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Variable-Length Stop-Feedback Codes With Finite
Optimal Decoding Times for BI-AWGN Channels

Hengjie Yang, Recep Can Yavas, Victoria Kostina, and Richard D. Wesel

Abstract—In this paper, we are interested in the performance
of a variable-length stop-feedback (VLSF) code with m optimal
decoding times for the binary-input additive white Gaussian noise
channel. We first develop tight approximations on the tail proba-
bility of length-n cumulative information density. Building on the
work of Yavas et al., for a given information density threshold, we
formulate the integer program of minimizing the upper bound
on average blocklength over all decoding times subject to the
average error probability, minimum gap and integer constraints.
Eventually, minimization of locally minimum upper bounds over
all thresholds will yield the globally minimum upper bound
and this is called the two-step minimization. For the integer
program, we present a greedy algorithm that yields possibly
suboptimal integer decoding times. By allowing a positive real-
valued decoding time, we develop the gap-constrained sequential
differential optimization (SDO) procedure that sequentially pro-
duces the optimal, real-valued decoding times. We identify the
error regime in which Polyanskiy’s scheme of stopping at zero
does not improve the achievability bound. In this error regime,
the two-step minimization with the gap-constrained SDO shows
that a finite m suffices to attain Polyanskiy’s bound for VLSF
codes with m = ∞.

I. INTRODUCTION

Feedback has been shown to be useful both in the variable-
length and fixed-length regimes, even though it does not
improve the capacity of a memoryless, point-to-point channel
[1]. In the variable-length regime, feedback has been shown
to simplify the construction of coding schemes [2]–[4], to
significantly improve the optimal error exponent [5], and
to achieve universality [6]–[8]. In the fixed-length regime,
feedback is shown to improve the second-order coding rate for
the compound-dispersion discrete memoryless channels [9].

In [10], Polyanskiy et al. introduced variable-length feed-
back (VLF) codes, variable-length feedback with termination
(VLFT) codes, and a special VLF code called a variable-
length stop-feedback (VLSF) code. The infinite-length VLSF
codewords are fixed before the start of transmission and feed-
back only affects the portion of a codeword being transmitted
rather than the value of that codeword. During transmission, a
feedback symbol “0” indicates that the decoder is not ready to
decode and the transmission should continue, whereas a “1”
signifies that the decoder is ready to decode and the transmitter
must stop. Using VLSF codes, Polyanskiy et al. demonstrated
that C

1−ε is achievable by stopping the code at τ = 0 with
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a small probability, where C denotes channel capacity, and ε
denotes the target error probability [10].

The VLSF code defined in [10] can be thought of as
a VLF code with infinitely many decoding times, i.e., the
number of decoding times m = ∞. However, in practical
systems, the feedback opportunities are limited, i.e., m <∞,
and the decoder is only allowed to decode at time instants
n1, n2, . . . , nm. In [11], Kim et al. investigated VLSF codes
with m periodic decoding times and derived a lower bound
on throughput. In order to minimize the average blocklength,
Vakilinia et al. [12] developed the sequential differential
optimization (SDO) algorithm that produces decoding time
nk+1 based on the knowledge of nk, nk−1, and their suc-
cessful decoding probabilities approximated by a differentiable
function. The SDO in [12] uses the Gaussian tail probability
to approximate the probability of successful decoding. Later,
variations of SDO were developed to improve the Gaussian
model accuracy [13], [14]. The SDO algorithm is used to
optimize systems that employ incremental redundancy and
hybrid automatic repeat request (ARQ) [15], and to code for
the binary erasure channel [16], [17]. However, in this paper,
we show that the Gaussian model is still imprecise for small
values of n. Additionally, the existing SDO procedure fails to
consider the inherent gap constraint that two decoding times
must be separated by at least one.

In [18], Yavas et al. developed an achievability bound for
VLSF codes with m decoding times for the additive white
Gaussian noise channel with capacity C, dispersion V , and
maximal power constraint P . The asymptotic expansion of
the maximum message size M is given by lnM ≈ lC

1−ε −√
l ln(m−1)(l)

V
1−ε where ln(k)(·) denotes the k-fold nested

logarithm, l and ε are the upper bounds on average blocklength
and error probability of the VLSF code, respectively. They
showed that a slight increase in m can dramatically improve
the achievable rate of VLSF codes. Unfortunately, due to the
nested logarithm term, Yavas et al. were only able to show
achievability bounds for m ≤ 4 for average blocklength less
than 2000. They also demonstrated that within their code
construction, the decoding times chosen by the SDO will yield
the same second- and third-order coding rates as attained by
their construction of decoding times.

