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Abstract—We extend earlier work on the design of convo-
lutional code-specific CRC codes to (Q-ary alphabets, with an
eye toward Q-ary orthogonal signaling. Starting with distance-
spectrum optimal, zero-terminated, (Q-ary convolutional codes,
we design Q-ary CRC codes so that the CRC/convolutional
concatenation is distance-spectrum optimal. The Q-ary code
symbols are mapped to a (Q-ary orthogonal signal set and
sent over an AWGN channel with noncoherent reception. We
focus on Q = 4, rate-1/2 convolutional codes in our designs.
The random coding union bound and normal approximation
are used in earlier works as benchmarks for performance
for distance-spectrum-optimal convolutional codes. We derive
a saddlepoint approximation of the random coding union bound
for the coded noncoherent signaling channel, as well as a normal
approximation for this channel, and compare the performance
of our codes to these limits. Our best design is within 0.6 dB of
the RCU bound at a frame error rate of 10

I. INTRODUCTION
A. Background

Phase coherency between transmitter and receiver is nec-
essary for optimal reception. However, phase coherency can
be difficult to achieve in practice, so orthogonal signaling
with noncoherent reception is often used. The most common
examples of orthogonal signal sets are (-ary Hadamard
sequences and Q-ary frequency shift keying (QFSK) [1]. We
will assume the latter throughout this paper. Non-coherent
FSK signaling is of practical importance. It is currently used
in Bluetooth [2]. More recently the LoRa standard has adopted
noncoherent QFSK signaling [3] [4].

For values of () greater than 8, noncoherent QFSK loss
is small compared to coherent QFSK. In addition, for large
values of (), noncoherent QFSK performs nearly as well as
BPSK signaling, at the expense of bandwidth. With these facts
in mind, developing good codes for noncoherent QFSK is very
important for contexts in which phase coherency is difficult or
impossible. This occurs when there is a high relative velocity
between the transmitter and the receiver or when the receiver
must be very simple or inexpensive. A natural code choice
for QFSK is a code based on a )-ary alphabet so that code
symbols are directly mapped to modulation symbols.
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Binary convolutional codes concatenated with binary CRC
codes have been shown to perform very well on BPSK/QPSK
channels [5] [6] [7]. Following [5], we design Q-ary cyclic
redundancy check (CRC) codes to be concatenated with
optimal, (Q-ary, zero-state-terminated convolutional codes
(ZTCC), where zeros are appended to the end of the CRC
word to force the convolutional encoder to terminate in the
zero state. We denote this concatenated code by CRC-ZTCC.

The @-ary CRC code design criterion is optimization of
the distance spectrum of the concatenation of the CRC code
represented by g(z) and the convolutional code represented
by [g1(z) g2(x)], where each polynomial has @Q-ary coeffi-
cients. With all operations over GF(Q), this concatenation is
equivalent to a (Q-ary convolutional code with polynomials
[g(x)g1(z) g(x)g2(x)], which is ostensibly a catastrophic
convolutional code. However, rather than applying a Viterbi
decoder to this resultant code, we employ the list Viterbi
algorithm (LVA) [8]. The LVA produces a list of candidate
trellis paths in the original convolutional code trellis, ordered
by their likelihoods, and then chooses as its decision the most
likely path to pass the CRC check.

Design of codes for noncoherent orthogonal signaling has
been done for long messages in [9]-[12]. Here, we analyze
@-ary CRC-ZTCC codes for short messages. Optimal Q-ary
convolutional codes for orthogonal signaling were described
by Ryan and Wilson [13]. We design distance-spectrum
optimal (DSO) CRC:s for two of the codes in [13].

Since the pioneering work of Polyanskiy et al. [14], the
random coding union (RCU) bound has been used as a
measure of the performance quality of short-message binary
codes. The RCU bound is very difficult to calculate, but Font-
Segura et al. [15] derived a saddlepoint approximation for the
RCU bound that is more practical to calculate. In this paper
we extend their work to the noncoherent QFSK channel. We
also include here the normal approximation to the RCU bound
for its simplicity. A converse sphere packing bound was also
presented by Shannon [16] as a lower bound on error rate for
finite blocklength codes, and revisited by [17].

