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Probabilistic Shaping for Trellis-Coded Modulation
with CRC-Aided List Decoding
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Abstract—This paper applies probabilistic amplitude shaping
(PAS) to cyclic redundancy check (CRC)-aided tail-biting trellis-
coded modulation (TCM). CRC-TCM-PAS produces practical
codes for short block lengths on the additive white Gaussian noise
(AWGN) channel. In the transmitter, equally likely message bits
are encoded by a distribution matcher (DM) generating ampli-
tude symbols with a desired distribution. A CRC is appended
to the sequence of amplitude symbols, and this sequence is then
encoded and modulated by TCM to produce real-valued channel
input signals. This paper proves that the sign values produced
by the TCM are asymptotically equally likely to be positive or
negative. The CRC-TCM-PAS scheme can thus generate channel
input symbols with a symmetric capacity-approaching proba-
bility mass function. The paper provides an analytical upper
bound on the frame error rate of the CRC-TCM-PAS system
over the AWGN channel. This FER upper bound is the objective
function used for jointly optimizing the CRC and convolutional
code. Additionally, this paper proposes a multi-composition DM,
which is a collection of multiple constant-composition DMs. The
optimized CRC-TCM-PAS systems achieve frame error rates
below the random coding union (RCU) bound in AWGN and
outperform the short-blocklength PAS systems with various other
forward error correction codes studied in [2].

Index Terms—reliable communication, short blocklength,
probabilistic shaping, trellis-coded modulation, tail-biting con-
volutional code, CRC, list decoding, distribution matcher.

I. INTRODUCTION

This paper explores reliable communications over the addi-
tive white Gaussian noise (AWGN) channel with high spec-
tral efficiency for short block lengths. To closely approach
theoretical limits, it is helpful to use shaping so that signal
points are not equally likely, not equally spaced, or both [3]–
[9]. Recently, a new technique called probabilistic amplitude
shaping (PAS) [10], [11] employs a distribution matcher (DM)
[12] before the forward error correction (FEC) encoder and
channel-signaling mapping function to accomplish optimal or
almost optimal shaping.

A PAS system as in [10], [11] decomposes a channel
input sequence into a magnitude symbol sequence and a sign
sequence. The magnitude symbol sequence is generated by a
DM. The output of the DM is provided as input to a systematic
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FEC code where the parity check bits indicate the signs of the
channel inputs. A channel-signaling mapping function maps
the amplitude symbol sequence and the sign-bit sequence to
the corresponding sequence of transmitted signal points.

A distribution matcher [12]–[17] maps a binary input se-
quence onto a symbol sequence that determines the magni-
tudes of the transmitted symbols. The binary input sequence
typically has equally likely ones and zeros. However, the
output symbols from the distribution matcher are not equally
likely. Specifically, the distribution matcher is designed such
that the PAS system can generate channel inputs with a
capacity-approaching probability mass function (PMF).

Even though it is well-known that a continuous Gaussian
probability density function (PDF) is a capacity-achieving
distribution for the power-constrained additive Gaussian white
noise (AWGN) channel, a carefully designed finite-cardinality
PMF can deliver performance that is almost indistinguishable
from that of a Gaussian PDF and facilitates practical imple-
mentation. In [6], Kschischang et. al. use Maxwell-Boltzmann
distribution to optimize the PMF of equally-spaced pulse-
amplitude modulation (PAM) or quadrature amplitude modu-
lation (QAM) constellations. Xiao et. al. use dynamic Blahut-
Arimoto (DAB) to identify minimum-cardinality capacity-
approaching input PMFs for PAM constellations [9]. The
empirical distribution of the output symbols of a good dis-
tribution matcher will closely resemble the target PMF as
determined, for example, according to [6] or [9]. The shell-
mapping (SM) DM [13], [14] is optimal under the metric of
normalized Kullback-Leibler (KL) divergence. Schulte et al. in
[12] propose an asymptotically optimal distribution matcher,
the constant composition (CC) DM. Some other distribution
matchers include those of [15]–[17].

An important design choice for a PAS system is the selec-
tion of an FEC code. In the long blocklength regime, Böcherer
et. al. in [10] use low-density parity-check (LDPC) codes for
the PAS system. In the short blocklength regime, Coşkun et.
al. in [2] investigate PAS systems with various FEC choices,
including binary LDPC codes, non-binary LDPC codes and
polar codes.

Recently, convolutional codes with cyclic redundancy code
(CRC)-aided list decoding have shown excellent performance
in the short blocklength regime [18]–[21]. Yang et al. in
[18] show that a tail-biting convolutional code (TBCC) with
CRC-aided list decoding can achieve frame error rate (FER)
performance very close to the short-blocklength random cod-
ing union (RCU) bound [22]. King. et al. in [23] provide
an example where a TBCC outperforms a polar code in the
AWGN channel when both are decoded using CRC-aided list
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Fig. 1. Diagram of the CRC-TCM-PAS transmitter. In the diagram, s ∈ Fk
2 , a ∈ CDM ⊆ Al, g ∈ Fk0l
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decoding.
In this paper, we propose a PAS system designed for the

AWGN channel in the short-blocklength regime. The proposed
PAS system uses a CRC-aided, rate- k0

k0+1 , systematic, recur-
sive TBCC as the FEC code. The TBCC and the channel-signal
mapping function constitute the TCM [24]. We refer to the
proposed PAS system as CRC-TCM-PAS. Fig. 1 describes the
transmitter of the CRC-TCM-PAS system. A CRC-TCM-PAS
system can be designed as follows:

1) Using [6] or [9], identify the capacity-approaching PMF
for the PAM constellation under AWGN, which induces
the PMF for the corresponding magnitudes.

2) Assuming an ideal distribution matcher that generates
magnitude sequences whose symbols are independent
and identically distributed (i.i.d.) according to the dis-
tribution calculated in 1), optimize the CRC and TBCC
using the FER upper bound developed in Section V.

3) Replace the ideal distribution matcher with a practical
one.

The contributions of this paper are summarized as follows:
• CRC-TCM-PAS transmission system. This paper presents

the paradigm of the CRC-TCM-PAS system.
• Multi-composition distribution matcher (MCDM). This

paper proposes a multi-composition distribution matcher
(MCDM) matcher which can be seen as a collection of
CCDMs. We note that the proposed distribution matcher
is a generalization of the MCDM in [25], which limits
the cardinality of the output alphabet to 2. We investigate
two rules to select the CCDMs, which are related to high-
probability sets and typical sets in information theory.

• CRC-TCM-PAS Decoder. We propose automorphism
enabled decoding [26] to achieve near-maximum-
likelihoood performance with low time complexity.

• Properties of CRC-TCM-PAS transmission system. This
paper proves that, asymptotically, the sign values pro-
duced by the TCM are equally likely to be positive or
negative. This yields channel input symbols that have a
symmetric capacity-approaching distribution.

• Optimization of CRC-TCM-PAS parameters. This paper
derives an upper bound on the FER of CRC-TCM-PAS
systems and uses this bound as an objective function
to jointly optimize the CRC and TBCC. The optimized
CRC-TCM-PAS systems achieve FERs below the random
coding union (RCU) bound in AWGN and outperform

the short-blocklength PAS systems with various other
forward error correction codes studied in [2].

