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Abstract—This paper addresses the design of accelerators
using systolic architectures to train convolutional neural networks
using a novel gradient interleaving approach. Training the neural
network involves computation and backpropagation of gradients
of error with respect to the activation functions and weights.
It is shown that the gradient with respect to the activation
function can be computed using a weight-stationary systolic
array, while the gradient with respect to the weights can be
computed using an output-stationary systolic array. The novelty
of the proposed approach lies in interleaving the computations
of these two gradients on the same configurable systolic array.
This results in the reuse of the variables from one computation
to the other and eliminates unnecessary memory accesses and
energy consumption associated with these memory accesses. The
proposed approach leads to 1.4 — 2.2x savings in terms of the
number of cycles and 1.9x savings in terms of memory accesses
in the fully-connected layer. Furthermore, the proposed method
uses up to 25% fewer cycles and memory accesses, and 16%
less energy than baseline implementations for state-of-the-art
CNNs. Under iso-area comparisons, for Inception-v4, compared
to weight-stationary (WS), Intergrad achieves 12% savings in
energy, 17% savings in memory, and 4% savings in cycles.
Savings for Densenet-264 are 18%, 26%, and 27% with respect
to energy, memory, and cycles, respectively. Thus, the proposed
novel accelerator architecture reduces the latency and energy
consumption for training deep neural networks.

Index Terms—Neural Network Training, Backpropagation,
Convolutional Neural Networks, Accelerator Architectures, Gra-
dient interleaving, Interleaved Scheduling, Systolic Array.

I. INTRODUCTION

EEP neural networks (DNNs) are brain-inspired models

which have progressed significantly from their early days
to make inroads into our daily lives [1]. DNNs [2]-[5] are
used in applications such as recommender systems, automated
photo recognition, and automatic text generation and have led
to a massive surge in data center workloads. These networks
operate in two distinct phases: the training phase, where the
network learns underlying statistical relationships between
inputs and outputs, and the inference phase, where the network
predicts an output on a previously unseen input.

Thus, acceleration for on-device inference has been ex-
tensively investigated with numerous architectures and vari-
ants [6]-[8]. However, as DNN sizes have been continuously
increasing [9], the one-time training cost is no longer insignifi-
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Fig. 1. Training loops for a 4-layer neural network [10].

cant. For example, even smaller networks such as Alexnet [2]
can consume up to 54kJ for training a single epoch [10].
Moreover, the enormous energy consumption is exacerbated
with larger state-of-the-art DNNs and has significant envi-
ronmental impacts [11]. Although few accelerators support
training [12], [13], most are neither dedicated nor optimized
for training. This paper attempts to bridge this gap in the
literature by exploring design and optimization techniques that
can address some of the unique challenges of designing a
training accelerator.

The bottleneck in terms of energy consumption during train-
ing is the backpropagation algorithm. The algorithm computes
the gradients of the loss function at each layer with respect to
the current layer’s weights and the previous layer’s activation
outputs. A key aspect of optimizing the backpropagation
algorithm is understanding the dataflow between these opera-
tions. Relative tradeoffs between different dataflow have been
studied in detail [14], with a general trend towards flexible
architectures. Flexible architectures have shown promise at
taking advantage of the relative strengths of the different flows
at different stages or layers of the network [7], [15]. However,
the granularity at which they can operate limits their flexibility.
As the backpropagation step in a layer consists of multiple
operations, changing the dataflow within the same operation
can open new avenues for variable reuse.

In this paper, we propose a configurable systolic array that
uses interleaving [16], [17] to combine gradient computations
that share common variables in both the fully-connected (FC)
and convolutional layers of the neural network. The proposed
approach, which exploits reuse of common variables, has four
distinct advantages: (i) it eliminates the need for multiple
memory reads, which optimizes both throughput and energy,
(ii) it allows fine-grained dataflow control in the array on
a per-cycle and per-processing element (PE) basis, (iii) it
avoids external image to column (im2col) operations in the
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Fig. 2. Saving wasted memory accesses (red) by the proposed method of
using an interleaved gradient computation and weight update (green).

convolutional layer during backpropagation, and (iv) it does
not change any computed values, ensuring the accuracy of the
neural network is unaffected.

This paper is an expanded version of [10] that proposed
gradient interleaving within the FC layer. However, [10] was
not directly applicable to the convolutional layers. Unlike
the fully connected layers, the weights for the convolution
layers correspond to tensors. These tensors are flattened and
mapped to systolic arrays. The sizes of the systolic arrays for
computing the gradients with respect to the weights and the
activation functions are not the same. Furthermore, the input
patterns to these arrays are also different. Interleaving these
two computations in the same systolic array is impossible. The
novelty of the paper lies in reformulating the computation of
the gradients with respect to the weights in a different flattened
form so that this can be mapped to a systolic array of the same
size as the computation of the gradient with respect to the
activation function. This reformulation is the key to achieving
gradient interleaving for the convolutional neural network.

In addition to developing a novel architecture for interleav-
ing the gradients for the convolutional layers, the following
are the key contributions of this extension work:

1) We propose a new configurable systolic array with a
modified general matrix multiplication (GEMM) algo-
rithm to map the interleaved scheduler in the convolu-
tional layer to hardware.

2) The proposed gradient interleaving approach is demon-
strated for training common deep neural networks such
as EfficientNet, VGG, ResNet, DenseNet, and Inception.

3) We show how interleaving in the convolutional layer
eliminates the need for expensive im2col operations and
provides greater processor utilization by exploiting null
operations during striding.

The remainder of the paper is organized as follows. Sec-
tion Il focuses on the backpropagation equations and how
gradient interleaving can be applied to the FC layers. Sec-
tion III describes how to apply interleaved gradients to the
convolutional layers. Section IV describes the changes to
the hardware design of systolic arrays to support interleaved
scheduling. Section V evaluates the proposed methodology.
Section VI describes the related work in the field. Finally, in
Section VII, we summarize the paper’s main conclusions.

II. BACKPROPAGATION AND GRADIENT INTERLEAVING
FOR FC LAYERS

The backpropagation algorithm, gradient descent, and
derivatives are the foundations for training the most commonly
available DNNs. However, these consume significantly more
energy compared to inference. Therefore to optimize training,
we examine the formulation of the backpropagation algorithm.

A. Backpropagation

Fig. 1 illustrates the dataflow graph on a four-layer fully-
connected neural network. The lower half of the dataflow
graph shows the forward pass computations, while the up-
per half shows the backward pass computations. As shown
in Fig. 1, multiple nested feedback loops exist in the network.
These feedback loops are the reason system-level techniques
such as pipelining do not work, as delays cannot be introduced
in a feedback loop system without affecting the output. The
iteration period in recursive computing systems has a funda-
mental lower bound, referred to as the iteration bound [18].

Consider the computations in a single loop of Fig. 1. In the
forward pass, the output of the linear function (z(") is obtained
from a matrix-matrix multiplication between the activation
output of the previous layer (a(/~1)) and the weights w )
of the current layer (/). This is described by Eq. (1). Then,
a nonlinear activation function f(.) such as ReLU, sigmoid,
or tanh is applied to compute the post-activation output of
the layer (a(V)) as described by Eq. (2). These steps represent
a single layer, and modern networks are created by stacking
multiple layers. The final layer calculates the final value for
regression or the confidence probabilities for classification.

20 — wgql-1) (1)
a) = f(z") )

The second part of the training loop is the backward pass,
it is the process of propagating the gradient of the error
backward through the network. The loss function is obtained
by calculating the difference between the predicted output of
the network and the ground truth with a loss metric such as
mean squared error or cross-entropy loss. This loss is then
backpropagated through the network with the help of the
chain rule. This backpropagation step consists of three major
operations: (i) computing the gradient of the loss function
w.r.t. the activation function (§ lil)), Eq. (3), (ii) computing
the gradient of the loss function w.r.t. the weights (W(l)),
Eq. (5), and (iii) updating the weights, Eq. (6). These three
tasks are highlighted in red in Fig. 2. Traditional approaches
treat these computations as independent operations, which is
inefficient. We propose a single solution that can perform all
operations together, as highlighted in green in Fig. 2. The
backpropagation equations are given by:
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Fig. 3. Systolic arrays that compute G(!) in an OS mode and
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where FE represents the loss function, & ® represents the
gradient of the error backpropagated to layer [, f’ represents
the derivative of the activation function and G") represents
the gradient of the error w.r.t. weights. The notation ® repre-
sents the Hadamard product of matrices and 7 represents the
transpose of the matrix. Although Egs. (1) to (6) are defined
using a FC layer, these can be extended to convolutional
layers by replacing the linear multiplication operation with the
convolution operation. An overview of the dataflow graph with
the corresponding equations and their dimensions is described
in Section S1 and Fig. S1 in the Supplementary Material.