B. Contributions

This paper designs DSO @Q-ary CRC codes for two 4-ary
ZTCCs selected from [13] and we apply their concatenation
to the noncoherent 4-FSK channel with list Viterbi decoding.
We also derive a saddlepoint approximation of the RCU



bound for the special case of the noncoherent QFSK channel.
The performances of the codes designed are compared to
their respective RCU bounds and the normal approximation.
Applying these techniques to larger values of () is an area for
future work.

C. Organization

Section II details the channel model and properties of the
noncoherent QFSK channel. Section III then describes the
design criteria for optimal CRC-ZTCC concatenated codes, as
well as the algorithm for finding optimal CRCs. Section IV
then shows the equations for the saddlepoint approximation
for the RCU bound and derives the relevant equations for the
noncoherent QFSK channel. Finally, Section V presents the
performance of optimal CRC-ZTCC codes compared to the
RCU bound.

II. CHANNEL MODEL

Our discussion here of the noncoherent QFSK channel fol-
lows [18]. For a message symbol z € {1,2, ..., @}, the trans-
mitter takes z = ¢ and transmits the corresponding duration-
T signal s;(t,$) = Acos(w;t + ¢), where A = \/2E/T so
that the energy of the signal is E, ¢ is uniform over [0, 27),
and the frequencies w; /27 are separated by a multiple of the
symbol rate to ensure mutual orthogonality among the signals
Sl(t)

The detector receives the signal r(t) = s;(t,¢) + n(t),
where n(t) is zero mean AWGN with power spectral density
Ny/2. The detector consists of Q) pairs of correlators, with the
Jjth pair correlating r(t) against - sj (t,0) and 2 nosi(t )
The two correlator outputs are then squared and summed and
a square root is taken of the result. We denote this root-sum-
square of the two values by y;. The vector y = [y1, ..., yo]”
is the soft decision output of the detector.

If i # j, the correlation of s;(t,¢) and s;(¢,0) is O due
to orthogonality, and the same is true for the correlation
of si(t,¢) and s;(t, ). As such, the value y; will be the
root-sum-square of two zero-mean Gaussian random variables
with variance 02 = 2E,/Ny. Thus, y; will have a Rayleigh
distribution with parameter 02 =2F, /No. If i = j, however,
the Gaussian random variables that are root-sum-squared will
not be zero mean. As a result, y; will instead have a Rice
distribution with parameters y = 2E, /Ny and 02 = 2E,/Ny.
The Rayleigh and Rice distributions are as follows:
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where Io(.) is the zeroth-order modified Bessel function of
the first kind.

The optimal decoding metrics, i.e., log likelihoods, for the
AWGN channel involves the logarithm of a Bessel function
[18] which is clearly impractical. In practice, the "square-law
metric" y? is generally used instead of the optimal metrics [9],

[13], [19]. We found that y; performs better than the square-
law metric y? suggested in these papers, and y; is a better
approximation for the optimal metric. Optimal decoding for
noncoherent QFSK is an area for future attention.

Given the message symbol z = ¢, the received vector y
has a density function that is the product of one Rice density
function, corresponding to y;, and () — 1 Rayleigh density
function, corresponding to all y; for j # 4. This yields the
following transition probabilities for the noncoherent QFSK
channel:
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III. CRC/CONVOLUTIONAL CODE DESIGN FOR QFSK

The asymptotic (in signal-to-noise ratio, SNR) codeword-
error rate (also, frame-error rate) for a length-n block code
with minimum distance d,,;, on the QFSK/AWGN channel
is union upper bounded [13] as

Poy < ) N(d)Py(d) “)
d=dmin

where N (d) is the number of weight-d codewords in the code
and P5(d) is the pairwise error probability for two codewords
at distance d. Asymptotically in SNR, P»(d) decreases with
increasing d [13] so that, from the bound, codes should be
designed with d,,;,, as large as possible. Also from the bound,
for each d, the multiplicities N(d) should be as small as
possible. Codes satisfying these criteria are called distance-
spectrum optimal (DSO).

