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AbstractÐWe extend earlier work on the design of convo-
lutional code-specific CRC codes to Q-ary alphabets, with an
eye toward Q-ary orthogonal signaling. Starting with distance-
spectrum optimal, zero-terminated, Q-ary convolutional codes,
we design Q-ary CRC codes so that the CRC/convolutional
concatenation is distance-spectrum optimal. The Q-ary code
symbols are mapped to a Q-ary orthogonal signal set and
sent over an AWGN channel with noncoherent reception. We
focus on Q = 4, rate-1/2 convolutional codes in our designs.
The random coding union bound and normal approximation
are used in earlier works as benchmarks for performance
for distance-spectrum-optimal convolutional codes. We derive
a saddlepoint approximation of the random coding union bound
for the coded noncoherent signaling channel, as well as a normal
approximation for this channel, and compare the performance
of our codes to these limits. Our best design is within 0.6 dB of
the RCU bound at a frame error rate of 10

−4.

I. INTRODUCTION

A. Background

Phase coherency between transmitter and receiver is nec-

essary for optimal reception. However, phase coherency can

be difficult to achieve in practice, so orthogonal signaling

with noncoherent reception is often used. The most common

examples of orthogonal signal sets are Q-ary Hadamard

sequences and Q-ary frequency shift keying (QFSK) [1]. We

will assume the latter throughout this paper. Non-coherent

FSK signaling is of practical importance. It is currently used

in Bluetooth [2]. More recently the LoRa standard has adopted

noncoherent QFSK signaling [3] [4].

For values of Q greater than 8, noncoherent QFSK loss

is small compared to coherent QFSK. In addition, for large

values of Q, noncoherent QFSK performs nearly as well as

BPSK signaling, at the expense of bandwidth. With these facts

in mind, developing good codes for noncoherent QFSK is very

important for contexts in which phase coherency is difficult or

impossible. This occurs when there is a high relative velocity

between the transmitter and the receiver or when the receiver

must be very simple or inexpensive. A natural code choice

for QFSK is a code based on a Q-ary alphabet so that code

symbols are directly mapped to modulation symbols.
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Binary convolutional codes concatenated with binary CRC

codes have been shown to perform very well on BPSK/QPSK

channels [5] [6] [7]. Following [5], we design Q-ary cyclic

redundancy check (CRC) codes to be concatenated with

optimal, Q-ary, zero-state-terminated convolutional codes

(ZTCC), where zeros are appended to the end of the CRC

word to force the convolutional encoder to terminate in the

zero state. We denote this concatenated code by CRC-ZTCC.

The Q-ary CRC code design criterion is optimization of

the distance spectrum of the concatenation of the CRC code

represented by g(x) and the convolutional code represented

by [g1(x) g2(x)], where each polynomial has Q-ary coeffi-

cients. With all operations over GF(Q), this concatenation is

equivalent to a Q-ary convolutional code with polynomials

[g(x)g1(x) g(x)g2(x)], which is ostensibly a catastrophic

convolutional code. However, rather than applying a Viterbi

decoder to this resultant code, we employ the list Viterbi

algorithm (LVA) [8]. The LVA produces a list of candidate

trellis paths in the original convolutional code trellis, ordered

by their likelihoods, and then chooses as its decision the most

likely path to pass the CRC check.

Design of codes for noncoherent orthogonal signaling has

been done for long messages in [9]±[12]. Here, we analyze

Q-ary CRC-ZTCC codes for short messages. Optimal Q-ary

convolutional codes for orthogonal signaling were described

by Ryan and Wilson [13]. We design distance-spectrum

optimal (DSO) CRCs for two of the codes in [13].

Since the pioneering work of Polyanskiy et al. [14], the

random coding union (RCU) bound has been used as a

measure of the performance quality of short-message binary

codes. The RCU bound is very difficult to calculate, but Font-

Segura et al. [15] derived a saddlepoint approximation for the

RCU bound that is more practical to calculate. In this paper

we extend their work to the noncoherent QFSK channel. We

also include here the normal approximation to the RCU bound

for its simplicity. A converse sphere packing bound was also

presented by Shannon [16] as a lower bound on error rate for

finite blocklength codes, and revisited by [17].

B. Contributions

This paper designs DSO Q-ary CRC codes for two 4-ary

ZTCCs selected from [13] and we apply their concatenation

to the noncoherent 4-FSK channel with list Viterbi decoding.

We also derive a saddlepoint approximation of the RCU



bound for the special case of the noncoherent QFSK channel.