When implemented in hardware, these equations are
mapped to matrix-matrix or matrix-vector multiplication op-
erations. Systolic arrays [19] and other spatial architectures
have emerged as an alternative to general-purpose comput-
ing and are highly optimized for matrix-matrix operations.
These architectures have inherent advantages with their spatial
dataflow pattern allowing for more efficient data reuse. A
dataflow for this array describes which data remain stationary
and which data flow through the array. These dataflow patterns
can broadly be classified based on which data is stored within
the systolic array, namely, input-stationary (input feature map),
output-stationary (OS) (partial output sums), weight-stationary
(WS) (layer weights), and row-stationary (filter rows) [20].
Row-stationary (RS) is a specialized case of weight-stationary
where the array stores the convolutional filter row rather than
individual weights. Matrix-matrix operations are the focus
of this paper as they constitute a significant portion of the
computation time [21]. The computations of the activation
function, its derivative, the associated Hadamard product, and
pooling are often assigned to special blocks or special function
units (SFUs) [22]-[24]. A detailed discussion of the SFU
for the backward pass can be found in Section S1.1 of the
Supplementary Material.

Further subsections will contrast the proposed approach
against the traditional mapping of the backpropagation algo-
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rithm on systolic arrays. Although we do not directly explore
the forward pass, the accelerator maps the matrix-matrix
computation of the forward pass as a WS or OS operation
in the systolic array.

B. Computation of GY in an FC layer

The architecture shown in Fig. 3(left) is considered for the
operation in Eq. (5). The figure shows an array consisting of
Mtile x Ntile processing elements (PEs), where Mtile and
Ntile, respectively, represent the systolic array’s horizontal
and vertical dimensions. The markings for input neurons,
output neurons, and batch size show how those dimensions
map to the systolic array through tiling. output The array
operates in an OS mode, where the output partial sums @GWY)
accumulate in the PE. It takes Ntile cycles where the systolic
array loads Mtile words per cycle. The PEs are interconnected
in horizontal and vertical directions.

6W is passed into the array along the left edge, and
the activation outputs a(‘~1) are input to the bottom edge
of the array. The gradients with respect to the weights are
accumulated in-place for the minibatch of B. After the matrix
multiplication completes, the array contents are shifted out,
requiring additional Ntile cycles where Mtile gradients are
unloaded per cycle from the systolic array.

C. Computation of 61 in an FC layer

To compute Eq. (4) the architecture shown in Fig. 3(right) is
considered. The markings for input neurons, output neurons,
and batch size show how those dimensions map to the systolic
array through tiling. The array is set up in a WS mode, where
one of the inputs, W, is held constant inside the cell’s local
memory. The weights are first loaded into the array from the
edge. Although we only consider a single weight stored in each
processing element in this example, the same technique can be
extended to process multiple weights simultaneously. Once the
weights are loaded, 6() is loaded along the left edge, staggered
by a clock cycle for each row. Once the results are calculated
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Fig. 4. Systolic array operation in the proposed interleaved mode.

in each PE, the partial sums are accumulated vertically in the
array. A pipelined architecture allows for a simple PE design
with a low critical path delay. The entire process requires B
cycles to process the entire minibatch of size B. Once these
calculations are complete, the array contents are no longer
required and are discarded.

D. Interleaved gradient scheduler

Traditionally hardware accelerators implement Egs. (4)
to (6) sequentially. However, multiple avenues of data reuse
among the equations can be exploited to reduce memory
access and energy consumption. One such inefficiency is that
prior approaches do not exploit the reuse of 6= between
Egs. (4) and (5), W between Egs. (4) and (6), and G
between Eqs. (5) and (6). Note that most high-level synthesis
[25]-[27] systems cannot automate this reformulation.

Interleaving has been extensively studied in signal pro-
cessing systems to reuse hardware and computations across
different data points [16], [17], [28]. Based on requirements
in Sections II-B and II-C, this paper proposes to interleave the
gradient computation of Eqs. (4) and (5) enabled by a novel
configurable systolic arrays that can switch between OS and
WS modes every cycle. In both cases, (=1 is loaded through
the left edge of the array allowing reuse of §(~1) across both
equations.

E. Interleaved gradients for the FC layer

The proposed interleaving of the systolic array is shown
in Fig. 4. The dimensions in the figure indicate how the input
data are mapped to the systolic array. The figure shows that
the computation performed is identical to Fig. 3 with the PEs
alternating between WS and OS modes. Fig. 5 shows the
data flow and operations in the array along the vertical (y)
and horizontal (z) directions. Note that PE, , and PE, , 1
are adjacent along the vertical direction. Similarly, PE, ,, and
PE,,1, are adjacent along the horizontal direction. Ty, T
etc. represent consecutive time steps. The reuse of § effectively
reduces the number of accesses to the on-chip memory by
B x | 5] % | gk x Ntile. Here, N x M is the dimension
of the weight matrix.
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Fig. 5. Dataflow in the systolic array in both x and y directions, modified
from [10]. The figure highlights the reuse of the vertical communication
channel between az n and resy,,. Each PE toggles between WS and OS
modes every cycle.

Finally, once the gradients are obtained, the weights can
be updated as per Eq. (6). From a careful observation of the
computations of Eq. (4) and reformulated Eq. (5), it can be
seen that each element of the gradient matrix that is generated
is located in the same PE as the corresponding element of the
weight matrix. The gradient GY isa temporary variable that
is generated and must ultimately update the weight matrix;
however, due to the conventional approach, it must be stored
after creation and recalled from the memory to update the
weight as per Eq. (6). However, with the proposed configurable
systolic arrays, the weight matrix can be updated in-place
without the need to store or retrieve the temporary variable
G". Thus, a further 3 x | 20| x LMmeJ x Ntile x Mtile
accesses are saved. The overall reduction in memory accesses
is given by:

N M
" Nrae > Lt @

The in-place weight update adapts the transpose of the
weight matrix, WOT  However, we may desire to return the
original variable and not the transposed form. This is easily
handled in the case of systolic arrays as it can implicitly
perform a transpose operation when unloading data. W(®7T
that is normally read out through the vertical channel can
instead be read out through a horizontal channel to get W ®.

| x Ntile x (3 x Mtile + B)

III. GRADIENT INTERLEAVING FOR CONVOLUTIONAL
LAYERS

This section describes the operations in the convolutional
layers, their mapping to systolic arrays, and the interleaving
of the gradients.

A. Convolutional layer computations

The equations for the convolutional layer can be written in a
similar manner to Egs. (4) to (6) with the matrix multiplication
operations replaced by convolution operations. We explore
different ways to optimize training by exploring the reuse
of variables between different computations. Fig. 6 describes
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results in three filters corresponding to the number of channels for §(!— D The
highlighted red box shows the convolution window and corresponding output
pixel. The border color of the cell indicates the input feature map dimension,
and the color fill of the cell indicates the output feature map dimension.

the forward pass of the convolutional layer. Each convolution
operation is an element-wise multiplication between the filter,
w® (W, to Wy) and the convolution window of the input,
a'=1 followed by a summation that corresponds to a single
output pixel. The red and black dotted lines represent example
convolutional windows and their corresponding output pixel.

Filter

gradients Input feature maps

Fig. 8. Each channel from the input feature map is convolved with each
channel of 6 to calculate the gradients of the filter weights GW. The
border color of the cell indicates the input feature map dimension, and the
color fill of the cell indicates the output feature map dimension.

The output feature maps are color-coded as per the weights
that generated them. The convolution window is then stridden
across the input image until all output pixels are calculated
and repeated for all filters and input images.

The gradient of the error propagated to the previous layer,
601 is calculated by a convolution operation between §(*)
and the 180° rotated filter channel, i.e., the upper right
element moves to lower left and upper left element to lower
right. Additionally, the same input channel from all filters are
merged to form the equivalent filter for backpropagation. This
mapping reduces the problem to a simple convolution-like
operation like the forward pass as detailed by the reordering
step in Fig. 7. The calculation of the gradient filter, G(), is
described in Fig. 8. The error from the subsequent layer, (),
is convolved with each channel of the input from the previous
layer, o= 1.

