U; (t—lf— 1), it holds that
Eln(t + 1)|F]
> E[ — Ae~sUitHD) 4 L(gj D _ (t+ 1)‘?4 (79)
= —AE[e— VD 7] 4+ —E[Ui(tgl D11y s0)
= —A(pre BT (1= pr)e BT e
+ Ué,(lt) —t (81)
=1(t), (82)



where (81) follows from (38b) and (61), and (82) follows from
(67).

Summarizing the above two cases, we conclude that E[n(t+
DIF] = n(t). n

Lemma 9. The sequence {n(t)}{2, with parameters s and A
satisfying (66) and (67) has the property that the difference
between n(t + 1) and n(t) is absolutely bounded, i.e.,

2C5

In(t+1) —n(t)| §A+7+1. (83)
Proof: We distinguish four cases.
Case 1: U;(t) < 0 and U;(t + 1) < 0. In this case,
U;(t+ 1) —U;(t
e +1) (o) = | FEEL=EO
< \Ui(t +1) — Ui(t)| 1
C
&
< —=+1 84
<ot (84)

Case 2: U;(t) < 0 and U;(t+1) > 0. In this case, U;(t+1) <
C5 by (38¢), and
n(t +1) = n(t)]

1

G
C
Case 3: U;(t) > 0 and U;(t+1) < 0. In this case, U;(t) < Cy
by (38c), and

n(t+1) = ()]

_ ‘A(e—sUi(t) 1)+ Uit+1)  Ui(t)

<A —e59) 4 = 4 1. (85)

-1
C C; ’

<A1 — eV

Uit +1)-Ui(t) (1 1Y,
+‘ 5 o & U:t)|+1
_ Cs 1 1
< _ SC2 . - .
<A(l—e )+C+<C 01>C2+1 (86)

Case 4: U;(t) > 0 and U;(t + 1) > 0. In this case,

In(t +1) —n(t)]
Ui(t+1) — Us(t)

—|—A —sU; (t+1) _ —sU;(t) -1
’ (e e ) + o
< AlemsUiEHD) st 4 \Us(t + 1) — Us(t)] L1
< o
—sC Cs
<Al —e 2)+F+1’ (87)
1

where (87) follows from the inequality |e™*¥ — e™5%| < 1 —
e=slv=2l for s >0, z > 0 and y > 0.

Note that the upper bounds in (84), (85), (86) and (87) are
no greater than A + % + 1. The proof is completed. ]

Lemma 10. Let {U(¢t)}2, be the submartingale in (38) with
respect to filtration {F;}22,. Consider the stopping time T =
min{t : U(t) > (}, where { > 0 is some constant. Then,
P{T < oo} = 1. Namely, T is a.s. finite.

Proof: We first recall Azuma’s inequality for a general
submartingale {£(¢)}52,: If {&(¢)}$2,, is a submartingale that
satisfies |£(t + 1) — £(¢)| < K for all ¢ > 0, then for a given
o >0,

—o?
20 -0 < o) <o (55z). 69
Let us consider £(t) = %—t. We show that {£(t)}2,, is also

a submartingale with respect to filtration {F; }$° . Specifically,
if U(t) < 0, then

Ble+ I = SOy )
> %CJFC —(t+1) (90)
= &(1). o1

If U(t) > 0, using the fact that C; > C, we can also show that
E[¢(t + 1)|F] > &(t). Hence, {£(t)}52, is a submartingale
with respect to filtration {F; }$2 . Furthermore, for any ¢ > 0,

Ut+1)—-U(t) Co

e(e+1) - ) = [ AT 1 < D o)

Let K = % + 1 for shorthand notation. Thus, appealing to
Azuma’s inequality,

Z{U(t) < (t—0)C+U(0)}

) (NP R
= P {&(t) ~ £(0) < —o} (94)

Equating ¢ = (¢ — 0)C + U(0) yields 0 = t — <=2 ¢ >
%(O). Hence,

—(t _ C_U(O))Q
2{U(t) < (¢} <exp (M‘) (96)

t _
= exp (—2K2 + O(t 1)) N
It follows that
. . t _
Jin 2 U0 <6} < Jim exp (5 +0(7)) ~o.
(98)

This implies that

t

3

k=1

PAT = o0} = lim 2 ( W < <}> ©9)

< lim 2{U(1) < Q) (100)
- 0. (101)
Namely, & {T < co} = 1. [ |

Finally, we follow [17] to prove a variant of Doob’s optional
stopping theorem which will be useful in proving the main
result.



