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Abstract—This paper uses a mutual-information maximization
paradigm to optimize the voltage levels written to cells in a Flash
memory. To enable low-latency, each page of Flash memory stores
only one coded bit in each Flash memory cell. For example,
three-level cell (TL) Flash has three bit channels, one for each
of three pages, that together determine which of eight voltage
levels are written to each cell. Each Flash page is required to
store the same number of data bits, but the various bits stored
in the cell typically do not have to provide the same mutual
information. A modified version of dynamic-assignment Blahut-
Arimoto (DAB) moves the constellation points and adjusts the
probability mass function for each bit channel to increase the
mutual information of a worst bit channel with the goal of each
bit channel providing the same mutual information. The resulting
constellation provides essentially the same mutual information to
each page while negligibly reducing the mutual information of the
overall constellation. The optimized constellations feature points
that are neither equally spaced nor equally likely. However, mod-
ern shaping techniques such as probabilistic amplitude shaping
can provide coded modulations that support such constellations.

Index Terms—Flash memory, mutual information, coded mod-
ulation, constellation design, constellation shaping

I. INTRODUCTION

A. Background

Flash memory is a non-volatile storage medium invented in
the 1980s that quickly became a prominent segment within the
semiconductor industry [1] . With fast reads and no moving
parts, flash memory is widely used for storage and data transfer
in consumer devices such as phones, digital cameras, SD
cards, tablets and laptops, enterprise systems, data centers and
industrial applications. Flash memory can retain data for a long
period of time regardless of whether a flash-equipped device
is powered on or off. It is small, reliable, and inexpensive
which makes it attractive for mobile and miniature products,
two major market demands for electronic devices.

To meet demands for information density, flash memory has
introduced multilevel cell techniques and technology scaling
which degrades the Flash read channel [2]. Sometimes, the
values manufacturers provide in publicly available datasheets
differ from the actual Flash device performance, which is
significantly worse and highly variable as demonstrated
in [2]. These trends exacerbate inter-cell interference and
program/erase (P/E) cycling effects. A P/E cycle includes

writing (programming) the data to the cells in a page,
reading the data from a page (possibly multiple times)
and then erasing the data. The Flash memory read channel
degrades over time as a function of number of P/E cycles
or the cumulative amount of charge that is written into and
subsequently erased from the memory cell [3], [4]. Multilevel
cell techniques store multiple bits in each cell. For example,
triple-level-cell (TLC) Flash stores three bits per cell by using
eight levels of write voltage. However, to minimize the read
latency, each bit in the same cell is mapped to a different
page. In this manner the bits corresponding to the same cell
are encoded independently.

While nearly all practical devices encode each bit in the
cell independently as part of a different page, the academic
literature sometimes explores Flash memory capacity for
the joint-encoding case where all the bits belonging to the
same cell are jointly encoded as part of one codeword.
Example papers considering joint encoding for Flash memory
include [1], [5], [6], [7], [8], [9], [10]. Various methods for
maximizing mutual information for encoding and decoding
Flash read channels were explored in [6], [7], [8], [9], [10]
and [11]. Recent work considering independent encoding
in comparison with joint encoding include [12], [13], and
[14]. In [12] the benefit of joint encoding for multi-level
cell (MLC) is examined for traditional hard decoding and
enhanced precision decoding in terms of mutual information
(MI). It is shown that for MLC the difference in sum-rate
MI between joint and independent encoding is small for hard
decoding and negligible for enhanced precision decoding as
long as the pages are permitted to have different rates.

In [13], the focus is the differing performance of the
possible binary labelings of the cell levels for independent
encoding for MLC and TLC flash for various decoding
schemes. The results obtained in [13] show that for P/E
cycling model the largest sum rate is achieved with Gray
labeling for Treating Interference as Noise (TIN) decoding.
Very recently, [14] explored both joint and independent
encoding for TLC. They found that joint encoding increases
the mutual information and improves hard-input error
correction performance with LDPC codes [14].