In this paper, we are interested in the performance of a
VLSF code with m optimal decoding times for the binary-
input additive white Gaussian noise (BI-AWGN) channel.
We first develop tight approximations on the tail probability
of length-n cumulative information density. Building on the
result of Yavas et al. [18], for a fixed information density
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threshold γ, we formulate an integer program of minimizing
the upper bound on average blocklength over all decoding
times n1, n2, . . . , nm subject to average error probability,
minimum gap and integer constraints. Finally, minimization
of locally minimum upper bounds over information density
threshold γ yields the globally minimum upper bound, and
this method is called the two-step minimization. For the integer
program, we present a greedy algorithm that yields possibly
suboptimal integer decoding times. By allowing positive real-
valued decoding times, we develop the gap-constrained SDO
algorithm that captures the minimum gap constraint for the
relaxed program. In [10], Polyanskiy et al. demonstrated that
the rate C

1−ε is achievable by allowing the VLSF code to stop
at zero with a small probability. In this paper, we identify
the error regime where Polyanskiy’s scheme of stopping at
zero does not improve the achievability bound. In this error
regime, the two-step minimization with the gap-constrained
SDO shows that a finite m suffices to attain Polyanskiy’s
bound for VLSF codes with m =∞.

This paper is organized as follows. Section II introduces the
notation, the BI-AWGN channel model, and the VLSF code
with m decoding times. Section III develops tight approxima-
tions on the tail probability of length-n cumulative information
density. Section IV introduces the integer program, the two-
step minimization, and a greedy algorithm, develops the gap-
constrained SDO procedure for the relaxed program, identifies
the error regime where stopping at zero does not help, and
shows numerical comparisons. Section V concludes the paper.

II. PRELIMINARIES

A. Notation

For k ∈ Z+, [k] , {1, 2, . . . , k}. We use xji to denote a
sequence (xi, xi+1, . . . , xj), 1 ≤ i ≤ j. When the context
is clear, xn1 is abbreviated as xn. All logarithms are taken
to the base 2. We use φ(x),Φ(x), Q(·) to respectively denote
the probability density function (PDF), cumulative distribution
function (CDF), and the tail probability of a standard normal
N (0, 1).

B. Channel Model and VLSF Codes with m Decoding Times

Let Xn be a sequence of independent and identically
distributed (i.i.d.) random variables, with each Xi uniformly
distributed over {−1, 1}. The output Y n of a memoryless,
point-to-point BI-AWGN channel in response to Xn is given
by

Y n =
√
PXn + Zn, (1)

where
√
P denotes the amplitude of binary-phase shift keying

(BPSK), and Z1, Z2, . . . , Zn are i.i.d. standard normal random
variables. The SNR of the BI-AWGN channel is given by P .

For a BI-AWGN channel with a uniformly distributed input
symbol, the information density ι(x; y) , log P (y|x)

P (y) is given
by

ι(x; y) = 1− log
(

1 + exp
(
− 2xy

√
P
))
. (2)

Since the channel is memoryless, the cumulative information
density for xn and yn is given by

ι(xn; yn) , log
P (yn|xn)

P (yn)
=

n∑
i=1

ι(xi; yi). (3)

For a BI-AWGN channel, the channel capacity C =
E[ι(X;Y )] and dispersion V = var(ι(X;Y )).

Next, we follow [18] in describing a VLSF code with m
decoding times for the BI-AWGN channel. Due to BPSK, we
omit the power constraint from the definition.

An (l, nm1 ,M, ε) VLSF code, where l is a positive real, nm1
and M are non-negative integers satisfying n1 < n2 < · · · <
nm, ε ∈ (0, 1), is defined by

1) A finite alphabet U and a probability distribution PU on
U defining the common randomness random variable U
that is revealed to both the transmitter and the receiver
before the start of transmission.

2) A sequence of encoders fn : U × [M ] → X , n =
1, 2, . . . , nm, defining channel inputs

Xn = fn(U,W ), (4)

where W ∈ [M ] is the equiprobable message.
3) A non-negative integer-valued random stopping time

τ ∈ {n1, n2, . . . , nm} of the filtration generated by
Gm = σ{U, Y nm} that satisfies an average decoding time
constraint

E[τ ] ≤ l. (5)

4) m decoding functions gni
: U × Yni → [M ], providing

the best estimate of W at time ni, i = 1, 2, . . . ,m. The
final decision Ŵ is computed at time instant τ , i.e., Ŵ =
gτ (U, Y τ ) and must satisfy

Pe , P[Ŵ 6= W ] ≤ ε. (6)

The rate of a VLSF code is given by R , logM/E[τ ]. In
the above definition, the cardinality U specifies the number
of deterministic codes under consideration to construct the
random code. In [8, Appendix D], Yavas et al. showed that
|U| ≤ 2 suffices.