The remainder of this paper is organized as follows: Section
II reviews CCDM and presents MCDM. Section III presents
CRC-TCM-PAS system architecture. Section IV proves the
symmetric capacity-approaching distribution of the output
of the CRC-TCM-PAS system. Section V derives the FER
upper bound, and Section VI presents the simulation results
of CRC-TCM-PAS systems with different input lengths and
transmission rates. Section VII concludes our work.

In this paper, we use the italic upper case letter A to denote
a random variable. We use Al = [A1, . . . , Al] to denote a
random vector. We use the italic lowercase letter a to denote
a realization of A or a variable. We use the straight bold
lowercase letter a to denote either a realization of Al or a
column vector. Specifically, [a]m is a vector that contains last
m elements in a. Finally, we use the straight, bold upper case
letter A to denote a matrix.

II. MULTI-COMPOSITION DISTRIBUTION MATCHER

The section reviews CCDM and presents a multi-
composition distribution matcher (MCDM).

A. Preliminaries

A fixed-to-fixed distribution matcher is an injective function
fDM that maps a binary length-k source sequence s ∈ Fk

2 to a
length-l symbol sequence a ∈ Al, i.e., fDM : {0, 1}k → Al.
A = {0, 1, ..., |A|− 1} is the output symbol set. In this paper,
we limit log2 |A| = k to be some integer. The range of fDM is
the codebook of the distribution matcher, which is denoted by
CDM. Because fDM is an one-to-one mapping, it has |CDM| =
2k. Additionally, because the input bits of the DM are equally
likely, it has PAl(a) = 2−k, for a ∈ CDM. Let P (Ā) be the
empirical distribution of a DM with codebook CDM.

The quality of a DM can be measured as its KL divergence
with a theoretically optimal DM, which is referred to as a
random DM. The random DM uses the construction method
of Shannon’s random code [27]. Given the desired probabil-
ity P (Â), in each transmission, the random DM randomly
generates a codebook that contains 2k codewords of length l
according to the distribution PÂl(a) =

∏l
i=1 PÂ(ai). The KL
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TABLE I
COMPARION OF VARIOUS DMS TARGETING FOR DISTRIBUTION P (Â) = (0.072, 0.165, 0.321, 0.442).

ALL DMS HAVE 96 INPUT BITS AND 63 OUTPUT SYMBOLS.

ESS MCDM with CHP MCDM with CTS CCDM
normalized KL divergence 0.074 0.077 0.096 0.213

required storage (bits) 3.6e5 3e5 3e4 24

divergence between a practical DM with CDM and a random
DM is calculated by [12]:

DKL

(
P (Al)||P (Âl)

)
=

1

2k
log2

( ∑
a∈CDM

1

PÂl(a)

)
− k,

(1)

In this paper, we follow the convention in [12], and use the
normalized KL divergence, 1

lDKL

(
P (Al)||P (Âl)

)
, as the

metric to evaluate the distribution matcher.
A DM with a small normalized KL divergence is desired.

One well-known DM with simple encoding and decoding
algorithm is CCDM, whose codebook, CCCDM, contains the
sequences that have the same type, which is defined as follows
[27, Chapter 11]:

Definition 1. The type (or empirical distribution) Pa of a
sequence a = [a0, a1, . . . , al−1] is the relative proportion of

occurrence of each symbol in A, i.e., Pa(i) =
∑l−1

j=0 1(aj=i)

l ,
i ∈ A. Define the set of sequences of length l and type P as
set class of P , denoted by T l

P :

T l
P = {a ∈ Al : Pa = P}. (2)

Based on Definition 1, the codebook of CCDM is a sub-
set of a set class of some type P . The type P is cho-
sen such that 2k ≤ |T l

P |, and normalized KL divergence
is minimized in the meanwhile. Because all codewords in
CCCDM have the same type P , the empirical distribution
of CCDM P (Ā) = P. There are two major advantages
to CCDM. First, the CCDM is asymptotically optimal, i.e.,
liml→∞ 1

lDKL

(
P (Al)||P (Âl)

)
= 0. Second, a CCDM can

use arithmetic coding to sequentially generate the codewords
in CCCDM [12]. However, the normalized KL-divergence of
CCDM is large in the short-blocklength regime [12].

B. Multi-Composition Distribution Matcher

In this section, we propose a multi-composition distribution
matcher (MCDM) that delivers a small normalized KL diver-
gence in the short blocklength regime. The MCDM codebook
can been seen as a union of multiple CCDM codebooks. The
codebook of an MCDM, CMCDM, has the following properties:

1) CMCDM is a union of τ disjoint children codebooks, i.e.,
CMCDM =

⋃τ
i=1 Ci, and Ci

⋂ Cj = ∅, for i ̸= j.
2) The codewords in a child codebook have the same type,

i.e., Ci ⊆ T l
PAi

, i = 1, 2, ..., τ . No two different children
codebooks share the same type.

3) Let ki =
⌊
log2(TPAi

)
⌋

for i = 1, . . . , τ , then |Ci| = 2ki ,
for i = 1, 2, ..., τ − 1, and |Cτ | = 2k −∑τ−1

i=1 2ki .
Let bi be the cardinality of the union of the first i codebooks,

i.e., bi =
∑i

m=1 |Ci|, where i = 1, ..., τ . Specifically, define

b0 = 0. Given a binary input s, the encoding algorithm for
MCDM is summarized as follows. First, choose the child
CCDM Ci associated with input sequence s, i is selected such
that bi−1 ≤ s < bi, where s is the decimal representation of s.
Second, Calculate the child CCDM input as c = [s−bi−1]ki

,
where bi to denote the binary representation of bi and the
operator [·]ki

returns last ki bits. Finally, Perform CCDM
encoding with the child CCDM Ci using input c, and generate
the output sequence.

The MCDM decoding process is as follows: For any a ∈ Al,
the decoder first checks whether the type of a is one of the
types in CMCDM. If so, the decoder checks whether a is in
CMCDM. Otherwise, the decoder declares that a /∈ CMCDM.

An important design question regarding MCDM is the
selection of children codebooks Ci, i = 1, ..., τ . Given a target
distribution P (Â), we investigate two rules for choosing Ci,
namely, high-probability rule and typical-set rule:

Rule 1: High-probability Rule:

P (Ai) = argmax
P (A∗)∈P\{P (A1),..,P (Ai−1)}

|A|∑
a=1

PA∗(a) logPÂ(a).

(3)

Rule 2: Typical-set Rule:

P (Ai) = argmin
P (A∗)∈P\{P (A1),..,P (Ai−1)}

DKL(P (A∗)||P (Â)).

(4)

P is the set of all possible types of length-l symbol
sequences. Rule 1 chooses the types whose sequences occur
with the highest probability according to P (Â). On the other
hand, rule 2 chooses the types that are most similar to P (Â).
The codebooks built using rules 1 and 2 are related to the
concept of high-probability set and typical set in information
theory [27, Chapter 3.3], respectively. We use CHP and CTS to
denote the codebooks built using high-probability and typical-
set rules, respectively.

C. Comparison

In this subsection, we compare the performance of var-
ious distribution matchers in terms of the normalized KL
divergence and required memory. We design the distribu-
tion matcher with 96 input bits and 63 output symbols
from an 4-ary alphabet. The target distribution is P (Â) =
(0.072, 0.165, 0.321, 0.442).

Additional to the MCDM and CCDM, we also consider a
DM called enumerative sphere shaping (ESS) [28]. ESS has an
excellent performance in the short block length regime. Given
a symbol sequence a = [a1 . . . al], the energy of a is defined
as
∑l

i=1 a
2
i . ESS considers the sequences whose energies are

less than or equal to a threshold Emax as codeword candidates
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of the distribution matcher. Given an Emax, ESS indexes the
qualified sequences lexicographically, and an energy-bounded
trellis is built to index the sequences.