Ryan and Wilson [13] have found optimal non-binary
convolutional codes for small memory. These codes are op-
timal in the sense of maximizing the free distance d ;.. and
minimizing the information symbol weight at each weight
w > d free-

In 2015, Lou et. al. [5] showed the importance of designing
CRC codes for specific convolutional codes. An optimal CRC
should minimize the frame error rate (FER) of the CRC-
ZTCC concatenated code based on the union bound above
on FER. These CRCs are called distance-spectrum-optimal
CRCs. It can also be shown that, at high signal-to-noise
ratio, this is equivalent to maximizing the minimum Hamming
distance d,,;, of the concatenated code, and minimizing the
number of codewords N(d,,in) at d,q, and weights near
dmin. This criterion is very similar to the criterion for the
optimal convolutional codes in [13].

In this paper, we adapt the methods in [5] to find DSO
CRC:s for 4-ary convolutional codes. We consider a memory-
2 (v = 2) and a memory-4 (v = 4) code presented in
[13]. The convolutional code generator polynomials g; and
g2 can be found in Table I and the optimal CRC polynomials
are in Table II, with the z° coefficient appearing on the
left. These polynomials are elements of GF(4)[z], with



TABLE I
GENERATOR POLYNOMIALS FOR THE MEMORY-2 AND MEMORY-4 4-ARY
CONVOLUTIONAL CODES

v g1 g2 dfree Nt(df'ree) Nc(dfree)

2 (1, 1, 1) (1, o, 1) 6 6 381

41(L 1, LB |, al a B) 9 6 378
TABLE II

DSO CRC POLYNOMIALS FOR THE MEMORY-2 AND MEMORY-4 4-ARY
CONVOLUTIONAL CODES

vim g dmzn Ny (dmzn) Nc(dmzn)
213 1, 8,1, @) 11 21 1305
214 (1,0,0, 8, @) 12 18 612
215 (1,0,0, o, B, 1) 13 6 273
216 1, a,5,0,1, 1, ) 15 48 2442
217 (1,0, 1,8, 8, 8,0, a) 16 21 1029
218 | (Lo, a, o, 1, o, v, o, B) | 17 9 345
413 1, 8, a, B) 14 30 1839
41 4 (1,0,0, 8, B) 15 15 921
415 (1,0, 8, 8,0, 1) 16 3 174
416 a1, s, 1, a, a1, B) 18 21 1266
47 a1, L, 1,a 8,8, 1, ) 19 9 561
GF(4) = {0,1,«a,3} where « is a primitive element of

GF(4) and 8 = o?.

The DSO CRC polynomials for each convolutional code
and each CRC-ZTCC are found through an exhaustive search.
We begin by initializing a list with every CRC polynomial
of degree m and setting a max weight to search to d. For
every weight from w = df,c. to w = d, we find the number
of codewords of Hamming weight w for each CRC-ZTCC
concatenated code with polynomials [g(z)g1(x) g(x)g2(x)].

Codewords are found by the same process used in [5],
adapted for CRC-ZTCC codes in GF(4). This is done by
traversing through the trellis of the CRC-ZTCC code for each
CRC. We begin in the zero state. For 4-ary CRC-ZTCC codes,
each state can transition into four possible new states, one
for each element of GF'(4). We traverse through the trellis,
allowing all possible state transitions, and we maintain a list
of every codeword constructed this way. A trellis path is
eliminated from contention if the corresponding codeword
reaches a weight of d before rejoining the zero state. If a path
reaches the end of the trellis in the zero state with a codeword
weight w < d~, we increment the count of the number of
codewords at weight w for this CRC-ZTCC.