III. TIGHT APPROXIMATIONS ON P[ι(Xn;Y n) ≥ γ]

In the analysis of (l, nm1 ,M, ε) VLSF codes, a key step is to
develop a differentiable function Fγ(n) to approximate or to
bound the tail probability P[ι(Xn;Y n) ≥ γ] with a fixed γ. In
[12]–[15], P[ι(Xn;Y n) ≥ γ] is approximated as a Gaussian
tail probability, e.g., Q

(
γ−nC√
nV

)
used in [13]. However, we

will show that for short blocklength n, the Gaussian model is
imprecise and a better approximation is desired.

In probability theory, the Edgeworth expansion [19] has
been known as a powerful tool to approximate the distribu-
tion of the sum of n i.i.d. random variables. In this paper,
we apply the order-s Edgeworth expansion to approximate
P[ι(Xn;Y n) ≥ γ] for moderate and large values of n. We
refer the reader to [20, Chapter 2] for a detailed introduction.

Theorem 1 (Equation (2.18), [20]). Let W1,W2, . . . ,Wn

be a sequence of i.i.d. random variables with zero mean
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and a finite variance σ2. Define Gn(x) , P[
∑n
i=1Wi ≤

xσ
√
n]. Let χW (t) , E[eitW ] be the characteristic func-

tion of W . If E[|W |s+2] < ∞ for some s ∈ Z+ and
lim sup|t|→∞ |χW (t)| < 1 (known as Cramér’s condition),
then,

Gn(x) = Φ(x) + φ(x)
s∑
j=1

n−
j
2 pj(x) + o(n−s/2), (7)

where

pj(x)=−
∑
{km}

Hej+2r−1(x)

j∏
m=1

1

km!

(
κm+2

(m+ 2)!

)km
, (8)

Hej(x) = j!

bj/2c∑
k=0

(−1)kxj−2k

k!(j − 2k)!2k
, (9)

κm = m!
∑
{kl}

(−1)r−1(r − 1)!
m∏
l=1

1

kl!

(
E[W l]

σll!

)kl
, (10)

where in (8), the set {km} consists of all non-negative solu-
tions to

∑j
m=1mkm = j, r ,

∑j
m=1 km. The set {kl} and

r in (10) are defined analogously.

Remark 1. In Theorem 1, the Cramér’s condition holds
if the random variable W has a proper density function.
The polynomial Hej(x) is known as the Hermite polynomial
of degree j. κm denotes the order-m cumulant of random
variable W/σ. (10) indicates that κm is a homogeneous
polynomial in moments of degree m. In [21], the authors
presented a proof of (9) and (10) and provided an efficient
algorithm to compute the set {km} in (8).

As an application of Theorem 1, let W = 1 − log
(
1 +

e−2P−2Z
√
P
)
− C, where Z ∼ N (0, 1). Clearly, W has

a proper density function and E[|W |s+2] < ∞ holds for
any s ∈ Z+. Hence, for moderate and large values of
n, the differentiable function Fγ(n) we use to approximate
P[ι(Xn;Y n) ≥ γ] is given by the order-s Edgeworth expan-
sion, i.e.,

Fγ(n)

= Q

(
γ − nC√

nV

)
− φ

(
γ − nC√

nV

) s∑
j=1

n−
j
2 pj

(
γ − nC√

nV

)
.

(11)

A caveat of using the order-s Edgeworth expansion is
that for small values of n, the order-s Edgeworth expansion
oscillates around 0 due to truncation of an infinite series,
making it no longer a suitable approximation function to the
tail probability. To remedy the situation, we resort to the Petrov
expansion [22] for small n.

Theorem 2 (Theorem 1, [22]). Let W1,W2, . . . ,Wn be a
sequence of i.i.d. random variables with zero mean and a
finite variance σ2. Define Gn(x) , P [

∑n
i=1Wi ≤ xσ

√
n].

If x ≥ 0, x = o(
√
n), and the moment generating function

E[etW ] <∞ for |t| < H for some H > 0, then

Gn(x) = 1−Q(x) exp

{
x3√
n

Λ

(
x√
n

)}[
1 +O

(
x+ 1√
n

)]
,

(12)

Fig. 1. Comparison of various approximation models for P[ι(Xn;Y n) ≥ γ]
with a fixed γ > 0. In this example, k = 6, ε = 10−2, γ = log 2k−1

ε/2
=

13.62 for BI-AWGN channel at 0.2 dB.