Most general-purpose processors and accelerators convert
the convolution operation into a matrix-matrix operation to
exploit the hardware optimizations for the general matrix mul-
tiplication (GEMM) algorithm. This operation, called image to
column (im2col), takes the convolution windows, unrolls the
different windows, and arranges them in a Toeplitz matrix [20]
format. The filters are also unrolled similarly and stacked to
form a matrix. The convolution operation can be mapped
to a matrix-matrix multiplication operation like the fully-
connected layer. Thus each convolution operation also requires
an expensive call to an im2col block or transpose, either in the
host CPU or a dedicated memory manipulation block [24].

B. Mapping backpropgation convolutions to systolic arrays

A major difference in the convolution operation over the
fully connected layers is mapping the operations to the array.
To compute 6/~ as shown in Fig. 7, consider the weight
stationary mapping shown in Fig. 9. The array consists of
X x Y processing elements (PEs) where X and Y are the
dimensions of the systolic array in the horizontal and vertical
directions, 3 x 36 in this example. D is a register delay
between the PEs in the horizontal direction. In this convolution
operation, () can be visualized as a feature map and its
corresponding convolution windows are passed along the left
edge of the systolic array. In this example, 6() is a 36 x 36
matrix. The weights, W, are held constant within the PE’s
local memory. In this example, W is a 3 x 36 matrix. The
complete input matrices used in this example are shown in
Fig. S5 of the Supplementary Material. The partial sums of
% are accumulated vertically in the array, resulting in a
3 x 36 matrix for this example. The entire process requires
B x #ConvolutionWindows of 6% cycles to process the
entire minibatch of size B.

Similarly, to compute G as shown in Fig. 8, consider
the output stationary mapping shown in Fig. 10. The array
consists of 27 x 4 processing elements (PEs) in this example,
corresponding to the size of the output G(). In this convolution
operation, §() is flattened and passed as the filter along the
left edge of the systolic array. Each row corresponds to one
flattened channel of §(Y). This represents a 16 x 4 matrix in
the above example. The convolution windows of the input
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convolution windows from Fig. 8.

feature map are flattened and passed along the bottom edge
of the systolic array. This represents a 27 x 16 matrix in the
above example. The complete data matrices used as inputs
in the example can be found in Fig. S6 of the Supplementary
Material. The input feature maps are staggered by a clock cycle
per column and the matrix computations require 16 cycles,
the size of a flattened delta map, per map to complete. The
computed results are accumulated in place for the minibatch
of B after which the array contents are shifted out.

C. Interleaved gradients for the convolutional layer

While the initial mapping of the backpropagation compu-
tations in Section III-B is reminiscent of the form used to
interleave gradients in the fully connected layers, this is not
straightforward in the convolution case. This is understood by
observing how 6() is incident to the systolic arrays in the two
operations. When calculating G in Fig. 8, §®) is treated as a
filter however, when calculating 6¢~") in Fig. 7, §() is treated
as a feature map.

The challenge of interleaving Fig. 9 for computing §(~1)
and computing G") from Fig. 10 to the same array is because
the systolic arrays that are used in both computations are of
different sizes. For example, (=) requires an array of size
3 x 36 and G requires an array of size 27 x 4. The second
challenge lies in the fact that the flattened 6() inputs on the
left side of the systolic arrays are also of different dimensions
for the two computations. For example, in the computation of
601 the 5O input is of dimension 36 x 36 whereas that for
computing G is 16 x 4. Thus, interleaving the computation
of the two gradients into one systolic array is impossible.
However, this impossibility can be overcome by reformulating
the computation of G(!) such that this can be computed using
the same systolic array used to compute §¢~1). Furthermore,
the input pattern for 5¢) should also be in the same format
as for 6¢—1). We observe that this is possible by computing
the gradients of the weights in a reordered form instead of the
original form. In the original form, the gradients correspond
to 4 filters, where each filter corresponds to a 3 x 3 x 3 tensor.
They are computed as 3 filters in the reordered form, where
each filter corresponds to a 3 x 3 x 4 tensor. Fortunately, the ()
used in computing §¢~1) shown in Fig. 9 is the same pattern
needed to compute the weight gradients in the reformulated
form. Fig. 11 describes the input pattern of 6("); this is also
the same as used in Fig. 9 (also the same format as shown in
Fig. S5). Now it is possible to interleave the computations
of the two gradients in the same systolic array, as shown
in Fig. 12. No other approach has explored how to fuse these
two computations. Note that, like the fully connected layer
architecture shown in Fig. 4, the 51)s are held for two clock
cycles in Fig. 12. Each PE alternates between the WS mode for
the 6¢~1) computation and OS mode for the G(*) computation.

The proposed architecture has three advantages. First, as we
reuse the §") with no additional overhead required to prepro-
cess the input, this eliminates the need to reload ("), The input
6® for computing G as shown in Fig. 11 is identical to the
input §) shown in Fig. 9. Furthermore, we also eliminate the
need to generate 6() in two different formats. Second, we can
load a flattened ('~ directly from memory without creating
convolutions windows. This eliminates any calls to im2col for
the a(*~1), arguably simplifying the control of the architecture.
Third, the output from the G(*) computation exists in the same
PE as its corresponding W () matrix element.

Use of the common input 6() leads to significant memory
access savings as the two gradient computations can be
interleaved without the need to load the data twice from the
local memory. This also leads to a reduction in the number
of cycles required due to the reuse of inputs form loading
and unloading overheads. As with the case of the FC layer,
the reuse of ¢ effectively reduces the number of accesses to
the on-chip memory by B x [ £ | x [5£] x X x N, where
X x Y is the systolic array size, B is the batch size, N is the
number of convolution windows, F' is the flattened filter size
and Ny is the number of filters. Similarly, the in-place update
of the weight matrix further reduces 3 x | £ | x | 2| x X x Y
memory accesses. The overall reduction in memory accesses



36 x 36

Reformatted
O

8|76
o[8]7

ofof8

12{11[1

0112[11]10]

00121201

16[15[1413[0] 0| E Systolic
0 efis[14[13[0] 0 12111010 2 array
feature
maps
Reformatte
Input featur:
maps
10[s[o[o][8[7[6 4 o[ofo
o121alio[9]o[o[8]7 |gA g__gl__ 3x36
a3/ o] o12l11fi0[9 o[ o[8 0 0
16]1514]13[0 [ 0 J12]1: lo]s of
_|__ 161 0]of121af10e]0 [0 0
o161s[1af13[ 0] 0 [12[1 ofo[8 0
[o[o[o[o[o[o[oiefislial:: 1 ofo[g[7]6[s]0 0
f'l__oooooo: o]t 191?7"13 4 1
ofofofoJofofofofo]r6[ts[14f13[ 00 J12]x [ofof8[7]6 2]

Fig. 11. Modified input matrices for the output stationary calculation of GO in Fig. 10. The 36 x 36 matrix in the center is the modified representation of
the §() map shown on the top left. This is the same format as used in Fig. 9 (also the same format as shown in Fig. S5). The 3 x 36 matrix on the right
is the modified representation of the input feature map shown on the bottom left that is created by flattening. The red and black dotted boxes show how the

convolution windows on the left are mapped to the input matrices.
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Fig. 12. Interleaving of operations for the convolutional layer. The black
dotted boxes on the reordered filters and §() represent one of the convolution
windows to compute §(!=1). The corresponding weight stationary mapping
of that window is shown on the flattened 6(!) and reordered filters W (1),
Similarly, the red dotted boxes represent §(!) and the input feature map of one
convolution window for computing G (). The corresponding output stationary
mapping of that window is shown on the flattened 5(*) and flattened input
feature maps.
is given by:
)
X
Additionally, for both the input features, a(‘~1), and error
gradients, 6(), we do not need to compute the convolution
windows. This eliminates the im2col step in the backward
pass, as we only need to store the flattened map. For infor-
mation on the handling of stride and padding, refer to Section
S2 in the Supplementary Material.

XL%JXXX(?)XY—}-BXN) (8)

IV. IMPLEMENTING INTERLEAVED GRADIENT AND
CONFIGURABLE SYSTOLIC ARRAYS
This section describes how gradient interleaving for the
FC and the convolutional layers can be incorporated into a
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Fig. 13. Architecture of the configurable systolic array processing element.

modified GEMM algorithm and the hardware modifications
for the PEs to support the proposed method.

