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1. Introduction
We say that an ergodic system X = (X, X , µ, T ) is dominant if a generic extension T̂ of

T is isomorphic to T. We obtain the surprising result that every ergodic positive entropy

system of an amenable group has the property that its generic extension is isomorphic to it.

For Z systems, we show that, conversely, when an ergodic system has zero entropy, then it

is not dominant. Our first result for Z actions follows from an extension of a result from [8]

according to which a generic extension of a Bernoulli system is Bernoulli with the same

entropy (and hence is isomorphic to it by Ornstein’s fundamental result) to the relative

situation—together with Austin’s weak Pinsker theorem [3]. The extension to all countable

amenable groups relies on the results in [5, 18, 22]. For the result that zero entropy is not

dominant for Z actions, we use an idea from the slow entropy developed in [12].

To make the definition of dominance more precise, as in [8, 9], we present a convenient

way of parameterizing the space of extensions of T as follows. Let X = (X, X , µ, T )

be an ergodic system. We will assume throughout this work (excepting the last section,

where we will comment about the infinite entropy case) that it is infinite and has finite

entropy, which, for convenience, we assume is equal to 1. Let R ⊂ X be a finite generating

partition. Let S be the collection of Rokhlin cocycles with values in the Polish group

of measure-preserving automorphisms of the unit interval MPT(I , C, λ), where λ is the

normalized Lebesgue measure and C is the Borel σ -algebra on I = [0, 1]. Thus, an element

S ∈ S is a measurable map x �→ Sx ∈ MPT(I , λ), and we associate to it the skew product
transformation

Ŝ(x, u) = (T x, Sxu) (x ∈ X, u ∈ I ),

on the measure space (X × I , X × C, µ × λ).

We recall that, by Rokhlin’s theorem, every ergodic extension Y → X either has this

form or it is n to 1 almost everywhere (a.e) for some n ∈ N (see e.g. [7, Theorem 3.18]).

Thus, the collection S parameterizes the ergodic extensions of X with infinite fibers. This

defines a Polish topology on S which is inherited from the Polish group MPT(X × I ,

µ × λ) of all the measure-preserving transformations.

In [8], we have shown that for a fixed ergodic finite entropy T with property A, a generic

extension T̂ of T also has the property A, where A stands for each of the following

properties: (i) having the same entropy as T; (ii) Bernoulli; (iii) K; and (iv) loosely

Bernoulli.

Now with this notation at hand, the definition above becomes the following.

Definition 1.1. An ergodic system X = (X, X , µ, T ) is dominant if there is a dense Gδ

subset S0 ⊂ S such that for each S ∈ S0, we have Ŝ ∼= T .

From [8, Theorems 4.1 and 5.1], if B is a Bernoulli system with finite entropy, then its

generic extension is again Bernoulli having the same entropy. By Ornstein’s theorem [17],

such an extension is isomorphic to B. This proves the following proposition.

PROPOSITION 1.2. Every Bernoulli system with finite entropy is dominant.
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We recall (see [16]) that an ergodic system X is coalescent if every endomorphism E of

X is an automorphism. Note that when an extension Ŝ, as above with Ŝ ∼= T , exists, then

the system X is not coalescent. In fact, if π : Ŝ → T is the (infinite to one) extension, and

θ : T → Ŝ is an isomorphism, then E = π ◦ θ is an endomorphism of X which is not an

automorphism. Thus, we have the following proposition.

PROPOSITION 1.3. A dominant system is not coalescent.

Hahn and Parry [10] showed that totally ergodic automorphisms with quasi-discrete

spectrum are coalescent. In [16], Dan Newton says:

‘A question put to me by Parry in conversation is the following: if T has positive entropy

does it follow that T is not coalescent?’

Using theorems of Ornstein [17] and Austin [3], we can now prove the following

theorem.

THEOREM 1.4. An ergodic system with positive entropy is not coalescent.

Proof. We first observe that a Bernoulli system is never coalescent (if B is Bernoulli and

B′ → B is an isometric extension which is again Bernoulli (see [20] for examples) then,

by Ornstein’s theorem, B′ ∼= B). Now let X = (X, X , µ, T ) be an ergodic system with

positive entropy. By Austin’s weak Pinsker theorem [3], we can write X as a product system

B × Z with B a Bernoulli system of finite entropy. Finally, as noted in [16, Proposition 1],

if T = T1 × T2, where T1 is not coalescent, then T is not coalescent. In fact, given an

endomorphism E of T1 which is not an automorphism, the map E × Id, where Id denotes

the identity automorphism on the second coordinate, is an endomorphism of T which is

not an automorphism. Applying this observation to X = B × Z, we obtain our claim.

