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Achieving an accurate description of fermionic systems typically requires considerably many more or-
bitals than fermions. Previous resource analyses of quantum chemistry simulation often failed to exploit this
low fermionic number information in the implementation of Trotter-based approaches and overestimated the
quantum-computer runtime as a result. They also depended on numerical procedures that are computationally
too expensive to scale up to large systems of practical interest. Here we propose techniques that solve both
problems by using various factorized decompositions of the electronic structure Hamiltonian. We showcase
our techniques for the uniform electron gas, finding substantial (over 100x) improvements in Trotter error for
low-filling fraction and pushing to much higher numbers of orbitals than is possible with existing methods.
Finally, we calculate the T'-count to perform phase estimation on Jellium. In the low-filling regime, we observe
improvements in gate complexity of over 10x compared to the best Trotter-based approach reported to date.
We also report gate counts competitive with qubitization-based approaches for Wigner-Seitz values of physical

interest.

DOLI: 10.1103/PhysRevA.105.012403

I. INTRODUCTION

There is considerable interest in whether quantum
computers—both those available at present and those under
development—can be used to solve problems of scientific
and commercial importance. This is particularly evident in
the field of quantum simulation of chemical systems; for re-
cent reviews of progress in this area, we direct the reader to
Refs. [1-3]. Several algorithms have been developed to obtain
the eigenstates of chemical systems. These include variational
quantum algorithms [4,5] that aim to maximize the limited
coherence times of currently available hardware. However,
this comes at the cost of introducing heuristic aspects, mak-
ing it difficult to obtain rigorous performance guarantees. In
contrast, approaches based on quantum phase estimation [6,7]
provide a route to calculate eigenstates to within a specifiable
error, assuming only that we can efficiently prepare approx-
imate eigenstates with sufficiently high overlap with the true
eigenstates.

The resources we allocate to a fault tolerant quantum
computation will depend on our ability to bound errors in
the algorithm; the tighter our error estimates, the fewer
resources we will require. Several previous works have es-
timated the resources required for phase estimation based
on product-formula decompositions (also known as Trotter-
ization) [8—14]. It was recently shown by Su, Huang, and
Campbell [15] that knowledge about the number of fermions
present in a chemical system can be exploited to improve
the asymptotic performance of Trotterization. That work in-
troduced an error metric, termed the fermionic seminorm, to
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bound the Trotter error. This approach uses knowledge of the
number of fermions in the system to offset the dependence
of the error on the number of orbitals. This effect may be
particularly important for applications to chemical systems in
realistically sized basis sets, which will need to be large in
order to accurately resolve dynamic correlation in the wave
function. The Su-Huang-Campbell (SHC) bound aimed to
find an analytic bound with the best asymptotic complex-
ity. Here we present complementary work that also uses the
fermionic seminorm with the goal of developing techniques
for numerically obtaining bounds with best performance in
practice.

In this work, we introduce three factorized decomposi-
tions of the electronic structure Hamiltonian in a plane wave
dual basis, and use these in conjunction with the fermionic
seminorm to obtain tighter Trotter error bounds in prac-
tice. Our approach is inspired by prior work using low-rank
decompositions to reduce the number of terms in a Hamil-
tonian and thereby reduce the gate complexity of quantum
algorithms [13,16-18]. However, our use of factorized decom-
positions is purely computational and optimized for tightest
error bounds, with no corresponding change in the execution
of the quantum algorithm. A high-level overview of our ap-
proach can be found in Sec. III.

Each of our three factorized decompositions exhibits its
own advantage. The spectral decomposition is generally ap-
plicable and extends beyond the plane wave dual basis. The
cosine decomposition best exploits fermion number informa-
tion and so performs the most effectively in the low-filling
fraction regime. The Cholesky decomposition has the smallest
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constant factor overhead and so performs best in the medium
and half-filling regimes. We discuss these decompositions
in detail and compare the resulting Trotter error bounds in
Sec. IV.

These performance observations are supported by numeri-
cal results in Sec. VI, obtained by applying our approach to the
uniform electron gas (Jellium) introduced in Sec. V. In these
numerics, we also benchmark against three prior art bounds:
the analytic SHC bound described earlier [15]; the fermionic
commutator approach used by Kivlichan et al. [14] and a
similar Pauli commutator approach where there is anecdotal
evidence of good performance (see Appendix A of Ref. [19]).
We report a substantial classical runtime advantage for the
calculation of our bounds. The fermionic and Pauli com-
mutator approaches became intractable to calculate at larger
spin-orbital number N, so they could not be computed beyond
N ~ 200 without access to >100 GB of RAM. In contrast, it
took fewer than 6 h (using a 3.6 GHz c5.2xlarge EC2 instance
on AWS) to calculate our new bounds on a 512 spin-orbital
instance, using <16 GB of RAM.

One target problem for Trotter methods has been for phase
estimation of the ground state energy of the uniform electron
gas [14]. Using our improved Trotter error bounds for Jellium,
we calculate the T-count for this problem and demonstrate
the expected improvements in runtime. We also compare our
gate counts to those obtained using qubitization [20] and find
comparable results in some parameter regimes of interest.

We present mathematical preliminaries in Sec. II that are
necessary to understand our factorized decompositions and
their numerical implementations. We conclude the paper in
Sec. VII with a brief summary of our contributions and a
collection of avenues for future work.

II. PRELIMINARIES

A. Fermionic systems and seminorm

The electronic structure Hamiltonian is a widely used
model for molecular and material systems where the positions
of the nuclei are considered fixed. In an arbitrary basis of N
electronic spin orbitals, the Hamiltonian can be written as

H= Zh qa ag + Zh q,éa al 0rds, (D)

pgrs

where ay is the fermionic annihilation operator on spin orbital
s and the coefficients h,, and A, are defined by integrals
over the basis functions [21]. Using the plane wave dual basis
given by [22], the number of terms is reduced from O(N*) to
O(N?) with the simple form

H = Z T,,qa aq + Z Upyn, + Z Vighiphy, 2)

P#q

which is split into the electron kinetic, electron-nuclei, and
electron-electron terms, respectively. The coefficients 7,4, U,
and V), are defined by integrals over the basis functions, as
discussed in Sec. IV.

When simulating time evolution under a Hamiltonian (such
as those given above), the error is typically quantified using
the spectral-norm distance between the time evolution opera-
tor, and the quantum circuit used to approximate it. However,

it is possible to use knowledge about the initial state to im-
prove the error bound. In Ref. [15] the fermionic seminorm
of an operator X was defined as the maximum transition
amplitude of the operator between two states in the n-electron
subspace

X115 := max)y, ) ¢, [{@y [ X [¥) . 3)

We say an operator X is number preserving if X acting
on an n-electron state yields some other n-electron state. It
was shown in Ref. [15] that the fermionic seminorm has
similar properties to well-known existing norms. For number-
preserving operators X, Y, we will make use of the following
properties:

(1) [IX + YIl, < [IX1l, + 1Y ]], (Triangle inequality)

@) [IXY [l < [IX[|,|IY[], (Holder inequality)

() 11AX1l; = IA[l1X]], (for A € C)

@ Xy = 11X,

S lUXW||, = |IX||, (for U, X, W number preserving,
U, W unitary).

We remark that it is a seminorm rather than a norm be-
cause it can evaluate to zero for some nonzero operators.
For example, for a system with a single fermion, we have
||npnq||n:l = 0 (for p # @), but n,n, is a nonzero operator.

B. Prior art in commutator bounds

This work considers Trotter-based approaches to imple-
ment the time evolution operator that is used in Hamiltonian
simulation and quantum phase estimation. For a Hamiltonian
that can be decomposed as H = le‘il H;, afirst-order Trotter
decomposition approximates the time evolution operator as

M
eiHI‘ ~ HeitH/ — U]a (4)
j=1
and a second-order Trotter decomposition approximates the
time evolution operator as

JHt A (He"ﬂ><ne”f1) = U,. o)

It has been shown [14,23] that this approximation has an error
given by

™" — Uy || < Wit?, (6)
™ = Uol| < Wat?, (7)
where W; and W, are defined as
LM || M
Wii= 3 Zl ;wb, H,] ®)

> [He. [Hp, Hyl

c>a b>a

|

> [Ha, [Ha, Hyll

b>a

) , (€))

where || - || denotes the operator norm (also known as the
spectral norm, i.e., the largest singular value of the operator).
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In practice, it can be difficult to get a tight value for W,
because of the complexity in evaluating the operator norm
of a high-dimensional operator such as [H,, [Hp, H,]]. A
such, in aid of numerical expediency, a further relaxation is
often made. Each nested commutator is expanded in terms of

operators P; with known operator norm ||P;|| = 1 so that
D [He, [Hy, Hll = Za, 3 (10)
c>a b>a

and then one can bound

> > IHe. [Hy, Hall

c>a b>a

<Y gl (11)
J

Common choices include choosing P; as tensor products of
Pauli operators, or as fermionic excitation operators (e.g.,
Pj=a; ]‘zajza ajsaj;). Throughout we refer to bounds us-
ing these relaxations as the Pauli commutator bound and
Fermionic commutator bound, respectively. For example,
Ref. [14] used the Fermionic commutator bound to estimate
the resources for phase estimation in the plane wave dual
basis. In our numerical examples, we will benchmark against
these prior art bounds.

