
2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3148967, IEEE Design
and Test

EEE DESIGN & TEST, VOL. 0, NO. 0, MONTH YEAR 1

On the Mitigation of Read Disturbances in
Neuromorphic Inference Hardware

Ankita Paul, Shihao Song, Twisha Titirsha and Anup Das

Abstract—Non-Volatile Memory (NVM) cells are used in
neuromorphic hardware to store model parameters, which are
programmed as resistance states. NVMs suffer from the read
disturb issue, where the programmed resistance state drifts
upon repeated access of a cell during inference. We show that
resistance drifts can lower the inference accuracy. To address
this, it is necessary to periodically reprogram model parameters
to the hardware (a high overhead operation). We study read
disturb failures of an NVM cell. Our analysis show both a
strong dependency on model characteristics such as synaptic
activation and criticality, and on the voltage used to read
resistance states during inference. We propose a system software
framework to incorporate such dependencies in programming
model parameters on NVM cells of a neuromorphic hardware. At
the core of our framework is a convex optimization formulation
which aims to implement synaptic weights that have more
activations and are critical, i.e., those that have high impact
on accuracy on NVM cells that are exposed to lower voltages
during inference. In this way, we increase the time interval
between two consecutive reprogramming of model parameters.
We evaluate our system software with many emerging inference
models on a neuromorphic hardware simulator and show a
significant reduction in the system overhead.

Index Terms—Neuromorphic Computing, Read Disturbance,
Non-Volatile Memory, Spiking Neural Networks.

I. INTRODUCTION

NEUROMORPHIC systems are integrated circuits de-
signed to mimic the neural architecture in primates. Here,

neural circuity is tightly coupled with synaptic storage, which
eliminates the performance and energy bottlenecks of shared-
memory systems for machine learning inference [1]. Non-
Volatile Memory (NVM) cells such as oxide-based resistive
switching random access memory (OxRRAM) can implement
multilevel analog operations, which make them ideal candi-
dates for storing model parameters, i.e., the synaptic weights
of a machine learning model [2].

For use as an inference hardware, trained model parameters
are programmed as resistance states on OxRRAM cells of
the hardware. Once programmed, the hardware is expected to
perform inference continuously, without having to reprogram
the model parameters. Unfortunately, OxRRAM cells suffer
from the read disturb issue, where a cell’s resistance state may
drift from its programmed value upon repeated access during
inference [3]. We show that resistance drifts can lead to a
lower inference accuracy (see Section VI).

A. Paul, S. Song, T. Titirsha, and A. Das, are with the Department of
Electrical and Computer Engineering, Drexel University, PA, 19147.

E-mail: {ankita.paul,shihao.song,anup.das}@drexel.edu
Manuscript received Month DD, Year; revised Month DD, Year.

One system-level technique to mitigate read disturbances
in a neuromorphic hardware is to periodically reprogram the
trained parameters to the OxRRAM cells of the hardware.
Reprogramming of model parameters involves transferring the
synaptic weights from the main memory (primary storage)
to the neuromorphic hardware via bandwidth-limited memory
channels (see Fig. 11). Additionally, NVM cells require the
long-latency program-and-verify (P&V) scheme to configure
their resistance states [4]. These factors increase the time
it takes to reprogram model parameters on OxRRAM cells.
When a model is being reprogrammed, the hardware is un-
available to perform inference operations. Therefore, the per-
formance overhead associated with periodic reprogramming is

reprogram overhead =
tRPT

tRPI
, (1)

where tRPT defines the reprogramming time of the model
and tRPI defines the interval at which the model is being
reprogrammed to the hardware.

We show that periodic reprogramming leads to a high sys-
tem overhead even for smaller models like LeNet and AlexNet,
and is expected to become a critical performance bottleneck
for emerging large models such as VGGNet, ResNet, and
DenseNet. Our objective is to minimize this overhead by
increasing the reprogram interval tRPI. To this end, we make
the following three key observations.

Observation 1: Different synaptic connections of a machine
learning model have different tolerance to resistance drift and
they impact model accuracy differently. See Sec. II.