B. Contributions.

While joint encoding provides an information-theoretic ben-
efit, this paper focuses exclusively on the practical scenario
of independent encoding of Flash under the constraint that
all pages must convey the same number of bits. We use a
mutual information maximizing paradigm similar to [15] to
adapt the locations and probabilities of write levels to increase
the mutual information of the weakest bit channel and hence
improve the reliability of its corresponding page. In this way,
we seek a constellation of write levels that delivers the same
amount of mutual information to the bit channel for each
page. For simplicity, we restrict attention to TLC Flash with
a simplistic additive white Gaussian noise (AWGN) channel
model.

C. Organization

The remaining parts of this paper are organized into four
main sections. Sec. II describes Flash paradigm for writing and
reading information. Sec. III introduces our problem statement
from the mutual information perspective. Sec. IV describes
two algorithms for maximizing the minimum information rate
in under power and symmetry constraints. Alg. 1 adapts only
the positions of write levels in the constellation, seeking to
maximize the minimum rate. Alg. 2 adapts both the position
and the probability of each levels, again seeking to maximize
the minimum rate. Sec. V concludes the paper.

II. WRITING AND READING FLASH INFORMATION

A basic cell of a flash memory is composed of a floating gate
transistor. The amount of charge in the floating gate controls
the voltage at which the transistor turns on. We often refer
to the write-level as a voltage because the read process will
apply a voltage and learn whether the transistor is on or not
via a sense-amp comparator.

The data stored in the cell is represented by cell voltage
levels. The number of voltage levels corresponds to the number
of bits stored in the cell. There are 2m voltage levels when
m coded bits are stored in each cell. Flash technologies
are named based on the number of bits they can store. For
example, Single Level Cell (SLC) stands for one bit per cell,
Multi Level Cell (MLC) indicates two bits per cell, Triple
Level Cell (TLC) indicates three bits per cell, etc. Cells are
grouped into pages which are grouped into blocks. Pages are
the smallest unit for write and read operations.

Since bits belonging to the same cell are mapped indepen-
dently to different pages, the read process does not provide
the actual voltage level, but a single bit at a time checking a
threshold and reporting whether the voltage is above or below
that threshold. Fig. 1 (following [13]) illustrates the eight volt-
age levels and Gray labeling for a cell in TLC flash memories.
During each read process the information obtained is whether
the voltage is on the left or the right side of the threshold
depicted by vertical lines. We notice that for decoding three
pages a total of 7 reads are needed. However, bit B1 requires
only one threshold check, B2 requires two checks, and B4

requires four thresholds to be checked. Additional threshold
reads can provide soft information [12].

Fig. 1. The eight voltage levels and Gray labeling for a TLC flash memory.
B1, B2, B3 represent three bits corresponding to three different pages.
X0, ..., X7 are cell voltage levels. Vertical lines represent thresholds for each
bit. The read process provides a single bit at a time checking a threshold and
reports whether the voltage is above or below that threshold.

Consider a TLC flash memory with eight voltage levels as
illustrated in Fig. 1. The three bits B1, B2 and B3 written
to a cell for the three independent pages together cause the
threshold voltage X to be written to the Flesh cell. As noted
in [13], this is analogous to a multiple access channel (MAC)
with three users as illustrated in Fig. 2. When the cell position
is read, distortion causes the actual threshold voltage at the
time of reading to be Y. Therefore, the system model is given
by following equation:

Y = X + Z, Z ∼ N (0, N) (1)

The noise Z is assumed to be independent of the signal X.

Fig. 2. Flash Memory Layout as Multiple Access Channel (MAC). The noise
Z is drawn i.i.d. from a Gaussian distribution with variance N .

We can model the Flash write levels as M-ary pulse
amplitude modulation (M-PAM). For TLC, we use 8-PAM
constellations to store 3 bits per page. We will consider equally
spaced equally likely (ESEL) 8-PAM as illustrated in the
Table I as a baseline for comparison, although practical Flash
write levels are not equally spaced.