Reference [15] showed the commutator bounds can be
tightened in the special case where H is a fermionic Hamil-
tonian and every H; in the Trotter decomposition [Eq. (5)] is
number preserving, so that for second-order Trotter

M
< 53 (|1 e e,
a=1

c>a b>a

; 12)

> [Ha, [Hq, Hyl
b>a

n

where the operator norm has been replaced by the tighter
fermionic seminorm. Reference [15] further considered
Hamiltonians in the plane wave dual basis [recall Eq. (2)] and
a Trotterization where the Hamiltonian is considered as con-
taining two terms: H; = Y, Tygata, and H, = 3~ Vypnpng.
Reference [15] derived bounds for arbitrary order product
formulas, with the second-order result

SOV 21T + NTIPNV macn®),  (13)

where || - ||max 1S the max-norm that represents the largest
matrix element in absolute value. A key observation is that the
bound depends on 1 and so captures the expected dependence
on the fermion number. The big O of this result hides the
constant factors that are needed for numerical comparisons.
For the case of the plane wave dual basis, Eq. (12) reduces to
a sum of two terms. In Appendix A we have evaluated these
terms, which are given by

SATIPIV lmaxn (47 + 1), (14)

[I[[H,, Hy], Hilly

||[H:, Ho), B, < 2|7|[|V]. rPen+ 1. (15

max

We refer to this as the “SHC bound” throughout.

III. IMPROVED FERMIONIC SEMINORM BOUNDS

In this work, we make particular use of the properties
of free-fermionic Hamiltonians H(A) := Zi’ jA,-jajaj. We
refer to A as the coefficient matrix of the free-fermionic
Hamiltonian. A free-fermionic Hamiltonian can be efficiently
diagonalized by diagonalizing its coefficient matrix. We can
then calculate the fermionic seminorm of a free-fermionic
Hamiltonian as

[1H (A1,

cata.
§ :Al./aia.l
i,j

n

= ||V <2Aijaj'aj> V_l
iJ

) (16)

n

= Zkkakak

where V is a unitary matrix that diagonalizes the free-
fermionic Hamiltonian, and A; are the eigenvalues of the
coefficient matrix A. This expression can be evaluated using
Eq. (3) to give

PBRSHN

NH (A, = A, = max{
reS

=n,5C )\(A)}.

A7)
Here we have defined another seminorm | - |, which takes a
coefficient matrix A as its argument. We call this the reduced
fermionic seminorm as the argument is a smaller N-by-N ma-
trix A, rather than the large operator H(A) that is represented
by a 2V-by-2V matrix. The result of Eq. (17) tells us that for
free-fermionic operators H(A) the problem of evaluating the
fermionic seminorm simplifies to the easier problem of evalu-
ating the reduced fermionic seminorm. Evaluating the reduced
fermionic seminorm takes the set A(A) of eigenvalues of A and
finds the subset S C A(A) with n elements and largest sum
in absolute value. If A is Hermitian this is further simplified,
as we can consider the sum of the 5 largest eigenvalues, and
the sum of the n most-negative eigenvalues, and choose the
larger absolute value. Therefore, Eq. (17) can be efficiently
computed for Hermitian A.
Another useful property involves the commutator of two
free-fermionic Hamiltonians

[H(A), H(B)] = H([A, B]), (18)

itself a free-fermionic Hamiltonian. This has previously been
noted and made use of in the context of quantum simulation
in Refs. [10,24].

Motivated by these properties of free-fermionic Hamiltoni-
ans, we consider decomposing the Hamiltonian as

H=H@A)+ Y HX)H), (19)
1

where A, X}, Y; are N x N coefficient matrices, and N is the
number of spin orbitals considered. Decompositions of this
form have been considered in the context of quantum com-
puting in Refs. [10,13], where they were obtained by eigen-
or Cholesky decompositions of the tensor #,,.,. This yields
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TABLE I. A comparison of the different Trotter error bounds considered. The memory and runtime scaling are given for calculations of the
second-order bounds, as outlined in Appendix E. The last two columns rank the second-order data presented in Fig. 1, for a uniform electron
gas system with 200 spin orbitals, and varying electron number. The memory requirement of the Pauli commutator approach was too severe to
carry out this second-order Trotter calculation, though we will later present first-order Trotter results for this approach.

Exploits n <K< N/2 n=N/2

Approach Memory Runtime fermion no. rank rank
Fermionic commutator [14] O(N%) O(N®) No 5th/5 2nd/5
Pauli commutator O(N?) O(N®) No - -

SHC bound [15] O(N?) O(N?) Yes 3rd/5 5th/5
Spectral decomp. (This work) O(N?) O(N?) Yes 4th/5 4th/5
Cholesky decomp. (This work) O(N?) O(N?) Partially 2nd/5 Ist/5
Cosine decomp. (This work) O(N?) O(N?) Yes 1st/5 3rd/5

the Hamiltonian in a “single factorized” form [13,16,19]. For
example, if we consider the electronic structure Hamiltonian
in a Gaussian orbital basis set [described by Eq. (1)] we can
apply a spectral decomposition of the tensor £, to write the
Hamiltonian in the form (see Appendix B)

L
H=Hh) + ) 2HX)HX,), (20)
=1

where L denotes the number of terms in the spectral decompo-
sition, and A, are the corresponding eigenvalues. We consider
Trotter decompositions with each term H; in Eq. (4) or Eq. (5)
corresponding to some subset of terms from Eq. (20). We
show in Appendix B that we can bound the first-order Trotter
error with the commutator bound

L
Wi < D (AR, X;11,1X1,)
j=1

L
+2 ) (MG X111l X1,)- 2y

i=1,j>i

To obtain this form, we made use of commutator
identities such as [A,BC]=[A,B]C + B[A,C] and
[AB,CD] = A[B, C]D + CA[B, D] + [A, C]1BD + C[A, D]B.
Similar bounds can be obtained for higher-order Trotter
formulas, and in Appendix C we present second-order bounds
for the special case of the plane wave dual Hamiltonian.

A similar approach was attempted in Ref. [10]; however,
that work did not explicitly make use of information about the
number of electrons in the system, and therefore the result is
not tight in the low-filling regime. Depending on the form of
hpgrs, other decompositions may be possible. In the following
section, we present three decompositions of the plane wave
dual basis Hamiltonian, motivated by its simple form, and
the analytic expressions available for the Hamiltonian coef-
ficients in this basis. We summarize the main features of these
decompositions in Table 1. Each of these three decomposi-
tions has a particular benefit; the spectral decomposition is
the extension of the approach discussed above (and in Ap-
pendix B) to the plane wave dual basis and so is generally
applicable to any orbital basis. The Cholesky decomposition
performs best in the half-filling regime (n = N/2), while
the cosine decomposition performs best in the low-filling

regime (1 << N/2). All of these bounds are more efficient to
compute than the existing fermionic and Pauli commutator
bounds.

IV. PLANE WAVE DUAL BASIS DECOMPOSITIONS
AND TROTTER ERROR BOUNDS

The plane wave dual basis electronic structure Hamiltonian
given by Eq. (2) describes a system with 7 electrons in a simu-
lation box of size o L?, where d is the dimensionality of the
system, and L is the number of grid points along each side of
the box. The spin orbitals are obtained from a discrete Fourier
transform of plane waves. These plane waves are defined by

> [V s 7 270
oy (F) = 59 , ka—wy

) e w

where N is the number of spin-orbital basis functions used,
and vV enumerates the N/2 possible distinct momentum vectors
of the system. Note that if L is odd, the interval of v is closed,
rather than half-open. The plane wave dual basis resembles
a smooth approximation to a grid of delta functions. The
coefficients in Eq. (2) are given by [22]

TP‘/ = 8“1)»‘74 Z

k2cos[ks - (75 — 7)1

- N ’
4r;coslky - (R; — 75
Up=— Z 7T§j [Ql-(»z( J rp)]’
J.BIFI#0 v

2costls - (Fy — 7,
V= Z T Ccos| (75 rq)]'

or 2

7:[7]5£0
Here 75 is the position of the orbital centroid corresponding to
spatial orbital p

L2\ AP
H(W)’ “HEHEJ) <L Y

o), is the spin of the pth spin orbital (here we have mapped the
vector index p to an integer value by defining an ordering for
the spin-orbital basis functions), and R ; and £; are the position
and charge of the jth nucleus in the system.
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In the plane wave dual basis, the Hamiltonian terms can be
partitioned into kinetic and potential terms, respectively:

H =) Tyalag, Hy=Y Upmp+ Y Vognpng. (25)
Pq P P#q

We can approximate the time evolution operator by applying
the potential terms (which all commute with each other and so
induce no Trotter error), implementing a basis change to plane
waves, such that the kinetic term becomes diagonal and can
be implemented without Trotter error, and then changing back
to the plane wave dual basis (or the equivalent, but starting in
the plane wave basis). The second-order Trotter error for these
approaches is given by

it _ ji%H, itH, ,itH,

e

13 1
< E(II[[Hr, H,1, H]ll, + zll[[Hz, H,], Hullln),
itH

sl
— 'z

He H, yitH, ,is H, ” )

3
< —
12

The kinetic and electron-nuclei interaction terms are free-
fermionic Hamiltonians. This section presents three ways to
decompose the electron-electron interaction term into a sum
of products of free-fermionic Hamiltonians such that we can
write H, = H{U) + Y, H(X;)H(Y;). We use these decom-
positions, the aforementioned commutator identities, and the
fermionic seminorm properties of free-fermion Hamiltonians
to derive expressions for first- and second-order commutator
bounds.