These results suggest the following question: is every ergodic system of zero entropy

not dominant? At least generically, we immediately see that the answer is affirmative. As

was shown in [16], the set of coalescent automorphisms in MPT(I , λ) is comeager. Thus

by Proposition 1.3, we conclude that the set of non-dominant automorphisms is comeager

in MPT(I , λ), and hence also in the dense Gδ subset of MPT(I , λ) comprising the zero

entropy automorphisms. However, as we will show in §4 using a slow entropy argument,

the answer is affirmative for every ergodic system with zero entropy.

THEOREM 1.5. Every ergodic system X with zero entropy is not dominant.

We thank the referee for his helpful comments.

2. Background on relative Bernoullicity
Definition 2.1. Let X = (X, X , µ, T ) be an ergodic system and X0 ⊂ X a T-invariant

σ -subalgebra. Let X0 = (X0, X0, µ0, T0) be the corresponding factor system and let

π : X → X0 denote the factor map. We say that X is relatively Bernoulli over X0 if

there is a T-invariant σ -algebra X1 ⊂ X independent of X0 such that X = X0 ∨ X1, and

there is a X1-generating finite partition K ⊂ X1 such that the partitions {T iK}i∈Z are
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independent; in other words, the corresponding system X1 = (X1, X1, µ1, T1) is Bernoulli

and X ∼= X0 × X1.

If R0 is a finite generating partition for X0 and R is a finite generating partition for

X , then J.-P. Thouvenot showed that there is a condition called relatively weak Bernoulli,

which is equivalent to the extension being relatively Bernoulli, see [25] and also [14]. This

condition is as follows.

Definition 2.2. The partition (R, T ) is relatively Bernoulli over (R0, T ) if for every ε > 0,

there is N such that for a collection G of atoms A of the partition
∨−1

i=−∞ T −iR, and a

collection G0 of atoms B of the partition
∨−∞

i=−∞ T −iR0, we have

µ

(

⋃

{A ∩ B : A ∈ G, B ∈ G0}
)

> 1 − ε, (1a)

d̄N

(

dist

(

∨N−1

i=0
T −iR � A ∩ B

)

, dist

(

∨N−1

i=0
T −iR � B

))

< ε, (1b)

for all such A and B.

Since
∨−1

i=−k T −iR ↗
∨−1

i=−∞ T −iR and
∨k

i=−k T −iR0 ↗
∨∞

i=−∞ T −iR0, this

can be formulated in finite terms as: for every ε > 0, there exist N and k0 such that for

all k > k0, there is a collection G of atoms A of
∨−1

i=−k T −iR and a collection G0 of atoms

B of
∨k

i=−k T −iR0 such that

µ

(

⋃

{A ∩ B : A ∈ G, B ∈ G0}
)

> 1 − ε, (2a)

d̄N

(

dist

(

∨N−1

i=0
T −iR � A ∩ B

)

, dist

(

∨N−1

i=0
T −iR � B

))

< ε, (2b)

for all such A and B.

One last change—instead of (2b), we can also require that for A, A′ ∈ G, B ∈ G0,

d̄N

(

dist

(

∨N−1

i=0
T −iR � A ∩ B

)

, dist

(

∨N−1

i=0
T −iR � A′ ∩ B

))

< ε. (3)

That (2b) implies (3) with 2ε is immediate.

For the converse implication, observe first that the distribution dist(
∨N−1

i=0 T −iR � B)

is the average of dist(
∨N−1

i=0 T −iR � A ∩ B) over all A ∈
∨k

i=−k T −iR, and that the d̄

metric is a convex function of distributions. Therefore, fixing one A′ ∈ G and averaging

over all A ∈ G, we get (2b).

3. Positive entropy systems are dominant
The next theorem is a relative version of Theorem 5.1 in [8] and serves as the main tool in

the proof of Theorem 3.2 below.

THEOREM 3.1. Let X = (X, X , µ, T ) be an ergodic system which is relative Bernoulli
over X0 with finite relative entropy, so that X = X0 × X1. Then, the generic extension Ŝ of
T is relatively Bernoulli over X0.
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Proof. For convenience, we assume that the relative entropy is 1.