The performances of the codes designed are compared to

their respective RCU bounds and the normal approximation.

Applying these techniques to larger values of Q is an area for

future work.

C. Organization

Section II details the channel model and properties of the

noncoherent QFSK channel. Section III then describes the

design criteria for optimal CRC-ZTCC concatenated codes, as

well as the algorithm for finding optimal CRCs. Section IV

then shows the equations for the saddlepoint approximation

for the RCU bound and derives the relevant equations for the

noncoherent QFSK channel. Finally, Section V presents the

performance of optimal CRC-ZTCC codes compared to the

RCU bound.

II. CHANNEL MODEL

Our discussion here of the noncoherent QFSK channel fol-

lows [18]. For a message symbol x ∈ {1, 2, ..., Q}, the trans-

mitter takes x = i and transmits the corresponding duration-

T signal si(t, φ) = A cos(ωit+ φ), where A =
√

2Es/T so

that the energy of the signal is Es, φ is uniform over [0, 2π),
and the frequencies ωi/2π are separated by a multiple of the

symbol rate to ensure mutual orthogonality among the signals

si(t).
The detector receives the signal r(t) = si(t, φ) + n(t),

where n(t) is zero mean AWGN with power spectral density

N0/2. The detector consists of Q pairs of correlators, with the

jth pair correlating r(t) against 2
N0
sj(t, 0) and 2

N0
sj(t,

π
2 ).

The two correlator outputs are then squared and summed, and

a square root is taken of the result. We denote this root-sum-

square of the two values by yj . The vector y = [y1, ..., yQ]
T

is the soft decision output of the detector.

If i ̸= j, the correlation of si(t, φ) and sj(t, 0) is 0 due

to orthogonality, and the same is true for the correlation

of si(t, φ) and sj(t,
π
2 ). As such, the value yj will be the

root-sum-square of two zero-mean Gaussian random variables

with variance σ2 = 2Es/N0. Thus, yj will have a Rayleigh

distribution with parameter σ2 = 2Es/N0. If i = j, however,

the Gaussian random variables that are root-sum-squared will

not be zero mean. As a result, yj will instead have a Rice

distribution with parameters µ = 2Es/N0 and σ2 = 2Es/N0.

The Rayleigh and Rice distributions are as follows:

fRayleigh(yj |x = i) =
yj
σ2

exp

[

−
y2j
2σ2

]

(1)

fRice(yi |x = i) =
yi
σ2
I0(yi) exp

[

−y
2
i + µ2

2σ2

]

(2)

where I0(.) is the zeroth-order modified Bessel function of

the first kind.

The optimal decoding metrics, i.e., log likelihoods, for the

AWGN channel involves the logarithm of a Bessel function

[18] which is clearly impractical. In practice, the "square-law

metric" y2i is generally used instead of the optimal metrics [9],

[13], [19]. We found that yi performs better than the square-

law metric y2i suggested in these papers, and yi is a better

approximation for the optimal metric. Optimal decoding for

noncoherent QFSK is an area for future attention.

Given the message symbol x = i, the received vector y
has a density function that is the product of one Rice density

function, corresponding to yi, and Q − 1 Rayleigh density

function, corresponding to all yj for j ̸= i. This yields the

following transition probabilities for the noncoherent QFSK

channel:

W (y |x = i) =

∏Q
k=1 yk
σ2Q

I0(yi) exp

[

−µ
2 +

∑Q
k=1 y

2
k

2σ2

]

(3)

III. CRC/CONVOLUTIONAL CODE DESIGN FOR QFSK

The asymptotic (in signal-to-noise ratio, SNR) codeword-

error rate (also, frame-error rate) for a length-n block code

with minimum distance dmin on the QFSK/AWGN channel

is union upper bounded [13] as

Pcw <
n
∑

d=dmin

N(d)P2(d) (4)

where N(d) is the number of weight-d codewords in the code

and P2(d) is the pairwise error probability for two codewords

at distance d. Asymptotically in SNR, P2(d) decreases with

increasing d [13] so that, from the bound, codes should be

designed with dmin as large as possible. Also from the bound,

for each d, the multiplicities N(d) should be as small as

possible. Codes satisfying these criteria are called distance-

spectrum optimal (DSO).

Ryan and Wilson [13] have found optimal non-binary

convolutional codes for small memory. These codes are op-

timal in the sense of maximizing the free distance dfree and

minimizing the information symbol weight at each weight

w ≥ dfree.