We calculate the first-order bound here and refer the reader
to Appendix C for calculations of the second-order bounds.
The first-order commutator is given by

1
(II[[Ht, H,], Hyllly + 5||[[Hts H,], Ht]”n)- (26)

[H,, H,] = [H(T), HU)+ ZH(X»H(Y,)}
1

= [H(T), H{U)] + Z[H(T), HX)H ()] (27)
I
We can simplify the second term using [A, BC] = [A, B]C +
B[A, C] to give

[H,, H,) = H(T. U1) + Y [H(T), HX)IH (Y;)
l

+ HX)H(T), H(Y))]

=H(T,UD+ Y _H{T,XDH(Y))
[

+HXDH((T, Y1D. (28)

Using the triangle and Holder inequalities, the fermionic
seminorm of the first-order commutator is then upper bounded
by

\UHe, Hollly < 1T, Ully + Y (LT, Xy Yil,
l

+ [T, Y11yl X 1y).- (29)

A. Chemical potentials

When working in a fixed particle number manifold, we
can shift the chemical potential of the problem to try and
reduce the resulting Trotter error bound. This technique has
previously been found to be beneficial in simulations of the
Fermi-Hubbard model [24]. We can transform the Hamilto-
nian to

H, — H,+Cn

:H(U)—i—Zqunpnq—}—CZn,,

p#q P

=HU)+ Y (6psC + Vpnpng. (30)

rq

where we have used that nlz) = n,,. This transformation adds a

constant C to the diagonal of V.

B. Spectral decomposition

In the plane wave dual basis, the electron-electron
Coulomb interaction matrix V,, is real symmetric, and there-
fore admits a spectral decomposition

Vog =Y dilvil,lvil,. 31)

While Eq. (2) corresponds to defining V' with V,, := 0, we
can also use the chemical potential shift outlined above to set
V,p := C. We factorize the Hamiltonian as

Hy=HU)+ Y Vynpn,

p.q

=HU)+ Z Ailvilplvilgnpng

P:q,i

=HU)+ ) (Z[vi]pnp> (Z[vi]qnq)
i q

p

= HU)+ ) LHW)H (). (32)

Here v; are diagonal N x N coefficient matrices. The first-
order bound is given by

[H;, Hollly < T, Ully +ZZ|M|(I[T, villplvily).  (33)

The second-order bounds are given in Appendix D. This de-
composition can be regarded as an instance of the general
approach of spectral decomposing tensors /s, and we dis-
cuss this further in Appendix B.

C. Cholesky decomposition

We can also consider a Cholesky decomposition of the
matrix V. The Cholesky decomposition factorizes a posi-
tive (semi-) definite Hermitian matrix into the product of
a lower triangular matrix and its Hermitian conjugate, V =
LLY. For the real symmetric matrix V,,, we first shift the
chemical potential to make V positive definite. The Cholesky
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decomposition is then given by
g =Y LpiLj. (34)
i

We can then factorize the Hamiltonian as

Hy=HU)+ Y Vynn,

pPq

=HU)+ Y _ LyLlnn,
ipq

0 E(Se) (i)

=HU)+ ZH(Li)H(Li)s (35)

where L; are diagonal coefficient matrices such that [L;],, =

The second-order bounds are given in Appendix D. As the
Cholesky matrix L is lower triangular, the free-fermionic
Hamiltonians H(L;) become increasingly low rank at higher
values of i, suggesting that this decomposition may not fully
exploit fermion number.

D. Cosine decomposition
We consider the following decomposition that depends ex-
plicitly on the structure of the terms in the matrix V,,,. We

introduce the shorthand o’ := &,
angle formula to Eq. (23) yields

- 7. Applying the double

271 1
pg = - 7 |2cos( P — wf)
2 1 ' '
=5 e (cos(wh)cos(w?) + sin(w?)sin(w?)).
v#0 v

8pqLqi. The first-order bound is given by 37
[[H;, H]ll, < IIT, U]|,,+ZZ(|[T, Lily1Lil,).  (36) We can use this to write
" !
ZV,,qn,,nq 2 ZZZ ir (cos(w?)n,cos(w?)n, + sin(w?)npsin(w?)n,)
P#q q v#0 IV
; & ooty (o))
_ 2 » T (Z cos(a)”)np> (Z cos(w")nq> Z; P (Z sin (a)”)np> (Zq: sin(wﬂ)nq)
ZZ T (38)

p v#0

In the fixed electron-number manifold, the final term will only contribute a global phase during Hamiltonian simulation and so

can be dropped. We can rewrite H, as

H, ZH(U)+ZH(CU)H(CU)'i'H(SU)H(SU)v (39)

v#£0

where C, and S, are diagonal N x N coefficient matrices defined by

(Coli =22 cos(w]). 1Si1i = | 2 sino) (40)
vlii = —— —S—COS\w,, ), vlii = — S sin\w, ).
Q |k, | Q k|
The first-order bound is given by
H, Hlly < T UL 42 Y (T Al AL (41)

V0 A€(C,S)

The second-order bounds are given in Appendix D. We remark that it is possible to further simplify Eq. (38) to

27[ 1

The more compact form of this decomposition suggests that
it may offer a tighter bound. However, the resulting free-
fermionic Hamiltonians » eFieip p» are non-Hermitian and so
yield operators that are neither Hermitian nor anti-Hermitian
when commuted with the Hermitian kinetic operator. The re-

Sl(Zem)e (T2

2
Yy T “2)

p v#0

(

sulting matrices may not be diagonalizable, making it unclear
how to efficiently evaluate the fermionic seminorm of the
operator. In Table I we reported that the cosine decompo-
sition is the top-ranked approach in the low-filling fraction
regime.
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E. Outlook

In the following sections, we will apply these bounds to
the 2D uniform electron gas in a plane wave dual basis set.
The Hamiltonian for this system is given by Eq. (2), but with
U, =0Vp. As a result, all of the commutators containing U
can be dropped from the above expressions when consider-
ing this system. In the following section, we provide further
background on the uniform electron gas. We then present
numerical results comparing the Trotter error bounds derived
above for the uniform electron gas, which form the basis of
the rankings assigned in Table I.

V. UNIFORM ELECTRON GAS

The uniform electron gas consists of n electrons in a box of
size 2. We are interested in the properties of this system as it
scales to the thermodynamic limit, where n, 2 — oo, but the
electron density p = /€2 stays constant. At zero temperature,
the physics of the system depends only on p. It is conventional
to define a quantity referred to as the Wigner-Seitz radius r;,
that represents the average distance between electrons in the
simulation cell. For a 3D simulation cell, the Wigner-Seitz
radius is given by r, = (3/4mp)'/3 (for a 2D simulation cell,
ry = /1/m p). In order to make the system charge neutral, the
electrons are immersed in a uniformly distributed sea of posi-
tive charge. Consequently, the system is often also referred to
as “Jellium.” The Hamiltonian of the Jellium is given by [25]

2
H=Y ——L

V: &2
2m+2|r,—rj|
en 8(F— 1) drdi
dr
//Z r—r|

292// r—r| E “3)

where the first term represents the kinetic energy of the elec-
trons, the second term describes the Coulomb repulsion of
the electrons, the third term is interaction of the electrons
with the uniform charge density of the positive background,
and the final term is the self-interaction of the background
charge. The long-range nature of the Coulomb interaction
causes divergences in the final two terms as the system scales
to the thermodynamic limit. These divergences can be can-
celed with a divergence of the opposite sign that arises in the
electron-electron interaction term. The length scales are typ-
ically rescaled to be measured in Bohr radii (%% /me?). When
performing calculations on Jellium, we can either consider
the real-space formulation of the problem discussed above, or
project the Hamiltonian onto a basis set.

In addition to acting as a simple model of interact-
ing electrons, the energy density of Jellium is used to
parametrize some of the functionals used in density func-
tional theory [26-28]. Although the behavior of Jellium is
well understood in the low [29] and high [25,30,31] density
limits, small energy differences in the intermediate regime
lead to difficulty in resolving competing phases. This has led
to unresolved questions about the existence of a superconduct-
ing phase in 2D Jellium [32-34], as well as disagreements

on the order of 0.7 mHartree per electron between different
density functional parametrizations at electron densities of in-
terest [35]. While existing computational techniques, such as
quantum Monte Carlo methods, are able to obtain accurate en-
ergies of relatively large system sizes, these methods typically
introduce an uncontrolled bias. It is conventional to perform
calculations on a succession of system sizes, which enables
extrapolation to the thermodynamic limit. Extrapolation and
correction for finite size effects [35-38] often accounts for
a large amount of the uncertainty present in the values esti-
mated [25].

Quantum Monte Carlo (QMC) methods, in particular,
variational Monte Carlo (VMC) and diffusion Monte Carlo
(DMC), are the leading techniques for calculating the ground
state energy of Jellium. Following the pioneering calcula-
tions of Ceperley and Alder [39,40], there have been a
number of VMC and DMC calculations on both 3D Jel-
lium [35,38,41,42] and 2D Jellium [43-47] (see Ref. [48] for
a review of QMC calculations). Both VMC and DMC are
typically performed in real space and have been applied to
systems with on the order of 10° electrons [25]. However,
these methods are particularly susceptible to the fermion sign
problem. This is typically mitigated by fixing the nodal points
of the wave function to those of the trial wave function.
Although this fixed node approximation is believed to work
well for the uniform electron gas [45], it introduces an un-
controlled bias that is not systematically improvable. While
techniques can be used to mitigate this error, DMC energies
for high-density (r; < 5) electron gases are thought to possess
an error of around 1 mHartree per electron (the fixed node
error is believed to be smaller at larger r, values) [35,49].
State-of-the-art DMC calculations require on the order of 10?
CPU core hours [50].