Table I gives the normalized KL divergence of CCDM,
MCDM, and ESS. CCDM delivers the largest normalized
KL divergence, while ESS delivers the smallest normalized
KL divergence. The MCDM with CHP delivers a comparable
normalized KL divergence with ESS, and the MCDM with
CTS is slightly larger than that of MCDM with CHP.

We also compare the required memories for these four DMs.
For the CCDM, it suffices to only store the type of codewords.
For the ESS, the node values in the trellises are needed [28].
The MCDM needs to store all of the types of children CCDMs
and the binary thresholds b. As shown in Table I, CCDM only
needs 24 bits for storing the codeword type. The MCDM with
CHP requires a little bit less memory than ESS. The memory
for the MCDM with CTS is an order of magnitude smaller
than the memory for the MCDM with CHP, because it uses
fewer children CCDMs. In this example, CHP requires 2535
children CCDMs and CTS requires 327.

III. CRC-TCM-PAS SYSTEM

This section presents the transmitter structure and the decod-
ing algorithms for the proposed CRC-TCM-PAS transmission
system.

A. CRC-TCM-PAS Transmission System Structure

Fig. 1 illustrates the diagram of the proposed CRC-TCM-
PAS transmitter. The CRC-TCM-PAS system consists of three
encoding procedures. First, a length-k binary source sequence
s ∈ Fk

2 is encoded to a length-l symbol sequence a ∈ CDM by
a distribution matcher. Then, the binary representation g of a
with k0 bits per symbol, g ∈ Fk0l

2 , is encoded by a systematic
m-bit CRC with generator polynomial p(x). The proposed
system implicitly requires that k0 divides m. Finally, the TCM
module encodes the CRC output and maps the encoded bits to
a length-n channel input sequence x ∈ Xn, where X denotes
the AM constellation set and n = l + m

k0
. The TCM module

includes a systematic, rate- k0

k0+1 TBCC, and a channel-signal
mapping function which maps each k0 + 1 encoded bits onto
one of 2k0+1 symbols in the AM constellation set X .

The transmission rate of the CRC-TCM-PAS system is
k
n bits/real channel use. The remainder of this subsection
introduces TBCC and the channel-signal mapping function for
TCM.

1) Tail Biting Convolutional Code: A convolutional code
with ν memory elements that takes a k0-bit input symbol
and generates a γ0-bit output symbol in one stage is denoted
by an (γ0, k0, ν) convolutional code. We refer to each input
symbol as a data frame, and each output symbol as a code
frame. This paper is focused on (k0 + 1, k0, ν) convolutional
code. The convolutional code in Fig. 1 has k0 = 2. Let
U = {0, 1, . . . , 2k0 − 1} be the set of input symbols and
O = {0, 1, . . . , 2γ0 − 1} be the set of output symbols. Denote
the input symbol and output symbol in stage t by ut and ot,
respectively. A convolutional code with n data frames can be
described as an n-stage trellis. Denote the set of vertices (or

101110011000001010111100

(a)

001 111 100 010 000 110 101 011

(b)

Fig. 2. Labeling of 8-AM channel signals from (a) magnitude perspective
and (b) coset perspective. The least significant two bits identify the coset. The
most significant two bits indicate the magnitude. The exclusive-or of all three
bits indicates the sign.

states) at time instant t by Vt. Let vt be the state at time t.
Denote an edge that starts with vt, ends at vt+1 and has an
output ot by a 3-tuple (vt, ot, vt+1). Let Et be the set of edges
in stage t. In this paper, we let Vt = V = {0, 1, . . . , 2ν − 1},
and Et = E . Let the sequence (v0, o0, v1, o1, . . . , on−1, vn) be
a valid path in the trellis, a tail-biting path requires v0 = vn.
Denote the TBCC trellis by T , and denote the TBCC sub-
trellises whose starting and ending state are i, i ∈ V , by Ti.

2) Mapping Rule: In order to maximize free Euclidean
distance (ED) of TCM, Ungerboeck in [24] proposed a map-
ping rule called "mapping by set partitioning". Ungerboeck’s
set partitioning mapping rule follows from the successive
partitioning of a channel-signal set into subsets with increasing
minimum distance between the signals in these subsets. With
set partitioning, the coded bits serve as coset labels so that
"uncoded errors" are guaranteed to have at least minimum
distance between elements in the same coset.

Our design has an additional requirement that the system-
atic bits identify the magnitude of the symbol as produced
by the distribution matcher. Fig. 2 gives binary labels for
the equidistant 8-AM constellation set using a labeling that
achieves both of these objectives. In this labeling, the sign is
negative when the exclusive-or of all three bits is one. The
two most significant bits are the systematic bits that identify
the magnitude, and one may view the least significant bit as
selecting the sign. The two least significant bits identify the
coset, and one may view the most significant bit as selecting
the sign.

B. Decoding Algorithms

The channel observation at the receiver over an AWGN
channel is y = x + z, where z ∼ N (0, σ2I) is the noise
vector and σ2 is the noise variance. This subsection introduces
various decoding algorithms with varied complexity and error
correction performance. We first give the definition of the
codeword of a CRC-TCM-PAS system:

Definition 2. x ∈ Xn is a CRC-TCM-PAS codeword if it
satisfies all of the following conditions:

1) x is a codeword of TCM.
2) The dataword of TCM that generates x, h, passes the

CRC check.
3) The information bits g of the CRC codeword h, are the

binary representation of a codeword in CDM.
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Fig. 3. The diagram of an AE decoder with M parallel β-States decoders, i.e., AED(M ,β).

Denote the codebook of CRC-TCM-PAS by CCTP, which
has cardinality |CCTP| = 2k.

1) Maximum Likelihood (ML) Decoder: For AWGN, the
ML decoder finds x̂ ∈ CCTP that has smallest Euclidean
distance with y, i.e.:

x̂ = argmin
x∈CCTP

||x− y||22. (5)

The ML decoder minimizes the FER, i.e., the probability of
a codeword error, in AWGN. The decoding rule of (5) can be
realized by serial list Viterbi decoding (SLVD) [29]. SLVD
first finds the most likely path in tail-biting trellis T . If the
constellation point sequence corresponding to this path is not
a codeword in CCTP , then SLVD is used again to find the
next most likely path. If a path belongs to the sub-trellis Ti,
the trellis-tree algorithm (TTA) [30] for Ti is used for tracing
back that path.

The ML decoding complexity can be decomposed into two
parts. First, the initialization step calculates the metrics of local
best paths in each of 2ν sub-trellises. Second, if a path in Ti
needs to be traced back, a data set of TTA for Ti needs to be
constructed and maintained [30].

2) β-States Decoder: One solution to reduce the complex-
ity of ML decoder is to consider only a subset of 2ν states as
the possible start/end states. We denote the subset by Ṽ ⊆ V
and the cardinality of Ṽ by |Ṽ|. In this paper, we refer to a β-
States decoder as a decoder that considers β states as start/end
states, i.e., |Ṽ| = β. Let v(x) be the TBCC initial state of
the codeword x. The β-States decoder solves the following
problem:

x̂ = argmin
x∈CCTP

v(x)∈Ṽ

||x− y||22. (6)

The set Ṽ is identified using one iteration of the wrap-around
Viterbi algorithm (WAVA) [31].