In 2015, Lou et. al. [5] showed the importance of designing

CRC codes for specific convolutional codes. An optimal CRC

should minimize the frame error rate (FER) of the CRC-

ZTCC concatenated code based on the union bound above

on FER. These CRCs are called distance-spectrum-optimal

CRCs. It can also be shown that, at high signal-to-noise

ratio, this is equivalent to maximizing the minimum Hamming

distance dmin of the concatenated code, and minimizing the

number of codewords N(dmin) at dmin and weights near

dmin. This criterion is very similar to the criterion for the

optimal convolutional codes in [13].

In this paper, we adapt the methods in [5] to find DSO

CRCs for 4-ary convolutional codes. We consider a memory-

2 (ν = 2) and a memory-4 (ν = 4) code presented in

[13]. The convolutional code generator polynomials g1 and

g2 can be found in Table I and the optimal CRC polynomials

are in Table II, with the x0 coefficient appearing on the

left. These polynomials are elements of GF (4)[x], with



TABLE I
GENERATOR POLYNOMIALS FOR THE MEMORY-2 AND MEMORY-4 4-ARY

CONVOLUTIONAL CODES

ν g1 g2 dfree Nt(dfree) Nc(dfree)
2 (1, 1, 1) (1, α, 1) 6 6 381

4 (1, 1, 1, β, α) (1, α, 1, α, β) 9 6 378

TABLE II
DSO CRC POLYNOMIALS FOR THE MEMORY-2 AND MEMORY-4 4-ARY

CONVOLUTIONAL CODES

ν m g dmin Nt(dmin) Nc(dmin)
2 3 (1, β, 1, α) 11 21 1305

2 4 (1, 0, 0, β, α) 12 18 612

2 5 (1, 0, 0, α, β, 1) 13 6 273

2 6 (1, α, β, 0, 1, 1, α) 15 48 2442

2 7 (1, 0, 1, β, β, β, 0, α ) 16 21 1029

2 8 (1, α, α, α, 1, α, α, α, β) 17 9 345

4 3 (1, β, α, β) 14 30 1839

4 4 (1, 0, 0, β, β) 15 15 921

4 5 (1, 0, β, β, 0, 1) 16 3 174

4 6 (1, β, 1, α, α, 1, β) 18 21 1266

4 7 (1, 1, 1, α, β, β, 1, α) 19 9 561

GF (4) = {0, 1, α, β} where α is a primitive element of

GF (4) and β = α2.

The DSO CRC polynomials for each convolutional code

and each CRC-ZTCC are found through an exhaustive search.

We begin by initializing a list with every CRC polynomial

of degree m and setting a max weight to search to d̃. For

every weight from w = dfree to w = d̃, we find the number

of codewords of Hamming weight w for each CRC-ZTCC

concatenated code with polynomials [g(x)g1(x) g(x)g2(x)].
Codewords are found by the same process used in [5],

adapted for CRC-ZTCC codes in GF (4). This is done by

traversing through the trellis of the CRC-ZTCC code for each

CRC. We begin in the zero state. For 4-ary CRC-ZTCC codes,

each state can transition into four possible new states, one

for each element of GF (4). We traverse through the trellis,

allowing all possible state transitions, and we maintain a list

of every codeword constructed this way. A trellis path is

eliminated from contention if the corresponding codeword

reaches a weight of d̃ before rejoining the zero state. If a path

reaches the end of the trellis in the zero state with a codeword

weight w ≤ d̃, we increment the count of the number of

codewords at weight w for this CRC-ZTCC.

After the distance spectra for every CRC-ZTCC is found,

we find which CRC-ZTCC has the largest dmin. If multiple

CRC-ZTCCs have the same dmin, we select whichever CRC-

ZTCC has the least number of codewords at dmin. If there

is a tie for the smallest number of codewords at dmin, we

compare the number of codewords at dmin + 1, and we

continue incrementing until the tie is broken. Table I and

Table II show the minimum distances dfree and dmin for

the convolutional codes and CRC-ZTCCs, respectively.

Often, the distance spectrum for a convolutional code is

given in terms of of the number of error events at each

weight w, as in [20]. This metric only cares about the number

of paths on the trellis that diverge from the zero state and

eventually rejoin, independent of codeword length. However,

in this paper we analyze CRC-ZTCCs as a block code, so the

more important metric is the number of codewords of weight

w. Table I and Table II provide both the number of error

events on the trellis at w = dmin, Nt(dmin), and the number

of codewords for the block code, Nc(dmin).