Calculations have also been performed using full config-
uration interaction quantum Monte Carlo (FCIQMC) [51],
which evolves a population of random walkers using update
rules that effectively propagate the wave function in imaginary
time. FCIQMC is applied to systems that have been projected
onto a basis set (typically plane waves for Jellium calcula-
tions). While this projection appears to mitigate the fermionic
sign problem, it introduces a basis set error that must be
eliminated by extrapolation to the continuum limit [52]. The
basis set error decays as 1/N, although this may be improved
using explicitly correlated methods [53]. FCIQMC formally
scales exponentially with the system size but can in practice
achieve bias-free results for small, weakly correlated Jellium
systems (e.g., 19 electrons at ; = 1 [35]). The approach is
also practical for larger system sizes at high densities; produc-
ing more accurate results than DMC in 54 electron systems
with r; < 1 [50]. Modern FCIQMC methods require around
10°~10° CPU core hours (depending on the value of r, inves-
tigated) [49,50]. As r, increases, the correlation present in the
system becomes large, which makes FCIQMC methods too
costly to converge [49,50].

Calculations can be made more challenging by considering
the system at nonzero temperature, which acts as a model
for the interiors of stars and planets, or for laser-ignited
plasma used in fusion experiments [54,55]. Alternatively,
we can consider additional interactions, such as spin-orbit
coupling [56].
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FIG. 1. First (left) and second (right) order commutator bounds for a 2D uniform electron gas system with r; = 5, resolved with 200 spin
orbitals. The electronic density is kept fixed, such that the volume of the simulation cell increases with the number of electrons considered,
which alters the Hamiltonian coefficients. This effect competes with the electron number dependence of the fermionic seminorm to determine
the resulting error bounds. For the Cholesky decomposition the chemical potential was shifted by the minimum value that ensured V was

positive definite.

The uniform electron gas has previously been identified as
a candidate system for quantum phase estimation [22] due to
the desire to seek accurate, bias-free ground state energies.
Existing resource estimates for applying phase estimation
to Jellium [14,20] project the Jellium Hamiltonian onto the
plane wave dual basis, and so can be directly compared with
FCIQMC methods. As discussed above, these calculations
must first be extrapolated to the basis set limit, before ex-
trapolation to the thermodynamic limit is performed. Previous
estimates [14,20] have considered only the quantum resources
required for phase estimation at half-filling (n = N/2). How-
ever, the most challenging calculation performed in a realistic
study will be that with the largest computationally feasible
n value, subject to the constraint that N >> n. Without this
constraint, it will not be possible to perform an accurate ex-
trapolation to the continuum limit. In this work, we explicitly
consider this regime of interest, and make use of the fermionic
seminorm bounds presented in Sec. IV to reduce estimates of
the Trotter error bound, compared to the state of the art [14].

VI. NUMERICAL RESULTS

A. Trotter error comparison

We have numerically evaluated the Trotter error bounds
derived in Sec. IV for 2D uniform electron gas systems with
up to 49 electrons in 512 plane wave dual spin orbitals.
These calculations were performed as outlined in Appendix
E, with the help of subroutines present in OpenFermion [57],
an electronic structure package for quantum computational
chemistry.

In Fig. 1 we plot the first (W;) and second (W,) order
commutator bounds for the Hamiltonian decompositions dis-
cussed in this work. We consider a simulation cell resolved
with 200 spin orbitals, and vary the number of electrons in
the cell. The Wigner-Seitz radius is set to ry, = 5. We fix
the electron density, such that the volume of the simulation
cell increases proportionally with the number of electrons

considered. As the cell volume increases, the Hamiltonian co-
efficients decrease in magnitude. This effect will contribute to
areduction of the commutator bound. However, increasing the
number of electrons in the system also increases the number of
eigenvalues considered when taking the fermionic seminorm
of the relevant free-fermionic coefficient matrices. This effect
increases the commutator bound. The competition between
these effects can lead to nontrivial behavior as the number
of electrons is varied—this is particularly evident for the
spectral and cosine decomposition bounds. These are the de-
compositions that maximally exploit the fermionic seminorm,
leading to their improved behavior in the low-filling regime. In
contrast, the Pauli and Fermionic commutator bounds receive
no benefit from decreasing fermion number 1. However, we
see that these bounds, as well as our Cholesky bound (which
only makes partial use of the fermionic seminorm) perform
well close to half-filling, due to their sensitive dependence
on the Hamiltonian coefficients. Although it is masked by
the log-scale used in the plots, we observe that for a fixed
number of spin orbitals ||T|| & 1/7 and ||V ||max € O(1), so
the first-order SHC bound is proportional to 1, and the second-
order SHC bound is proportional to n%. While the SHC bound
exploits the fermionic seminorm, it does not fully exploit
the reduction in Hamiltonian coefficient magnitudes at high-
filling fractions.

In Fig. 2 we again plot the first and second-order com-
mutator bounds, but here keep the fermion number fixed at
n =49 (as well as fixing r; =5, and the cell volume) and
instead vary the number of spin orbitals used. The second-
order Pauli and Fermionic commutator bounds were only
calculated up to 128 and 288 spin orbitals, respectively, as
the memory required for these calculations was prohibitive
beyond this point. We have extrapolated the performance of
the second-order Pauli bounds to larger N values, as described
in Appendix F. Performing simulations with a fixed number
of electrons, while increasing the number of spin orbitals,
would enable us to perform extrapolation to the basis-set
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FIG. 2. First (left) and second (right) order commutator bounds for a 2D uniform electron gas system with r, = 5, and 49 electrons, as a
function of the number of spin orbitals used to resolve the system. Fermionic and Pauli commutator bounds could not be calculated for all data
points, due to the large memory requirements of those approaches. The “projected Pauli bounds” were obtained as described in Appendix F.
For the Cholesky decomposition the chemical potential was shifted by the minimum value that ensured V' was positive definite.

limit. We observe that close to half-filling, the Cholesky and
Pauli bounds outperform all others considered. However, the
cosine decomposition performs best in the low-filling fraction
regime, due to its increased exploitation of the fermionic
seminorm.

B. Phase estimation resource estimates

In this section we discuss the resources required for
performing Trotter-based phase estimation on the uniform
electron gas systems discussed in the previous section. Our
cost estimates focus on the number of logical qubits and T

and Toffoli gates required (as these are the dominant factors
in surface code-based resource estimates) and neglect the
costs of Clifford gates. Our approach closely follows that of
Ref. [14], with an improved use of Hamming weight phasing
(HWP) [24].

We distribute the total budget for error in energy estimation
(6 = Apg + Ars + Agyn) roughly as follows: 33% to Trot-
ter error Arg; 66% to phase estimation error Apg; and 1%
to rotation synthesis error Agy,. In practice, we numerically
optimize the error budget allocated to rotation synthesis er-
ror, but the optimal choice only differs slightly from 1%.
With this split of the error budget, one finds [14,24] that we

TABLE II. A comparison of resource estimates for phase estimation of Jellium, using three different methods. We consider an energy error
budget of § = 1 mHa per electron. “Our best” refers to the Trotter-based phase estimation considered in this work, using our best bound for
the Trotter error. “FC” refers to the Trotter-based phase estimation considered in Ref. [14], which uses the fermionic commutator bound for
the Trotter error. The fermionic commutator (FC) bounds are too memory intensive to be calculated for the 16 x 16 systems. In both Trotter
methods, 16 additional qubits are used (14 for Hamming weight phasing, one for phase estimation, and one for gate synthesis). “Qubitization”
refers to the post-Trotter approach considered in Ref. [20] (which we discuss in Appendix H). Four 7' gates can be used to implement a Toffoli

gate, so the total aggregated T count for the algorithm is Ny + 4Ny.

Filling fraction Size Our best FC Qubitization
I n 1’]/2LxLy LX X Ly NT + 4Nlof NT + 4Nmf NT + 4N[0f Anc.
5 49 0.10 16 x 16 2.2 x 101 No data 2.0 x 10'0 105
5 49 0.17 12 x 12 3.2 x 10'0 8.8 x 10'° 3.5 x 10° 96
5 49 0.19 16 x 8 1.7 x 10'° 4.8 x 100 2.5x10° 94
5 49 0.38 8x8 1.3 x10° 3.0x 10° 3.2x 108 83
10 10 0.02 16 x 16 3.4 x 10" No data 9.6 x 10'° 112
10 10 0.03 12 x 12 8.6 x 1010 1.1 x 1012 1.7 x 1010 103
10 10 0.04 16 x 8 5.4 x 10" 6.2 x 101 1.2 x 10'° 101
10 10 0.08 8x8 8.1 x 10° 3.9 x 10" 1.6 x 10° 90
10 49 0.10 16 x 16 1.1 x 10" No data 2.0 x 1010 105
10 49 0.17 12x 12 1.6 x 10'° 4.3 %100 3.5 % 10° 96
10 49 0.19 16 x 8 8.6 x 10° 2.4 x 10" 2.5 % 10° 94
10 49 0.38 8x8 6.5 x 108 1.5x 10° 3.2 x 108 83
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need Npg = O(Wzl/ 2 /83/?) (the tilde in our O notation denotes
that logarithmic factors have been suppressed and also hides
constant factors) Trotter steps. As we outline in Appendix
G, each Trotter step can be implemented with O(N?) non-
Clifford gates for an N spin-orbital problem. Therefore, the
total algorithm complexity is O(N2W,/? /6%/%) where W, con-
tains some dependence on N and 7. The primary focus of our
work has been to tighten the values of W, and we expect a
factor C reduction in W, will lead to a corresponding factor
C'/? runtime improvement.