As in [8], let R ⊂ X be a finite relatively generating partition for X over X0 with

entropy 1 (so that R is a Bernoulli partition independent of X0), and let R0 ⊂ X0 be a finite

generator for X0. Let S be the collection of Rokhlin cocycles with values in MPT(I , λ),

where λ is the normalized Lebesgue measure on the unit interval I = [0, 1]. Thus, an

element S ∈ S is a measurable map x �→ Sx∈ MPT(I , λ), and we associate to it the skew
product transformation

Ŝ(x, u) = (T x, Sxu) (x ∈ X, u ∈ I ).

Let Y = X × I and set Y = (Y , Y , µ × λ), with Y = X ⊗ C.

Part I: By Theorem 4.1 of [8], there is a dense Gδ subset S0 ⊂ S with h(Ŝ) = 1 for

every S ∈ S0. We will first show that the collection of the elements S ∈ S0 for which the

corresponding Ŝ is relatively Bernoulli over X0 forms a Gδ set.

As the inverse limit of relatively Bernoulli systems is relatively Bernoulli, see [24,

Proposition 7], to show that a transformation T on (X, X , µ) is relatively Bernoulli over

X0, it suffices to show that for a refining sequence of partitions

P1 ≺ · · · ≺ Pn ≺ Pn+1 ≺ · · ·

such that the corresponding algebras P̂n satisfy
∨

n∈N P̂n = X , for each n, the process

(T , Pn) is relatively very weak Bernoulli relative to (T , R0).

For each n ∈ N, let Qn denote the dyadic partition of [0, 1] into intervals of size 1/2n,

and let

Pn = R × Qn.

For any S ∈ S0, the relative entropy of Y = X × [0, 1] over X0 is also 1. Thus, for all n,

we have

H

(

Pn |
(

∨−1

i=−∞
Ŝ−iPn

)

∨
(

∨∞
i=−∞

Ŝ−iR0

))

= 1,

and for all N ≥ 1,

H

(

∨N−1

i=0
Ŝ−iPn |

(

∨−1

i=−∞
Ŝ−iPn

)

∨
(

∨∞
i=−∞

Ŝ−iR0

))

= N .

Therefore, we can find a suitably small δ > 0 such that for k0 large enough,

H

(

∨N−1

i=0
Ŝ−iPn |

(

∨−1

i=−k0

Ŝ−iPn

)

∨
(

∨k0

i=−k0

Ŝ−iR0

))

< N + δ.

Now, conditioned on the partition
(

∨−1

i=−k0

Ŝ−iPn

)

∨
(

∨k0

i=−k0

Ŝ−iR0

)

,

the partition
∨N−1

i=0 Ŝ−iPn will be η-independent of

(

∨−k0−1

i=−k
Ŝ−iPn

)

∨
(

∨−k0+1

i=−k
Ŝ−iR0

)

∨
(

∨k

i=k0+1
Ŝ−iR0

)
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for all k ≥ k0 for η small enough (see Definition 5.1 in [8] and the following discussion),

so that the inequality (3) in §2 (with Pn replacing R) for k = k0 will imply (3) with 2ε, for

all k > k0.

Define the set U(n, N1, N2, ε, δ) to consist of those S ∈ S0 that satisfy:

(1) H(
∨N1−1

i=0 Ŝ−iPn | (
∨−1

i=−N2
Ŝ−iPn) ∨ (

∨N2

i=−N2
Ŝ−iR0)) < N1 + δ;

(2) d̄N1
(
∨N1−1

i=0 Ŝ−iPn � A ∩ B,
∨N1−1

i=0 Ŝ−iPn � A′ ∩ B) < ε, for a set of atoms

A, A′ ∈ G, B ∈ G0, where G ⊂
∨−1

−N2
Ŝ−iPn, G0 ⊂

∨N2

−N2
Ŝ−iR0 and

(µ × λ)(
⋃

{A ∩ B : A ∈ G, B ∈ G0}) > 1 − ε.

Now the sets U(n, N1, N2, ε, δ) are open (easy to check) and the Gδ set

S1 =
⋂

n,k,l

⋃

N1,N2

U(n, N1, N2, 1/k, 1/l)

comprises exactly the elements S ∈ S0 for which the corresponding Ŝ is relatively

Bernoulli over X0. Thus, if S ∈ S0 is such that Ŝ is relatively Bernoulli, then for every

n, ε, δ, there are N1, N2 such that S ∈ U(n, N1, N2, ε, δ), and conversely, for every

relatively Bernoulli Ŝ, the corresponding S is in S1.