3) Automorphism Ensemble (AE) Decoder: Ensemble de-
coding algorithms [26] employ M parallel independent and
identical sub-optimal decoders, with each proposing a code-
word estimate. From among these M proposed codewords,
the ensemble decoder selects the most likely candidate as
the decoder output [26]. One category of ensemble decoding
utilizes automorphism groups. An automorphism group is a

set of permutations such that the permuted sequence of any
codeword is still a codeword. When an automorphism group
of the codes is known, identical constituent decoders decoding
permuted versions of the channel output may be used, yielding
the so-called Automorphism Ensemble (AE) decoding [26].

The cyclic shifts δi, i = 0, ..., n − 1, are elements of an
automorphism group of the TBCC, where δi indicates the
cyclic shift of a sequence by i positions. Hence, as illustrated
in Fig. 3, an AE decoder for the CRC-TCM-PAS system is
constructed by employing M parallel β-States decoders for the
channel observations that are cyclic-shifted by {δi1 , . . . , δiM }.
The ith β-States decoder either provides a shifted estimation
candidate or declares an erasure. The final decoding result
of the AE decoder is the candidate that has the smallest
Euclidean distance from the channel observation. We denote
an AE decoder with M parallel decoders with cyclic shifts
{i1, . . . , iM}, where each decoder utilizes β starting states
obtained by WAVA as the decoder AED(M , β). In this paper,
the cyclic shifts {i1, . . . , iM} are uniformly sampled from
{0, . . . , n− 1}.

The M independent β-States decoders of AED(M , β) can
be run in parallel, so the AED(M , β) has the same time
complexity with a single β-States decoder but provides more
potential codewords. However, the AED(M , β) requires more
hardware resources than a single β-States decoder.

IV. CHANNEL INPUT DISTRIBUTION OF CRC-TCM-PAS
SYSTEM

This section proves that the distribution of the channel input
X of the CRC-TCM-PAS system is symmetric, i.e., PX(x) =
PX(−x) for x ∈ X , where X is the PAM constellation set.
We begin the proof with a theorem that shows the CRC check
bits in the CRC-TCM-PAS system are asymptotically uniform,
even though the input bits of the CRC encoder are not.

A. Uniformity of CRC bits

Denote the random variable that represents a DM output
symbol by Ā with PMF P (Ā). Because the cardinality of
output symbol set is 2k0 , Ā can be represented by k0 bits,
which are denoted by Bi, i = 0, .., k0 − 1. Since Ā is
not uniform, Bi, i = 0, ..., k0 − 1, may have different
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distributions. Let a ∈ A be a realization of Ā, and let
b(a) = [bk0−1(a), . . . , b1(a), b0(a)] ∈ Fk0

2 be the binary
representation of a. The PMF of Bi is calculated by:

PBi(b) =

|A|−1∑
a=0

PĀ(a)1 (bi(a) = b) , (7)

b = 0, 1, i = 0, 1, ..., k0 − 1. 1(·) is the indicator function.
As shown in Fig. 1, the binary converter maps a length-l
symbol sequence to a length-k0l binary sequence. Let Gk0l =
[G0, . . . , Gk0l−1] be the random vector representing the binary
sequence. Assume that the DM generates i.i.d. symbols, the
Gi’s that correspond to the same symbol bit position have the
same distribution, i.e.:

P (Gi) = P (Bi (mod k0)) , i = 0, . . . , k0l − 1. (8)

Let g ∈ Fk0l
2 be a realization of Gk0l, and denote the

polynomial form of g by g(x) =
∑k0l−1

i=0 gix
i. An m-bit

CRC is specified by a degree-m binary polynomial p(x) =∑m
i=0 pix

i. Let the polynomial form of the output of the CRC
encoder be h(x) =

∑k0l+m−1
i=0 hix

i. h(x) is calculated by
h(x) = xmg(x)+xmg(x) (mod p(x)). The following theorem
proves that the CRC check bits, hi, i = 0, . . . ,m− 1, can be
arbitrarily close to be equally likely, with a proper choice of
l.

Theorem 1. For a length-l random vector Al whose elements
Ai, i = 0, . . . , l− 1, are i.i.d. random variables with alphabet
|A| = {0, 1, 2, . . . , 2k0 − 1} and distribution P (A). Let Gk0l

be the binary representation of Al and Hk0l+m be the CRC
output sequence by encoding Gk0l with some degree-m CRC
polynomial p(x). For any 0 < ϵ < 0.5, there exists an l such
that

|PHi(0)− 0.5| < ϵ, i = 0, 1, . . . ,m− 1.

Please see the proof in [1]. Note that Theorem 1 can
be generalized to any systematic linear block code, and it
validates the uniform check bit assumption in [10].

B. Symmetry of Channel Input Distribution

Consider a length-n, rate- k0

k0+1 , systematic, and recursive
TBCC with ν memory elements. Denote the input symbol in
stage t by ut ∈ U , t = 0, ..., n−1 , and denote the state at time
instant t by vt ∈ V , t = 0, . . . , n. Let ut ∈ Fk0×1

2 and vt ∈
Fν×1
2 be the binary representation of ut and vt, respectively.

Based on the state-space representation of convolutional code
[32], [33], vt+1 is a function of vt and ut, i.e., vt+1 = Avt+
But, where A ∈ Fν×ν

2 and B ∈ Fν×k0
2 . The initial state

v0 of a recursive TBCC codeword can be determined by the
following equation:

v0 = (An + Iν)
−1v[zs]

n , (9)

where Iν is a size ν identity matrix and An+Iν is an invertible
matrix [32]. The term v

[zs]
N is referred to as zero-state solution

and is the final state by encoding the dataword with initial
state 0. The encoding of tail-biting convolutional code has
two steps:

1) Run encoding process first time by setting v0 = 0 and
record v

[zs]
n .

2) Run encoding process second time by setting v0 using
(9) and generate output symbols.

Therefore, in order to study the distribution of the output
symbols of a recursive TBCC, we need to know the distribu-
tion of v[zs]n by analyzing the first encoding process.

For the CRC-TCM-PAS system, the data frames, i.e., input
symbols, of TBCC are the outputs of CRC encoder. Because
the CRC encoder is systematic, the first n− m

k0
input symbols

of TBCC have DM output symbol distribution P (Ā). Based
on Theorem 1, the last m

k0
input symbols have uniform

distributions. This subsection uses state-space representation
of convolution code in [32], [33] to analyze the PMF of the
state in time instant t, Vt. The PMF of Vt, is calculated by:

PVt(vt) =
∑

vt−1∈V
P (vt−1)

∑
(vt−1,ot,vt)∈E

P (ot, vt|vt−1). (10)

Let ut = g−1 (vt−1, ot, vt) ∈ U be the input symbol that
associates to the edge (vt−1, ot, vt). Hence, P (ot, vt|vt−1) =
PUt

(
g−1 (vt−1, ot, vt)

)
. If the convolution code is systematic,

the input corresponded to (vt−1, ot, vt) can be solely deter-
mined by
ccoutputrealizet, we use g−1(ot) = g−1 (vt−1, ot, vt) as a
simplification. Define the matrix Ct−1 ∈ R|V|×|V| as follows:

Ct−1(vt, vt−1) = P (vt|vt−1) =
∑

(vt−1,ot,vt)∈E
P (ot, vt|vt−1).