A. Configurable systolic array processing elements

A new configurable PE is designed to support the proposed
interleaved architecture. There are two basic modes of op-
eration that the PE must support: a WS mode to compute
§(=1 and an OS mode to compute G as shown in Fig. 13.
An additional requirement is that the system should switch
between the two modes every cycle. Therefore, any control
logic to the circuit must be straightforward and flexible to
support both modes.

We can interleave the two modes without additional over-
head for arithmetic units. Furthermore, to enable fast switch-
ing, we use a one-bit counter to alternate the mode every
clock cycle to enable fast switching. This counter simplifies
the control circuit to only choose between the odd or even
phases for alternating rows or columns of the array. This is
implemented as switches or multiplexers in the circuit that
indicate which path is selected in the 2k or even phase, and



2k +1 or odd phase. In the even phase, the PE operates in an
OS mode, and in the odd phase, the PE operates in a WS mode.
Therefore, the proposed PE architecture in Fig. 13 can achieve
the above goal with a minor overhead of 4 multiplexers. At
the array level, we can determine which PEs are in phase with
each other for the fully connected layer as shown in Fig. 4. The
pattern is derived by analyzing the presence of delay elements
or registers on horizontal or vertical edges. A delay element
toggles the phase of the adjacent PE. Thus, once an operation
starts, we only need a 1-bit counter to drive all the inputs of
the array, directly for one set and as the complement for the
other set. We can derive a similar pattern for the convolution
layers by analyzing Fig. 12.

In terms of the inter-PE communication, the horizontal
connection need not be modified as, with both modes, only
0@ is transmitted. However, for the vertical connections,
extra hardware is needed to multiplex between transmitting
a1 and the partial sum of Eq. (4). Nevertheless, given that
these will only be transmitted in alternate cycles, the only
requirement is that the bus is designed to be sufficiently large
to accommodate the larger of the two.

The interleaving techniques were designed not to introduce
any new complex control logic at the system level. In terms
of the input, the new systolic array will support inputs on
the left and bottom edges. This is the same requirement as
an OS architecture. The only additional support is one level
of multiplexing to preload the weights into the array. The
outputs are streamed out continuously while it’s processing,
and the internally stored partial sums are read out at the end
of processing a tile. For the fully connected layers, the data
is not modified in any way, and interleaving is possible by
latching the value of (") for two cycles. Thus no additional
overhead is required.

B. Mapping and tiling computations

The proposed hardware can operate in two different modes:
either a direct matrix-matrix multiplication mode or an inter-
leaved scheduler mode. The proposed interleaved scheduler at
the system level is summarized in Algorithm 1. The inner com-
putational loops are fused at the algorithm level to interleave
all three computations. These structures follow a hierarchical
GEMM format to exploit parallelism and maximize cache
efficiency. This can serve as a baseline on how to integrate
the proposed hardware into existing software frameworks like
PyTorch or Tensorflow. Here the tile size for this algorithm
is chosen as Mtile and Ntile to match the dimensions
of the systolic array. The proposed approach will fit into
a hierarchical system as it only optimizes the inner loops
dedicated to specialized hardware such as tensor cores [22],
[23]. At a tile level, the algorithm will generate the result for
G, for the entire tile after processing all elements in the
Otile loop, where Otile represents tiling in the input channel
dimension O. Similarly, it can generate ¢,, after processing all
elements in the Ntile loop.

C. Architecture

The goal of the proposed approach is to be viewed as an
enhancement to existing systolic arrays with minimal over-

Algorithm 1 Integration of interleaved scheduling for back-
propagation in a modified GEMM algorithm.

Input: w®,: 0. g1 G’f.i,)“
for m < 0to M — 1 by Mtile do
for n < 0 to N — 1 by Ntile do
for o <~ 0 to O — 1 by Otile do
/] Proposed new interleaved Scheduling block
nerGrad W, .60 al-h GO,
end for o o o o
if UPDATE WEIGHTS then
W, n = InterGrad(“update and unload weights™)
end if
if UNLOAD INTERMEDIATE GRADIENTS then
G, n = InterGrad(“unload gradients”)
end if
end for
553_1) = InterGrad(“unload &)
end for
Output: W

“compute”)
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Fig. 14. Architecture to evaluate effectiveness of the proposed enhancements.

a~1 SRAM 64 Kb

head. Therefore, we design a system-level baseline architecture
to evaluate the effectiveness of the proposed approach. We
use [24] to determine the overall architecture of the systolic
array. The design itself is not optimized for area or throughput
but rather serves as a basis to evaluate the overheads associated
with the proposed approach. Fig. 14 shows the overview of
the baseline architecture. First, the architecture assumes four
local memories to store the weights, activations, deltas, and
results. Second, the input and output buffers process the inputs
of the systolic array and the memory controller interfaces
the buffers, local memory, and external memory. Finally, the
PE control determines the operations within the PEs such as
loading, unloading, or mode of computations like WS or OS.
For the proposed approach we modify the PE array to the
new proposed configurable PE and we modify the PE control
to support the new InterGrad mode for the backward pass.

V. EVALUATION OF THE PROPOSED APPROACH
A. Methodology

We evaluate the advantages of the proposed methodology
for the fully-connected (FC) and convolution layers and com-
pare them against traditional dataflow. For the FC layer, we use
the structure shown in Fig. 1 as a reference. Each experiment
varies the number of neurons or network size of the FC layer,



the batch size of the inputs, and the systolic array size. For
the convolutional layers, we use the convolutional layers of
VGGI16, ResNet, and InceptionV1. For the forward pass, the
proposed dataflow is identical to the baseline in terms of both
memory accesses and computation cycles. Though the forward
pass is not optimized, it is included in the evaluation of the
entire system’s performance. The conversion from images to
a matrix-matrix multiplication is handled by the im2col block.
This is detailed in [14], [20], [24] and is common to the
baseline and proposed approach.

We evaluate the performance while varying array size
and batch size. We developed a simulation tool over the
open-source python-based NN simulation framework SCALE-
sim [14] to evaluate the proposed method. The tool is built
to calculate statistics like the number of cycles and on-chip
SRAM memory access for the inference and backpropagation
operations. The tool supports both traditional dataflows as well
as the proposed dataflow. W e e valuate t he p roposed method
and compare it with two baselines: weight stationary (WS)
and output stationary (OS). We model the WS approach by
mapping all the backpropagation computations to the systolic
array. The tool determines the number of cycles, memory
accesses, and computations based on Fig. 3(right) for the FC
layer and Fig. 9 for the convolution layer. Similarly, the tool
models the OS approach based on Fig. 3(left) for the FC layer
and Fig. 10 for the convolution layer.

The tool is designed to model the proposed dataflow as
follows. The computation is first splitinto tiles and allocated
to the PEs based on Algorithm 1. The tool processes each tile
determining the number of cycles and memory accesses based
on Fig. 4 for an FC layer or Fig. 12 for a convolution layer.
Finally, this is processed cycle-wise to determine the number
of multiply and accumulate operations (MACs), internal regis-
ter reads/writes, inter-PE communication, and on-chip SRAM
reads/writes from the array.

All results that report memory accesses and memory ac-
cesses savings refer to accesses to the SRAM unless stated
otherwise. For the convolutional layers, we additionally re-
port the energy consumption based on a normalized energy
cost [20], [29]. The referenced energy model is normalized to
a multiply and accumulate (MAC) computation. As a result,
the energy consumption for communication, internal register
reads/writes, and accessing the on-chip SRAM are 2x, 1x,
and 6x of a MAC operation, respectively. Additionally, The
energy model accounts for the overheads associated with the
new configurable PE.

The proposed work aims to reduce the overall number of
accesses to the memory as measured in SRAM access without
regard to DRAM access and latency. Though the proposed
method does not directly target DRAM access, it will signif-
icantly reduce the DRAM access, especially in cases where
all the data does not fitin the S RAM. F urthermore, reusing
variables within the systolic array ensures that even partially
loaded contents to the SRAM are used completely before
being ejected. We evaluate the backpropagation algorithm at
two granularities: a single layer and as part of a larger DNN.
This evaluation is performed first on the F Clayers and then
validated on the convolutional layers.