TABLE I
8-PAM ESEL CONSTELLATIONS AND GRAY LABELING FOR TLC FLASH

Voltage Levels x0 x1 x2 x3 x4 x5 x6 x7

ESEL -7 -5 -3 -1 1 3 5 7
B1 0 0 0 0 1 1 1 1
B2 0 0 1 1 1 1 0 0
B3 0 1 1 0 0 1 1 0



III. THE MUTUAL INFORMATION PERSPECTIVE

A. Mutual Information for Three Independent Pages

Let p1 denote the probability of bit B1 being equal to 0, i.e.
p1 = P (B1 = 0). Similarly, let p2 and p3 denote probability
of B2 and B3 being equal to 0, respectively. Let the 8-PAM
alphabet X = {x0, x1, ..., x7} and let XB

(0) be a subset of
alphabet X for which Bj = 0 and XB

(1) be a subset of
alphabet X for which Bj = 1, where j = 1, 2, 3. We use
AWGN for channel model, i.e., Z ∼ N (0, N) and i.i.d.

Mutual information rates I(B1;Y ), I(B2;Y ) and I(B3;Y ))
for independent encoding of pages are calculated as follows:

I(Bj ;Y ) =

∫
y

f(Bj = 0, y) log2

(
f(Bj = 0, y)

P (Bj = 0)f(y)

)
dy

+

∫
y

f(Bj = 1, y) log2

(
f(Bi = 1, y)

P (Bi = 1)f(y)

)
dy

where P (Bj = 0) = pj , P (Bj = 1) = 1− pj and
j = 1, 2, 3.

We can expend the terms inside the integrals as follows:

f(Bj = 0, y) = P (Bj = 0)f(y|Bj = 0)

= pjf(y|Bj = 0) (2)
f(Bj = 1, y) = P (Bj = 1)f(y|Bj = 1)

= (1− pj)f(y|Bj = 1) (3)

f(y|Bj = 0) =
∑

xi∈XB(0)

p(xi)f(y|xi) (4)

f(y|Bj = 1) =
∑

xi∈XB(1)

p(xi)f(y|xi) (5)

f(y) =
∑
xi∈X

p(xi)f(y|xi)

=
∑
xi∈X

p(xi)
1√
2πN

exp
−(y − xi)

2

2N
(6)

Where p(xi) = P (X = xi) or equivalently,

p(xi) = P (B1 = b1(i))P (B2 = b2(i))P (B3 = b3(i)) (7)

where i ranges from 0 to 7 and b1(i) is the most significant
bit of the binary representation of i, i.e. the blue bit in Fig.
1. Similarly, b2(i) is the middle bit and b3(i) is the least
significant bit.

The penalty for decoding the three pages independently
(rather than jointly) is calculated as follows:

I(B1, B2, B3;Y )− I(B1;Y )− I(B2;Y )− I(B3;Y )

= I(B1;B2|Y ) + I(B1, B2;B3|Y ) ≥ 0 (8)

B. Joint Vs Independent Encoding for ESEL Constellations

For ease of notation let I1 = I(B1;Y ), I2 = I(B2;Y )
and I3 = I(B3;Y ). Plots of three independent rates I1, I2
and I3 as a function of signal-to-noise ratio (SNR) for ESEL
constellations are given in Fig. 3. Fig. 4 illustrates the mutual
information I(X;Y ) = I(B1, B2, B3;Y ) for the overall
ESEL constellations and 3 × minj (Ij) for j = 1, 2, 3 as a

function of SNR. Observing the Fig. 4 we note that there
would be an improvement if we could find a way to equalize
the rates so that 3×minj (Ij) is closer to I(X;Y ).

Fig. 3. Independent MI rates for Equally Spaced Equally Likely (ESEL)
Constellations as a function of SNR.