(11)

Let pt = [PVt(0) . . . PVt(2
ν − 1)]

T , (10) can be rewritten as:

pt = Ct−1pt−1 =

(
t−1∏
i=0

Ci

)
p0, t = 1, 2, ..., n. (12)

(11) implies that Ct−1 is a left stochastic matrix, i.e., each
column in Ct−1 is a probability vector. Moreover, Ct−1 is
also right stochastic, meaning that each row has a sum of 1.
To see this, for the trellis of a convolutional code, for each
vt ∈ V , there are 2k0 edges that connect vt and each edge
associates a distinct input in U . As a result, Ct−1 is a doubly
stochastic matrix.

Theorem 2. For an (γ0, k0, ν) convolutional code with any
initial state distribution P (V0), if the data frames are i.i.d.
random variables with PMF P (U) and PU (u) > 0 for any
u ∈ U . Let Vt be the state at time instant t, then the random
sequence V0, V1, . . . converges in distribution to a uniform
random variable Vuni, i.e., Vt

d−→ Vuni.

Proof. Because all the data frames have the same distribution,
it has Ct = C. Hence, (12) can be rewritten as pt = Ctp0.
C is not only a doubly stochastic matrix but also a regular
matrix. For a convolutional code, any state vi ∈ V can always
reach any state vj ∈ V with a finite-length path. C retains this
property, because PU (u) > 0, for any u ∈ U . As a result, C
is regular. Based on Perron-Frobenius theorem [34], the non-
negative and regular matrix C has the following properties:
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1) C has λ1 = 1 as an eigenvalue of multiplicity 1, and the
normalized right eigenvector corresponded to eigenvalue

1 is q∗ =
[

1√
2ν

1√
2ν

. . . 1√
2ν

]T
.

2) For all other eigenvalues λj , j = 2, ..., q, it has |λj | is
strictly smaller than 1, i.e., |λj | < 1.

Let J = Q−1CQ be the Jordan canonical form of C.
Based on Perron-Frobenius theorem, J = diag(1,J2, . . . ,Jq),
where J2, . . . ,Jq are Jordan block matrices that correspond to
eigenvalues λ2, . . .,λq , respectively. Let Q = [q1 . . .q2ν ] and,
q1 is the eigenvector associated to eigenvalue 1, q1 = αq∗

1,
α ∈ R. Let p0 =

∑2ν

i=1 ciqi = Qc, it has pt = Ctp0 =
QJtc. Because limt→∞ Ji = 0 for j = 2, . . . , 2ν , it has
limt→∞ pt = c1αq

∗
1 =

[
1
2ν . . . 1

2ν

]T
.

The following example illustrates that a moderate t is
sufficient to let Vt be uniform.

Example 1. Consider the (3,2,3) convolution code shown
in Fig. 1. Let the initial state be 0 and P (U) =
(0.5742, 0.3188, 0.01642, 0.09048). When t = 12, |PV12

(v)−
1
8 | < 10−4, v = 0, . . . , 7.

Besides, if the state distribution at time t is uniform, the
state distribution at time t+1 is also uniform, no matter what
P (Ut) is. Hence, the zero-state solution, as well as the initial
state of TBCC, have a uniform distribution. As a result, the
states at all n + 1 time instants in second encoding process
have uniform distribution.

Now, we show that if the state at time instant t is uniform,
then the (k0 + 1, k0, ν) systematic recursive TBCC generates
an equally likely parity check bit in stage t. First of all, the
following theorem gives that distribution of output symbol in
stage t.

Theorem 3. Consider a (k0 + 1, k0, ν) systematic recursive
convolutional code that is defined by state set V , edge set E ,
input set U , and output set O. If the state distribution at time
instant t is uniform, i.e., pt =

[
1
2ν

1
2ν . . . 1

2ν

]T
, then the output

symbol distribution in stage t, POt(ot) = 1
2PUt

(
g−1(ot)

)
,

∀ot ∈ O.

Proof. Define matrix Dt ∈ R|O|×|V| with Dt(ot, vt−1) =
P (ot|vt−1), where ot ∈ O and vt−1 ∈ V . Define qt =
[POt

(0) . . . POt
(|O| − 1)]T . qt can be calculated by qt =

Dt−1pt.
Because the TBCC is systematic, Dt(ot, vt−1) =

PUt(g
−1(ot)). Hence, one property of Dt is that the non-zero

elements in each row have the same value.
The other property is that Dt contains 2ν−1 non-zero

elements for each row, i.e., given any output ot ∈ O, there are
only 2ν−1 possible states from which ot can be generated. This
is because for a rate- k0

k0+1 , systematic, recursive convolution
code, the register adjacent to the output is determined by ot,
hence the freedom of vt−1 is reduced by 1. Based on the
two properties of D, for any ot ∈ O, it has: POt

(ot) =∑2ν

i=1 D(l, i)PVt
(i) = 1

2PUt
(g−1(ot)).

Theorem 3 implies that, if the state distribution at time t is
uniform, then the parity bit generated by the convolutional
code at stage t is uniform. Because the sign value of the

channel input symbol at stage t, Xt, is determined by parity
bit, it has PXt(x) = PXt(−x), for x ∈ X .

Because the states of each time instant of TBCC have
uniform distribution, the channel inputs in each stage have
symmetric distributions. Besides, the magnitude distributions
of first n − m

k0
and last m

k0
channel inputs follow P (Ā) and

uniform distribution, respectively.

V. FER UPPER BOUND FOR CRC-TCM-PAS SYSTEM

In this section, we derive the FER upper bound for the
CRC-TCM-PAS system with the specified CC, CRC, and an
ideal distribution matcher that generates length-l symbol se-
quences with the desired distribution P (Âl). The upper bound
is computed using the generating function of an equivalent
convolutional code whose error events correspond exactly
to the undetectable error events of the concatenation of the
original CRC and CC.

A. Equivalent Code for CRC-Aided Convolutional Code

As shown in Fig. 1, the binary representation of the symbol
sequence generated by a distribution matcher is encoded by a
CRC and a TBCC serially. We begin our analysis by replacing
the CRC and convolutional encoder with a single convolutional
encoder whose input is the quotient of dividing the CRC
codeword by the CRC polynomial.

Let h be a length-(l̃ + m) CRC codeword with polyno-
mial form h(x) =

∑l̃+m+1
t=0 htx

t. Based on the notation
in Fig. 1, l̃ = k0l. For a rate- k0

k0+1 convolutional code,
there are k0 input branches. Let the input of the ith branch
be h(i), and let the corresponding polynomial be h(i)(x).
h(i) = [hi hk0i . . . hl̃+m−k0+i] is obtained by sampling h

every k0 positions starting from ith position, and h(i)(x) =∑(l̃+m)/k0−1
t=0 hk0t+ix

t, i = 0, . . . , k0 − 1.

Let q be the quotient of dividing the CRC output by
the CRC polynomial. The polynomial form of q, q(x), is
calculated by q(x) := h(x)/p(x).

Analogously to h(i), let q(i) denote the sequence by sam-
pling q every k0 positions starting from ith position. We refer
to the polynomial vector hk0(x) = [h(0)(x) . . . h(k0−1)(x)]
and qk0

(x) = [q(0)(x) . . . q(k0−1)(x)] as k0-split polynomial
vector of h(x) and q(x), respectively.