We numerically count the non-Clifford resources for a
range of different ry, 7, and N values, as shown in Table II. We
consider an architecture that distills 7' gates as its non-Clifford
resource. We compare the gate counts obtained by our Trotter-
based approach to those obtained using the Trotter-based
approach of Ref. [14] (which used the fermionic commu-
tator bound on the Trotter error) and those obtained using
the qubitization-based method of Ref. [20]. We consider an
extensive error bound § = 1 mHartree per electron, consistent
with leading classical approaches [35,49,50]. It is too memory
intensive to calculate the fermionic commutator (FC) bounds
for 16 x 16 systems, showing the limitations of the prior art.

Comparing the gate counts obtained using our Trotter er-
ror bounds to those obtained using the existing fermionic
commutator bound, we observe a reduction in 7 count by
a factor of between 2.3 and 12.7 times. This improvement
is more pronounced at lower filling fractions, demonstrating
the anticipated benefit of using the fermionic seminorm. The
largest of these improvements stems from a reduction in Trot-
ter error by a factor of 150 for n = 10, N = 288, r, = 10.
In the high accuracy regime of 49 electrons in ~1000 spin
orbitals, we would expect our bounds to provide an order-
of-magnitude improvement over the prior art as this would
be similar to the improvements showcased by our n = 10,
N = 288 results.

Comparing our results to those of qubitization, we see that
qubitization consistently (for r; = 5, 10) achieves a lower T
count for the systems considered, by a factor of 2—11 times.
This comes at a cost of using 5-7 times more ancilla qubits.
We show in Appendix H that for 2D Jellium at large r;
values, the cost of qubitization is roughly independent of r;
(when N, n are fixed). In contrast, the cost of our Trotter-
based approach scales as 1/r;. These scalings are evident in
Table II. As such, the Trotter-based approach will be the more
suitable method for calculations probing the phase diagram
of 2D Jellium, which target r; > 20 [47]. In contrast, qubiti-
zation will likely perform better for the warm, dense phase
(ry < 1 [54,55]). Our Trotter-based approach also scales less
efficiently with target error than qubitization (8732 vs §71),
and so the advantage of qubitization will also decrease if the
target error in our calculations is loosened.

As a final caveat, this analysis assumes that we can prepare
the main register in the desired energy eigenstate. If we are
only able to prepare a state with overlap y < 1, then the circuit
depth required is increased by a factor of 1/y. For the sake of
comparison with prior art, we assume that y = 1, but note that
it is an open question whether an eigenstate with sufficient
overlap can be prepared [11,58,59]. It will be necessary to

repeat the phase estimation process a number of times, to as-
certain that phase estimation has found the desired eigenstate.
One can also consider other methods of phase estimation, such
as that of Ref. [60], which requires an increased number of
repetitions of the algorithm, but that has coherent circuit depth
independent of y.

VII. DISCUSSION

We have demonstrated a substantial benefit of our ap-
proach to calculating Trotter errors, both in terms of tightness
of the bound and the classical runtime and memory com-
plexity. We have primarily focused on second-order Trotter
in the plane wave dual basis, but our techniques naturally
generalize. For more compact basis sets, fewer orbitals are
required, but the Hamiltonian contains O(N*) terms instead of
O(N?). In such a compact basis set, the spectral and Cholesky
decompositions are still applicable [13], but it is unclear
whether an analog of the cosine decomposition could be used
to obtain an even tighter bound in the low-filling fraction
regime. Fourth-order Trotter may produce results competi-
tive with those here [23,61], if 5*W, < W}, and a similarly
low-overhead compilation of the Trotter circuit can be found.
While the methods introduced in this work apply straightfor-
wardly to higher-order Trotter, calculating the fourth-order
bounds would require time scaling as O(N’), making it a
potentially costly endeavour.

While this work has focused on the performance of Trot-
ter methods, so-called post-Trotter methods [20,62—-66] are
known to have superior asymptotic performance with respect
to target error. These methods have also leveraged Hamilto-
nian factorizations to reduce costs [16—18]. Trotter methods
often possess good constant prefactors in the runtime and
require few additional ancilla qubits, compared to post-Trotter
methods. As such, it has been proposed [14,24] that Trotter
methods could perform better at some tasks in the pre-
asymptotic regime. The gate counts presented in Sec. VIB
show that our Trotter approach can be competitive with post-
Trotter methods like qubitization, in some regimes of interest,
and will even use fewer gates than qubitization for large
enough Wigner-Seitz radius. It is currently unclear whether
second quantized post-Trotter methods can similarly exploit
low-filling fractions, which appears to strengthen the case for
Trotter methods in this regime. Working in first quantization,
one could certainly exploit low-filling fractions, but quantum
algorithms would need to be substantially modified to work in
this setting [67,68].
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APPENDIX A: SHC BOUNDS

We consider simulating the following class of interacting electrons:

H=H+H, =) Tyda+Y Vixunn. (A1)
J.k l,m

where a® and a; are the fermionic creation and annihilation operators, n; are the occupation-number operators, T and V
are coefficient matrices, and the summation is over N spin orbitals. We seek to bound the fermionic seminorm of the nested

commutators [H;, [H;, H,]] and [H,, [H,, H]].
We know from [Ref. [15], Eq. (60)] that

(H,, H,] = Z T Vi@ nimatic + Z T; Vi xdar + Z TixViaima

Jideom ik Jel
¥ ¥ T
- 2 T 4Vjm iy, — § T;Vjja;ax — § TiiVija;ma. (A2)
Jodeom Jk ol

Applying [Ref. [15], Eq. (77)], we get the following expansion:

[H;, [H;, Hy]] (A3)

) . Tt ) Tt
= T Vi 5kf i@y | Amag + > T Vik S jTyway Jak + ) TiaVik i, Ty way | may

Jiok,m J.k Jk Jik,1 J K

_ZT]kV/m ZSk’ T’k’a nmak_ZT]kV// 251(/ T’k/a/ ax — ZT/sz, Z&a kar may

J.k,m JLk Jik,l LK

J.k,l

- Z T; Vi, ma N ZTJ ko kap | — ZTj,ka,ka-j‘: ZTj/,k'Sj/,kak' ZTJle kd "y ZT, K kay
Jk J K

J.k,m

+ZT]ijmanm ZTJk’ ' kA +ZT]1<VHCI ZT]k5 ' kA +ZTszjanz ZT,/(/ ' kA

J.k,m Jk JLk Jok,l Jk

R
+E Tj,ka,ma; E i kO, ma Ay ak+§ TV, ka E i kO, za ap | ax— E kV;ma E Ty w8 majar | ax

J.k,m Jk Jok,l Jk J.k,m LK

_ZTj,le,jaj' ZTJ KOk, 161 Qg ak—ZTJkama ZTJ k’jma ap |ax — ZT,szka ZTJ Nz za ap | ag

J.k,l Jk J.k,m Jk Jik,l
i T i T
+ Z TjiVima; Z Ty wdjmajar |ax + Z T;iVi,ja; Z Ty dj.1apar | a, (A4)
Jok.m ik Jok,1 ik

which implies through [Ref. [15], Proposition 10]
WH, . [Hy Hly < IT 1IP0IV lnax? + 1T 1200V e + 0T 1220V lnax? =+ BT P20V s + DT 101V a4+ DT 1701V e
FNT 120V a2 UT 1200V a1 T 120UV a2 1T P00V st + DT P20V e + DT P00V e
+ AT 11V nax + AT IV N+ AT UV e+ AT NIV a4 AT 10TV i
+ AT I IV max + AT TNV imax + AT IV i
AT PNV Hnax” + T 1PNV a2 (A5)
Similarly, we have from [Ref. [15], Eq. (78)]
[H,, [H,, H,]]

= ZT]ka ma; <ZVZ/ ' Om jnl,>nmak+ZT]ka Qs (ZVI/ o O ]nl>ak

U.m

(A6)

J.k,m
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+ Z T le ka; (Z Vl/ ’8 jnl’)nlak Z Tj,kvj,maj‘ (Z Vl’,m’(sm/,jnl’>nmak

Jk,1 J.k,m U'm
E kV/ /a ( E VZ/ Z) m', ]nl/)ak E le ja < E Vl’,nﬂ&nﬂj”l’)”lak
J.k,1 U',m

+ Z Tj,ka,maj' (Z ‘/I’,m’al’,jnm’>nmak + Z Tj,ka,ka} (Z Vl’,m/(Sl/,jnm’>ak
Um J.k Um

Jik.m

+ Z Tj,le.kaj (Z Vl',m'51',jnm/>n1ak Z T kVima' <Z Vi Sur, i )nmdk

J.k,l U.m J.k,m

- ZT/ij ja (Z Vl’ m’8[’ L )ak Z Tjkvl /a <Z V[’ ’51’ i )nlak

U'\m Jok,l
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J.k,m

+ Z T;iVira; (Z e 31/,,‘)”1611( - Z T;‘,ij,ma; <Z Vit S 01, ')nmak
Jikl Jk.m Um'
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J-k Um’ jokl U'm’
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J.k,m
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which implies

LAy, [Hy, HL, < 240 T IV 700’ + 12T 1V (A8)

max 77
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APPENDIX B: SPECTRAL DECOMPOSITIONS

Here we review how a general electronic structure Hamil-
tonian can be factorized using spectral decompositions, with
slight modifications allowing Cholesky decompositions to be
used. If the Hamiltonian is given in the form