Lemma 11 (Variant of Doob’s Optional Stopping Theorem).
Let {U(t)},2, be a submartingale with respect to filtration
{F}2, satisfying |U(t + 1) — U(t)| < K for some positive
constant K. Let T = min{t : U(t) > ¢}, ¢ > 0 be a stopping
time and assume that T is a.s. finite. Then,

U(0) < E[U(T)]. (102)

Proof: Let t AT 2 min{t,T}. From the martingale
theory [18], the stopped process {U(t A T)}2, is also a
submartingale. Thus, we obtain

U(0) <E[U(tAT)] (103)
< lim E[U(tAT)] (104)
E[ hm U(tAT)] (105)

E[U (T)]

In the above,

e (103) follows from applying Doob’s optional stopping
theorem [18] to the stopped process {U(t A T)}52,.

o (104) follows from that E[U(tAT)] < E[U((t+1)AT)]
for submartingales. This can be seen by noting that

ElU((t+1)AT)]—E[UtAT)]
=E[(Ut+1) =U®)Lirsir1y] +E[0- Lirany]
=E[E[(U(t+1) = U(t))1irser13] F]

= E[Lirsu 3 BI(U(E+ 1) — U(1))|F]]

where the last step follows from submartingale property
E[U(t + 1)|F] > U(t).

e (105) follows from the fact that U(¢t A T) is uniformly
bounded above, the assumption that 7" is a.s. finite, and
the reverse Fatou’s lemma.

This concludes the proof of Lemma 11. ]
Let us consider the stopping time for each j € Q:

_6}, jeq.

Lemmas 8, 9 and 10 indicate that the submartingale {n(¢)}:2,
in (65) with parameters s and A given by (68) and (69) and
the stopping time 7; in (106) meet the conditions in Lemma
11. Hence, by Lemma 11,

1
7; £ min {t :U;(t) > log (106)

n(0) < En(7:)]0 = 1]

=F |—AesVilm) 4 Z 0/ Yilri) 7’9 = z] (107)
Cy
< —Ae —— —E[nl0=1],
< C1 [7:]6 = 4], (108)
where (108) follows since
]E[UI(T)] = E[Ul(ﬁ) — Ui(Ti — 1)] + E[Ui(ﬂ‘ — 1)} (109)
<02+1Og1_ (110)

Rewriting (108) and substituting s and A with (68) and (69)
respectively yield

1—¢
E[ni|0 =i] < —Ae™ o 10
_ Ui(0)
= —Ae 5 ) S e TR T
¢ o e
log M 2 11\ =727
STo T o e (0_01) e
(111)
Finally,
1 M 1 M
=—Y E[fl0=4]<— Y E[0=4], (112
Mj:l Mi:l

where the last inequality follows since 7 < 7; for all j €
2. Since the upper bound in (111) holds for any E[r;|0 =
j]. Substituting the bound in (112) completes the proof of
Theorem 4.

C. Proof of Theorem 5

We prove Theorem 5 by contradiction. Let S5 C 2 be
an optimal subset of {2 that minimizes f(S) in (40). If the
partition (S5, 2\ S§) does not meet (36), one can construct
another subset S, C Q from Sg such that f(S}) < f(Sg),
thus contradicting the assumption that S minimizes f(.5).

Assume that the partition (S5, 2\ S§) does not meet (36),
there are two cases.

Case 1I: the partition (S§,Q \ Sg) satisfies Amo(Sg) —
m1(S5) < —mingeq\g; pi- Let i* = arg min;e o\ g pi- Then,

F(85) = A(m(Sg) —

Consider a new subset S) = S; U {i*}. Next, we show

that f(S)) < f(Sg). There are two subcases. If m1(S}) >
A7 (S)), then

Mo(S5)) > Api. (113)

F(Sp) = A(m1(Sp) = Amo(S5))
= Mm1(55) = pir — Ao (S5) — Apix)
< Mmi(Sg) — Amo(S5)) (114)
— 1(S5),

where (114) follows since all elements in p remain strictly
positive during Bayes’ update. If 71 (S() < Am(S]), then

(80) = Amo(Sp) — 71(50)
= A(mo(S5) + pi) —
= Apir — (m(S5) —
< f(S0),

where (115) follows from the assumption that Amo(S3) —
m1(S3) < —pi= and (113). Hence, the optimality assumption
of Sj is contradicted in Case 1.

Case 2: the partition (S§,Q \ Sg) satisfies Amo(Sg) —
m1(55) > Aminesg p;. Let i* = argmin;e gx p;. Then,

f(Sg) = Amo(Sg)

(m1(55) = pi-)
Amo(S5) — pi-)
(115)

771'1(56) > >\,01* (116)



Consider a new subset Sj = S \ {i*}. We next show
that f(S)) < f(Sg). There are two subcases. If m1(S)) >
A7 (S)), then
F(S5) = A(m1 () — Ao(5))
= A(m1(55) + pir — Amo(S5) + Api)
= /\pi* — )\()\71'0(58) — 7T1(SS) — )\pz*)
< f(50);
where (117) follows from the assumption that Am(Sg) —
m1(S3) > Api= and (116). If 71 (S)) < Amp(Sy), then
F(85) = Amo(Sp) — m1(Sp)
= M(m0(S5) — pir) — m1(S5) — pi-
< Amo(Sg) — m1(Sp)
= f(50)-

Hence, the optimality assumption of S§ is contradicted in Case
2.