Gn(−x) = Q(x) exp

{
−x3√
n

Λ

(
−x√
n

)}[
1 +O

(
x+ 1√
n

)]
,

(13)

where Λ(t) =
∑∞
k=0 akt

k is called the Cramér series1 .

In [22], Petrov provided the order-2 Cramér series Λ[2](t),

Λ[2](t)

=
κ3

6κ
3/2
2

+
κ4κ2 − 3κ23

24κ32
t+

κ5κ
2
2 − 10κ4κ3κ2 + 15κ33

120κ
9/2
2

t2.

(14)

For small n satisfying n < γ/C, the function Fγ(n) we use to
approximate P[ι(Xn;Y n) ≥ γ] is given by the order-3 Petrov
expansion, where the order of 3 is determined by κ5 in (14),

Fγ(n) = Q

(
γ − nC√

nV

)
exp

{
(γ − nC)3

n2V 3/2
Λ[2]

(
γ − nC
n
√
V

)}
.

(15)

In our implementation, we found that the order-5 Edgeworth
expansion meets our desired approximation accuracy at large
n. The switch from the order-5 Edgeworth expansion to the
order-3 Petrov expansion occurs at the largest value for which
two expansions are equal with a common value less than
1/2. Fig. 1 shows the comparison of different approximation
models for P[ι(Xn;Y n) ≥ γ] with γ = 13.62 for BI-AWGN
channel at 0.2 dB. The Gaussian model in Fig. 1 is given
by Q

(
γ−nC√
nV

)
. Fig. 1 shows that the Gaussian model fails

to capture the true tail probability at small n. The order-5

1Details on Cramér series can be found in the proof of [22, Theorem 2].
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Edgeworth expansion oscillates around 0 when n < 16 and
is extremely accurate when n ≥ 16. In contrast, the order-
3 Petrov expansion is loose yet close to the Gaussian model
when n ≥ 24 and becomes tight when n ≤ 14. Therefore, the
combination of the order-2 Petrov expansion and the order-
5 Edgeworth expansion at switching threshold n = 16.84
provides a remarkably precise estimate of the tail probability
P[ι(Xn;Y n) ≥ γ].

IV. VLSF CODES WITH m OPTIMAL DECODING TIMES

In this section, we develop numerical tools to evaluate
the achievable rate of a VLSF code with m optimal de-
coding times. We mainly consider the error regime where
Polyanskiy’s scheme of stopping at zero does not improve
the achievability bound [10].

A. An Integer Program and a Greedy Algorithm
In [18], Yavas et al. proved an achievability bound for an

(l, nm1 ,M, ε) VLSF code for the AWGN channel. With a slight
modification, this result is directly applicable to the BI-AWGN
channel.

Theorem 3 (Theorem 3, [18]). Fix a constant γ > 0 and
decoding times n1 < · · · < nm. For any positive numbers l
and ε ∈ (0, 1), there exists an (l, nm1 ,M, ε) VLSF code for the
BI-AWGN channel (1) with

E[τ ] ≤ n1 +
m−1∑
i=1

(ni+1 − ni)P

[
i⋂

j=1

{ι(Xnj ;Y nj ) < γ}

]
,

(16)
Pe ≤ P[ι(Xnm ;Y nm) < γ] + (M − 1)2−γ , (17)

where PXnm is the product of distribution of m subvectors
of length nj − nj−1, j ∈ [m], with the convention n0 = 0.
Namely,

PXnm (xnm) =
m∏
j=1

P
X

nj
nj−1+1

(x
nj

nj−1+1). (18)

Remark 2. In [18] (and its full version [23]), Yavas et al.
obtained Theorem 3 by constructing a random VLSF code
according to distribution (18) and applying an information
density threshold decoder that favors the largest message index
whose cumulative information density exceeds γ for the first
time among any other message indices at decoding times
{n1, n2, . . . , nm}.

In (17), the first term upper bounds the probability that
the true message never crosses γ and the second term upper
bounds the probability that any other message crosses γ
sooner than the true message.