IV. RCU BOUND EQUATIONS

The RCU bound is an achievability bound for codes of a

given rate and finite blocklength, first described by Polyan-

skiy, Poor, and Verdú in 2010 [14]. The RCU bound is defined

in [14] as follows: let n and m be positive integers. Let Pn(x)
be a probability distribution for a random coding ensemble

for codewords of length n, and let Wn(y|x) be a length-n
channel transition probability. The RCU bound for a length-n
code with M codewords is given by

rcu(n,M) = EX,Y [min {1, (M − 1)pep(X,Y )}] (5)

where EX,Y is the expectation over X and Y , X is a random

variable drawn from Pn(x), Y is a random variable drawn

from Wn(y|X),

pep(X,Y ) = P[i(X̄;Y ) ≥ i(X;Y ) | X,Y ] (6)

is the pairwise error probability with X̄ drawn from Pn(x),
and i(X;Y ) is the mutual information density of X and Y .

Calculating the RCU bound using this definition is com-

putationally hard for most practical situations. In 2018, Font-

Segura et. al. [15] presented a saddlepoint approximation for

the RCU bound to reduce computation complexity. In this

section, we will present the equations for the saddlepoint

approximation of the RCU bound, find expressions for the

derivatives of necessary functions, and apply the noncoherent

orthogonal signal channel model to the equations in [15].

We start with Gallager’s E0-function [21], which is a

function of a distribution over the message symbol alphabet

P (x) and channel W (y |x = i). We will write W (y | i)
for W (y |x = i) for notational simplicity. The Gallager E0

function is defined as

E0(ρ) = − log

∫

(

Q
∑

i=1

P (x = i)W (y | i) 1
1+ρ

)1+ρ

dy (7)

where log is the natural logarithm. For the saddlepoint ap-

proximation of the RCU bound, we must find the first and

second derivatives of E0(ρ) with respect to ρ. We will assume

a uniform distribution P (x) = 1/Q, as this is optimal for

symmetric channels as is the case for our channel.

These derivatives are notationally complex due to exponen-

tiation in ρ, so to simplify we define the following functions:

f(y, ρ) =

Q
∑

i=1

W (y |x = i)
1

1+ρ (8)

g(y, ρ) =
∂

∂ρ

(

f(y, ρ)1+ρ
)

(9)



g′(y, ρ) = g(y, ρ)

(

log f(y, ρ) +
(1 + ρ)f ′(y, ρ)

f(y, ρ)

)

+ f(y, ρ)1+ρ

(

2f ′(y, ρ)

f(y, ρ)
+ (1 + ρ)

(

f ′′(y, ρ)

f(y, ρ)
−
(

f ′(y, ρ)

f(y, ρ)

)2
))

(16)

We now find the derivatives of E0 in terms of f and g.

Note that we will use the notation f ′(y, ρ) = ∂
∂ρf(y, ρ) since

all derivatives are with respect to ρ.

We can rewrite E0(ρ) as

E0(ρ) = (1 + ρ) logQ− log

(
∫

f(y, ρ)1+ρdy

)

(10)

This yields the following for the derivatives of E0(ρ):

E′
0(ρ) = logQ−

∫

g(y, ρ)dy
∫

f(y, ρ)1+ρdy
(11)

E′′
0 (ρ) =

(
∫

g(y, ρ)dy)2

(
∫

f(y, ρ)1+ρdy)2
−

∫

g′(y, ρ)dy
∫

f(y, ρ)1+ρdy
(12)

The relevant derivatives of f and g are shown in equations

(13)-(16).

f ′(y, ρ) = −
Q
∑

i=1

W (y | i) 1
1+ρ logW (y | i)
(1 + ρ)2

(13)

f ′′(y, ρ) =

Q
∑

i=i

W (y | i) 1
1+ρ logW (y | i)
(1 + ρ)3

(

logW (y | i)
1 + ρ

+ 2

)

(14)

g(y, ρ) = f(y, ρ)1+ρ

(

log f(y, ρ) +
(1 + ρ)f ′(y, ρ)

f(y, ρ)

)

(15)

With these derivatives, we finally give the saddlepoint

approximation for the RCU bound as given in [15]. Let

R = 1
n logM be the code rate. We define ρ̂ to be the

unique solution to the equation E′
0(ρ̂) = R. We also define

the channel dispersion V (ρ̂) = −E′′
0 (ρ̂). The saddlepoint

approximation of the RCU bound is given by

rcu(n,M) ≃ ξ̃n(ρ̂) + ψn(ρ̂)e
−n(E0(ρ̂)−ρ̂R) (17)

where the functions ξ̃(.) and ψn(.) are given by

ξ̃(ρ̂) =







1 ρ̂ < 0
0 0 ≤ ρ̂ ≤ 1
e−n(E0(1,P )−R)θn(1) ρ̂ > 1

(18)