(117)

(118)

In summary, we have shown that if the partition (S, Q\Sg)
does not meet (36), the optimality assumption of S5 will be
contradicted. Therefore, the partition (S5, 2\ S§) must satisfy
(36). This concludes the proof of Theorem 5.

D. Proof of Theorem 6

() and 7{*) to denote the probabilities of S_*)
and Sf) at iteration s, s = 1,2,..., M. We prove Theorem
6 by induction.

Base case: For s =1, ﬂél)

Let us write 7,

= p;, and ng) = 0. Clearly,
)\77(()1) -
€]
1

M = Ap;, €10, Mp5,]. (119)

Hence, wél) and ;" meet the condition in (36).
(k)

Inductive step: Assume that for s = k, (36) holds for 7
and 7", We will show that (36) will also hold for 7{*"") and

(k+1)
m . There are two cases.

Case I: ng) > /\7r(()k). According to Algorithm 2, 7
w(()k) + pj.., and ﬁ’“*” = ﬂ’”. Meanwhile, pj, ., =
minies(()k+1) p; and miniesgk) pPi = miniesikﬂ) pi. Therefore,

(k+1) _
0

k k k
Ar D 4D () —n9) 1 ag,

<A min p;,
iesFtY

(120)
and
)\ﬂ_(()kJrl) . W%kJrl) _ (Aﬂ(()k) . ng)) + A

min p;.
ies{Ft

>

(121)

Hence, (36) holds for W(()k+1) and W§k+1) in Case 1.

Case 2: W]((k) < )wr(()k). According to Algorithm 2, 7 =
m()'k) and 71k+1) = wgk) + pPj...- Meanwhile, p; =

mlniesik:+1) p; and rnlnies(()k) pi = mlniesék+1) pi. Therefore,

(k+1)

k+1 k+1 k k
)‘W(() )~ W% ) = ()‘7(() )~ 71{ )) = Pirta

<A min p;, (122)

ieSSEHD

and
k+1 k41 Kk k
Mg — 7D = (el = 7?) = i
> — min p;. (123)
iegkHD

Hence, (36) holds for ﬂékﬂ) and ﬁ£k+1) in Case 2.

In summary, (36) holds for W(()k+1) and w§k+1) at iteration
s = k + 1. Therefore, when the algorithm terminates, a two-
way partition of 2 will be formed and the corresponding
w(()M) and ng) will satisfy (36). This completes the proof
of Theorem 6.

E. Proof of Lemma 4

The proof of Lemma 4 includes a construction of a surrogate
submartingale and an application of the variant of Doob’s
optional stopping theorem.

Let z; be the input symbol for § = i at time £+ 1 and define
Z; = 1 — x;. Following the derivation of (50), for Y;.1 = v,

(t+1) = log LD
U;(t+1) =log = ot 1) (124)
— Ui(t) + log 11X W7D (125)

Y wex Tai(t)Pylz)’

where 7, ;(t), x € {0,1}, is the extrinsic probabilities defined
in (52) and (53). For brevity, let us define the instantaneous
step size

Py x (y|x;)
Y wex Tai(t)P(ylz)

From previous analysis in Section V-A, we showed in (58)
that with the SED encoding rule,

w;i(t,y) = log (126)

E[Wi(t,Y)|F] > C. (127)

where C' is the capacity of the BSC(p).
Here, we seek a surrogate submartingale U(t) satisfying
the following two conditions:
1). Vt >0 and Vy', U/(t) < U;(t) with U/(0) = U;(0);
2). E[Ui())|F] = Uj(t) + C.
The motivation behind condition 1 is explained below. Let

vl & min{t : U/(t) > 0}. (128)

Thus, Condition 1 implies that v; < /.
Construction of {U](t)}:2,: Let U/(0) = U;(0). For ¢ > 0
and Y =,

Ui(t+1) 2 Ui(t) + wi(t,y), (129)
where w}(t,y) is defined as
wi(t, x;) £ log 2Py x (z;|2;)
P Tilx; 1/2
_ Y\X(‘rz‘xz) ¢ _ / _ (130)
Py x(zilz:) 7 e i (O P(Ti|2)
1/2
wi(t, Z;) 2 log 2Py x (Z;]2;) + log — — .
' | > vex Tui(H) P(Zi]x)
(131)



Compared with w; (¢, y), the only distinction lies in w} (¢, z;) #
w;(t, z;). We now show that this construction of {U](¢)}:2,
indeed satisfies the two conditions aforementioned. First,

E[W/(t,Y)|F]
= Py x (zizi)wi(t, z;) + Py x (Ts|z)wi(t, ;)  (132)
= Pyx (zi|7;) log 2Py | x (zi|z;)

+ Py x (%i|z:) log 2Py x (T4] )
=C.