Theorem 4. Consider an m-bit CRC encoder which is speci-
fied by an m-degree polynomial p(x). Let the number of input
bits be l̃. Let k0 be an integer that divides m + l̃. Then for
any codeword polynomial h(x), its k0-split polynomial vector,
hk0

(x) can be calculated by hk0
(x) = qk0

(x)Peq(x). where
qk0(x) is the k0-split polynomial vector of q(x) = h(x)/p(x)
and Peq(x) ∈ F2[x]

k0×k0 is a k0 × k0 square binary polyno-
mial matrix.



8

Proof. Based on the relationship h(x) = p(x)q(x), the tth bit
of hj , h(j)

t is calculated by:

h
(j)
t = hk0t+j =

m∑
s=0

qk0t+j−sps (13)

=

m/k0−1∑
ℓ=0

j∑
i=0

qk0(t−ℓ)+ipk0ℓ+j−i

+

m/k0∑
ℓ=1

k0−1∑
i=j+1

qk0(t−ℓ)+ipk0ℓ+j−i + qk0t+j−mpm (14)

Let p(i)t = pkt+i, h
(j)
t can be rewritten as:

h
(j)
t =

j∑
i=0

m/k0−1(i̸=j)∑
ℓ=0

q
(i)
t−ℓp

(j−i)
ℓ

+

k0−1∑
i=j+1

m/k0−1∑
ℓ=0

q
(i)
t−ℓ−1p

(j−i+k0)
ℓ+1 . (15)

Define p(i)(x) =
∑m/k0−1(i=0)

t=0 pk0t+ix
t. The h(j)(x) can be

calculated by:

h(j)(x) =

j∑
i=0

q(i)(x)p(j−i)(x)

+

k0−1∑
i=j+1

xq(i)(x)p(j−i+k0)(x) . (16)

(16) implies that, by choosing the polynomial of ith row and
jth column of Peq(x) as:

Peq(x)i,j = p(j−i)(x)1(i ≤ j) + xp(j−i+k0)(x)1(i > j),
(17)

it has hsplit(x) = qsplit(x)Peq(x).

As a result, the concatenation of a CRC with generator
polynomial p(x) and a rate- k0

k0+1 convolutional code with
generator matrix G(x) is equivalent to a convolutional code
with generator matrix Geq(x), which is defined as follows:

Geq(x) = Peq(x)G(x). (18)

The error events of the equivalent convolutional code corre-
spond exactly to the error events of the original concatenation
of CRC and convolutional code. Because the concatenation of
a CRC expurgates the original TBCC by removing the code-
words whose corresponding messages do not pass the CRC,
the remaining codewords all meet the tail-biting condition so
that the equivalent convolutional code is still tail-biting.

B. FER Upper Bound

This subsection bounds the FER for the CRC-TCM-PAS
system. Based on the analysis in the previous subsection, the
CRC-aided TBCC can be replaced by an equivalent TBCC
with the generator matrix given in (18). The final computation
of FER requires the output symbol distributions. For the pur-
poses of this analysis, we assume a distribution matcher that
generates l i.i.d. symbols with the target symbol distribution

P (A). After the distribution matcher, n − l CRC symbols
are appended to the sequence. Based on Theorem 1, these
CRC symbols should be approximated as having a uniform
distribution rather than P (A). The output symbol distributions
for the analyzed system of the equivalent TBCC with the
generator matrix given in (18) with our idealized distribution
matcher are thus l output symbols distributed according to
P (A) and n − l output symbols distributed according to a
uniform distribution.

Let CT ⊂ Xn be the codebook of TCM. Let xc ∈ CT be the
transmitted codeword, and let y be the channel observation
over AWGN channel. Let εxc denote the event that, given
observation y, an ML decoder selects x̂ ̸= xc. Let exc,xe

denote the event that, given y, codeword xe is more likely
than codeword xc. The FER of CRC-TCM-PAS transmission
system Pe is upper bounded by the union bound: Pe ≤∑

xc∈CT
P (Xn = xc)

∑
xe∈CT
xe ̸=xc

P (exc,xe
) . The probability

P (exc,xe) is referred as the pairwise error probability (PEP).
Because P (Xn) is non-uniform1, choosing the codeword

that has the smallest Euclidean distance with the channel
observation is no longer optimal. Let uc,ue denote the
convolutional inputs corresponding to outputs xc,xe, exc,xe

happens if PXn|Y n (xe|y) > PXn|Y n (xc|y), this condition is
equivalent to:

2 ⟨y − xc,xe − xc⟩ − ||xc − xe||22 > 2σ2 log

(
PXn(xc)

PXn(xe)

)
.

(19)

⟨·, ·⟩ represents the inner product and || · ||2 represents l2-
norm. Define z′ = ⟨y−xc,xe−xc⟩

||xc−xe||2 , it can be proved that z′ ∼
N (0, σ2). Manipulating (19) reveals that exc,xe

occurs if the
following inequality is satisfied:

z′ >
1

2
||xc − xe||2 +

σ2

||xc − xe||2
log

(
PXn(xc)

PXn(xe)

)
(20)

≜
1

2
d(xc,xe). (21)

Note that d is not a metric as d(xc,xe) ̸= d(xe,xc).

Applying (20) yields P (exc,xe
) = Q

(√
d2(xc,xe)

2σ

)
, where

d2(xc,xe) is calculated by:

d2(xc,xe) =||xc − xe||22 + 4σ2 log

(
PXn(xc)

PXn(xe)

)
+

(
2σ2

||xc − xe||2
log

(
PXn(xc)

PXn(xe)

))2

. (22)

Define d2prox(xc,xe) by neglecting the last squared term in
(22), i.e.:

d2prox(xc,xe) = ||xc − xe||22 + 4σ2 log

(
PXn(xc)

PXn(xe)

)
. (23)

1In a practical CRC-TCM-PAS system, the codewords are uniform, specif-
ically, PXn (x) = 1

2k
1(x ∈ XCTP).
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Because d2prox(xc,xe) ≤ d2(xc,xe), the PEP P (exc,xe
) is

upper bounded by:

P (exc,xe) = Q

(√
d2(xc,xe)

2σ

)
≤ Q


√
d2prox(xc,xe)

2σ

 .

(24)

Hence, Pe is further bounded by:

Pe ≤
∑

xc∈CT

P (Xn = xc)
∑

xe∈CT
xe ̸=xc

Q


√
d2prox(xc,xe)

2σ

 .

(25)

Based on the ideal DM assumption and our analysis of
CRC and TBCC encoding, the output symbols of the CRC-
TCM-PAS system are independent of each other. Hence,
d2prox(xc,xe) =

∑n
i=1 d

2
prox (xc,i, xe,i), where xc,i and

xe,i are the ith element in xc and xe, respectively, and
d2prox (xc,i, xe,i) = (xc,i − xe,i)

2 + 4σ2 log
PXi

(xc,i)

PXi
(xe,i)

.

C. Generating Function with State-Reduction Method

This subsection derives the generating function of non-
uniform-input TCM using Biglieri’s product state method [35],
with state-reduction method as described in [36]. The product
state diagram [35] is built by replacing each state in the
error state diagram with a complete encoder state diagram.
Hence, for a convolutional code that has ν memory elements,
there are totally 22ν states in the product state diagram.
Wesel in [36] reduces the total number of states by proposing
an "equivalence-class encoder" with νx memory elements.
Because νx < ν, the state-reduction method requires fewer
states than the product state diagram.