B. Single-layer scheduling for FC layer

For a single layer evaluation, the innermost loop in Fig. 1
(loop 4) is used. We evaluate the three traditional dataflow
models for comparison, i.e., WS and OS. Additionally, we use
a third baseline called flex, which picks the best metric be-
tween OS and WS. This is only done to highlight the benefits
of InterGrad as, in a multi-layer scenario, the best approach
for one metric did not always lead to the best results in
others. In traditional dataflow, we compute the backward pass
equations, Eqs. (4) to (6), as separate matrix-matrix operations.
In the proposed interleaved scheduler methodology, a single
equivalent time is stated for processing all equations in an
interleaved manner. Computations for Eq. (2) are not shown
but are assumed to be processed elementwise separately.

TABLE I
INTERLEAVED GRADIENT SCHEDULER (INTERGRAD) VS. TRADITIONAL
DATAFLOW FOR EACH EQUATION OF BACKPROPAGATION IN FC LAYERS.
FLEX REFERS TO FLEXIBLE SCHEDULE THAT CAN PICK THE BEST
DATAFLOW FOR EACH EQUATION.

Cycles (x10%) Memory Accesses (x 10°)
EQ. | 0S WS  Flex Isrg}fé 4|05 WS Flex g‘rt:(ri
M | 358 1147 358 358 | 65 84 65 65
@ | 817 189 189 84 64 64
) | 657 657 657 982 | 126 126 126 126
© | 358 1147 358 65 84 65
Al | 2190 3140 1563 1340 | 339 359 319 190

Table I breaks down the computation time and memory
accesses for the proposed method and traditional dataflow by
equation number. The single loop is evaluated on a 128 x 128
systolic array with a batch size of 64 and a 4096-neuron
FC layer. It is observed that the backward pass dominates
the overall computation time and memory requirement for
the backpropagation loop. For example, looking just at the
backward operations Egs. (4) to (6), we see that the proposed
method takes 18.5% fewer cycles than flexible architectures
and over 46.4% fewer cycles compared to traditional dataflow.
Similarly, the proposed method reduces the number of memory
accesses by 50% in backward pass computations. Overall,
for the entire loop, including the forward pass, the proposed
method reduces 14.2% and 40.3% of cycles and memory
accesses, respectively. While the latency of each backpropa-
gation computation has increased, there is an overall increase
in throughput as the total time to perform both computation is
reduced. Additionally, the overall latency or layer level latency
looking at both operations together is reduced.

TABLE 11
THE NUMBER OF CYCLES AND MEMORY ACCESSES FOR AN N x N MLP
LAYER WHILE VARYING N, MODIFIED FROM [10]. VALUES ARE
NORMALIZED TO WS. INTERGRAD OUTPERFORMS THE BASELINE FOR
ALL NETWORK SIZES.

N Cycles Memory
WS OS InterGrad | WS OS  InterGrad
128 1.00  0.81 0.57 1.00  1.00 0.58
256 1.00  0.78 0.51 1.00 098 0.55
512 1.00 0.75 0.46 1.00  0.96 0.54
1024 | 1.00 0.72 0.44 1.00  0.96 0.53
2048 | 1.00 0.71 0.42 1.00  0.95 0.53
4096 | 1.00 0.70 0.42 1.00  0.95 0.53




Table II analyzes the effect of the network size on the pro-
posed method’s performance in terms of normalized number
of cycles and memory accesses to the local on-chip SRAM.
This is obtained by sweeping and evaluating different network
sizes and batch sizes. For fixed network sizes, the values
obtained are averaged across batch sizes and normalized to the
value for WS. The proposed methodology reduces the number
of cycles to compute this loop by 30%. Also, the proposed
method reduces the number of single-loop memory accesses
by 42%. This corresponds closely to Eq. (7) as the increase
in memory accesses and savings for § is proportional to the
array size. Thus the savings are constant across all network
sizes. Similarly, both the accesses and savings for the weight
update step are proportional to the square of the array size.

TABLE III
SINGLE LOOP PERFORMANCE OF THE INTERLEAVED GRADIENT
SCHEDULER (INTERGRAD) ON FC LAYERS VS. TRADITIONAL DATAFLOW
APPROACHES WHILE VARYING BATCH SIZE (B)

Ba.tch WS oS InterGrad %

Size Improve
8 207.35  155.61 81.36 39.0%
Cycles 16 212.11  157.34 84.60 37.4%
(x10%) 32 221.84  160.80 91.06 34.5%
64 241.58 167.73 103.99 29.1%
128 281.58 181.58 129.86 20.2%
8 20.47 20.27 10.34 48.9%
Memory 16 21.49 21.10 10.96 47.5%
Accesses 32 23.54 22.76 12.20 45.0%
(x109) 64 27.64 26.08 14.69 40.7%
128 35.84 32.71 19.73 34.5%

Table III analyzes the effect of the batch size on the
performance. The values obtained are averaged for a different
number of neurons. The proposed method uses between 20%
and 39% fewer cycles across all batch sizes. The proposed
method reduces the number of single-loop memory accesses
between 34% and 48%. This matches the expected savings as
the savings for & scales with B, but the weight update step
does not. At larger batch sizes, the savings from the weight
update step remain constant; therefore, savings as a fraction
of the overall memory accesses decrease. In general, for the
fully connected layers, a small batch size can lead to under
utilization of the systolic array. To ensure high utilization, the
batch size must be chosen such that it is comparable to or
greater than the dimensions of the systolic array. Furthermore,
as the proposed approach interleaves the computations along
the batch size dimension as shown in Fig. 4, this mitigates the
effects of smaller batch sizes to some degree.

C. Application to the convolutional layers in CNNs

We compare the proposed approach against a baseline
computation that perform WS/OS only. We analyze the effect
of the batch size on the proposed method’s performance on
VGGI16 for a single iteration of the forward and backward
pass, shown in Table IV. It provides the average number of
cycles and memory accesses to the local on-chip SRAM by
sweeping and evaluating different batch sizes. This shows that
the savings in cycles and memory accesses are consistent and
do not vary with batch size. This follows closely with Eq. (8)
as memory accesses and saving are proportional to the batch
size, leading to a constant improvement across different batch
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Fig. 15. Accesses to the DRAM versus the reduction in SRAM cache size.
The proposed InterGrad causes fewer DRAM accesses even as the size of the
SRAM is reduced. Results are normalized to WS.

sizes. The effect of batch size on the general performance of
the systolic array is less prominent in the convolution layers as
the batch size dimension also has the convolutions windows.

TABLE IV
PERFORMANCE OF THE INTERLEAVED SCHEDULER (INTERGRAD)
APPROACHES ON THE CONVOLUTIONAL LAYERS OF VGG 16 WHILE
VARYING BATCH SIZE. INTERGRAD CONSISTENTLY PERFORMS BETTER
THAN THE BASELINE FOR ALL BATCH SIZES.

Cycles Memory Access Energy
B (x109) (x10°) (x10'2)
Inter Inter Inter
WS oS Grad WS oS Grad WS oS Grad
1 43 43 4.0 0.8 0.8 0.7 0.15 0.14 0.13
4 14.9 15.6 14.0 32 32 2.6 0.58 0.57 0.51
8 29.0 30.7 27.3 6.3 6.3 5.1 1.15 1.15 1.01
16 57.3 61.0 53.9 12.5 12.6 10.2 2.30 2.29 2.02
32 1139 1215 107.2 | 250 252 20.5 4.59 4.59 4.03
64 | 2272 2426 2136 | 500 504 40.9 9.18 9.17 8.06
128 | 453.7 484.8 4266 | 999 100.8  81.7 1835 1834 16.12
TABLE V

THE NUMBER OF CYCLES, MEMORY ACCESSES AND ENERGY FOR THE
CONVOLUTIONAL LAYERS OF VGG WITH VARYING SYSTOLIC ARRAY
DIMENSIONS, NORMALIZED W.R.T. WS. INTERGRAD CONSISTENTLY

PERFORMS BETTER THAN THE BASELINE FOR ALL SYSTOLIC ARRAY

DIMENSIONS.
Size Cycles Memory Accesses Energy
WS OS InterGrad | WS OS InterGrad | WS  OS  InterGrad

16 1.00 1.01 0.99 1.00  1.00 0.83 1 1.00 0.88

32 1.00  1.02 0.98 1.00  1.00 0.83 1 1.00 0.88
64 1.00 1.03 0.96 1.00  1.01 0.83 1 1.00 0.88
128 | 1.00 1.07 0.94 1.00 101 0.82 1 1.00 0.88
256 | 1.00 1.11 0.91 1.00 101 0.80 1 1.00 0.87

As convolutional layers’ utilization is very sensitive to the
systolic array size, we evaluate the proposed method across
arrays of different sizes. Table V summarizes this experiment
and shows the normalized number of cycles, memory accesses,
and energy consumption. The values obtained are averaged
across batch sizes and normalized to WS for different array
sizes. The proposed method consistently reduces the number of
memory accesses by 17% and total energy by 12% when tested
on the convolutional layers of the VGG network. This follows
closely with the equation in Section III-C as both memory
accesses and saving are directly proportional to the square
of the array size, leading to a constant improvement across
array sizes. The proposed method shows a more significant
improvement in the number of cycles as we increase the
systolic array size.
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Fig. 16. Summary of performance improvement of the InterGrad mode versus
other stationary modes. All results are normalized to WS.