Part II: The collection S1 is non-empty. To see this, we first note that the Bernoulli

system X1 admits a proper extension X̂1 → X1 which is also Bernoulli and has the same

entropy. This follows e.g. by a deep result of Rudolph [20, 21], who showed that every

weakly mixing group extension of X1 is again a Bernoulli system. An explicit example

of such an extension of the 2-shift is given by Adler and Shields [2]. Since X̂1 is weakly

mixing, the product system X̂ = X0 × X̂1 is ergodic and X̂ → X0 is an element of S1.

Now apply the relative Halmos theorem [9, Proposition 2.3] to deduce that the Gδ subset

S1 is dense in S, as claimed.

We can now deduce the positive entropy part of our main result.

THEOREM 3.2. Every ergodic system X = (X, X , µ, T ) of positive finite entropy is
dominant.

Proof. By Austin’s weak Pinsker theorem [3], we can present X as a product system

X = B × Z, where B is a Bernoulli system with finite entropy. Thus, X is relatively

Bernoulli over Z, and by Theorem 3.1, it follows that a generic extension Ŝ of X is relatively

Bernoulli over Z. Therefore, for such Ŝ, the system Y = (X × I , X × C, µ × λ, Ŝ) is again

of the form Y = B′ × Z with B′ a Bernoulli system with the same entropy as that of B. By

Ornstein’s theorem [17], B ∼= B′, whence also X ∼= Y, and our proof is complete.

Remark 3.3. With notation as in the proofs of Theorems 3.1 and 3.2, observe that for

every S ∈ S, the system (Y , µ × λ, Ŝ) admits Z = (Z, Z , µ, T ) (with Z considered as a

subalgebra of X ) as a factor:

(Y , µ × λ, Ŝ) → X → Z.

In the Polish group G =MPT(Y , µ × λ), consider the closed subgroup GZ = {g ∈ G :

gA = A for all A ∈ Z}. We now observe that the residual set S1 ⊂ S0, of those S ∈ S0 for
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which Ŝ is Bernoulli over Z with the same relative entropy over X, is a single orbit for the

action of GZ under conjugation.

In the last section (§5), we will show that the positive entropy theorem holds for any

countable amenable group.

In [8, Theorem 6.4], it was shown that the generic extension of a K-automorphism

is a mixing extension. We will next prove an analogous theorem for a general ergodic

system with positive entropy. We first prove the following relatively Bernoulli analogue of

Theorem 6.2 in [8].

THEOREM 3.4. Let X = (X, X , µ, T ) be a relatively Bernoulli system over X0, and S a
Rokhlin cocycle with values in MPT(I , λ), where I = [0, 1] and λ is Lebesgue measure
on I. We denote by Ŝ the transformation

Ŝ(x, u) = (T x, Sxu)

on Y = X × I , and let

Š(x, u, v) = (T x, Sxu, Sxv), (x, u, v) ∈ W = X × I × I

be the relative independent product of Y with itself over X. Then for a generic S ∈ S, the
transformation Š is relatively Bernoulli over X0.

Proof. For the Gδ part, we follow, almost verbatim, the proof of Theorem 3.1, where we

now let Qn denote the product dyadic partition of I × I into squares of size 1/2n × 1/2n

and, with notation as in the proof of Theorem 3.1, we let Pn = R × Qn.

Thus, it only remains to show that the Gδ set S1, comprising those S ∈ S0 for which Š

is relatively Bernoulli on W = X × I × I relative to X0, is non-empty. Now, examples of

skew products over a Bernoulli system with such properties are provided by Hoffman in

[11]. The base Bernoulli transformation that Hoffman constructs for his example can be

arranged to have arbitrarily small entropy by an appropriate choice of the parameters used

in the construction in §4 (the skew product example is in §5 and the proof of Bernoullicity

is in §5). Using such construction on X (where the cocycle is measurable with respect to the

Bernoulli direct component of X), we obtain our required extension of X. This completes

our proof.

We also recall the following criterion [8, Lemma 6.5].

LEMMA 3.5. Let X be ergodic and Y be a factor of X. Then, the following are equivalent.

(1) X is a relatively mixing extension of Y.
(2) In the relatively independent product X ×

Y
X, the Koopman operator restricted to

L2(Y )⊥ is mixing.

THEOREM 3.6. Let X = (X, X , µ, T ) be an ergodic system with positive entropy, then
the generic extension of X is relatively mixing over X.