H = E h,,q,sa al 4 rds,
pqrs

(B1)

then we first use the fermionic anticommutation rules to
rewrite it in “chemist notation” as follows:

H = Zh,,qrqa alaa, (B2)
pqrs
== hpgrstty (8.5 — aal)ay. (B3)
pars
We split H into H = H' — Hy, where
H = Zh,,q”a asal g0r = Zh‘mqa aqa ag
pars pqrs
= Z qursa;aqajas, (B4)
pars
Hy = thqrsa;arsq,.w (BS)

pars

where in H' we have changed variables so thats — g — r —
s and introduced Vg5 := h,rsq. Since Hy is free fermionic, we
aim to find a factorization of H'. We define a matrix V() sr) =
Vpqrs With composite indices (pg) and (s7) so that

Pl
Z Vipg).(sr)@yaqa, as.
(pq),(sr)

(B6)

Hermiticity of H' entails we can always choose V() (sr) t0
pe Herr.n{t{an so that 'V.(pq),(s,) = Vi, (- Indeed, if Vipg) sy
is not initially Hermitian, we can always map V,q) ) —
(1/2)Vipg).(sr) + Vi5).(pgy) and confirm that this transforma-
tion results in the same Hermitian H’. Therefore, we can

diagonalize the matrix with elements V(,) (sr) S0 that

*
Vigrs = Vipg),sr) = E Upg.ehellg g,
¢

(B7)

where A, are real eigenvalues and ; ; are matrix elements of
a unitary U. Substituting this into the expressions for H' we
get

H = Z Ae (Z Upg 0@ aq) (Z ufr’laias> ) (BY)

Sr

We define Lo:=3_ u,,q,ga;a,, which is the first brack-
eted factor above. Notice that by changing dummy variables
in the summation p — s and ¢ — r we also have L, =
>, Useala,. Taking the Hermitian conjugate, we have £, =
or Uy, (4. as, which corresponds to the second bracketed fac-

tor in Eq. (B8). Therefore,

L
H = Z AeLoL], (B9)
=1

where L, is free-fermionic with coefficient matrix X, with
matrix elements [X;], , = Upq,¢. Therefore, £, = H(X,) and

,CZ =H (XZ). Therefore,

L
H=~Hy+ ) rhHXOHX)).
=1
Computing the fermionic seminorm is significantly easier for
H(A) with Hermitian A. In general, the individual factors
H(X,) and H (XZ) might not be Hermitian, even though the
full Eq. (B10) is Hermitian. There are two possible solutions
to enforce Hermiticity of the factors.
Following Sec I'V. A of [10], we can always decompose X,
in terms of a Hermitian and skew-Hermitian part X, = A, +
iB, so that A, and B, are Hermitian. Then for each £ term we
have

H(X)H(X,) = [H(A¢) + iH(B)IH (A¢) — iH(By)]
(B11)

= H(A,)* — i[H(A), H(By)] + H(B, )
= H(A;)* — H(i[A¢, B]]) + H(By)*. (B12)

(B10)

The term —H (i[A¢, B,]) is free-fermionic and Hermitian and
so can be added to the free-fermionic part Hy. The full expres-
sion for H therefore will have 2L terms of the form H (A;)? or
H(B,).

The above approach is fully general, but results in a dou-
bling of the number of terms in the summation. In some cases,
we can directly ensure Hermiticity of H(X,) without any
increase in the number of terms. Here we expand on the dis-
cussion given in [13,16] but warn the reader that [13] contains
notational errors. When the basis set used for the fermionic
orbitals is real valued (such as for Gaussian basis sets or the
plane wave dual basis), then the Hamiltonian constants V.,
are real-valued and have an eightfold symmetry [13] so that

qum = Vsrqp = qusr = qurs = qusr = erqp = Vrqu = erpq~
(B13)
Recall that in the original decomposition for V,4s we had
Eq. (B7). Since the V) ;») matrix is real and Hermitian, it
is therefore diagonalizable by an orthogonal transformation.

Since matrix elements of orthogonal transforms are real, we
have u} , = u,s, and so

qurs = E )\/Zupq,fusr,/é-
4

Next, we will show that we can always map X; — (X¢ +
Xg)/2 and verify that the decomposition gives the same to-
tal Hamiltonian. The transformation X, — (X; + X, 2) /2 maps
Upg,e = (pge + 15, )/2 = (Upge + Ugpe)/2 and sO

qurs g (1/4) Z )\E(upq,i + qu.(f)(usr.f + urs,K) (BIS)
12

(B14)

= (1/4)(qurs + qurx + qusr + qusr)-

Using the eightfold symmetry of Eq. (B13), we have that the
Hamiltonian is unchanged under this transform. Note that this
approach is essentially a proof that for real-valued orbitals, the
skew-Hermitian components can be made to vanish.

For a Hamiltonian spectrally decomposed as described
above as

(B16)

L
H=H®{)+ ) MHX)HX,),
=1

B17)
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we consider a Trotter decomposition where each term in the
product formula implements evolution under one of the terms
H (h) or AH (X;)H (X;). The first-order commutator bound on
the Trotter error is given by [defining Hi—g := H (fz), Hi. o :=
AiH (X)H (X))]

Z Z[H,,H]

Jj>i

_ ZAJ[H(E),H(XJ')H(XJ‘)]

j=1 n

x2

> ik jIHXDH (X)), HX)H (X))

j>l

n
(B18)

The first term can be expanded using [A, BC] = [A, B]C +

B[A, C]:

A LH (h), H(X)H (X;)]
= Mj([H (R), H(X))IH (X;) + H (X;)[H (h), H(X;)])
= A;(H([h, X;DH (X)) + HX)H([h, X;1).  (B19)
Applying the triangle inequality and Holder inequality, the

bound on the fermionic seminorm of the first term is given
by

L
Z,\j[H(ﬁ),H(Xj)H(Xj)]
j=l1

<2 Il X11,1X 1,
j

n

(B20)

J

The second term can be expanded using [AB,CD] =

A[B,C]D + CA[B, D] + [A, C]BD + C[A, D]B:

AidIH (X)H(X;), H(X;)H (X;)]
= MM (HX)H (X, X;DH (X))

+ H(X;))H (X)H ([X;, X;1)

+ H([X;, X;DH (X;)H (X;)
+ H(X)H ([X;, X;DH (X;)). (B21)

Applying the triangle inequality and Holder inequality, the
bound on the fermionic seminorm of the second term is given
by

L

2

> kidj[H(X)H (X0, H(X)H (X;)]

i=1 || j>i .
L
<4 INIAIIXG X1y 1y X, (B22)
i=1,j>i
Thus
L
<Y (11T, X;1141X;1,)
j=1
+2 Z Ul 12 10X, X1 1Xly 1 X51). (B23)

i=1,j>i
This proves Eq. (21).

Last, we discuss how the above decompositions are re-
lated to the spectral decomposition used in Sec. IV B. For
the relevant special case of the plane wave dual basis (which
is a basis of real orbitals) we have V() (sr) = Vps8p,¢9s,r- In
other words, V), is simply the nonzero subblock of V) (sr)-
As such, it is equivalent to diagonalize the smaller matrix
Vs-

APPENDIX C: SECOND-ORDER TROTTER ERROR BOUNDS

We consider the second-order commutator bounds for a plane wave dual basis Hamiltonian decomposed as H = H; + H,,

with H,

[H;, H,]
i

The first second-order commutator [[H,, H,], H,] is given by

=H(T),and H, = H{U) + >_, H(X;)H (Y;). As shown in the main text, the first-order commutator is given by

=H(T.U])+ ZH([T, XIDHY,) +HXDH((T, Y ]). (ChH

[(H;, H,], H ] = [H([T, Uh+ ZH([T, XIDH(Y)) + HXDH(T, Y1), H(T)}

l

=H([T,U],TD + Z ([H(T, X, DH X)), H(T)] + [HX)H ([T, Y;1), H(T)])

l

=H([T,U],TD+ Z(H([T, X\DH(Y,, TD + H(T, X;]1, THH (Y)

l

+HXDH([T, 11, TD + H(X;, THH(T, Y;1)). (C2)

The fermionic seminorm of this expression is bounded by

||[[Ht5 HU]’ HI‘]||7]
[

<7 UL T, + Z(2|[T, X\, Tlly + 1T, Xa1, Ty Yaly + 1 Xl [T, Y1, T ). (C3)
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The other second-order commutator [[H;, H,], H,] is given by

[[H,. H.). H] = [H([T, U+ Y HAT, XDHM) + HXDH(T, YD), HU) + ZH(Xm)H(Ym)}

! m
=H([T,UL,UD+t1+t+1t+1t;4+ 15, (C4)
where

n= Y [H(T, X\DHY)), HU)], (C5)

1
=Y [HX)H(T,Y]), HU)], (C6)

l
ty =Y [H(T, U1), HX,)H )], (C7)
ts =Y [H(T, X\DHY)), HX)H (Y], (C8)

I,m

ts = Y [HXDH(T, Y1), H(X,)H (Y,,)]. (C9)

I,m

We evaluate these terms separately:

n= ZH([T, XIDH([Y;, U] + H(([T, X;], UDH (Y}), (C10)
l

5} =ZH(X1)H([[T, Y1, UD+H(X;, UDH([T, Y1]), (C11)
l

3= ZH([[T, U1, XuDH(Yyn) + HX,)H ([T, U], YD), (C12)

Iy = ZH([T, XiDH (LY, XuDH (Y,) + H(((T, X1, X DH (Y)H (Y,,)