D. Impact of SRAM cache size and DRAM efficiency

All results, thus far, have assumed that the entire DNN fits
within the SRAM cache. Thus, all reports for memory accesses
were to the SRAM only. As modern DNN accelerators and
GPUs have large caches [22], [23], the paper focused on
computational comparisons without regard to cache efficiency.
However, this may not be true as neural networks are getting
larger. Therefore, we modified the simulator to emulate a
finite-sized fully-associative cache with the least recently used
policy to examine this effect. When the cache is insufficient
to store the entire contents of the inputs and outputs, it needs
to fetch the data from the next higher level of memory. As
we tile the systolic array operations, if the data is not present,
a new tile is loaded into the cache, and the least recently
used tile is evicted. Thus, any cache miss results in a DRAM
read/write. In Fig. 15, we evaluate the performance of the
proposed architecture by starting with an SRAM cache that
can just fit the entire contents of the network (2°) and then
progressively reducing the size of the SRAM cache. Fig. 15
shows the normalized DRAM accesses when the SRAM size
is progressively lowered. The results reported include both the
convolution and FC layers. As shown in Fig. 15, the proposed
system is more robust to a reduction in cache size, even up to a
64 x reduction, (279), in the SRAM size with 15% less DRAM
accesses. By interleaving the backpropagation operations, the
proposed method better reuses the § variable, which would
otherwise first be thrashed out due to its large size.

E. Implementation analysis

The proposed configurable PE was synthesized using a
65nm technology node operating at 100MHz and a 1V supply.
The PE was parametrized so it could be synthesized with
any floating-point datatype. Table VI compares the area and
power characteristics of the proposed PE versus a standard
WS/OS PE across common data types used for training neural
networks. bf16 refers to bfloat-16, Google’s brain floating-
point format, and tf32 refers to Nvidia’s TensorFloat-32 for-
mat. We choose a simple baseline PE that supports both WS
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Fig. 17. Summary of iso-area and iso-power performance of InterGrad.
The proposed method InterGrad, even when accounting for the area (iso-
area InterGrad) and power (iso-power InterGrad) overheads, outperforms the
baseline dataflows. All results are normalized to WS.

and OS modes of operation. The baseline PE consists of a
single multiplier and adder similar to the proposed PE. The
baseline PE has only one memory register to store the weights
during WS mode and the accumulated result during OS mode,
compared to two memory registers required for the proposed
PE. The baseline PE also has fewer multiplexers and a simpler
control compared to the proposed PE.

TABLE VI
AREA AND POWER CHARACTERISTICS OF THE PROPOSED CONFIGURABLE
PE VERSUS A SIMPLE WS/OS PE. ANALYSIS WAS PERFORMED USING
DIFFERENT FLOATING POINT FORMATS FOR THE MAC BLOCK.

N Area Power

WS/OS PE  InterGrad | WS/OS PE  InterGrad
bf16 1.00 1.087 1.00 1.092
tf32 1.00 1.078 1.00 1.107
fpl6 1.00 1.079 1.00 1.078
fp32 1.00 1.055 1.00 1.051
fp64 1.00 1.029 1.00 1.039

The proposed PE only marginally increases the area by 3-
9% and power by 4-10%. The overhead depends on the ratio
of the contribution by the MAC block versus the rest of the
circuit. In larger data formats, the MAC unit dominates the
characteristics of the block. However, the newly introduced
register and control logic have a more significant impact in
smaller data formats. The energy model used accounts for
the increase in energy from the new registers and inter-PE
communication. Furthermore, when considering all energy
sources, memory reads/writes, register reads/writes, and inter-
PE communication, the energy consumed by the mac operation
itself is on average 30% of the total energy consumption.

To understand the implementation implications on the re-
sults, we implement the architecture described in Section I'V-C
and Fig. 14 in System Verilog for a 32 x 32 array with
the BF16 format. The design is synthesized using Synopsys
Design Compiler with ST-65 technology node 1V supply



and 100MHz clock. For the baseline, we choose a similar
architecture to Fig. 14 that is based on implementation in [24].
The differences between the baseline and proposed approach
can be described by their functionality. While the proposed
architecture can support OS mode, WS mode, SGD weight
update, and the new InterGrad dataflow mode, the base-
line architecture only supports WS and OS modes. Flexible
dataflows [15], [21], [24] that can support multiple dataflows
have shown promise and the simple flexible baseline chosen
has limited overhead compared to the WS-only approach. We
implement and compare the baseline architecture with the
proposed enhanced architecture with modified PEs and control.
Additionally, there is no overhead to perform the reformulation
of the input 6() for Fig. 12, as we simply use the input version
shown in Fig. 9 that is used for the baseline architecture.

Table VII shows the overhead of the proposed method over
the baseline architecture. These results include all possible
overheads, including the new PE design, additional data rout-
ing/ multiplexing, and new control logic.

TABLE VII
AREA AND POWER OVERHEADS OF THE PROPOSED APPROACH COMPARED
TO A BASELINE SYSTOLIC ARRAY IMPLEMENTATION.

Parameter Area Power
Baseline InterGrad | Baseline InterGrad
PE array 1.00 1.079 1.00 1.089
Controller 1.00 1.035 1.00 1.041
Overall 1.00 1.016 1.00 1.017

E. System level performance of InterGrad

We evaluated the proposed method on well-known convolu-
tional neural networks VGG16 [3], Resnet50 [4], inceptionV 1
[5], Inceptionv4 [30], DenseNet-264 [31], and EfficientNet-
B7 [32]. To understand the system-level performance, we show
the results for the complete network, including its convolution
and FC layers. It is shown in Fig. 16 that the proposed inter-
leaved scheduler requires between 3% and 27% fewer cycles
when compared to the best dataflow. The proposed method
reduces the number of memory accesses between 15% and
26% while decreasing the total energy consumption between
11% and 18%. We use the implementation results from the
previous subsection to generate iso-area and iso-power results.
This is then used to generate the results shown in Fig. 17. The
area overheads of the proposed approach do not significantly
reduce the performance of the proposed approach. Even when
performing an iso-area or iso-power constraints, the proposed
approach achieves between 2% and 26% fewer cycles, between
16% and 25% less memory accesses, and between 10% and
17% less energy. Under iso-area comparisons, for Inception-
v4, compared to WS, Intergrad achieves 12% savings in
energy, 16% savings in memory and 3% savings in cycles.
Savings for Densenet-264 are 17%, 25% and 26% with respect
to energy, memory and cycles, respectively.

VI. RELATED WORK

Though there has been an abundance of AI/ML hardware
accelerators however, very few works target training [33].

Most DNN training accelerators optimize matrix-matrix mul-
tiplication, whether it be dense matrices [12], [34] or sparse
matrices [6]-[8], [21], [35], [36]. Existing training optimiza-
tions exploit the sparse nature of the computations to reduce
complexity and communication overhead [37], [38]. Several
papers also consider flexible dataflows or interconnect to
handle variable size matrices [7], [15], [21]. Additionally, het-
erogeneous clusters of processors [24] optimized for different
computations in the CNN have been used. Dataflows like the
row stationary, though shown to work exceptionally well with
inference, have challenges in training. In the case of training,
the filter “row” used is the size of the feature matrix rows, not
just filter sizes. This exhibits a significant degree of variation in
the neural network depending on the feature map size at each
layer, requiring a large scratch pad which is hard to keep fully
utilized. Sparse training accelerators [39] can significantly
reduce the number of computations by exploiting the zeros
and dynamic pruning. However, the above approaches target
computations in a generic sense and are orthogonal to the
architectural exploitation of the backpropagation algorithm
proposed in this paper.