Interested readers can refer to the full version [23] of [18]
for the proof of Theorem 3. For our purposes, Theorem 3
motivates the following integer program. Define

N(γ, nm1 ) , n1 +

m−1∑
i=1

(ni+1−ni)P[ι(Xni ;Y ni) < γ], (19)

Fm(γ,M, ε) , {nm1 : ni+1 − ni ≥ 1, i ∈ [m− 1], and
P[ι(Xnm ;Y nm) < γ] + (M − 1)2−γ ≤ ε}. (20)

For a given m ∈ Z+,M ∈ Z+, ε ∈ (0, 1), and γ ≥ log M−1
ε ,

min Nγ(nm1 )

s. t. nm1 ∈ Fm(γ,M, ε)

nm1 ∈ Zm+ .
(21)

In the integer program (21), we consider the minimum gap
and average error probability constraints as in (20), and the
constraint that all decoding times must be integers.

Let Ñ(γ) denote the locally minimum upper bound
N(γ, nm1 ) on E[τ ] for a given γ in program (21). Then,
minγ Ñ(γ) yields the globally minimum upper bound
N(γ, nm1 ). In this paper, we solve the globally minimum upper
bound N(γ, nm1 ) using this two-step minimization approach.

In general, an integer program is NP-complete. For the
specific integer program (21), additional challenge is caused
by the fact that there is no closed-form expression for
P[ι(Xnk ;Y nk) < γ] and n1, n2, . . . , nm are required to be
monotonically increasing integers. While a complete solution
to the integer program (21) remains open, we establish the
following results.

Lemma 1. Fix m ∈ Z+,M ∈ Z+, ε ∈ (0, 1) and γ ≥ M−1
ε ,

and let n0 , 0. Let nm1 ∈ Fm(γ,M, ε) be m integer-valued
decoding times that achieve N(γ, nm1 ). Suppose there exists
an integer ñ such that nk−1 < ñ < nk for some k ∈ [m].
Then,

N(γ, nk−11 , ñ, nmk ) < N(γ, nm1 ). (22)

Proof: For brevity, let Sn , ι(Xn;Y n). Let nm1 ∈
Fm(γ,M, ε) be the m integer-valued decoding times that
achieve N(γ, nm1 ). If k = 1, i.e., ñ < n1, then (22) holds
trivially. Assume that 2 ≤ k ≤ m and there exists an integer
ñ such that nk−1 < ñ < nk. It is straightforward to show that

N(γ, nm1 )−N(γ, nk−11 , ñ, nmk )

= (nk − nk−1)P[Snk−1
< γ]− (ñ− nk−1)P[Snk−1

< γ]

− (nk − ñ)P[Sñ < γ] ≥ 0,

where the last step follows from P[Sñ < γ] < P[Snk−1
< γ].

Define

N∗m(γ,M, ε) , min
nm
1 ∈Fm(γ,M,ε)

N(γ, nm1 ). (23)

Theorem 4. Fix M ∈ Z+, ε ∈ (0, 1) and γ ≥ log M−1
ε . Let

n∗ = min{n ∈ Z+ : P[ι(Xn;Y n) < γ] ≤ ε− (M − 1)2−γ}.
For m < n∗, it holds that

N∗m+1(γ,M, ε) < N∗m(γ,M, ε). (24)

Proof: Let n0 , 0. Let nm1 ∈ Fm(γ,M, ε) be the
sequence of decoding times that achieves N∗m(γ,M, ε). It
is straightforward to show that the optimal nm = n∗. If
m < n∗, this implies that there exists some k ∈ [m] such
that nk −nk−1 ≥ 2. For this k, choose an integer ñ such that
nk−1 < ñ < nk. Clearly, (nk−11 , ñ, nmk ) ∈ Fm+1(γ,M, ε).
Therefore,

N∗m+1(γ,M, ε) ≤ N(γ, nk−11 , ñ, nmk ) < N∗m(γ,M, ε), (25)
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where the last inequality in (25) follows from Lemma 1.
Theorem 4 motivates the following greedy algorithm for a

fixed γ: Start from m = n∗ where n∗ , min{n ∈ Z+ :
P[ι(Xn;Y n) < γ] ≤ ε − (M − 1)2−γ}. Suppose that nm1
is the solution for m. Then, the solution ñm−11 for m − 1
is identified by removing the decoding time ni in nm−11 that
minimizes Nγ(ni−11 , nmi+1). Note that the decoding time nm
is always retained to ensure that the target error probability is
met via (17).