After the distance spectra for every CRC-ZTCC is found,
we find which CRC-ZTCC has the largest d.,;,. If multiple
CRC-ZTCCs have the same d,,;,,, we select whichever CRC-
ZTCC has the least number of codewords at d,,,;,,. If there
is a tie for the smallest number of codewords at d,,;,, we
compare the number of codewords at d,,;, + 1, and we
continue incrementing until the tie is broken. Table I and
Table II show the minimum distances dfyee and dpsy, for
the convolutional codes and CRC-ZTCCs, respectively.

Often, the distance spectrum for a convolutional code is
given in terms of of the number of error events at each
weight w, as in [20]. This metric only cares about the number
of paths on the trellis that diverge from the zero state and

eventually rejoin, independent of codeword length. However,
in this paper we analyze CRC-ZTCCs as a block code, so the
more important metric is the number of codewords of weight
w. Table I and Table II provide both the number of error
events on the trellis at w = dnin, Ni(dmin), and the number
of codewords for the block code, N¢(dpmin)-

IV. RCU BOUND EQUATIONS

The RCU bound is an achievability bound for codes of a
given rate and finite blocklength, first described by Polyan-
skiy, Poor, and Verdd in 2010 [14]. The RCU bound is defined
in [14] as follows: let n and m be positive integers. Let P™(x)
be a probability distribution for a random coding ensemble
for codewords of length n, and let W™ (y|z) be a length-n
channel transition probability. The RCU bound for a length-n
code with M codewords is given by

reu(n, M) =Exy min{l, (M — 1)pep(X,Y)}] (5)

where Ex y is the expectation over X and Y, X is a random
variable drawn from P"(z), Y is a random variable drawn
from W™ (y|X),

pep(X,Y) =Pli(X;Y) > i(X;Y) | X,Y] (6)

is the pairwise error probability with X drawn from P"(z),
and ¢(X;Y) is the mutual information density of X and Y.

Calculating the RCU bound using this definition is com-
putationally hard for most practical situations. In 2018, Font-
Segura et. al. [15] presented a saddlepoint approximation for
the RCU bound to reduce computation complexity. In this
section, we will present the equations for the saddlepoint
approximation of the RCU bound, find expressions for the
derivatives of necessary functions, and apply the noncoherent
orthogonal signal channel model to the equations in [15].

We start with Gallager’s Ejy-function [21], which is a
function of a distribution over the message symbol alphabet
P(z) and channel W(y|z = ). We will write W (y|1)
for W(y |z = i) for notational simplicity. The Gallager Ej
function is defined as

1+p
Ey(p) log/ (ZP x=1i)W(y| )1ip> dy (7)

where log is the natural logarithm. For the saddlepoint ap-
proximation of the RCU bound, we must find the first and
second derivatives of Ey(p) with respect to p. We will assume
a uniform distribution P(z) = 1/Q, as this is optimal for
symmetric channels as is the case for our channel.

These derivatives are notationally complex due to exponen-
tiation in p, so to simplify we define the following functions:

Q 1
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We now find the derivatives of Ej in terms of f and g.
Note that we will use the notation f’(y, p) = 8% (y, p) since
all derivatives are with respect to p.

We can rewrite Fy(p) as

Eo(p) = (1 + p)log Q — log (/f(y,p)”pdy> (10)

This yields the following for the derivatives of Ey(p):

[ 9y, p)dy

= loe@ - [ fly,p)ttrdy

E(p) (an
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The relevant derivatives of f and g are shown in equations
(13)-(16).