Although there has been an abundance of inference-
based convolution accelerators, these do not translate well
to the training task. Quantization or approximation-based
approaches [40]-[42] that use reduced precision arithmetic,
assume that training and retraining are possible in higher
precision. Accelerators targeted towards convolution [43], [44]
are optimized for a range of input filter and feature map sizes.
These assumptions of sizes do not hold true when performing
the backward pass and are sub-optimal.

Many algorithmic or co-design implementations of the
backpropagation algorithm have focused on ways to speed up
the backpropagation algorithm. Pipeline parallelism, where the
backpropagation is split into multiple processors, is one such
optimization [45]-[48]. However, unlike the proposed method,
the above approaches are primarily based on partitioning and
multiprocessing rather than on-device optimizations. A prior
approach [49] to eliminate the inefficiency of the imZ2col,
with inference in mind, provides an alternative solution to
frame the im2col as multiple 1 x 1 convolutions. However,
the proposed method is optimized for training by designing
a solution that eliminates the im2col operation and exploits
interleaving. Also, the reuse of variables between layers and
the different operations in the backpropagation algorithm has
been proposed recently to maximize memory efficiency [50]—
[52]. However, these approaches exploit memory reuse within
the nearest memory block (cache/SRAM). The proposed work
is the first to reuse variables at the hardware level within the
computations of the processor.

VII. CONCLUSION

This paper proposes a novel scheduling scheme by in-
terleaving various computations to reduce the latency and
memory accesses of the design. This is the first approach
to exploit multi-operation variable reuse within the matrix-
multiplication block without additional caches or scratchpads.
It has been shown that the proposed method outperforms the



best traditional dataflow schemes by a factor of 1.4x ~ 2.2x
in terms of the number of cycles and by a factor of up to
1.9x% in terms of memory accesses in fully-connected layers
found in common CNNs. Furthermore, the proposed method
uses up to 25% fewer cycles and memory accesses, and 16%
less energy than baseline implementation for state-of-the-art
CNNs. Future work will be directed towards three avenues.
First, we will explore adapting this work to consider the effect
of structured sparsity. Second, we will extend this work for
training recurrent neural networks (RNNs) via backpropaga-
tion through time (BPTT), and graph neural networks. Third,
with the rising cost of transformers [53], the proposed method
might lead to significant improvements in the fully-connected
layers within the transformer.
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S1. DATAFLOW REPRESENTATION OF THE
BACKPROPAGATION ALGORITHM

Fig. S1 shows a dataflow representation of backpropagation
in the fully connected layer. The figure comprises two parts:
the forward pass (top) and the backward pass (bottom). Each
node of the dataflow graph in the forward pass is accompanied
by the corresponding equation that shows the computation at
that node. W' is a N' x N'~! matrix representing the layer
weights, and N! represents the number of output neurons. The
dimensions at the output of layer /. 2! and a!, are the outputs of
the fully connected layer and activation functions, respectively,
each of size N! x B, where B represents the batch size of the
input data. Each node in the forward pass also highlights the
dimensions of the output of that node. In the backward pass,
we illustrate the gradients that propagate through each edge of
the dataflow graph with a colored dashed line. First, the green
lines highlight the gradient of the error w.r.t. the output of a
layer (%—If) or §, calculated by Eq. (3) in the paper. Second,
the red lines highlight the gradient of the error w.r.t. the output
of the activation function of a layer (%—f), calculated by Eq.
(4) in the paper. Last, the blue lines highlight the gradient of
the error w.r.t. the weight of a layer (g—f/) or G, calculated by
Eq. (5) in the paper. The backward pass also highlights the
dimensions of all the matrices.

A. Calculating the derivatives of activation

The computations of the activation function, its derivative,
and the associated Hadamard product are often designated
to special blocks or special function units (SFUs). In the
forward pass, these functions are computed with the help of
look-up tables to approximate the different types of activation
functions. However, in the backward pass, these can exploit
some of the characteristics of the derivatives to minimize
computations. We illustrate this below on a set of popular
activation functions: Sigmoid, hyperbolic tangent (tanh), recti-
fied linear unit (ReLU), Leaky Rectified linear unit (LReLU),
exponential linear unit (ELU), and scaled exponential linear
unit (SELU).

1

f(z) = Sigmoid(z) = o(z) = -

(SD)
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3-layer neural network. The dimensions of the variables are also included.
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There are two general ways to compute the activation
function for the forward pass. First, simple activations like
ReLU can be implemented with multiplexers without addi-
tional computation. Second, complex activations using ex-
ponent functions can be approximated with look-up table-
based solutions. We can implement some of the characteristics
in the backward pass and generate the derivatives from the
existing outputs of the forward pass. Simple derivatives like
the ReLU and LReLU can be implemented with multiplexers.
Derivatives of activation functions like ELU and SELU can
use the existing outputs and vector addition to add a constant
to all values. Functions like sigmoid and tanh can be similarly
derived with vector addition and multiplication blocks. Thus
an SFU with a forward and backward pass can be implemented
with a vector version of look-up tables, multiplexers, adders,
and multipliers. This vector multiplier can also be used to
implement the Hadamard product required in backpropagation
equations.

Though the SFU handles many operations, SFUs are only
a tiny percentage of the overall number of computations in a
large DNN. These SFU functions make up less than 0.01%
(calculated from VGG16) of the total number of multiply and
accumulate (MAC) operations required to train a CNN. This
can be understood by looking at the computation of a single
convolution layer. A convolution filter performs F' x ' x C
MAC operations for each call to the activation function, where
F « F is the filter size, and C' is the number of input feature
maps. For the deeper layers of CNNs like ResNet and VGG,
this can be of the order of 3 * 3 x 512, which is a factor of
4608. So over the entire span of deep networks, the number
of activation MACs becomes insignificant compared to the
main convolution computations. In a backward pass, for each
evaluation of the derivative of the activation function, other
operations include computing gradient with respect to the
weights, gradient with respect to the activation, and a weight
update step. Even when accounting for multiple operations in
the backward pass like vector multiplications additions and
Hadamard products, the derivative evaluation and Hadamard
product operations make up less than 0.01% of the backward
pass (calculated for the VGG16). Hence the SFU forms a very
tiny percentage of the DNN computations.

B. Handling different weight update optimizers

One advantage of the gradient interleaving approach is that
it ensures that the gradient and its associated weight exist
within the same PE. This is advantageous as it allows us
to perform an in-place memory update without needing to
unload the gradients or reload the weights for a weight update
operation. This was explained in the context of an SGD oper-
ation. However, other optimizers bring in new challenges. The

S2
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With
. padding =1

Last convolution window
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Fig. S2. Effect of padding inputs in the forward pass on §(!=1) computations.
a) 6¢=1) computation without padding. b) § (=1 computation with padding
of 1.

With stride = 1 .« With stride =2

Last convolution window }

i First convolution window

a) b)

Fig. S3. Effect of stride the inputs in the forward pass on 6(=1) computa-
tions. A stride (S) in the forward pass can be mapped to a sparse output filter
map with S — 1 null operations inserted between each data point. a) & (-1
computation with stride=1. b) §(¢—1) computation with stride=2.

simplest extension is the introduction of momentum, either in
the standard form or as Nesterov accelerated gradients.

m(t) = ym(t — 1) + nVL(W (t — 1)) (S13)

W(t)=W(t—1)—mf(t) (S14)
m(t) =ym({t—1)+nVL(W(t—1) —ym(t — 1))

(S15)

W(t)=W(t—1)—mf(t) (S16)

Egs. (S13) and (S14) represent the update equations for
momentum SGD and Egs. (S15) and (S16) represent the
update equations for Nestrov accelerated gradients. Here W (¢)
represents the weight matrix, m(¢t) the momentum of the
parameter, ¢ the unit step interval between weight updates,
7 the learning rate, v a tunable hyperparameter and VL() the
gradient of the loss function with respect to the weight used.