ψn(ρ̂) = θn(ρ̂)
(

Ψ(ρ̂
√

nV (ρ̂)) + Ψ((1−ρ̂)
√

nV (ρ̂)
)

(19)

The function ψn(.) is given in terms of the functions Ψ(.)
and θn(.) which are defined as

Ψ(z) =
1

2
erfc

( |z|√
2

)

exp

(

z2

2

)

sign(z) (20)

θn(ρ̂) ≃
1√
1 + ρ̂

(

1 + ρ̂
√

2πnω̄′′(ρ̂)

)ρ̂

(21)

where ω̄′′(ρ̂) is given as

ω̄′′(ρ̂) =

∫

Qρ̂(y)

[

∂2

∂τ2
α(y, τ)τ=τ̂

]

dy (22)

and the derivative in ω̄′′(ρ̂) is evaluated at τ̂ = 1/(1+ ρ̂). The

closed form expression for ∂2

∂τ2α(y, τ) is given by equations

(23)-(26).

∂2

∂τ2
α(y, τ) =

β(y, τ) ∂2

∂τ2 β(y, τ)−
(

∂
∂τ β(y, τ)

)2

β(y, τ)2
(23)

β(y, τ) =
1

M

M
∑

i=1

W (y|i)τ (24)

∂

∂τ
β(y, τ) =

1

M

M
∑

i=1

W (y|i)τ logW (y|i) (25)

∂2

∂τ2
β(y, τ) =

1

M

M
∑

i=1

W (y|i)τ (logW (y|i))2 (26)

Finally, the distribution Qρ̂(.) is defined as

Qρ̂(y) =
1

µ(ρ̂)

(

1

M

M
∑

i=1

W (y|i) 1
1+ρ̂

)1+ρ̂

(27)

where µ(ρ̂) is a normalization constant for the distribution

Qρ̂(y).
The noncoherent QFSK channel has the channel transition

probability W (y |x) given in Section II. Noteworthy about

this channel is that y is a vector with length equivalent to

the number of orthogonal signals, Q, and every element of y
is positive since they are generated from a Rayleigh or Rice

distribution. As such, the integrals with respect to y in the

saddlepoint approximation must be evaluated over R
Q
+, the

space of length-Q real vectors with all positive elements.

While the calculation of the saddlepoint approximation of

the RCU bound is less complex than the true calculation

of the RCU bound, it is still very complex. The normal

approximation [14] relies on numerical integration to find

the channel capacity of the noncoherent QFSK channel [19]

and the channel dispersion V , and is thus much easier to

calculate. We now present the normal approximation for the

QPSK/AWGN channel, following [22].



Over the ensemble of length-n, rate-R codes, according

to the normal approximation the frame-error rate (FER) is

approximately given by

FER = q

(

n(C −R) + 0.5 log2(n) + O(1)√
nV

)

(28)

where q(x) =
∫∞

x
e−z2/2dz/

√
2π and C and R are both in

units of bits per channel use. The channel capacity C in this

expression is given [19] by the expectation of the channel

information density, i(X;Y ),

C = E [i(X;Y )] (29)

which can be rearranged [19] into

C = log2(Q)− Ey|x=1

[

log2

(

1 +

Q
∑

i=2

Λi(y)

)]

(bits/use)

(30)

where

Λi(y) =
I0 (yi)

I0 (y1)
(31)

and y1 is Rician and each yi is Rayleigh. In the FER

expression, V is the channel dispersion given by

V = E





(

log2(Q)− log2

(

1 +

Q
∑

i=2

Λi(y)

)

− C

)2




(32)

V. RESULTS

We simulate CRC-ZTCC codes with the convolutional gen-

erator polynomials shown in Table I and the CRC polynomials

in Table II. We used a message length of K = 64 4-ary

symbols, i.e. 128 bits, for all CRC-ZTCCs. Our codes are rate-

K/(2∗(K+m+ν)), where m symbols are added for the CRC

code and ν symbols are added for zero-state termination. The

decoder we used was an adaptive list Viterbi algorithm (LVA)

decoder with a maximum list size of 2048, as in [23]. The

adaptive LVA employs parallel list decoding with an initial

list size of 1 and doubles the list size until either a message

candidate is found that passes the CRC check or the maximum

list size of 2048 is reached.