Proof. By the weak Pinsker theorem [3], we can present X as a product system

X = Z × B, where B is a Bernoulli system with finite entropy. Thus, X is relatively
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Bernoulli over Z, and by Theorem 3.4, it follows that a generic extension Š of X to

X × I × I is still relatively Bernoulli over Z. Thus, the extended system W on W =
X × I × I with Š action has the form W = Z × B′ with B′ again a Bernoulli system.

Now, for the system Y, defined on Y = X × I by

Ŝ(x, u) = (T x, Sxu),

we have that the corresponding relative product system Y ×
X

Y is isomorphic to W, which

is a Bernoulli extension of Z and therefore, by Lemma 3.5, a relatively mixing extension of

Z. A fortiori, Y ×
X

Y is a relatively mixing extension of X and our proof is complete.

4. Zero entropy systems are not dominant
Definition 4.1.

• For ω, ω′ ∈ {0, 1}n, the Hamming (or d̄-distance) is defined by

d̄(ω, ω′) = 1

n
#{0 ≤ i < n : ωi �= ω′

i}.

• For two measurable partitions Q = {Ai}ni=1, Q̂ = {Bi}ni=1 of a measured space

(X, µ), the distance d(Q, Q̂) is defined by

d(Q, Q̂) = 1

2

n
∑

i=1

µ(Ai � Bi).

THEOREM 4.2. Every ergodic system X with zero entropy is not dominant.

Remark 4.3. Recently, Adams [1] has proved a somewhat analogous result in the setting

of MPT, the group of all measure-preserving transformations of the unit interval with

Lebesgue measure. It is well known that, generically, a T in MPT has zero entropy.

What Adams shows is that for any preassigned growth rate for slow entropy, the generic

transformation has a complexity which exceeds that rate. In our proof of Theorem 4.2,

we do not introduce a formal definition of slow entropy but its definition lies behind our

Lemma 4.4.

Proof. We first choose a strictly ergodic model X = (X, X , µ0, T ) for our system which

is a subshift of {0, 1}Z. By the variational principle, this model will have zero topological

entropy. (To see that such a model exists, see for example [6], where this fact can be

deduced from property (b) on pp. 281 and Theorem 29.2 on pp. 301.) Denote by an the

number of n-blocks in X so that an is sub-exponential.

For x0 ∈ X and Q = {Q0, Q1} a partition of X, let

Bn(x0, ε) = {x ∈ X : d̄n(Qn(x), Qn(x0)) < ε},

where for a point x ∈ X and n ≥ 1, we write

Qn(x) = ω0ω1ω2 . . . ωn−1 when x ∈
n−1
⋂

i=0

T −i(Qωi
).

https://doi.org/10.1017/etds.2022.69 Published online by Cambridge University Press



An ergodic system is dominant exactly when it has positive entropy 9

LEMMA 4.4. For ε < 1/100 and δ < 1/100, there is an N such that for all n ≥ N , if m is
the minimal number such that there are points x1, x2, . . . , xm with

µ0

( m
⋃

i=1

Bn(xi , ε)

)

> 1 − δ,

then m ≤ a2n.

Proof. Denote by P = {P1, P2} the partition of X according to the 0th coordinate. Given

ε > 0, there is some k0 and a partition Q̂ measurable with respect to
∨k0

i=−k0
T iP such

that

d(Q, Q̂) <
ε

2
.

By ergodicity, there exists an N such that for n ≥ N , there is a set A ⊂ X with

µ0(A) > 1 − δ with

d̄n(Qn(x), Q̂n(x)) < ε for all x ∈ A.

Let {αi}�i=1 be those atoms of
∨n+k0

i=−k0
T iP such that αi ∩ A �= ∅, so that � ≤ an+2k0+1.

Choose xi ∈ αi ∩ A, 1 ≤ i ≤ �. We claim that

A ⊂
�

⋃

i=1

Bn(xi , ε).

For x ∈
⋃�

i=1 αi , we denote by i(x) that index such that x ∈ αi(x). Now, since x and xi(x)

are in A, we have

d̄n(Qn(x), Q̂n(x)) < ε and d̄n(Qn(x), Q̂n(x)) < ε.

Since x ∈ αi(x), Q̂n(x) = Qn(x). Therefore,

d̄n(Qn(x), Qn(xi(x))) < 2ε,

whence x ∈ Bn(xi(x), ε). This proves our claim and we conclude that m ≤ � ≤ an+2k0+1.

Thus, for sufficiently large n, we indeed get m ≤ a2n.