The introduction of momentum requires an additional reg-
ister in the PE to store the parameters. With respect to the
system’s energy, the number of MAC operations remains the
same. At the same time, the proposed method continues to save
memory access by reading and writing the gradients and the
weights, thus saving energy. The only additional energy of the
system will be the inter-PE communication to load and unload
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Fig. S4. Modified interleaved scheduling to handle stride.
broadcasting the input as shown.

the momentum parameters. This is an acceptable increase as
inter-PE communication is limited to only the start and end of
the computations. Additionally, the inter-PE communication is
proportional to the size of the systolic array. Thus, a smaller
array size will see a lesser impact than a larger array. The
evaluation section explores this further to analyze the impact
on performance if the weight update step is skipped.

S2. HANDLING STRIDE AND PADDING

The introduction of convolution layers requires special
considerations for striding and padding. Padding defines how
many extra padded elements are added to each side of the input
feature map. Padding of one indicates that the dimensions of
the input feature map are expanded by 1 in each direction.
The expanded dimensions are filled in with O or a user-defined
value. When considering the backward pass, the changes to the
computations for 6¢~1) are shown in Fig. S2. The introduction
of padding changes the convolution window’s starting and end
locations as we are not required to compute the gradients
to the padding locations. For the interleaved gradients case,
the algorithm does not need to compute §¢~1) in the cycles
corresponding to the padding values. The G computation with
padding is the same, except that the input feature map is
padded.

Striding defines at what interval to perform the convolution
operation. A simple convolution operation with a stride of 1
moves the convolution window by one pixel after each com-
putation. A stride of S indicates that the convolution window
is moved by S pixels to perform the new computation. Thus
performing a stride greater than one in the forward pass results
in fewer outputs. The effect of striding on the backward §¢~1)
computation is shown in Fig. S3. Conceptually, the output
feature space can be visualized as a sparse representation
with S — 1 null operations between the data points. Thus,
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The null operations introduced in 8(=1) calculation are reused for computing G by tactically

we use this sparse data representation for the 6¢~1) and G
computations.

A direct way to extend gradient interleaving to cases with
stride greater than one is to treat these null operations as Os as
shown in Fig. S3 and map it to the existing approach. However,
we can leverage these null operations to perform interleaving.
This is demonstrated in the simple example shown in Fig. S3.
This section will only explore how to modify InterGrad to
support striding and the basics of gradient interleaving for
convolutions have been covered in Section 3.3. The black
dotted lines represent the convolution window required to
compute 6¢~1) from the reordered filters and (") maps shown
on the left. The corresponding mapping to the systolic array
is shown by the black dotted lines over the array and the
5" input to the array. The computation for G(!) is shown by
the red dotted lines on the §() and input feature maps at the
bottom. The mapping of this computation to the systolic array
is shown by red dotted boxes on the inputs of the array.

We develop a static timing chart to indicate which cycles
the corresponding PE is computing G or %, as shown
on the right of Fig. S4. The contents in each box indicate
the multiplication at that time instance. For example, in
time instance 3, PEs 1 and 3 are computing % for
the convolution shown in the black dotted box and PE 2 is
computing G for the convolution shown by the red dotted
box. Thus with selective broadcasting and bypassing of inputs
we can effectively interleave the two operations without the
need to double the number of cycles. The proposed method is
advantageous compared to the traditional im2col approach as
we do not need to compute each stridden convolution window
for the input feature map.

S3. LIMITATIONS OF INTERLEAVED SCHEDULING

A limitation of the proposed method is that it could po-
tentially lead to underutilization of the systolic array. This
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Fig. S5. Input matrices for the weight stationary calculation of & (=1 jp Fig. 9. The 3 X 36 matrix on the left represents the re-ordered flattened reordered
filters stored in the systolic array. The 36 x 36 matrix in the center represents the 6(*) input to the systolic array. The red and black dotted boxes show how
the convolution window of the () map shown on the right is mapped to the matrix.

can be understood by looking at Egs. (4) and (5). When we
apply the convolution operation described in Section III-C, the
base application uses the systolic array in a weight-stationary
manner for § calculation. The convolution between the filter
and 6, to calculate §¢—1), is inherently parallel along the
input channel dimension as illustrated in Fig. 7. However,
the convolution between the input feature map and 61, to
calculate G, is computed in parallel in the output channel
dimension.

The issue lies in the cases where the input dimensions
and output dimensions are such that they are significantly
less than the dimensions of the systolic array. For example,
a 128 x 128 systolic array with 16 input channels and 32
filters will be utilized 12.5% if the dataflow is parallel in the
input channels dimension and 25% if the dataflow is parallel
in the output filters dimension. When interleaved scheduling
changes the calculation of G from output parallel to input
parallel, this could lead to better utilization if the number of
input channels is greater than the number of output channels
or vice versa. This is seen in the case of the inception past
the dimensionality reduction layers. This underutilization is
less prominent in networks like VGG and Resnet, where the
input and output layer dimensions are significantly larger than
the systolic array size. The filter size, F', plays a small role
in determining utilization. This is shown in Fig. S7 in the
mapping on the top right corner, where F' is never mapped to
a dimension of the array independently but always combined
with another variable. The characterization is less dependent
on the input feature map size as the input image is broken into
convolution windows, and the number of convolution windows
is combined with either the input channels or output channels.
In all the cases explored, the main bottleneck for the array is
when the number of input or output channels is small. Fig. S7

illustrates the underutilization of the different dataflows for the
first five layers of the VGG16 network. The top right table in
Fig. S7 indicates the number of operations mapped to the X
and Y dimensions of the array and the number of cycles (N) to
compute one array result. The table highlights which mappings
would lead to underutilization for different systolic array sizes.
For example, the table entries highlighted in grey would lead
to underutilization in all array sizes greater than and equal to
128 x 128.

This underutilization leads to lower throughput in the Inter-
Grad case, as shown in Fig. S7 for layers 1 and 3. Despite
this drawback, InterGrad has a considerably lower memory
footprint in all cases. This leads to InterGrad outperforming
all other dataflows in terms of energy consumption.

S4. CHARACTERIZATION OF THE WEIGHT UPDATE STEP

Implementing the weight update step in hardware may not
be practical in the context of interleaved gradient scheduling
for complex optimizers or operation tiling. Thus, it is essential
to characterize the energy-saving from the weight update step
compared to the savings from reusing §.

TABLE S1
ENERGY SAVINGS FROM THE WEIGHT UPDATE STEP AS A FRACTION OF
THE OVERALL SAVINGS WITH VARYING SYSTOLIC ARRAY SIZES.

Size | VGG16  ResNet50 InceptionV1
32 1.39% 0.74% 0.35%
64 2.67% 1.35% 0.61%
128 5.02% 2.52% 1.11%

Table S1 summarizes the percentage energy savings of
the SGD weight update step compared to the overall energy

. Savings from weight update
savings of the InterGrad (ZGroi o0 FE= e ). The

results were simulated by varying the systolic array size for
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Fig. S6. Input matrices for the output stationary calculation of G in Fig. 10. The 16 x 4 matrix at the top shows how the § ® map on the top right is
mapped to systolic array input. The 27 X 16 matrix at the bottom shows how the input features maps at the bottom right is mapped to systolic array input.
The red and black dotted boxes show how the convolution windows shown on the right is mapped to the matrix.
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Fig. S7. Analysis of utilization after mapping the first five layers of the VGG16 network. X and Y refer to the dimensions of the computation that need to be
mapped to the systolic array. The column headers define the dimensions of the variables. The table on the top right shows how the computation dimensions are
mapped to the systolic array. The underutilization array size table defines at what array size the mapping is underutilized (< 80% utilization). Underutilization
in smaller arrays always leads to underutilization in larger arrays. The comparison column compares the different approaches normalized to WS. WS is
Weight-stationary, OS is Output-stationary, and IG is the proposed interleaved scheduling (InterGrad).

multiple popular CNNs. As shown in Table S1, the savings
from the weight update step are only a small fraction of the
overall savings. There are two main contributing factors. First,
the weight update step has a more prominent role in the FC
layer than the convolution layers. Thus, networks where the FC
layer plays a more significant role, like VGG16, have a more
considerable weight update step. Second, with the increase
in array size, there is less inefficiency in communication

and fewer memory accesses. Thus, the contribution from the
reuse of § reduces, but it still accounts for most of the
energy savings. Thus a detailed tradeoff analysis is required to
evaluate supporting complex optimizers within the PE-array.
The weight update step could be offloaded to the main CPU,
or a dedicated hardware unit within the SFU. This should be
explored in future work.



	TCAS_2022_InterGrad-1.pdf
	InterGrad_Supplementary