(133)
(134)

This implies that {U/(t)}$2, is a submartingale satisfying
Condition 2. Specifically, E[U/(¢t + 1)|F] = U/(t) + C.
Next, we show Condition 1 also holds for {U](t)}2,. Note
that the only difference between w;(¢,y) and w(t,y) is when
y = x;, thus, it suffices to show wi (¢, z;) < w;(t, x;). Indeed,

w; (t, x;)
1/2

Y wex Toi(t)Plzir)

Py x (Zi]z:)

= log 2Py |x (x|x;) + log

1/2
lo /

> log 2Py |x (w;|zi)+ Toi(£)P(z2)

7e,i(£) P(Zi]w)

Py x (z4|;)

g
ZzGX
ZmeX

(
(

Py x (%|z;)
(o) 8

Py x (]2 1/2

(135)
= wi(t, z;), (136)

where (135) follows from the inequality below. Let us use
the shorthand notation 7,; = m,;(t), p = Py|x(Z|z) and
q = Py|x(x|z). Then,

(Fi,iq + Tz,,i0) (R i + Tz,,40)

=—(q—p)°72 i+ (q—p)*Fa,i+pg (137
1

< jla+p)? (138)
1

= 1 (139)

with equality if and only if 7., ; = 1/2. Thus, wi(¢,y) <
w;(t,y) for y € {0,1} and Condition 1 follows.

Finally, we apply Lemma 11 to the surrogate submartingale
{U!(t)}$2, to obtain an upper bound on E[v/]. Observe that
for any ¢ > 0 and v,

lwi(t, y)| < |wi(t,y)| < Co. (140)

Hence, the conditions in Lemma 11 are met.
Consider a normalized sequence {n(t)}22, defined as

U!(t)

2

n(t) = ot

(141)

It is straightforward to show that {n(¢)}$2, is a martingale
with a bounded difference |n(t + 1) — n(t)|. Therefore, by

Lemma 11,
2O~ )
< E[n(v)]
_ EI) ~ Uit~ DI+ B0 = 1)y
< wl(t,gi) +0 E[V/) (142)
< U082 gy (143)

where (142) follows from the fact that U (t) has to cross the
threshold 0 from ¢ = v} — 1 to ¢ = v/ and that w} (¢, x;) is the
only positive, instantanenous step size, (143) follows from the
fact that

wi(t, z;) <log2q — glog 12 _ logﬂ. (144)
Combining (143) with the fact that v; < v/,
Efv;] < B[] < 10824 _ log 1/ (145)
LT = g0 C
< logCM loqgc2q. (146)

This completes the proof of Lemma 4.

F. Proof of Lemma 5

The proof requires several steps. First, we show that when
Ui(t) > 0, the behavior of U;(t) can be modeled as a Markov
chain with a fallback self loop. This self loop represents the
probability that U;(t) first falls back to the communication
phase and eventually returns to the confirmation phase. Next,
the problem of solving E[r; — v;|0 = i,U;(v;) = u] can be
formulated as the expected first-passage time from the initial
state to the terminating state on a generalized Markov chain.

Let ¢ = 1 — p. For BSC(p), p € (0,1/2), by Fact 3, Cy =
log(q/p) and C; = (¢ — p)Cs. In the following analysis, we
fix 8 = i € () unless otherwise specified.

Recall that with the SED encoding, the one-step update for
U;(t) when U;(t) > 0 is given by (61). In the case of BSC(p),
we have

Ui(t +1) = Us(t) + W, (147)

where W = Cy with probability Py x(1|1) = ¢ and W =
—C'y with probability Py|x(0[1) = p. Assume that U;(v;) =
u € [0,Cy). Clearly, the behavior of U;(¢) is a Markov chain
with initial value u, provided that U;(t) > w for all ¢ > v;.

Unfortunately, the above Markov chain is too simple to cap-
ture the reality. First, U, (¢) can fall back to the communication
phase (i.e., U;(t) < 0) at some ¢’ > v;. Second, if U;(t) falls
back and then returns to the confirmation phase, the value at
which U;(t) > 0 might be different from w.

Nevertheless, we make two important observations. First,
the prior probability that U;(t) falls back to communication
phase is p. Given that U;(t) falls back, the conditional prob-
abiliy that U;(t) eventually returns to the confirmation phase
is 1 (since 7; is a.s. finite). Hence, the transition probability
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Fig. 2. An example of the generalized Markov chain with initial value u, u € [0,C2), assuming that U;(¢) arrives at u when crossing threshold 0 and
remains nonnegative all the time. The value beside each branch denotes the transition probability. The value inside the j-th circle represents the unique active

value in S5, 1 < j < n.

from the initial state value u at which U,(¢) falls back to
another initial state value u’ at which U;(t) returns is p.
Second, assume wu is the initial value when U;(t) first enters
the confirmation phase. By (147), the subsequent values that
U, (t) assumes are of the form u+jCs, j = 0,1, ..., provided
that U;(¢) > 0 all the time. These observations motivate the
definition of a generalized Markov chain.