We will show that a generic extension of T to (Y , µ) = (X × [0, 1], µ0 × λ), with λ

Lebesgue measure on [0, 1], is not isomorphic to X. To do this, we will show that for a

generic extension Ŝ, the partition Q of Y, defined by splitting X × [0, 1] into {Q0, Q1} =
{X × [0, 1

2
], X × [ 1

2
, 1]}, will not satisfy the conclusion of this lemma.

Notation.

• S is the Polish space comprising the measurable Rohklin cocycles x �→ Sx ∈
MPT([0, 1], λ).

• For S ∈ S, let Ŝ(x, u) = (T x, Sxu).

• QŜ
n(y) = ω0ω1ω2 . . . ωn−1, where y ∈

⋂n−1
i=0 Ŝ−i(Qωi

).
•

C(Ŝ, n, ε, δ) = min

{

k : there exists y1, y2, . . . , yk ∈ Y ,

such that µ

( k
⋃

i=1

B Ŝ
n (yi , ε)

)

> 1 − δ

}

.
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Define now

U(N , ε, δ) = {S ∈ S : there exists n ≥ N such that C(Ŝ, n, ε, δ) > 2a2n}.

This is an open subset of S (see e.g. [8] for similar claims). We will show that, for

sufficiently small ε and δ, it is dense in S.

First, consider the case S0 = id. Let η > 0 be given and choose M so that 1/M < η.

Now build a Rohklin tower for T, with base B0 and heights mM > N and mM + 1 for

a suitable m, filling all of X (for this version of the Rokhlin lemma, see [26, p. 32]). Let

B = B0 × [0, 1] be the base of the corresponding tower in (Y , µ, Ŝ). We modify S0 = id

only on the levels T jM−1B0 for 1 ≤ j ≤ m, so that the new S will be within η of S0. The

Q-M names of the points in T jM−1B are constant for all 0 ≤ j < m. We modify S0 on

the levels T jM−1B so that we see all possible 0 -1 names for the M-blocks as we move up

the tower with equal measure. A similar procedure is described as independent cutting and
stacking and is explained in detail in §I.10.d in Shields’ book [23].

LEMMA 4.5. Any BmM(y, ε) ball has measure at most 2m(−1/2+H(2ε,1−2ε)).

Proof. The QmM -names of points y ∈ B are constant on blocks of length M, and all

sequences of zeros and ones have equal probability by construction. So by a well-known

estimation (using Stirling’s formula), in {0, 1}m with uniform measure, the measure of an

ε-ball in normalized Hamming metric is ≤ 2m(−1/2+H(2ε,1−2ε)).

For points in the lower half of the tower over B, we have a similar estimate with m
replaced by some � > 1

2
m and ε replaced by (m/�)ε < 2ε. For points in the upper half

of the tower, for some � < 1
2
m, we have that Ŝ�y ∈ B and then we get an estimate with

m − � > 1
2
m. This proves the lemma.

From this lemma, it follows that to achieve even 1
2

as µ(
⋃L

i=1 BmM(yi , ε)), we must

have L · 2m(−1/2+H(2ε,1−2ε)) > 1
2
, and hence

L ≥ 1
2

· 2m(1/2−H(2ε,1−2ε)).

Since an is sub-exponential, this lower bound certainly exceeds a2mM if m is sufficiently

large. This shows that this modified S is an element of U(N , ε, δ).

A similar construction can be carried out for any S ∈ S. The main point that needs to

be checked is that for small ε, no B Ŝ
M(y, ε)-ball can have measure greater than 1

2
+ ε.

LEMMA 4.6. For any Ŝ and all y0,

µ(B Ŝ
M(y0, ε)) ≤ 1

2
+ ε.

Proof. Let QŜ
M(y0) = ω0ω1 . . . ωM−1. Then,

d̄M(QŜ
M(y), QŜ

M(y0)) = 1

M

M−1
∑

i=0

1Qωi
(Ŝiy0)(1 − 1Qωi

(Ŝiy)),
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and
∫

Y

d̄M(QŜ
M(y), QŜ

M(y0)) dµ = 1
2
.

Since d̄M ≤ 1, the measure of the set where d̄M(QŜ
M(y), QŜ

M(y0)) ≤ ε cannot exceed
1
2

+ ε.

This lemma, which is formulated for the measure µ on the entire space Y, in fact holds as

well for any level Lj = ŜjMB in the tower, when we replace µ by the measure µ restricted

to Lj . This is so because the partition {Q0, Q1} intersects each level of the tower in relative

measure 1
2

and Ŝ is measure preserving.