Fig. 4. Upper subplot: Comparison of Information rate I(X;Y ) =
I(B1, B2, B3;Y ) for joint decoding depicted by green curve and 3 ×
min{I1, I2, I3} where I1 = I(B1;Y ), I2 = I(B2;Y ), I3 = I(B3;Y )
for Equally Spaced Equally Likely (ESEL) points. Lower subplot: Percentage
of Mutual Information loss for ESEL points with equal rate constraint.

C. Maximizing the minimum page mutual information

We formulate following optimization problem to maximize
the minimum page mutual information to seek a solution for
which all three page rates in TLC Flash memory are equal:

max
x∈X ,p2,p3

min
j

I(Bj ;Y ) j = 1, 2, 3.

s.t.
∑
i

p(xi)x
2
i = EESEL, i = 0, ...,M − 1

xk = −xM−1−k, k = 0, 1, 2,
M

2
− 1

p(xi) = P (B1 = b1(i))P (B2 = b2(i))P (B3 = b3(i))∑
i

p(xi)xi = 0



With M = 8 for TLC Flash and X = {x0, x1, ..., x7} having
the ESEL values shown in Table I, EESEL, the average power
for equally spaced equally likely constellation points given by:

EESEL =

∑
i=0,...,M−1 x

2
i

M
= 21 (9)

We seek to design an alphabet X subject to symmetry and
the power constraint EX2 ≤ EESEL that maximizes the
minimum MI between binary source Bj and a real valued
output Y.

IV. MAXIMIZING THE MINIMUM RATE

In this section we present two algorithms for solving op-
timization problem in Sec. III-C. The first algorithm retains
equally likely points but moves points to increase the min-
imum value of I(Bj ;Y ). The second algorithm additionally
adjusts the probability of the constellation points xi under the
constraint that the three bits that determine the constellation
label are independent as described by (7), as required for inde-
pendent encoding. Alg. 1 enumerates the steps for maximizing
the minimum rate through dynamic assignment of the write
level positions. Alg. 2 enumerates the steps for maximizing the
minimum rate by optimizing both positions and probabilities
of the write levels.

A. Dynamic Assignment of Write Level Positions

Alg. 1 maximizes the minimum rate under the constraint
that the constellation points are equally likely, i.e.,

P (Bj = 0) = P (Bj = 1) =
1

2
(10)

for j = 1, 2, 3. The details of the steps in Alg. 1 are as follows:
Initialization: Select the modulation number M = 8 for

8-PAM TLC Flash memory. Tolerance ϵ is the maximum
acceptable distance from any two independent rates I(Bj ;Y )
for j = 1, 2, 3. Initialize constellation (point) locations to
X = {−7,−5,−3,−1, 1, 3, 5, 7} and average power E = 21
for ESEL constellations. In Alg. 1 we will optimize only
point locations and therefore we fix the input PMFs to be
p1 = p2 = p3 = 0.5.
Iterations:

Adjust Write-level Positions X : The process at each iter-
atoin is similar to Step 4 in the power-constrained AWGN
dynamic-assignment Blahut-Arimmoto (DAB) algorithm in-
troduced by Xiao in [15]. Each iteration begins by identifying
the minimum MI I(Bj ;Y ) and optimizing one symmetric
pair of constellation points to increase the selected minimum
MI I(Bj ;Y ) = Ij(X , p1, p2, p3) calculated using MATLAB
integral() function.

For each symmetric pair of constellation points we select
the direction D̃(k) = el − er with ej being a j-th standard
basis vector as described in [15]. Define l and r such that
r = |X (k)| − l + 1. Thus, for the two symmetric points, l
corresponds to the left location being moved and r corresponds
to the right location being moved.