Definition 1. Let Sy = [0,C%) represent the set of values
of U;(t) when transitioning from below 0 to above 0 for the
first time. Let n £ [log 1= /C5]. Define S; £ [jCs,jCs +

(), 1 < j < n. The generalized Markov chain consists of a
sequence of states Sy, S1,...,S, satisfying

P{8;+1|8;} & Pyiy(u+ Calu), ueS;, 0<j<n—1,
P{S;-1|S;} £ Prjy(u— Calu), ue S;, 1 <j<n,
P{S0|So} £ P(V € So|lU =u), u € Sy,
P {8ulSn} £ 1,
where if u € So, P(V € SlU = u) =p and P(V = u +

ColU=u)=qIlfuesS;,j>1, PV=u+ClU =u)=q
and P(V =u+ Co|U = u) =p.

The distinction between the generalized Markov chain and
a regular Markov chain discussed above is that each state is an
interval rather than a single value. However, as soon as U; (t) >
0, only a single value in each set S; remains active and is
uniquely determined by the initial value in Sy. Specifically, if
the initial value is u, then the only active value in S; is given
by u + jC5, 1 < j < n. For this reason, each state S;, albeit
defined as an interval, resembles a “single value”, and one can
directly define transition probabilities between two consecutive
states. Fig. 2 illustrates an example of the generalized Markov
chain with initial value u € [0, C3).

Let us consider a new stopping time

. min{t : {Ué(j)J 2 [bgC’lze_T } .

By definition, 7 is independent from the initial value U; () —
|U;(t)/C2|C> and is achieved whenever U;(t) enters S,, for
the first time. Moreover,

(148)

(¥ (¥ log 1=¢ log 1==¢
Ul (Tz ) Z UZ (T1 ) 2 Og € Z Og € i (149)
CQ 02 CQ C(2
Hence, by definition of 7; in (43), we obtain
i <717 (150)

This implies that

Elr; — vl =i, Ui (v;) = u] < E[r) — 1410 =i, U;(v;) = u.
(151)

Note that E[7} — ;|0 = i, U;(v;) = u] represents the expected
first-passage time from initial state u € Sy when U, (t) first
crosses threshold O to state S,,. In Appendix III, the time of
first passage analysis reveals that

E[Ti* — l/l|(9 = i, Ui(Vi) = u]

n p P\" 2q
: ) (o
1—2p+1—2p< q )( "1

- nCQ 2702 —nCy CQ
T oo (8- 1- ) asy

) (152)

where A represents the expected self loop time of U;(t) from
Sp to Sp. Assume that after fallback, U;(t) = u—C5 < 0. Fol-
lowing the proof of Lemma 4 in Section V-E, we immediately
obtain,

(1/q)log2q u—C,

NAg <1 154
0 <1+ C c (154)
14 (1/q)10g2§+02 —u (155)
<14 W) 10%2‘] +C (156)

Substituting (156) into (153) yields

1_|_ log 2¢q 1
9@ ) (157)
C C,

E[Ti* — l/l|9 = ’i, Ul(VZ) = U]

7102 —C.
< —= 40272
= + G2

1— 2—7LCQ
1-2Ce

Using n = [log 1=¢/C5] < log 1=5/C5 + 1, we obtain the
desired upper bound
]E[Ti* — Vi|9 = i, Ui(Vi) = u]
—€ € —C.
< log :=5+C» 1— 35272

- Cr27 ¢
< o + C2 1_9 0

C o,
(158)

( L+520

Invoking (151) completes the proof of Lemma 5.

VI. NUMERICAL SIMULATION

In this section, we simulate the proposed SED encoder
for a regularized BAC(po, p1) with feedback. In the case of
BSC, we will compare the empirical rate with the achievability
bound given by our results and previous work. By (12), we
can compute the empirical rate achieved by the SED encoder.
Using the non-asymptotic upper bound on E[r], we can also
obtain the associated achievability bound (i.e., lower bound)
on rate.
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Fig. 3. The rate as a function of average blocklength over the
BAC(0.03, 0.22) with noiseless feedback. Target error probability e = 1073,

A. Simulation Results on BAC with Feedback

Let the target error probability ¢ = 1073, Consider the
BAC(0.03,0.22) with feedback. Using Facts 1 and 3, one can
compute

C =05 0 =31954, Cy=4T. (159)

Fig. 3 shows the simulated rate vs. average blocklength of
the SED encoder over the BAC(0.03,0.22) with feedback,
along with the achievability bound derived from Theorem
4. Since the SED encoder has an exponential complexity in
message length, we were only able to simulate the message
length from k£ = 1 to k = 20 bits. We see in Fig. 3 that the
actual performance of the SED encoder is much better than
our achievability bound, implying that there is still room for
improvement.