Ej(p) = (12)
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With these derivatives, we finally give the saddlepoint
approximation for the RCU bound as given in [15]. Let
R = %logM be the code rate. We define p to be the
unique solution to the equation E{(p) = R. We also define
the channel dispersion V(p) = —E{/(p). The saddlepoint
approximation of the RCU bound is given by

reu(n, M) = &,(p) + ¢n(p)e "E@=PR) —(17)

where the functions £(.) and v,,(.) are given by

<
<p<li (18)

Un(p) = 0(p) (W(pV/nV(P) + W(1=p)\/nV (5)) (19)

The function v, (.) is given in terms of the functions ¥(.)
and 6,,(.) which are defined as

U(z) = 5erfc ( f) exp ( 5 > sign(z) (20)
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where &' (p) is given as

&"( /Qp [82 (y,7)

and the derivative in @" () i 1s evaluated at7=1/(14+p). The

closed form expression for - 2o<(y, T) is given by equations
(23)-(26).

= T] dy (22)
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Finally, the distribution Q(.) is defined as

| M 1+p
ﬁmMZWM%> @7)
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where p(p) is a normalization constant for the distribution
Qp(y).

The noncoherent QFSK channel has the channel transition
probability W (y|x) given in Section II. Noteworthy about
this channel is that y is a vector with length equivalent to
the number of orthogonal signals, @), and every element of y
is positive since they are generated from a Rayleigh or Rice
distribution. As such, the integrals with respect to y in the
saddlepoint approximation must be evaluated over Rf, the
space of length-@ real vectors with all positive elements.

While the calculation of the saddlepoint approximation of
the RCU bound is less complex than the true calculation
of the RCU bound, it is still very complex. The normal
approximation [14] relies on numerical integration to find
the channel capacity of the noncoherent QFSK channel [19]
and the channel dispersion V, and is thus much easier to
calculate. We now present the normal approximation for the
QPSK/AWGN channel, following [22].

(log W (y|i))? (26)

Q) =




Over the ensemble of length-n, rate-R codes, according
to the normal approximation the frame-error rate (FER) is
approximately given by

FER =g <n(C— R) + 0.5logy(n) + O(l)) (28)

VnV

where g(z) = [~ e *'/2dz//2x and C and R are both in
units of bits per channel use. The channel capacity C' in this
expression is given [19] by the expectation of the channel
information density, i(X;Y),

C=E[i(X;Y)] (29)

which can be rearranged [19] into

Q
C =logy(Q) — Eyjpa—s llog2 (1 + Z Ai(y) )1 (bits/use)

i=2 30)
where
Io (i)
A (y) = 31
(y) To () (31

and y; is Rician and each y; is Rayleigh. In the FER
expression, V' is the channel dispersion given by

2

Q
V=E <10g2(Q) — log, (1 + ZAz(?J)> - C)

=2

(32)
V. RESULTS

We simulate CRC-ZTCC codes with the convolutional gen-
erator polynomials shown in Table I and the CRC polynomials
in Table II. We used a message length of K = 64 4-ary
symbols, i.e. 128 bits, for all CRC-ZTCCs. Our codes are rate-
K/(2%(K+m+v)), where m symbols are added for the CRC
code and v symbols are added for zero-state termination. The
decoder we used was an adaptive list Viterbi algorithm (LVA)
decoder with a maximum list size of 2048, as in [23]. The
adaptive LVA employs parallel list decoding with an initial
list size of 1 and doubles the list size until either a message
candidate is found that passes the CRC check or the maximum
list size of 2048 is reached.

Fig. 1 shows the FER vs. E,/Ny of the v = 2 rate-1/2
CRC-ZTCC codes. The values of m vary from m = 3 to
m = 8. We also include the FER curve of the ZTCC without
CRC concatenation (m = 0). We see that increasing the length
of the CRC improves the performance of the CRC-ZTCC
code. However, there is still a 1 dB gap between the best
FER performance and the RCU bound.

Fig. 2 shows FER vs. E,/Ny for the v = 4 rate-1/2 CRC-
ZTCC codes. As in Fig. 1, the performance of the CRC-ZTCC
improves as m increases. Fig. 2 shows v = 4 CRC-ZTCCs
approach the RCU bound more closely than the v = 2 CRC-
ZTCCs, reducing the gap down to 0.59 dB at FER = 10~ 4.