I,m

+ HX)HT, X, DH([Y;, Yin)) + HX)H T, X1, Y JH (Y)), (C13)

t5 = ZH(Xz)H([[T, Y1, XuDH(Y,) + H([Xi, Xu DH((T, Y,DH (Y1)

I,m

+HX,)HX)HIT, Y11, YD) + HX)H (X, Y. DHT, Y;]). (C14)
Note that the fourth term of 74 can be combined with the first term of #5 as follows:

ZH(Xm)H([[T, X1, YulH (Y)) + HXDH (T, Y1, X DH (Y,)

I,m

= Z HXH T, X1, YulH(Y)) + H X)) H ([T, Y], XiDH (Y;)

l,m

= ZH(X,n){H([[T, X1, Yol + [T, Yl XiDYH (V). (C15)

I,m

We can then bound the fermionic seminorm of the commutator [ignoring Eq. (C15)] by
IILH,, Hy ), Hollly < IIT, UL Ully + Z(I[T, XlylY, Ully + IUT, X1, Ul Yty + (X o IUT, Y1, Ully + 11X, UL T, Yl
1

+ T, UL, XAy Yily + [T, UL, Yl 1Xaly) + Z(I[T, Xln Y2, Xandln Yol + LT, Xi 1, X1l 1Yl 1 Yon

I,m
+ |Xm|n|[T7 Xl]|n|[Ylv Ym]|n + |Xm|n|[[Ta Xl]v Ym]|n|Yl|r] + |Xl|n|[[Ta Yl]a Xm]|r;|Ym|r]
+ 1X0, X1 1n 1T, Yillg Yol + X[y | Xa 1 IUT, Yo, Yol 4 1Ko |9 [[X0s Yol 5|, Yo 1) (Cle)
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And using the simplification of Eq. (C15) we get

IIl[H:, Hy1, Hullly < LT, UL U, + Z(I[T, Xy IYe, Ully + [T, X1, ULy Y|y + 1 Xaly|LLT, Y21, ULy + |[X5, U1, T, Vi1,
[

+IIT, UL, X1yl + T, U], Yillp1Xily) + Z(I[T, XMy, Xon1ln 1Yol + [T, Xi 1, Xondln Y2y 1Yol

I,m

+ |Xm|n|[T7 Xl]|n|[Ylv Ym]|n + |[XZ» Xm]|n|[T7 Yl]|n|Ym|n + |Xm|n|Xl|n|[[T’ YZ]’ Ym]|r]

+ X | (X, Yl g 1T, Yaly + 1X o {IUT, Y11, Xond + LT, Xins Yidln}HYonln)-

APPENDIX D: SECOND-ORDER COMMUTATOR BOUNDS
FOR PLANE WAVE DUAL DECOMPOSITIONS

In this Appendix, we apply the formulas for the second-
order commutator bound for a general decomposition to the
decompositions introduced in the main text.

Comparing the spectral decomposition in the main
text to Eq. (C3) and Eq. (C16), we observe that X; :=
)u,'l),‘, Y, =V; and note that [X,',Xj] = [Y,, Yj] = [X,', Yj] =
0Vi,j. The second-order commutator bounds are then
given by

IL[H;, Hy1, H]lly

<UT, UL Ty +2 ) Il (T, vil, Ty il

+ T, vill;). (D1)
\I[[H,.. H,]. H,]]l,
<UT, UL ULy +2 ) 1Ml (IT, illy i, U]

n

+ |[[T7 Ui]7 U]|n|vi|r] + |[[Tﬂ U]’ U[]|H|Ui|ﬂ)
+4) AT, vil, vl vy lvsl). (D2)

ij

Comparing the Cholesky decomposition in the main text to
Eq. (C3) and Eq. (C16), we observe that X; := L;, Y; := L; and
note that [X;, X;] = [¥;, Y;] = [X;, Y;] = 0V, j. The second-
order commutator bounds are then given by

\I[[H;, H,], H]1ll,
<UT, UL, Ty +2 ) (T, L, Ty Lil, + 1T, LiL).

(D3)
\LH, , Hy 1, HIl
< T, UL, Ully +2 ) (T, Lilly|[Li, Ul
+ [T, L], Uly|Lil, + |[TT. U, Lilly|Lil,)
+4) AT, Lil, LA Ly L), (D4)

iJ

Comparing the cosine decomposition in the main text to
Eq. (C3) and Eq. (C16), we observe that H(X,)H(Y,) :=
H(A,)H(A,) such that A, € {C,, S,}. Because these are di-
agonal matrices, all of the commutators between different X

(C17)

(

matrices, different Y matrices, and between X and Y matrices
vanish. The resulting commutator bounds are given by

\\[LH;. H,), H1l1,
<7 ULTI,+2) ) > (T AL T1,lAl,

v#£0 A€(C,S)
+ [T A1), (D5)
\I[[H;.. H,]. H,]]l,

ST, ULUN, +2) " Y (T AU, Al

V#£0 A€(C.S}
+ T, AL, UllylAvl, + T, U], AllylAuly)

+4>° Y > (IT.ALBI|,lALIB,). (D6)

v,E5#£0 A€(C,.5,) BE{Ce, S¢}

APPENDIX E: BOUND COMPUTATION DETAILS

In this section we outline how the commutator bounds
discussed in the main text were calculated. For the case of
the first-order Fermionic commutator bounds, we must evalu-
ate Zi’j quq[T,-jajfaj, Vpghphg]. Commutators where p, g are
both distinct from i, j trivially commute, leading to O(N?)
distinct commutators to store. As a result, the time cost for
the algorithm is O(N*) and the memory cost is O(N?). For
the second-order bounds, there are O(N*) terms to store, and
the algorithm has time cost O(N®). We store the resulting
commutators, collect like terms, and then apply the triangle
inequality to the sum.

Pauli commutators can be evaluated in a similar manner.
After evaluating the fermionic commutators to calculate the
error operator, we apply the Jordan-Wigner transform to ob-
tain the error operator written as a sum of tensor products
of Pauli operators. Local fermionic operators are mapped
to O(N)-local Jordan-Wigner operators, which increases the
memory required by a factor of O(N).

The cosine, Cholesky, and spectral bounds can be cal-
culated by storing in memory the O(N) diagonal N x N
coefficient matrices, leading to a memory cost of O(N?)
if only storing the diagonal elements. The calculation of
[I[[H;, H,], H,]l|,, requires O(N?) loop passes, where the
dominant costs in each pass are multiplication and diago-
nalization of the coefficient matrices. These operations have
a cost of approximately O(N?). As a result, the time cost
of the algorithm is approximately O(N>). In Table I we
compare the analytic and empirical runtimes for the Trotter
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TABLE III. A comparison between the analytic and empirical
runtime scalings of the methods used in this work to calculate
second-order Trotter bounds. Empirical scalings were determined
from numerical simulations performed on a system with 49 elec-
trons in 98-512 spin orbitals (98-200 spin orbitals for the fermionic
bound). The time taken, 7', was fitted to the function 7T = kN¢ to
determine the empirical runtime scalings. We attribute the impressive
empirical performance of the fermionic commutator bound scaling
to a highly optimized implementation present in OpenFermion [57].
However, we note that this approach is still limited by the large
memory requirement of the fermionic commutator bound.

Analytic Empirical

runtime runtime
Approach O(N*) O(N%)
Fermionic commutator [ 14] 6 3.61
SHC bound [15] 3 2.95
Spectral decomp. (This work) 5 3.76
Cholesky decomp. (This work) 5 3.79
Cosine decomp. (This work) 5 3.35

error bounds when applied to the Jellium systems considered
in this work.

APPENDIX F: PROJECTED PAULI BOUNDS

The high memory requirements of the Pauli commutator
bound make it impractical to calculate WF®!li for N > 128.
However, it is evident from Fig. 2 that the Pauli bounds
appear to be only a constant factor better than the fermionic
commutator bounds. As a result, we can estimate the Pauli
commutator bounds for larger N values, using the avail-
able fermionic commutator data points. We wish to predict
Wl gt N = 162, 200, 242, 288, which for 49 electrons, cor-
responds to a filling fraction of 0.302, 0.245,0.202, 0.170,
respectively. In Fig. 3 we plot the ratio between the second-
order fermionic commutator bound W)™, and Wl for
a range of N values, varying the number of electrons such
that the filling fraction is kept approximately constant. We
observe that as the number of orbitals used increases, the
ratio gradually increases. The ratio decreases as the fill-
ing fraction decreases. As a result, we assume that at
N =162, 200,242, 288, the Pauli bound outperforms the
fermionic bound by roughly a factor of 8.

APPENDIX G: PHASE ESTIMATION RESOURCE COSTS

We first discuss the resources used to implement a single
Trotter step of time evolution. When the number of Trotter
steps is large, the difference in gate count per Trotter step
between implementing e/ ¢ eist and i3t eitHoizHr g
negligible. The final term of each Trotter step can be merged
with the first term of the next, so that each Trotter step
contains one implementation of ¢ and one of ¢fv. The
difference in total gate count between these two approaches
is thus determined by the difference in Trotter error of the
orderings.