B. Simulation Results on BSC with Feedback
Consider the target error probability ¢ = 1072 and the
BSC(0.11) with feedback. Using Facts 1 and 3,

C =05 C;=23527, Co=3.0163. (160)

One can verify that this setting satisfies the technical condi-
tions in [13]. Thus, by Theorem 1 of Naghshvar et al.,

< log M + loglog M + 3.317
- 0.5

E[r] +4.6609 + 5341.38,

(161)

which turns out to be a much loose bound. The corresponding
achievability bound even falls out of the average blocklength
region of interest, thus is omitted from the simulation plot.
Fig. 4 shows the numerical comparison of the upper and
lower bounds, and the actual performance of the SED en-
coder for the BSC with crossover probability p = 0.11 and
€ = 1073, Due to the exponential encoding complexity, we
were only able to simulate message lengths from £ = 1 to
k = 20. Despite that Corollary 1 is a better result compared
to Theorem 1, the resulting achievability bound still falls
beneath Polyanskiy’s achievability bound on rate for a system

0.5}

o] S
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"
-
P

-
-
-
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0.35

Rate
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Converse for the BSC(0.11), e = 1073
== Simulation of the SED Encoder
——BSC Refined Achiev. Bound (Th. 7)
—-=-BSC Achiev. Bound (Th. 4)

— — Polyanskiy’s Achiev. Bound (Th. 2)
— = Corollary to Naghshvar et al. (Cor. 1)

0 50 100 150
Average Blocklength E[7]

200

Fig. 4. The rate as a function of average blocklength over the BSC(0.11)
with noiseless feedback. Target error probability € = 1075,

limited to stop feedback. In contrast, our BSC achievability
bound from Theorem 4 exceeds Polyanskiy’s achievability
result in [11]. Indeed, this should be expected since a system
that employs full, noiseless feedback should perform better
than a system with stop feedback. In particular, the refined
achievability bound from Theorem 7 is a further improvement
compared to Theorem 4.

VII. IMPLICATIONS ON THE RELIABILITY FUNCTION

In this section, we show that our SED encoder for the
regularized BAC with feedback attains both capacity and
Burnashev’s optimal error exponent.

Let ¢ be a variable-length coding scheme such that for each
positive number [/, one out of M., equiprobable messages is
transmitted at an error probability P, . and with an average
blocklength E, [7]. We say that the scheme ¢ achieves rate R
if for any small numbers § > 0, € € [0,1) and all sufficiently
large [, the following three conditions hold:

Pe,cl <, (162a)
M,, > 2UE=9), (162b)
E.,[r] <l (162¢)

Furthermore, if the scheme ¢ satisfies (162b), (162c) and a
stronger condition

Pe, <2719, (163)

for some positive real number F, then we say the scheme ¢
achieves error exponent I at rate R.
We invoke a general result from [13] to show our claim.

Lemma 12 (Lemma 4, [13]). Suppose that we have a VLF
coding scheme c¢ that for each message size M > 0 and each
positive € > 0, satisfies P, . < € with expected stopping time

log M log%
EC[T] S < Rmin + Emin (1 + 0(1))

(164)



for some positive numbers FErin and Ryin, where o(1) — 0
as € - 0 or M — oo. Then, the scheme ¢ can achieve any
rate R € [0, Ryin] with error exponent E, if

R
Rmin ’

Observe that in Theorem 4 and Theorem 7, both upper
bounds can be relaxed and written in the form of
logM logl  K(C,Cy,0C)
C Cy cCy ’

E S Emin (1 - (165)

(166)

where K(C,C1,C5) is a constant that only relies on
C, 4, Cy. Hence, for sufficiently large M or sufficiently small

€,
K(C.C1,Ca) _ G log M + Clogt log M N log £
cCy - cCy - C o '

implying that the non-asymptotic upper bounds in both The-
orem 4 and Theorem 7 meet the condition in Lemma 12.
Therefore, the SED encoding scheme can achieve any rate
R € [0, C] with error exponent

R
peo(i-F),

thus the claim is proved.

(167)

VIII. CONCLUSION

In this paper, we proposed a generalized SED encoder for
the class of binary asymmetric channels with full, noiseless
feedback. For a BSC with feedback, this generalized SED
encoder a relaxation of Naghshvar ef al.’s SED encoder. This
paper develops a non-asymptotic upper bound on the average
blocklength of the VLF code associated with the generalized
SED encoding rule. For the example of the BSC with capacity
1/2, the corresponding lower bound on achievable rate for a
system with full feedback is above Polyanskiy’s achievability
bound for a system limited to stop-feedback codes. In sum-
mary, the SED encoding rule is a powerful tool that helps
facilitate new achievability bounds.

The theoretical development utilized the concept of extrinsic
probabilities introduced by Naghshvar et al. to connect the
generalized SED encoder to the corresponding non-asymptotic
upper bound on average blocklength. The partial ordering
m7 < g for a regularized BAC implies that transmitting
symbol 1 achieves the maximum relative entropy C4. These
observations facilitate the generalized SED encoder. However,
it remains open as to whether these observations also hold for
a general binary-input channel with feedback.