For an equivalence-class encoder, denote the set of output by
Oeq. Let q ∈ Oeq be an output of the equivalent-class encoder.
Let eo ∈ O be a symbol error. As a reminder, O is the set
of TBCC output symbols. Let xq , xqeo be any constellation
point that belongs to equivalent class q and the constellation
point that xq moves to because of eo. We define d2prox(q, eo)
as follows:

d2prox (q, eo) = (xq − xqeo)
2 + 4σ2 log

PX(xq)

PX(xqeo)
. (26)

We follow the notations in [36] to describe the state-reduced
product state diagram. Denote the set of equivalence-class
encoder states and the set of error states by Sq and Se,
respectively. The pair (sq, se) ∈ S∗ = Sq×Se describes where
the states "should be" if there is no error occurs, and where the
state is "drifted to" because of some error event. The notation
"×" means Cartesian product. Let (sq, se), (s

′
q, s

′
e) ∈ S∗,

we label the state transition (sq, se) → (s′q, s
′
e) with

P
(
sq → s′q

)∑
eo

∑
q̃ P
(
q̃|sq → s′q

)
W d2

prox(q̃,eo), where
sq → s′q is the event that the state of the equivalent class
encoder transits from sq to s′q . The first summation is over all
possible symbol error e0 due to error state diagram transition
se → s′e, and the second summation is over all possible
equivalent class q′ due to equivalent-class encoder state
diagram transition sq → s′q .

Based on the channel-signal mapping rule, the constellation
of TCM output is symmetric with respect to 0 and the
equivalence class is determined by the systematic bits. Thus,
one generator polynomial matrix of the minimal equivalent-
class encoder for the rate- k0

k0+1 , systematic TBCC in TCM
is simply a size-k0 identity matrix. Thus, by Theorem 1
in [36], it is sufficient to use the error state diagram to
compute the transfer function, and the label of transition
se → s′e is

∑
eo

∑
q∈Oeq

P (q) W d2
prox(q,eo). The equivalent

class q of the constellation of TCM output is associated with
the magnitude of the constellation point, which has either
capacity-approaching distribution P (A) for the first n − l
output symbols or uniform distribution for the last l output
symbols. Define |Se| × |Se| matrices GA(W ) and Guni(W )
that enumerate all possible state transitions with equivalent-
class PMFs of P (A) and uniform distribution as follows:

GA(W )se,s′e =
∑
eo

∑
q

PA(q)W
d2
prox(q,eo), (27)

Guni(W )se,s′e =
∑
eo

∑
q

1

|A|W
d2
prox(q,eo). (28)

We define the generating function as TTBCC(W ) = −1 +∑Se

i=0 eiG
l
A(W )Gn−l

uni (W )eTi , where ei is a length |Se| indi-
cator vector where ei,j = 1(j = i). For the TBCC, the error
events must be tail-biting paths, vi selects the starting/ending
state of the error events.

Define the free distance, dfree =
minxc,xe∈CT

dprox (xc,xe). With the inequality:

Q


√

d2prox(xc,xe)

2σ

 ≤

Q

(√
d2free
2σ

)
exp

(
d2free − d2prox(xc,xe)

8σ2

)
,

(29)

Pe in (25) is further bounded by:

Pe ≤ Q

(√
d2free
2σ

)
exp

(
d2free
8σ2

)
×

∑
xc∈CT

∑
xe∈CT
xe ̸=xc

n∏
i=1

[
exp

(
−d2prox (xc,i, xe,i)

8σ2

)
PXi(xc,i)

]
.

(30)

Note the (29) can be proved by Q(
√
x+ y) ≤ Q(

√
x)e−

y
2 ,

for x, y ≥ 0. The double summation term in (30) can be
rewritten as follows:∑

xc∈CT

∑
xe∈CT
xe ̸=xc

[
exp

(
−d2prox (xc,xe)

8σ2

)
PXn (xc)

]
, (31)

=
∑

xc∈CT

∑
xe∈CT
xe ̸=xc

[
W d2

prox(xc,xe)PXn (xc)
]∣∣∣

W=e
− 1

8σ2
, (32)

=
∑

xc,xe∈CT

[
W d2

prox(xc,xe)PXn (xc)
]∣∣∣

W=e
− 1

8σ2
− 1, (33)
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TABLE II
OPTIMIZED CONVOLUTIONAL CODE AND CRC PAIRS. ALL THE

PARAMETERS ARE OPTIMIZED WHILE SNR EQUALS 11 DB.

H0(D) H1(D) H2(D) p(x)
FER
bound

ν = 3
m = 2

Ung. 13 04 00 7 6.65e-4
Opt. 13 06 00 5 5.80e-4

ν = 5
m = 2

Ung. 45 10 00 5 8.20e-5
Opt. 43 26 00 5 6.58e-5

ν = 7
m = 2

Ung. 235 126 000 5 1.15e-5
Opt. 211 142 000 5 8.96e-6

=
∑

q∈On
eq

e∈Cn
T

n∏
i=1

[
W d2

prox(qi,ei)P (qi)
]∣∣∣

W=e
− 1

8σ2
− 1, (34)

=

|Se|∑
i=0

eiG
l
A(W )Gn−l

uni (W )eTi

∣∣∣
W=e

− 1
8σ2

− 1. (35)

As a result, the FER upper bound can be calculated using the
generating function by

Pe ≤ Q

(√
d2free
2σ

)
exp

(
d2free
8σ2

)
TTBCC

(
W = e−

1
8σ2

)
.

(36)

VI. SIMULATION RESULTS

This section evaluates the performance of the CRC-TCM-
PAS system over AWGN channel with different DMs and
decoding methods. The CRC-TCM-PAS systems use degree-2
CRCs and rate-2/3 TBCCs. The channel inputs are equidistant
8-PAM symbols. We use the magnitudes (0.449, 1.348, 2.247,
3.146) with the PMF (0.5877, 0.3120, 0.0144, 0.0859) that is
optimized for an SNR of 8 dB using a version of DAB that
constrains the points to be equally spaced [9].

Fig. 4 considers a CRC-TCM-PAS system with k = 87
input bits and n = 65 output symbols. We use the FER upper
bound derived in Section V as an objective function to jointly
optimize the CRC and TBCC. As a baseline, we adopt the
convolutional codes optimized in Ungerboeck’s paper [24],
and the CRC is optimized by fixing the convolutional code. We
consider the number of memory elements of the convolutional
code ν = 3, 5, and 7. Table II lists the optimized TBCCs
and CRCs in octal form. All the parameters are optimized
for an SNR of 11 dB. Table II also provides the FER upper
bounds at 11 dB. For the joint optimization, the optimized
CRC polynomial is p(x) and the optimized TBCC generator

matrix is
[

1 0 H2(D)/H0(D)
0 1 H1(D)/H0(D)

]
.

Fig. 4a presents analytical upper bounds and simuulation re-
sults that compare FERs for the optimized convolutional codes
to Ungerboeck’s convolutional codes for a CRC-TCM-PAS
system that assumes an ideal DM. Hence, the system input
"messages" are length-64 i.i.d. magnitude symbol sequences
according to the PMF P (Â). The magnitude sequences are en-
coded and modulated by CRC-aided TCM to length-65 8-AM
symbol sequences. Simulation results show that maximizing
the FER upper bound finds slightly better convolutional codes
than those in Ungerboeck’s paper. Note that in both cases the
FER upper bound was used to optimize the CRC polynomial.
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Fig. 4. (a): The upper bounds and FER simulations of the simplified CRC-
TCM-PAS system with a degree-2 CRC. The simplified system takes length-64
i.i.d. 4-ary amplitude symbol sequences and generates length-65 8-AM symbol
sequences. (b): The FER curves of the practical CRC-TCM-PAS transmission
system that uses MCDM with CHP. This system takes 87 input bits and
generates 65 8-AM symbols. (c): The FER curves and RCU bounds of the
CRC-TCM-PAS system and TCM-PAS system. The gap between the two
curves indicates the contribution of the 2-bit CRC.