B. The Relaxed Program and the Gap-Constrained SDO

To facilitate a program that is computationally tractable, we
consider the relaxed program that allows nm1 ∈ Rm+ : For a
given m ∈ Z+,M ∈ Z+, ε ∈ (0, 1) and γ ≥ log M−1

ε ,

min N(γ, nm1 )

s. t. nm1 ∈ Fm(γ,M, ε),
(26)

where the tail probability P[ι(Xn;Y n) ≥ γ] is approximated
by a monotonically increasing and differentiable function
Fγ(n) with Fγ(0) = 0 and Fγ(∞) = 1, for instance, the
piecewise function2 introduced in Section III. Let

fγ(n) ,
dFγ(n)

dn
. (27)

For the relaxed program (26) with a fixed γ, the optimal,
real-valued decoding times n∗1, n

∗
2, . . . , n

∗
m are given by the

following theorem.

Theorem 5. For a given m ∈ Z+,M ∈ Z+, ε ∈ (0, 1)
and γ ≥ log M−1

ε , the optimal real-valued decoding times
n∗1, n

∗
2, . . . , n

∗
m in program (26) satisfy

n∗m = F−1γ

(
1− ε+ (M − 1)2−γ

)
, (28)

n∗k+1 = n∗k + max

{
1,
Fγ(n∗k)− Fγ(n∗k−1)− λk−1

fγ(n∗k)

}
, (29)

λk = max{λk−1 + fγ(n∗k)− Fγ(n∗k) + Fγ(n∗k−1), 0}, (30)

where k ∈ [m− 1], λ0 , 0 and n∗0 , 0.

Proof: For brevity, define n , (n1, n2, . . . , nm). By in-
troducing the Lagrangian multipliers ν, λm−11 , the Lagrangian
of program (26) is given by

L(n, ν, λm−11 ) = n1 + ν(1− Fγ(nm) + (M − 1)2−γ − ε)

+

m−1∑
i=1

(ni+1 − ni)(1− Fγ(ni)) +

m−1∑
i=1

λi(ni − ni+1 + 1).

2The first derivative of Fγ(n) at the switching threshold does not exist.
Nonetheless, one can assign the right (or left) derivative as the derivative for
the switching threshold so that the solution is not affected significantly.

By the Karush-Kuhn-Tucker (KKT) conditions, the optimal
decoding times n∗ = (n∗1, n

∗
2, . . . , n

∗
m) must satisfy

∂L
∂nk

∣∣∣
n=n∗

= Fγ(n∗k)− Fγ(n∗k−1)− (n∗k+1 − n∗k)fγ(n∗k)

+ λk − λk−1 = 0, k ∈ [m− 1], (31)

∂L
∂nm

∣∣∣
n=n∗

= 1− Fγ(n∗m−1)− νfγ(n∗m) = 0, (32)

ν(1− Fγ(n∗m) + (M − 1)2−γ − ε) = 0, (33)
λk(n∗k − n∗k+1 + 1) = 0, k ∈ [m− 1]. (34)

Since Fγ(n) ∈ (0, 1) and fγ(n) > 0 for n > 0,
(32) indicates that ν > 0. Hence, we obtain n∗m =
F−1γ (1− ε+ (M − 1)2−γ) from (33).

Next, we analyze (34). There are two cases. If λk > 0, then
n∗k+1 = n∗k + 1. By (31), we obtain

λk = λk−1 + fγ(n∗k)− Fγ(n∗k) + Fγ(n∗k−1). (35)

If n∗k+1 > n∗k + 1, then λk = 0. By (31), we obtain

n∗k+1 = n∗k +
Fγ(n∗k)− Fγ(n∗k−1)− λk−1

fγ(n∗k)
. (36)

Rewriting the above two cases in a compact form yields (29)
and (30).

The procedures (29) and (30) are called the gap-constrained
SDO for the relaxed program (26). In contrast, the SDO
studied in [12]–[17] is derived from the relaxed program (26)
without the gap constraint3 and admits a simple recursion

n∗k+1 = n∗k +
Fγ(n∗k)− Fγ(n∗k−1)

fγ(n∗k)
, k ∈ [m− 1], (37)

where n∗0 , 0. We will show that for small values of m, the
gap-constrained SDO behaves indistinguishably as the SDO
without the gap constraint in (37). However, as m becomes
large, the decoding times provided by these two algorithms
differ noticeably.

In practice, after solving n∗m via (28), one would apply a
bisection search between 0.5 and dn∗me−m+ 0.5 for n1 and
the SDO to identify n∗1. This guarantees that the nearest integer
to n∗1 is at least 1.