APPENDIX I
PROOF OF FACT 1

Let (mp, 1 — mp) be an input distribution to a BAC(pg, p1).
Hence, Y is also a binary random variable with

P{Y =0} =7mo(1 — po) + (1 — mo)p1. (168)

Therefore, the mutual information I(m) between X and Y is
given by

~

(7o)
(mo(1 = po) + (1 — mo)p1) — moh(po) — (1 — mo)h(p1)

(mo(1 = po —p1) + p1) — mo(h(po) — h(p1)) — h(p1).
(169)

h
h

Since mutual information I(m) is strictly concave in 7y €

(0,1) [19], the optimal 7} satisfies I'(wy) = 0. The first
derivative of I(m) is given by
I'(mo) = (1 —po —p1)lo ( ! —1)
0 bo b tos mo(1 —po —p1) +p1
— (h(po) = h(p1)). (170)

Clearly, I'(mp) is a monotonically decreasing function in 7y €
h(pg)=h(p1)

(0,1). Let z 2 2 1-ro-»1 . By setting I’(my) = 0, we obtain
mg in (2). Using (169) and the relation 77 = 1 —m;, we obtain
capacity C' in (1) and 7§ in (3).

To show that pg € (0,1/2) and pg < p1 < 1 — pg imply
75 > 1/2, it suffices to show that

I (1) > 0. (171)
2
Note that
(1 1
I'\s)=- (1 =po—p)log | G750 — 1| — po)
2
+h(1—py). (172)

Therefore, it is equivalent to show that
1
h(1 =p1) = h(po) + (1 —p1 —po)log | G570 — 1] -
2
(173)

Let us fix po € (0,1/2) and define 2 2 1 — p; € [poy, 1 — pol-
Then, (173) simplifies to

1
h(z) > h(po) + (x — po) log (Iﬂ)o — 1) . (174)
2

In order to show (174), we introduce the following useful
lemma.

Lemma 13. Ler f : (0,1) — R be convex in (0,1/2] and be
concave in [1/2,1). Additionally, f(z) = —f(1 — ). Then,
Yo,y € (0,1) with x +y < 1,

F@)+ fly) > 2f <“y) (175)

2



Proof: Without loss of generality, assume that x < y. If
y < 1/2, (175) directly follows from convexity of f(x) in
x € (0,1/2]. Now consider y > 1/2. Therefore,

f (x;y> - fy)

—r(U55) - ramra -

<f (1_3’”) —fA—y) + F(1/2) - fly)  A76)

2
—j1/2) - f (1 te- ”‘") (77)
sf<1—fc;y)—f(1—:c> (178)
=f(w)—f(z;y). (179)

In the above,

e (176) follows from the convexity property that for a fixed
6 >0,

f(x) = fx+9) < fy) — f(y+0), whenever x >y,

e (177) and (179) follow from f(z) = —f(1 — x),
o (178) follows from the concavity property that for a fixed
6 >0,

f@)—fx+90) < fly)— f(y+ ), whenever z < y.

This completes the proof of Lemma 13. ]

We are now in a position to prove (174). Let g(z) =
log(1/x — 1), © € [po,1 — po]. Observe that g(x) meets the
conditions in Lemma 13 and h/(z) = g(z). Hence, appealing
to Lemma 13, we obtain

) = hipo) + [ g(c)dz (180)
Po
—hpo)+ [ (9) +gla+po—2)dz (8D
POIEPO
> h(po) +/ 2 (““Lp“) dz (182)
Po 2
1
= h(po) + (z — po) log (mﬂ,o - 1) . (183)
2

This implies that (174) indeed holds.
concluding the proof of Fact 1.

Hence, 75 > 1/2,

APPENDIX II
PROOF OF FACT 3

For brevity, let us define two distributions

P £ P(Y|X =0) = [1—po,pol, (184)
QEPY|X=1)=[p,1-p] (185)

Hence, it is equivalent to show that
D(Q|P) = D(P|Q). (186)

@

Fig. 5. An equivalent Markov chain from S,,_1 to Sj,.

Let us define the function
f(po,p1) £ D(Q|IP) — D(P|IQ)

b1
+ (1 4+ po — p1) log
L —po ( 0= P)

1—m

= (1—po+p1)log
Do
(187)

The first and second derivatives with respect to p; are,
respectively, given by

of D1 1—p L= po Po
—— =log———— —1o +(loge){ —— — ——
. Bl-pe B g (log )( P 1_p1)
(188)
2 | 2p1 —1)(p1 — 1
37]20: (loge)( P )(p12 + po) (189)
opi pi(1=p1)
if 1/2
<0, i P1 € [po,1/2) (190)
>0, if py €[1/2,1 = po].

Hence, for a given pg € (0,1/2), f(po,p1) is concave in
p1 € [po,1/2] and is convex in p; € [1/2,1 — pgl. Next, we
borrow a classical result in analysis [20].