Once the direction is found we perform a line search
routine (e.g. using fminbnd in MATLAB) to find the λ∗

Algorithm 1 Dynamic Write-Level Position Assignment
Initialization:
M ← 8
ϵ = 10−4

X (1) = {x1, x2, ..., x|X (1)|} /* Initial ESEL points */
E = 1

M

∑
x∈X (1) x2

p1 = p2 = p3 = 0.5
i← 1
Iterations:
Ij = min(I1, I2, ..., Ilog2M )
1) Optimize constellation locations X :

a) Determine direction vector D̃(k) to adjust X
b) Compute

X (k+1) = d̃
(
X (k) + λ∗D̃(k)

)
, (11)

where d̃ = diag(d1, ..., dM ) ensures the power constraint,
and the optimal movement factor λ∗ is determined as
λ∗ = argmaxλ Ij

(
d̃
(
X (k) + λ∗D̃(k)

)
, p

(k)
1 , p

(k)
2 , p

(k)
3

)
where Ij(X ,P) is the mutual information I(Bj ;Y ) cal-
culated from input PMF characterized by X and p1, p2, p3.
Note that in the maximization that yields λ∗, the resulting
new values must satisfy Ii(X (k+1),P) ≥ Ij(X (k),P) for
all i ̸= j, 0 ≤ i ≤ 2.
Stop If (I1−Ij) ≤ ϵ, (I2−Ij) ≤ ϵ, . . . (Ilog2|X (1)|)−Ij ≤ ϵ
Or if maximum number of iterations is reached
i← i+ 1

that maximizes minimum rate Ij(X , p1, p2, p3) where X is
a scaled version of X (k) +λD̃(k). The interval for line search
constrained so that other two non-minimum rates stay above
Ij(X , p1, p2, p3).

To enforce the power constraint, the constellation needs to
be scaled to increase power if the two points move closer
to the origin or to decrease power if the two points move
further from the origin. To do this, we define a diagonal matrix
d̃ = diag(d1, ..., dM ) to scale the remaining points to meet the
power constraint as follows:

Let xi be the i-th element of X (k)+λD̃(k). Since MATLAB
is used as an optimization tool, we will consider the indices
of constellation points to start at 1, i.e. i = 1, ..., 8. Similar to
above, define the symmetric pair of positions being moved to
be l and r such that r = |X (k)| − l + 1.

If l = 1 or l = M
2 the following d̃ satisfies the power

constraint:

di ∈ d̃ and di = 1 if i ∈ {l, r}, o.w. di = α (12)

such that Pd̃ = EESEL, where

Pd̃ = p(xl)x
2
l + p(xr)x

2
r +

∑
i/∈[l,r]

p(xi)α
2x2

i . (13)

Otherwise, only the outermost points are scaled as follows:

di ∈ d̃ and di = α if i ∈ {1,M}, o.w. di = 1 (14)



Fig. 5. Three 8-PAM independent MI rates corresponding to bits B1, B2

and B3 respectively for optimized points locations using Alg. 1. Green dotted
curve is minimum Information rate for Equally Spaced Equally Likely Points

Fig. 6. 8-PAM Optimized constellations locations as a function of SNR.

such that Pd̃ = EESEL, where

Pd̃ = p(x1)α
2x2

1 + p(xM )α2x2
M +

∑
1<i<M

p(xi)x
2
i . (15)

Note that in this section p(xi) = 1
8 since we are only

optimizing point locations and keep PMFs the same.
All three rates are calculated with updated alphabet consist-

ing of optimized symmetric pair of points and new minimum
rate is determined to continue iteration process. The algorithm
stops if all three rates are within epsilon distance from each
other or if we reach maximum number of iterations. For most
SNR values maximum minimum rate is achieved for less than
50 iterations.

Fig. 5 shows optimized independent rates with respect to
point locations as a function of SNR. For reference we also
show the minimum rate for the ESEL constellation. The
difference between the lowest of the optimized rates and the
minimum rate for the ESEL constellation represents the an
improvement in page rate for the actual system. Fig. 6 shows
optimized point locations as a function of SNR.