When evaluating at small n, both Fγ(n) and fγ(n) will
become infinitesimally small. In this case, a direct numerical
computation using (29) and (30) may cause the precision issue.
Fortunately, the SDO described by (29) and (30) also admits
a ratio form. Define λ(r)k , λk/fγ(n∗k). Thus, (29) and (30)
are equivalent to

n∗k+1 =n∗k + max
{

1,
Fγ(n∗k)

fγ(n∗k)
−
Fγ(n∗k−1)

fγ(n∗k)
−λ(r)k−1

fγ(n∗k−1)

fγ(n∗k)

}
,

λ
(r)
k = max

{
λ
(r)
k−1

fγ(n∗k−1)

fγ(nk)∗
+ 1−

F ∗γ (nk)

f∗γ (nk)
+
F ∗γ (nk−1)

f∗γ (nk)
, 0
}
.

The purpose of using Fγ(ñ)/fγ(n), fγ(ñ)/fγ(n), and λ
(r)
k

is that they have a closed-form expression that cancels out
the common infinitesimal factor in both the numerator and

3The error probability constraint is also different, yet it does not affect the
SDO procedure.
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denominator. In our implementation, we applied the ratio form
of SDO.

C. Error Regime Where Stopping at Zero Does Not Help

In [10], Polyanskiy et al. demonstrated that the VLSF code
with infinitely many stopping times can achieve C

1−ε . This
is accomplished by the following scheme: With probability
p = ε−ε′

1−ε′ , the code immediately stops at τ = 0 without any
channel use, and with probability 1−p, employs an (l′,M, ε′)
VLSF code satisfying logM = Cl′+ log ε′− a0, where a0 ,
supx,y ι(x; y). The overall code has an error probability

1 · p+ ε′(1− p) = ε, (38)

and average blocklength

0 · p+ l′(1− p) = l′(1− p). (39)

In this section, we identify the error regime where Polyan-
skiy’s scheme of stopping at τ = 0 does not improve the
achievability bound.

Theorem 6. For a given a0 ∈ R+, M ∈ Z+, define

ε∗ , arg min
x∈(0,1)

logM + a0 − log x

1− x
. (40)

If ε ∈ (0, ε∗], stopping at τ = 0 does not improve the
achievability bound for VLSF codes.

Proof: By Polyanskiy’s scheme, solving the error regime
where stopping at zero does not improve the achievability
bound is equivalent to identifying the error regime in which
ε′ = ε is the minimizer to the following program: For a given
C, a0 ∈ R+, M ∈ Z+, and ε ∈ (0, 1),

min
ε′

l′(1− p)

s. t. logM = Cl′ + log ε′ − a0

p =
ε− ε′

1− ε′
ε′ ∈ (0, ε].

(41)

The program (41) is equivalent to the following program

min
ε′

(
1− ε
C

)
f(ε′)

s. t. ε′ ∈ (0, ε],

(42)

where

f(x) ,
logM + a0 − log x

1− x
. (43)

Since f(x) is convex in (0, 1), there exists a unique minimizer
ε∗ ∈ (0, 1). Therefore, if ε ≤ ε∗, then ε′ = ε minimizes the
objective function in (42), giving p = 0. Namely, stopping at
zero does not improve the achievability bound.

We remark that there is no closed-form solution to ε∗ in
Theorem 6. Nonetheless, one can numerically solve ε∗ for a
given M and a0.

Fig. 2. Comparison of the real-valued decoding times by the SDO with gap
constraint, the real-valued decoding times by the SDO without gap constraint,
and the integer-valued decoding times by greedy algorithm for k = 20, ε =
10−2, δ = 1/2, γ = log 2k−1

δε
and BI-AWGN channel at 0.2 dB. m ranges

from 1 to dn∗
me = 102, where n∗

m = 101.91 is given by (28).

D. Numerical Evaluation

Let M = 2k, k ∈ Z+. We consider the BI-AWGN channel
at 0.2 dB with a capacity of 0.5 and the error regime in which
stopping at zero does not improve the achievability bound.
By Theorem 6, if k ≤ 100, ε ≤ 1.33 · 10−2 is the error
regime where stopping at zero does not help. In the following
example, we consider ε = 10−2.

We consider the relaxed program and apply the two-step
minimization with the gap-constrained SDO introduced in
Section IV to obtain the globally minimum upper bound
N∗(γ, nm1 ). Thus, k/N∗(γ, nm1 ) gives the achievability bound.
In [10], Polyanskiy et al. showed that the average blocklength
E[τ ] of a VLSF code with m =∞ and no stopping at τ = 0
is upper bounded by

E[τ ] ≤
log M−1

ε + a0

C
, (44)

where a0 , supx,y ι(x; y). This bound yields the VLSF
achievability bound on rate. For BI-AWGN channel, a0 = 1.