We now mimic the proof outlined for S0 = id and, given S ∈ S, using an independent

cutting and stacking, we change Ŝ as follows. For the level Lj = ŜjMB, consider the

partition

Rj =
∨M−1

i=0
Ŝ−i(Q ∩ ŜjM+iB).

We change the transformation Ŝ at the transition from level jM − 1 to level jM , so that

these partitions Rj will become independent.

We want to estimate the size of an mM-ε ball around a point y0 ∈ B. If y ∈ B

belongs to this ball, there is a set A ⊂ {0, 1, 2, . . . , nM − 1} with |A| ≤ ε mM where

the mM-names of y and y0 differ. We need now a simple lemma.

LEMMA 4.7. Let A ⊂ {0, 1, . . . , mM − 1} such that |A| ≤ ε mM . Denote Ij =
{jM , jM + 1, . . . , jM + M − 1}, 0 ≤ j < m − 1. Let J ⊂ {0, 1, . . . , m − 1} be the
set of � such that

|I� ∩ A| <
√

εM .

Then, |J | > (1 − √
ε)m.

Proof. Let K = {0, 1, . . . , mM − 1} \ J . Then,

ε mM ≥ |
⋃

k∈K

Ik ∩ A| ≥ M
√

ε|K|.

Thus, |K| ≤ √
εm, whence |J | > (1 − √

ε)m.

Next, using Lemma 4.6 for each level of the form T jMB0, we will estimate the size of

an mM-ε ball. So fix a point y0 ∈ B. If y ∈ BmM(y0, ε), then by Lemma 4.7, there is a set

of indices Jy ⊂ {1, 2, . . . , m} such that:

(1) |Jy | ≥ (1 − √
ε)m;

(2) for each j ∈ Jy , ŜjMy ∈ BM(ŜjMy0,
√

ε).

The number of possible sets that satisfy item (1) is bounded by 2mH(
√

ε,1−√
ε). By

Lemma 4.6 and by the independence, for such a fixed Jy , the measure of the set of points

that satisfy item (2) is at most

(

1
2

+ 2
√

ε
)m(1−√

ε)
.
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12 T. Austin et al

Write ( 1
2

+ 2
√

ε)1−√
ε = 2−c, where c ≥ c0 > 0 for all sufficiently small ε. Then,

2−cm · 2mH(2ε,1−2ε) = 2m(−c+H(2ε,1−2ε)) ≤ 2−(m/2)c0 ,

for H(2ε, 1 − 2ε) ≤ 1
2
c0. We now see that the measure of the ball BmM(y0, ε) is bounded

by 2−(m/2)c0 .

This was done for y0 ∈ B and as in the proof of Lemma 4.5, we obtain the suitable

estimations for any y in the tower over B. We conclude the argument as in the case S = id

and again it follows that the resultant modified S is an element of U(N , ε, δ).

Finally, for fixed sufficiently small ε and δ, setting

E =
∞
⋂

N=1

U(N , ε, δ),

we obtain the required dense Gδ subset of S, where for each S ∈ E , the corresponding

Ŝ is not isomorphic to T. In fact, if Ŝ would be isomorphic to T, then the isomorphism

would take the partition Q of Y to a partition Q̃ of X. Applying Lemma 4.4 to Q̃, we see

that there is some N such that for all n ≥ N , the conclusion of the lemma holds. However,

since S ∈ E , this is a contradiction.

5. The positive entropy theorem for amenable groups
We fix an arbitrary infinite countable amenable group G. We let A(G, µ) denote the Polish

space of measure-preserving actions {Tg}g∈G of G on the Lebesgue space (X, X , µ). (For

a description of the topology on A(G, µ), we refer e.g. to [13].)

As in the proof of Theorem 3.1, let S be the collection of Rokhlin cocycles from X with

values in MPT(I , λ), that is, S is a family {Sg}g∈G, where each element Sg is a collection

of measurable maps x �→ S
g
x ∈ MPT(I , λ), such that for g, h ∈ G and x ∈ X, we have

Sgh(x) = Sg(Thx)Sh(x), µ a.e.

We associate to S ∈ S the skew product transformation

Ŝg(x, u) = (Tgx, S
g
x u) (x ∈ X, u ∈ I ).

Let Y = X × I and set Y = (Y , Y , µ × λ), with Y = X ⊗ C.