For the uniform electron gas, H, = ), V411, contains
N(N — 1)/2 terms, and so can be implemented by an equiv-

7.9
7.8
QN
=
-~ 7.7
we
=
7.6
—e— Filling fraction ~0.302
—— Filling fraction ~ 0.245
7.5 1 —e— Filling fraction ~0.202
—— Filling fraction ~0.170

20 30 40 50 60 70 80 90 100
Number of spin orbitals

FIG. 3. The ratio between the second-order fermionic commuta-
tor bound Wy and the second-order Pauli commutator bound Wy, as
a function of the number of spin orbitals used, for a homogeneous
electron gas system with r; = 5. The number of electrons in each
calculation is varied, in order to match the specified filling fraction
as closely as possible.

alent number of arbitrary angle Z rotations. However, the
translational invariance of Jellium leads many of these rota-
tions to be of the same angle. As discussed in Ref. [14], these
rotations can be implemented via HWP in groups of size N/2.
In practice, we counted the multiplicity of the terms in V,,,
and used HWP to reduce the number of arbitrary rotations re-
quired. This contributes an O(N? log(e ")) gate complexity to
each Trotter step. Low and Wiebe [69] proposed an alternative
approach that would need only O(N log(N)log(e~")) gates,
but with a significant constant factor overhead that makes it
more expensive in the regime considered here.

Changing from the plane wave dual to the plane wave
basis can be accomplished using either the fermionic fast
Fourier transform (FFFT, when the lattice sides are a power of
two) [14,22,70,71], or using Givens rotation circuits [72,73].
These approaches have similar costs for Jellium [14]. The
FFFT has a recursive structure, and requires %logz(L) non-
Clifford gates when applied to L qubits. The FFFT must be
applied multiple times when changing the basis of a grid
in multiple dimensions. For a L, x L, spinful lattice, we re-
quire 2L, applications of the FFFT on L, qubits, and 2L,
applications of the FFFT on L, qubits (for a d-dimensional
spinful lattice of side L, we require 2dL¢~" applications of
the FFFT) [14]. Ref. [14] determined that implementing the
FFFT requires 26 T gates for eight qubits, and 81 T gates
for 16 qubits. Givens rotations can be used to perform a
single-particle orbital basis change, regardless of whether the
number of orbitals considered is a power of 2. We follow
the approach outlined in Ref. [14]. A single Givens rotation
requires two non-Clifford gates, in the form of two arbitrary
rotations (by the same angle). A basis change on M qubits
requires (/) Givens rotations. As with the FFFT, we perform
the Givens rotations a number of times to change basis in
multiple dimensions. For an L, x L, spinful lattice, we require
2L, implementations of the basis change on L, qubits, and
2L, implementations of the basis change on L, qubits. For

012403-17



SAM MCARDLE, EARL CAMPBELL, AND YUAN SU

PHYSICAL REVIEW A 105, 012403 (2022)

TABLE IV. Resource estimates for phase estimation of Jellium. We consider an energy error budget of 6 = 1 mHa per electron. The “Error
constant” is obtained using the most performant of the bounds introduced in this work, for each system (this is either the Cholesky or cosine
decomposition for all data points shown). We use 16 additional qubits (14 for Hamming weight phasing, one for phase estimation, and one for
gate synthesis). Four 7' gates can be used to implement a Toffoli gate, so the total aggregated 7' count for the algorithm is Ny + 4N,o.

Filling Error Aggregated

fraction Size constant Toffoli gates T gates T count
Iy n n/2LxLy Ly x Ly W, Noot Nr Nr + 4Nyot
5 49 0.10 16 x 16 2.89 x 10* 9.7 x 10° 1.8 x 10! 2.2 x 101
5 49 0.17 12x 12 5.18 x 10° 1.5x 10° 2.6 x 1010 3.2 x 100
5 49 0.19 16 x 8 3.44 x 10° 8.4 x 108 1.4 x 10%° 1.7 x 10%°
5 49 0.38 8§x8 356 6.8 x 107 1.1 x10° 1.3x10°
10 10 0.02 16 x 16 604 1.6 x 10'° 2.8 x 10! 3.4 x 10!
10 10 0.03 12x 12 290 3.9x 10° 7.0 x 1010 8.6 x 1010
10 10 0.04 16 x 8 262 2.5 x 10° 4.4 %100 5.4 x 10"
10 10 0.08 8x8 103 3.9 x 108 6.6 x 10° 8.1x10°
10 49 0.10 16 x 16 7.20 x 10° 4.8 x 10° 8.6 x 10'° 1.1 x 10"
10 49 0.17 12x 12 1.29 x 10° 7.6 x 103 1.3 x 10" 1.6 x 10%°
10 49 0.19 16 x 8 857 4.2 x 108 6.9 x 10° 8.6 x 10°
10 49 0.38 8§x8 89 3.4 x 107 5.1 x 108 6.5 x 108

the former case (with corresponding changes for the latter),

we require 2L, X 2 X (L") arbitrary rotations. These can be

2
parallelized into () groups of size 4L,. The T/Toffoli cost of
implementing these arbitrary rotations can be reduced using
Hamming weight phasing.

Rotating into the plane wave basis diagonalizes the ki-
netic operator, enabling us to implement it with N arbitrary
rotations in the worst case. As it is efficient to classically
diagonalize the kinetic coefficient matrix 7),,, we can deter-
mine the multiplicity of each eigenvalue, and then use HWP
to reduce the number of arbitrary rotations required. Overall,
implementing this contributes a cost O(N log(N)log(e "))
per Trotter step.

To perform phase estimation we must implement not just
a circuit approximating ¢’’, but a circuit that approximates
e controlled on the state of an ancillary register. We can
implement a controlled arbitrary rotation at double the cost
of the un-controlled operation [74]. However, Ref. [72] intro-
duced an approach known as directionally controlled phase
estimation, that reduces the cost of controlled time evolution
to be the same as the uncontrolled circuit, when implemented
with symmetric product formulas (this approach was elabo-
rated upon further in Refs. [12,14]). The key insight is that
one instance of U,(t) can be used to implement [|0), (0], ®
Uy(—t)+ 1), (1|, ® Ux(¢)], which for the purposes of
phase estimation is equivalent to performing [|0), (0|, ® I +
[1), (1], ® U(2¢t)]. In addition to halving the number of arbi-
trary rotations required, this optimization effectively doubles
the time duration used for phase estimation. We use an adap-
tive variant of phase estimation that uses a single ancilla
qubit [75]. As discussed in Ref. [14], this approach uses Npg
applications of directionally controlled phase estimation to
learn the energy eigenvalue to a root mean squared error of

N 0.767

Apg ~ .
Npgt

(GL)

We note that this formula includes the reduction from r — 2¢
due to the use of directionally controlled phase estimation.

The Trotter error contributes an error Ays = Wt where W
is the commutator bound constant. A third source of error
of error are synthesis errors Ay, = O(log(Ng/€)) where Ng
is the number of arbitrary Z axis rotations in the algorithm.
We distribute errors between these three sources using the
approach outlined in Appendix F of Ref. [24]. In Table IV we
present the Trotter error bounds and resulting gate counts for
Jellium, for the Trotter based approach to phase estimation
discussed above.

APPENDIX H: COMPARISON TO QUBITIZATION

The approaches presented in this work for performing
Trotter-based phase estimation of systems in a plane wave
dual basis can be compared to the approach introduced in
Ref. [20], which considered a qubitization-based approach to
phase estimation. This approach divides the Hamiltonian into
a linear combination of unitary operators H = ) h,H, (with
H, unitary, e.g., Pauli strings), and uses circuits to “block
encode” H in a subspace of a Hilbert space enlarged by
additional ancilla qubits [76]. By repeating the block encoding
procedure, one can perform a quantum walk, the eigenvalues
of which are related to the eigenvalues of the Hamiltonian,
without approximation errors [77,78]. One can then perform
phase estimation directly on this walk operation [77,78]. The
T cost of this qubitization approach for Jellium is given by
Eq. (54) in Ref. [20] as

2427 AN
\/;—71’ (H1)

where for a Hamiltonian written as H = Zu h,H, (with
[|Hall = 1), A =), |h4l, N is the number of spin orbitals,
and 4 is the target energy error. The number of logical ancilla
qubits required is given by Eq. (55) of Ref. [20]:
427 \3N?

log, (—) .

5 (H2)

012403-18



EXPLOITING FERMION NUMBER IN FACTORIZED ...

PHYSICAL REVIEW A 105, 012403 (2022)

It is interesting to consider how the gate count scales as a
function of r;. We have that for Jellium, A = A, + A,. For
a dim-d system, we can see directly from the Hamiltonian
coefficients in Eq. (23) (using that Q « nrf) that

1
A,V?ﬁﬁ, (H3)
Ay ~ iy (H4)

In these expressions we have implicitly assumed that NV is held
constant. As a result, in 2D A scales as O(n~'r;2) + O(1).
This can be contrasted with our second-order Trotter ap-
proach. We have that
Wa ~||[[Hy, Hol, HAll + [I[[H;, Hy 1, Hu]ll
< APhy 4+ A2

~ O(U—(Z/d+1)rs—(2+d)) + O(n(Z/d—2)rS2—2d)‘ (H5)
For d =2, W, = O(n™2r;*) + O(n~'r?). We note that this
bound on the Trotter error may be very loose (in terms of
the scaling with the number of electrons), as it does not use
commutativity of terms in the Hamiltonian or the fermionic
seminorm [cf. Eq. (13)].

If we fix n,N and vary r,, we see that for d =
2 and large ry;, the cost of qubitization is indepen-
dent of r;, while our Trotter-based approach scales
as O(r;'). Thus, the cost of Trotter-based approaches
in two dimensions reduce as the value of r; is in-
creased, while the cost of qubitization is roughly inde-
pendent of r,. This is evident in the results presented in
Table II.
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