For a fixed γ at k = 20 and ε = 10−2, Fig. 2 shows how the
decoding times evolve with m for the three algorithms: SDO
with/without the gap constraint, and the greedy algorithm. For
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Fig. 3. Globally optimal δ∗, γ∗, and n∗
m as a function of the number

of decoding times m. In the VLSF achievability bound, δ = 1 and
γ = log M−1

ε
. In this example, ε = 10−2, k = 20 for BI-AWGN channel

at 0.2 dB.

m ≤ 20, SDO with a gap constraint behaves indistinguishably
as the SDO without a gap constraint since the SDO solution
naturally has gaps larger than one. The greedy algorithm is
forced to choose from the remaining decoding times, leading
to a possibly suboptimal solution. For large m, SDO without
the gap constraint avoids early decoding times and instead adds
later decoding times so densely that their separation is less than
one. In contrast, SDO with the gap constraint is forced to add
early decoding times when all existing gaps become one.

The greedy algorithm lacks the optimality guarantee of the
gap-constrained SDO and is computationally more intensive.
Despite their distinct design perspectives, the greedy algorithm
and the gap-constrained SDO arrive at essentially the same so-
lution for large m. For k = 20, ε = 10−2, and γ = log (2k−1)

ε/2 ,
Fig. 2 shows that n1 is never less than 37 when m ≤ 32 and
grows as the number of decoding times decreases.

We remark that Fig. 2 assumes a constant γ over all number
of decoding times. However, in the two-step minimization with
the gap-constrained SDO, the globally optimal γ∗ is a function
of m. Therefore, the globally optimal n∗m may not stay as
constant as shown in Fig. 2.

Let δ ∈ [0, 1] and assume that the first and second terms
in the right-hand side of (17) are equal to (1 − δ)ε and
δε, respectively. Then, both γ∗ and n∗m can be thought as
a function of δ∗, i.e.,

γ∗(δ∗) = log
M − 1

εδ∗
, (45)

n∗m(δ∗) = F−1γ∗ (1− ε+ εδ∗). (46)

Thus, minimization over γ is equivalent to minimization over
δ. For k = 20, ε = 10−2, and BI-AWGN channel at 0.2 dB,
Fig. 3 shows how the globally optimal δ∗ and the associated
globally optimal γ∗, n∗m vary with m during the two-step
minimization. We see that when m is small, δ∗ is far from 1,
indicating a large value of γ∗ and a small value of n∗m. As m
gets large, we observe that δ∗ monotonically increases, which,

Fig. 4. Comparison of achievable rate estimation by the gap-constrained SDO
and by the greedy algorithm for VLSF codes with m optimal decoding times.
The gray dashed line represents the (E[τ ], R) pairs such that RE[τ ] = k. In
this example, ε = 10−2 and the BI-AWGN channel is at 0.2 dB.

by (45) and (46), implies that γ∗ decreases and n∗m increases.
In particular, as m→∞, δ∗ → 1, and consequently,

lim
δ∗→1

γ∗(δ∗) = log
M − 1

ε
, (47)

lim
δ∗→1

n∗m(δ∗) =∞. (48)

In Polyanskiy’s setting [10], the first term in (17) is zero since
nm = ∞ and the optimal γ can thus be computed as γ =
log M−1

ε from (17), implying that δ = 1. Fig. 3 shows that
as m increases, δ∗, γ∗, and n∗m rapidly approach those in
Polyanskiy’s setting.

Fig. 4 shows the achievable rate of a VLSF code with m op-
timal decoding times estimated by the two-step minimization
with the gap-constrained SDO algorithm. We see that a finite
m suffices to achieve Polyanskiy’s VLSF achievability bound
derived from VLSF codes with infinitely many decoding
times. For instance, for the BI-AWGN channel at 0.2 dB
and ε = 10−2, the achievable rate estimated by the SDO
for VLSF codes with k ≤ 6 and m = 32 beats the VLSF
bound. Additionally, for BI-AWGN channel at 0.2 dB, with 16
decoding times, the achievable rate by SDO is within 0.66% of
the VLSF achievability bound for k ≤ 100. With 32 decoding
times, it becomes hard to distinguish the achievable rate by
SDO from the VLSF achievability bound for k ≤ 30.

V. CONCLUSION

This paper provides a new SDO that includes the gap
constraint. Using this improved SDO, the paper demonstrates
that Polyanskiy’s VLSF achievability bound with infinitely
many decoding times can be closely approached with a finite,
and relatively small, number of decoding times.
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