——m=0

Frame Error Rate (FER)

A
RCU Bound !,‘ Normal
\ ‘ Approximation

5 6 7 8 9
Eb/NO (dB)

Fig. 1. FER vs. E},/Np for all v = 2 CRC-ZTCC codes. The solid lines are
the data for codes, and the dashed lines are the corresponding RCU bounds.
Each message had a length of K = 64 4-ary symbols, and the decoder had
a maximum list size of 2048. The best CRC-ZTCC code has a gap of about
0.9 dB to RCU bound at an FER of 10~%.
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Fig. 2. FER vs. E}, /Ny for all v = 4 CRC-ZTCC codes. The solid lines are
the data for codes, and the dashed lines are the corresponding RCU bounds.
Each message had a length of K = 64 4-ary symbols, and the decoder had
a maximum list size of 2048. The best CRC-ZTCC code has a gap of about
0.59 dB to RCU bound at an FER of 10~%.

Fig. 3 compares every code we have simulated to its
respective RCU bound, to visualize the performance of all
the codes, plotting the gap between each code’s performance
and the RCU bound as a function of the FER. Larger values
of m achieve smaller gaps to the RCU bound. Generally, the
v = 4 CRC-ZTCCs have smaller gaps to the RCU bound than
v = 2 CRC-ZTCCs. The gap to RCU bound increases as the
FER decreases.

Our best 4-ary CRC-ZTCC has a gap to RCU bound of
around 0.59 dB at FER = 10~%. This matches closely with
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Fig. 3. Gap to RCU bound vs. FER for every CRC-ZTCC code. Higher
values for m have a smaller gap, and the v = 4 codes have a smaller gap
than the v = 2 codes. The gap also increases as FER decreases.

the results in [7] for the analysis of binary CRC-ZTCCs.
This motivates the search for optimal CRCs for 4-ary tail
biting convolutional codes (CRC-TBCCs), since binary CRC-
TBCCs in [7] approach the RCU bound closely.

Our simulations revealed that as Ej/Ny decreases, the
expected list size converges to around 4", except when
limited by our maximum list size of 2048. This behavior
matches the results in [7]. As Ej/Ny increases, or as FER
decreases, the expected list size converges to 1. For example,
at Ey, /Ny = 6.5 dB the expected list size for all of the v = 4
CRC-ZTCCs is less than 1.06. This behavior also matches the
results in [7].

VI. CONCLUSION

This paper presents CRC-ZTCC concatenated codes for Q-
ary orthogonal signaling, designing CRCs for specific ZTCCs
to optimize the distance spectrum to achieve the best possible
FER performance. To compare with our simulations, the paper
also derives saddlepoint approximations of the RCU bound
and presents the normal approximation for the noncoherent
QFSK channel.

List decoding using a distance-spectrum optimal CRC
significantly improves the minimum distance and the FER
performance compared to the ZTCC decoded without the
benefit of CRC-aided list decoding. At FER 10~%, CRC-aided
list decoding improves the v = 2 ZTCC by between 1.2 and
1.4 dB and the v = 4 ZTCC by between 0.7 and 0.8 dB. The
performance improvement increases as the size of the CRC is
increased. At low FER (or equivalently high SNR) the average
list size approaches 1 so that the average complexity burden
of such list decoding is minimal. Our best CRC-ZTCC design
is within 0.59 dB of the RCU bound at an FER of 10~*.

This paper focuses on ZTCC-CRC code designs, but
TBCC-CRCs have been shown to approach very close to

the RCU bound at short blocklengths. Future work will
design CRCs for Q-ary TBCCs. Future work will also ex-
plore designs for higher values of (). This paper used sub-
optimal decoding metrics for reduced complexity, and future
investigations will assess the performance gain possible with
optimal decoding metrics.
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