A free G-action X defines an equivalence relation R ⊂ X × X, where (x, x ′) ∈ R if

and only if there exists g ∈ G, x′ = gx, and a cocycle S ∈ S defines uniquely a cocycle

α on R:

α(x, x′) = S
g
x .

(A cocycle α on R is a function from R to MPT(I , λ), which satisfies the cocycle equation:

α(x, z) = α(y, z)α(x, y).)

This map is one-to-one and onto from the set of cocycles on X to the set of cocycles on R.

For more details on this correspondence, see [13, §20, C].

Now let

X = (X, X , µ, {Tg}g∈G) → X0 = (X0, X0, µ0, {(T0)g}g∈G)
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be a G-Bernoulli extension, where this notion is defined as in Definition 2.1, but instead of

{T iK}i∈Z being independent, we now have that {TgK}g∈G are independent.

Definition 5.1. If G and H are two countable groups acting as measure-preserving

transformations {Tg}g∈G, {Sh}h∈H on the measure space (Z, ν), we say that the actions

are orbit equivalent if for ν-a.e. z ∈ Z, Gz = Hz.

In [4, 18], it is shown that any ergodic measure-preserving action of an amenable group

is orbit equivalent to an action of Z.

We will now state an extension of Theorem 3.1 to free actions of G, and, moreover, we

will also be able to get rid of the finite entropy assumption on X.

For the proof of the theorem, we will need two facts about extensions. The first is that

the relative entropy of an extension depends only on the cocycle defining it and is the same

for all amenable group actions which generate the same orbit equivalence relation of the

base. This is established in [22]. The second fact is that the property of being a relatively

Bernoulli extension also depends only on the cocycle and not on the specific action of an

amenable group which generates the orbit equivalence relation in the base. This second fact

is stated explicitly in [5] (§4), but actually follows easily from the first. For the convenience

of the reader, we give a proof of this.

LEMMA 5.2. Let G1, G2 be two amenable groups which, acting on (X0, X0, µ0) by
{T (1)

g }g∈G1
, {T (2)

g }g∈G2
, have the same orbits. If (X, X , µ, {T (1)

g }g∈G1
) is a relatively

Bernoulli extension of (X0, X0, µ0, {T (1)
g }g∈G1

) with finite relative entropy, via a cocy-

cle S, then the S-extension of (X0, X0, µ0, {T (2)
g }g∈G2

) is also relatively Bernoulli.

Proof. By the assumption, there is a finite partition P of X such that {T (1)
g P}g∈G1

are independent,
∨

g∈G1
T

(1)
g P is independent of X0, and together with X0 spans X .

These properties are equivalent to having the relative entropy of {T (1)
g P}g∈G1

being equal

to H(P), and having {T (1)
g P}g∈G1

separating points relative to X0. By the first fact

above, these properties persist for {T (2)
g P}g∈G2

and thus, using the same cocycle, the

G2-extension is also relatively Bernoulli.

THEOREM 5.3. Let X = (X, X , µ, {Tg}g∈G) be an ergodic G-system which is relative
Bernoulli over a free system X0 with finite relative entropy, so that X = X0 × X1. Then,
the generic extension Ŝ of {Tg}g∈G is relatively Bernoulli over X0.

Proof. By [18, 19], there is a measure-preserving transformation T0 : X0 → X0 such that

orbits of T0 coincide with G-orbits on X0, and such that T0 has zero entropy. The G-factor

map X = X0 × X1 → X0 is given by a constant cocycle whose constant value is the

Bernoulli action on the Bernoulli factor X1. We use this cocycle, now viewed as a cocycle

on the equivalence relation defined by T0, to define an extension T : X → X. By [22], the

relative entropy of such a generic T over T0 is the same as that of the G-action X over

X0. By Lemma 5.2, the extension of Z-systems π : T → T0 is again relatively Bernoulli.

Applying Theorem 3.1 to π , we conclude that a dense Gδ subset S1(Z) of extensions of T
is such that each Ŝ ∈ S1(Z) is relatively Bernoulli over T0. Finally, applying Lemma 5.2
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again, we conclude that the corresponding set of extensions S1(G) is a dense Gδ subset

of S(G) and that for each S ∈ S1(G), the corresponding G-system is relatively Bernoulli

over X0.

As in the case of Z-actions, with the same proof, we now obtain the following theorem.

THEOREM 5.4. Every ergodic free G-system X of positive entropy is dominant.

It is natural to ask whether Theorem 4.2 can also be extended to all infinite countable

amenable groups. This extension is less straightforward, but it has now been accomplished

by Lott [15].
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