The system uses TBCCs and CRCs from Table II. The
receiver uses an ML decoder. Shannon’s 1959 sphere packing
(SP) bound [37] and Polyanskiy’s random coding union (RCU)
bound [22] are also shown. Note that the last channel input of
the CRC-TCM-PAS system is uniform [1]. When calculating
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Fig. 5. The performance of a CRC-TCM-PAS transmission system with
various DMs and decoders. The system takes 96 input bits and generates
64 output symbols. Fig. (a) and (b) give the FER and expected list size,
respectively.

the RCU bound, we assume all channel inputs have the DM
output distribution. Fig. 4b shows that, when a practical DM
is considered, the optimized convolutional codes deliver a
slightly better performance than Ungerboeck’s convolutional
codes. When ν = 7, the FER performance of the CRC-TCM-
PAS system with optimized CRC and TBCC is better than
RCU bound by 0.55 dB at the FER of 10−6. Note that the
FER curves from the simulation with the ideal DM in Fig. 4a
are similar to those with the real DM in Fig. 4b.

Fig. 4c evaluates the contribution of the 2-bit CRC of the
CRC-TCM-PAS system with ν = 7 TBCC in Fig. 4b. We refer
to the system without CRC as the TCM-PAS system. Hence,
the TCM-PAS system takes 87 input bits and generates 64
8-AM symbols. The FER curve and the RCU bound for the
two systems are given in Fig. 4c. It can be seen that the CRC-
TCM-PAS system outperforms the TCM-PAS system by about
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Fig. 6. (a): The CRC-TCM-PAS system utilizes CCDM and MCDM with
CTS as the DM. The decoder of the CRC-TCM-PAS system is AED(5,2)
with a maximum list size of 100. (b): The FER curves of CRC-TCM-PAS
systems with various rates. The CRC-TCM-PAS systems generate 64 8-AM
symbols, with transmission rates of 1.25, 1.5, and 1.75 bit/real channel use,
respectively.

0.3 dB at the FER of 10−5, which implies the importance of
the 2-bit CRC.

Fig. 5 investigates the CRC-TCM-PAS system that uses
various DMs and two decoders, ML decoding and a sub-
optimal but less complex AED(5,2) decoder. The system in
Fig. 5 has k = 96 input bits and n = 64 output symbols, and
the transmission rate is 1.5 bits/real channel use. The CRC-
aided TCM uses the jointly optimized ν = 7, rate-2/3 TBCC,
and the 2-bit CRC in Table II. Fig. 5a and 5b give the FER
performances and expected list sizes, respectively.

We first investigate the performances of the CRC-TCM-
PAS systems with various DMs and the ML decoder. The
simulation results show that the four considered distribution
matchers, i.e., ESS, CCDM, MCDM with CHP and CTS deliver
similar FER performances under ML decoding. However, the
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CCDM requires more list size than the other three DMs. Fig. 5
also presents the FER performance when the AED(5,2) is used.
The maximum list size of all 2-States decoders in AED(5,2)
is 100. As shown in Fig. 5, when AED(5,2) is used as the
decoder, the CRC-TCM-PAS system with CCDM delivers the
worst FER and largest expected list size. On the other hand, the
CRC-TCM-PAS systems that use the MCDM with CHP and
CTS deliver the near-optimal FER performance and outperform
the system that uses ESS.

Fig. 6a compares the decoding performance of CRC-TCM-
PAS system with other PAS systems that use various FEC
codes in [2, Fig.14]. All systems have 96 input bits, and
the transmission rate is 1.5 bits/real channel use. For the
CRC-TCM-PAS, two distribution matchers are considered, i.e.,
MCDM with CTS and CCDM. The decoder uses AED(5,2)
with a maximum list size of 100. The details of other PAS
systems are described in [2]. The simulation results show that
the CRC-TCM-PAS system with MCDM delivers the best
performance and outperforms the CRC-Polar-PAS system by
nearly 1dB. Since the CRC-Polar-PAS system uses CCDM
as the distribution matcher, the gain of CRC-TCM-PAS over
CRC-Polar-PAS can come from two factors: the choice of
DM or the coded modulation scheme. As shown in Fig. 6a,
with CCDM as the distribution matcher, the CRC-TCM-PAS
system still outperforms the CRC-Polar-PAS system but does
not perform as well as CRC-TCM-PAS with MCDM. Notably,
the CRC-TCM-PAS system doesn’t display the error floor of
the CRC-Polar-PAS system, which shows an error floor at FER
of 10−5. Hence, the gap between the FER curves of the CRC-
TCM-PAS with CCDM and the CRC-Polar-PAS with CCDM
can be treated as the gain of CRC-TCM code over CRC-Polar
code, and the gap between the FER curves of the CRC-TCM-
PAS with CCDM and the MCDM can be treated as the gain
of MCDM over CCDM.

The error floor seen in the CRC-Polar-PAS with CCDM
could be due to a variety of factors. One factor is the sub-
optimality in the decoder. Serial list Viterbi decoding of CRC-
TBCC either chooses the ML codeword or reports an erasure
with each growing list size. In contrast, successive cancellation
list (SCL) decoding of CRC-polar codes sometimes selects
non-ML codewords with a fixed list size of 32. The error floor
could also be due to a CRC that is too short, not optimized
for high SNR, or otherwise sub-optimal.

Fig. 6b evaluates the CRC-TCM-PAS system with various
transmission rates. We design three CRC-TCM-PAS systems
that take 80, 96, and 112 information bits, respectively, and
generate 64 8-AM symbols. The resultant transmission rates
are 1.25, 1.50, and 1.75 bits/real channel use, respectively. We
design the MCDM with CHP for all three transmission rates as
distribution matcher. All three transmission rates employ the
ν = 7 CC and the 2-bit CRC in Table II. AED(5,2) with a
maximum list size of 100 is used as the decoder. Fig. 6b gives
the FER curves, as well as the RCU bound and Shannon’s 59
SP bound, of all three transmission rates. The simulation result
shows that the FER curves for all three rates lie between the
RCU and the SP bound, which indicates excellent decoding
performance.

VII. CONCLUSION

Shannon’s proof of the channel coding theorem [38] gen-
erates a random codebook that has an optimal distribution
and then performs an expurgation to improve the codebook.
The CRC-TCM-PAS system described in this paper follows
that paradigm. The DM plays the role of random codebook
generation and the selection of that TCM and CRC polyno-
mials expurgates that code to make it stronger. While there
are many recent PAS systems, CRC-TCM-PAS allows the
use of the tight FER upper bound derived in this paper
for a precise expurgation of the codebook produced by the
DM. The TCM and CRC can be jointly selected to optimize
FER performance. This also paper proposes a new multi-
composition DM (MCDM), which allows codewords with
different compositions. The new MCDM provides a signifi-
cant benefit when decoding complexity is limited. Simulation
results show that the optimized CRC-TCM-PAS system with
MCDM exceeds the RCU bound for a variety of rates and
outperforms the PAS systems with various FEC codes studied
in [2].
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