Alg. 1 was able to achive essentially equal values for I1, I2
and I3 for SNR values above 15 dB and below 8 dB. However,
it was unable to achieve equal values in the region between
8 dB and 15 db. Seeking to improve on the performance
Alg. 1, the next section introduces Alg. 2 which adds the
capability to adapt the probability of each write level so that
the constellation points are no longer equally likely.

B. Optimizing Write-Level Positions and Probabilities

This section presents Alg. 2, which optimizes both the
positions and the probabilities of the write levels. The con-
stellation point probabilities must still be symmetric, which
means that p1 remains fixed at 1

2 . Functionally, the main
difference between Alg. 2 and Alg. 1 is that Alg. 2 contains
one additional step that optimizes the PMFs corresponding to
bit channels B2 and B3, which are defined by the parameters
p2 and p3. Gradient descent adjusts p2 and p3 while scaling
the constellation points to maintain the power constraint.

Let Ij be the minimum rate. Since objective function is
maximizing Ij , let f = −Ij(X , p1, p2, p3) so that we change
the problem into minimizing f with respect to p2 and p3. With
this notation, gradient descent method is as follows:

△p := −∇f (16)
p = p+ α△p . (17)

We used α = 0.01 as our gradient step to optimize PMFs p2
and p3. Referring back to Fig.1 and Table I, note that the PMF
of the write levels PX = p(x) can be directly computed from
p1, p2 and p3 as follows:

PX = [p1p2p3 (18)
p1p2(1− p3) (19)
p1(1− p2)(1− p3) (20)
p1(1− p2)p3 (21)
(1− p1)(1− p2)p3 (22)
(1− p1)(1− p2)(1− p3) (23)
(1− p1)p2(1− p3) (24)
(1− p1)p2p3] (25)

The gradient descent is complicated by the need to maintain
the power constraint. Let QX be the previous constellation
PMF used in step 1) of Alg. 2. We perform two separate steps
in the power constrained gradient descent to separately adjust
p2 and p3 as follows:

Step 1: Adjust p2 by using (16) and (17) with p = p2. Use
the new p2 to compute the new PX according to (18)-(25).
Scale the constellation points to satisfy power constraint as
follows:

ai =
QX(i)

PX(i)
, i = 1, ..,M. (26)

x
(k+1)
i =

√
aix

(k)
i (27)

After a gradient step in direction of p2 is performed and
points are scaled recalculate all three rates and check if they
are all greater or equal to minimum rate. If this condition is
not satisfied adopt initial p2 and constellation points and move
to Step 3. Otherwise, keep the solution and move to Step 3.

Step 2: Adjust p3. This step is identical to Step 1 except
applied to p3 instead of p2. We fix p2 obtained from Step
2) and perform the gradient with respect to p3 while scaling
points to maintain the power constraint. Step 1 and Step 2 are
repeated until there is no more improvement in maximizing



Algorithm 2 Optimizing Positions and Probabilities
Initialization:
M ← 8
α← 0.01 /*gradient step*/
ϵ = 10−4

X (1) = {x1, x2, ..., x|X (1)|} /* Initial ESEL points */
E = 1

M

∑
x∈X (1) x2

p1 = p2 = p3 = 0.5
i← 1
Iterations:
1) Optimize constellation locations X :
for index = 1:M2 do
Ij = min(I1, I2, ..., Ilog2M )

a) Determine direction vector D̃(k) to adjust X
b) Compute

X (k+1) = d̃
(
X (k) + λ∗D̃(k)

)
, (28)

where d̃ = diag(d1, ..., dM ) ensures the power constraint,
and the optimal movement factor λ∗ is determined as
λ∗ = argmaxλ Ij

(
d̃
(
X (k) + λ∗D̃(k)

)
, p

(k)
1 , p

(k)
2 , p

(k)
3

)
where Ij(X ,P) is the mutual information I(Bj ;Y )
calculated from input PMF characterized by X and
p1, p2, p3. Note that in the maximization that yields λ∗,
the resulting new values must satisfy Ii(X (k+1),P) ≥
Ij(X (k),P) for all i ̸= j, 0 ≤ i ≤ 2.

end for
I = min(I1, I2, ..., Ilog2M )
2) Optimize PMFs p2 and p3:

Use gradient descent to optimize p2 and p3 while
satisfying power constraint by scaling constellations.