Lemma 14. Consider a function ¢ : I — R defined on an
interval I £ [a,b] with a < b. If the first derivative ¢'(z) is
continuous on I and the second derivative ¢"(x) exists for
every x € I° 2 (a,b), then the following two properties hold
1) if ¢"(x) >0, x € I°, and ¢'(z*) = 0 for some z* € I,
then ¢(x) > ¢(a*) for all x € I.
2) If ¢"(x) <0, z € I° then ¢(x) > min{¢p(a), p(b)} for
all xz € I.

By Lemma 14, for p; € [po, 1/2], due to concavity,

f(po,p1) > min{ f(po, po), f(po,1/2)}
= min{0, f(po,1/2)}.

Similarly, for p; € [1/2,1—po], due to convexity and the fact
that aa—f _ =0,
p1 Ip1=1—po

f(p07p1) > .f(p07 1 _pO) = 07 (193)

implying that f(pg,1/2) > 0. Combining this with (192) and
(193), we conclude that f(pg,p1) > 0 for all p; € [po, 1 —po],
thus establishing (186). This completes the proof of (7).
Next, we prove (8). This is equivalent to showing that p; (1—
p1) > po(1—po), which clearly holds when py < p1 < 1—py.

(191)
(192)

APPENDIX III
TIME OF FIRST PASSAGE ANALYSIS

In this section, we compute the expected first-passage time
from Sy to S, for the generalized Markov chain, as depicted
in Fig. 2. Consider the general case where the self loop for



state Sp has weight Aq (i.e., the expected self loop time from
So to Sp), and all other transitions in graph has weight 1.
Let v; denote the expected first-passage time from S; to S,,
0 <7< n—1. Our goal is to compute vy, which is equal to
E[’Ti* - I/Z|g = i, Uz(Vz) = U]

This appendix computes vy by first simplifying the expected
first-passage time node equations into an expression involving
only vg and v, _;. Characterizing the entire process to the left
of S,,—1 as a self loop with weight A,,_; yields an explicit
expression for v,,_;. This eventually produces an expression
for v that naturally decomposes into the expected first-passage
time for a classical random walk plus a differential term.

A. Simplifying Node Equations
Following [21, Chapter 4.5.1], the node equations for the
generalized Markov chain in Fig. 2 are as follows:

Up—1 =1+ pu,_a, (194a)
Up—2 =14 pop_3+qup—1, (194b)
Vn—3 = 1+ PUp_4 + qUy_2, (194c¢)
vy = 1+ pv1 + qus, (1944)
v1 =14 pvg + quo, (194e)
vp = q + pro + qu1 + pAg. (194f)

Summing all equations in (194) yields

n—1 n—2

D vi=n—1+4q+ Y vi+qua1+2pvo+pAo. (195)

1=0 =1
Solving for vy yields
C1—-2p Tz 2p

Thus, what remains to determine v is to determine v,,_1.

Vo (Ao — Up—1 — 1). (196)

B. Expressing v,_1 in Terms of Ag

In this subsection, we aim to express v,,_1 in terms of Ay.
By characterizing the entire process to the left of S,,_1 as
a self loop with weight A,,_; and transition probability p,
the generalized Markov chain in Fig. 2 reduces to a two-state
Markov chain as shown in Fig. 5. The node equation at S,,_;
in Fig. 5 is given by

Up—1=PpAn_1+q+pvy_1. (197)
Solving for v,,_; yields
on1 =LA, +1. (198)
q

Next, we develop an recursive equation to solve A,,_1. Let A;
denote the expected self loop weight for S;, 0 < i < n — 1.
Fig. 6 shows the transition between S;_; and S; conditioned
on circling over S; once. Thus, from Fig. 6, we obtain

A =1+ pra(kAi 1 +1)
k=0

=2+ BAi—l-
q

(199)

(200)

Fig. 6. Recursive relation between A; and A;_1.

Since (200) holds for an arbitrary ¢, 0 < ¢ < n—1, applying
(200) in a recursive manner yields

n—1 2 n—1
A, 4= (p> Ag+—4 |1 <p> . (201)
q 1-2p q

Substituting (201) into (198), we obtain

n n—1
2
Un_1 = (p> Ao+ —L|1- (p> +1.(202)
q 1—2p q
C. Finding the General Expression for vg
Substituting (202) into (196),
n p p
2p p n—1
— 1—(= -2 203
1=2p l <q> e

_n P (P " _ 2q
_12p+12p<1 (q))(AO 12p>'
(204)

This completes the derivation of vy.

Remark 4. For an independent and identically distributed
(i.i.d.) random walk that moves forward by 1 with probability
q and moves backward by 1 with probability p, all A;’s are
identical. Using (200), we obtain
_ 2%

1 T 1 _ 2p7
Thus, (204) can be thought of as the expected first-passage
time for an i.i.d. random walk plus a differential term that
depends on the difference between the self loop weight A

of the actual random process and the self loop weight of a
standard i.i.d. random walk.

Vi € Z. (205)
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