Fig. 1 shows the FER vs. Eb/N0 of the ν = 2 rate-1/2

CRC-ZTCC codes. The values of m vary from m = 3 to

m = 8. We also include the FER curve of the ZTCC without

CRC concatenation (m = 0). We see that increasing the length

of the CRC improves the performance of the CRC-ZTCC

code. However, there is still a 1 dB gap between the best

FER performance and the RCU bound.

Fig. 2 shows FER vs. Eb/N0 for the ν = 4 rate-1/2 CRC-

ZTCC codes. As in Fig. 1, the performance of the CRC-ZTCC

improves as m increases. Fig. 2 shows ν = 4 CRC-ZTCCs

approach the RCU bound more closely than the ν = 2 CRC-

ZTCCs, reducing the gap down to 0.59 dB at FER = 10−4.
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Fig. 1. FER vs. Eb/N0 for all ν = 2 CRC-ZTCC codes. The solid lines are
the data for codes, and the dashed lines are the corresponding RCU bounds.
Each message had a length of K = 64 4-ary symbols, and the decoder had
a maximum list size of 2048. The best CRC-ZTCC code has a gap of about
0.9 dB to RCU bound at an FER of 10−4.
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Fig. 2. FER vs. Eb/N0 for all ν = 4 CRC-ZTCC codes. The solid lines are
the data for codes, and the dashed lines are the corresponding RCU bounds.
Each message had a length of K = 64 4-ary symbols, and the decoder had
a maximum list size of 2048. The best CRC-ZTCC code has a gap of about
0.59 dB to RCU bound at an FER of 10−4.

Fig. 3 compares every code we have simulated to its

respective RCU bound, to visualize the performance of all

the codes, plotting the gap between each code’s performance

and the RCU bound as a function of the FER. Larger values

of m achieve smaller gaps to the RCU bound. Generally, the

ν = 4 CRC-ZTCCs have smaller gaps to the RCU bound than

ν = 2 CRC-ZTCCs. The gap to RCU bound increases as the

FER decreases.

Our best 4-ary CRC-ZTCC has a gap to RCU bound of

around 0.59 dB at FER = 10−4. This matches closely with
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Fig. 3. Gap to RCU bound vs. FER for every CRC-ZTCC code. Higher
values for m have a smaller gap, and the ν = 4 codes have a smaller gap
than the ν = 2 codes. The gap also increases as FER decreases.

the results in [7] for the analysis of binary CRC-ZTCCs.

This motivates the search for optimal CRCs for 4-ary tail

biting convolutional codes (CRC-TBCCs), since binary CRC-

TBCCs in [7] approach the RCU bound closely.

Our simulations revealed that as Eb/N0 decreases, the

expected list size converges to around 4m, except when

limited by our maximum list size of 2048. This behavior

matches the results in [7]. As Eb/N0 increases, or as FER

decreases, the expected list size converges to 1. For example,

at Eb/N0 = 6.5 dB the expected list size for all of the ν = 4
CRC-ZTCCs is less than 1.06. This behavior also matches the

results in [7].

VI. CONCLUSION

This paper presents CRC-ZTCC concatenated codes for Q-

ary orthogonal signaling, designing CRCs for specific ZTCCs

to optimize the distance spectrum to achieve the best possible

FER performance. To compare with our simulations, the paper

also derives saddlepoint approximations of the RCU bound

and presents the normal approximation for the noncoherent

QFSK channel.

List decoding using a distance-spectrum optimal CRC

significantly improves the minimum distance and the FER

performance compared to the ZTCC decoded without the

benefit of CRC-aided list decoding. At FER 10−4, CRC-aided

list decoding improves the ν = 2 ZTCC by between 1.2 and

1.4 dB and the ν = 4 ZTCC by between 0.7 and 0.8 dB. The

performance improvement increases as the size of the CRC is

increased. At low FER (or equivalently high SNR) the average

list size approaches 1 so that the average complexity burden

of such list decoding is minimal. Our best CRC-ZTCC design

is within 0.59 dB of the RCU bound at an FER of 10−4.

This paper focuses on ZTCC-CRC code designs, but

TBCC-CRCs have been shown to approach very close to

the RCU bound at short blocklengths. Future work will

design CRCs for Q-ary TBCCs. Future work will also ex-

plore designs for higher values of Q. This paper used sub-

optimal decoding metrics for reduced complexity, and future

investigations will assess the performance gain possible with

optimal decoding metrics.
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