Stop If (I1 − I2) ≤ ϵ && . . .&& (I1 − Ilog2|X (1)|) ≤ ϵ
Or if maximum number of iterations is reached
i← i+ 1

the minimum rate.
Fig. 7 shows the independent rates achieved by the opti-

mized point locations and input PMFs obtained using Alg. 2.
Fig. 8 shows optimized point positions and input PMFs
resulting from using Alg. 2 to achieve independent rates in
Fig. 7. In Fig. 9, the joint mutual information resulting from
optimized points and PMFs in Alg. 2 is compared to MI of
DAB optimized input PMFs given in [15] as well as to 3 times
minimum information rate and sum of independent rates for
optimized points and PMFs. Fig. 10 shows three losses for
flash system:

1) Shaping loss: I(X;Y )DAB − I(B1, B2, B3;Y )
2) Independent encoding loss:

I(B1, B2, B3;Y )− I(B1 : Y )− I(B2;Y )− I(B3;Y )
3) Equal rate constraint loss:

I(B1;Y )+I(B2;Y )+I(B3;Y )−3∗minj{I(Bj : Y )}
The results in Fig. 10 show that equal rate constraint loss
is negligible for nearly all SNRs. Independent encoding loss
is higher for very low SNRs but zero after 15 dB. Shaping
loss is evident mostly from 10 to 22 dB with highest value

slightly less than 0.15 bits. Shaping loss could be improved
by explicitly adding a step to improve the joint mutual
information.

Fig. 7. 8-PAM Independent rates for optimized constellation positions and
input PMFs.

Fig. 8. 8-PAM Optimized constellations locations using Alg. 2 as a function
of SNR.

Fig. 9. Joint mutual information rate I(B1, B2, B3;Y ) for optimized points
and PMFs is compared to the sum of independent rates, 3 times minimum
independent rate and joint MI for DAB optimized input PMFs. Equal rate
constraint loss is nearly zero for all SNRs. Independent encoding loss is
negligible for SNR = 15 dB and higher. The most evident loss comes
from shaping.

V. CONCLUSION

This paper focuses on the practical scenario of independent
encoding of Flash under the constraint that all pages have



Fig. 10. Equal Rate Constraint Loss:
I(B1 : Y ) + I(B2;Y ) + I(B3;Y ) − 3 ∗ min[I(B1 :
Y ), I(B2;Y ), I(B3;Y )], where I(B1 : Y ), I(B2;Y ), I(B3;Y ) are
information rates for optimized constellations and input PMFs. Independent
encoding loss: I(B1, B2, B3;Y ) − (I(B1 : Y ) + I(B2;Y ) + I(B3;Y ))
given in Eqn. (9). Shaping Loss: Difference between DAB Mutual Information
Rate I(X;Y ) given in [15] and I(B1, B2, B3;Y ) for optimized points
and PMFs.

to store the same amount of information. By optimizing the
positions of the write levels in the constellation and input
probabilities to maximize a mutual information rate of the
bit channel with worst information rate, we were able to
significantly improve the minimum page rate. The independent
encoding loss and equal rate constraint loss are negligible
(zero) for operational SNRs. Shaping loss is the most sig-
nificant loss in an interesting range between 10 and 22 dB,
with the largest loss approaching 0.15 bits. This loss may
be reduced by an additional optimization step, which is the
subject of future research. We note that 8-PAM constellations
with points that are not equally likely can be supported by
coded modulation techniques such as probabilistic amplitude
shaping [16]–[19].
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[19] M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein,
and F. Steiner, “Efficient error-correcting codes in the short blocklength
regime,” Physical Communication, vol. 34, pp. 66–79, 2019.