Observation 2: OxRRAM cells in a neuromorphic hardware
exhibit variation in read disturbance due to a difference in the
exposed read voltage used during inference. See Sec. III.

Observation 3: Activation of a synaptic connection in a
model is workload-dependent and it leads to a difference in
the amount of resistance drift within the model. See Sec. IV.

Based on these three observations, we propose a system
software framework that incorporates this application and
voltage-dependent characteristics of read disturbance of OxR-
RAM cells in implementing a machine learning model on the
hardware. The key idea is to implement the synaptic weight
of connections that have higher activations and lead to higher
accuracy drop on NVM cells that are exposed to lower voltages
during inference. In this way, we are able to sustain larger
resistance drifts of synaptic weights before reprogramming of
model parameters on OxRRAM cells becomes necessary.

A preliminary version of this system software framework
is proposed in our prior work [5]. Here we extend this
framework in four key directions – 1) introducing overhead

Authorized licensed use limited to: Drexel University. Downloaded on February 24,2023 at 15:03:21 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3148967, IEEE Design
and Test

EEE DESIGN & TEST, VOL. 0, NO. 0, MONTH YEAR 2

due to reprogramming of model parameters as a key perfor-
mance metric, 2) extending the system software framework to
periodically reprogram model parameters to a neuromorphic
hardware in order to maintain integrity of machine learning
tasks, 3) a convex optimization formulation of cluster mapping
to crossbar in order to reduce the system overhead, and 4)
exploiting machine learning model characteristics to identify
non-critical model parameters and eliminating them from the
critical path of deciding the reprogramming interval. In this
way, our convex optimizer is able to increase the reprogram-
ming interval compared to [5], thereby significantly reducing
the system overhead (see Section VI).

We integrate the proposed system software framework in-
side NeuroXplorer [6], a cycle-accurate simulator of neuro-
morphic hardware and evaluate it using five commonly-used
machine learning inference applications. Results demonstrate
an average 35% reduction of system overhead.

II. RESISTANCE DRIFT TOLERANCE OF MACHINE
LEARNIG WORKLOADS

Synaptic connections of a machine learning workload have
varying tolerances to resistance drift. This impacts accuracy
differently. To illustrate this, we consider 2-bit quantized
versions of five commonly-used convolutional neural networks
(CNNs) – LeNet (1989), AlexNet (2012), VGGNet (2015),
ResNet (2015), and DenseNet (2017). There are three weight
levels used in these models, corresponding to ternary values
of -1, 0, and +1 [7]. Figure 1 illustrates the fraction of total
synapses in the fully-connected layer that leads to 1% or
higher accuracy drop. We report results for the following four
configurations – 1) resistance reduction by two levels (“-2”), 2)
resistance reduction by one level (“-1”), 3) resistance increase
by 1 level (“+1”), and 4) resistance increase by two levels
(“+2”). 1 We make the following three key observations.

LeNet AlexNet VGGNet ResNet DenseNet AVERAGE
0.0

0.5

1.0

F
ra

ct
io

n
of

S
yn

ap
se

s -2 -1 +1 +2

Fig. 1. Fraction of total synapses in the fully-connected layer that leads to
accuracy drop due to resistance drift.

First, synapses in a machine learning model have varying
tolerance to resistance drift. On average, only 35% of synapses
show accuracy drop when their resistance drifts by two levels
in the negative direction, only 66% when resistance drifts by
one level in the negative direction, only 60% when resistance
drifts by one level in the positive direction, and only 30%
when resistance drifts by two levels in the positive direction.
The reason for such variations is two-fold. First, most machine
learning models are over-parameterized. Therefore, resistance
levels of non-critical synapses do not impact the accuracy. Sec-
ond, due to the approximate training using the backpropagation
algorithm, a drift in the resistance level of some synapses may

1We note that if a synaptic weight is +1, then the synapse is tolerant to
resistance drifts in the positive direction. Similarly, if a synaptic weight is -1,
then the synapse is tolerant to drifts in the negative direction. Such cases are
included in the results of Figure 1.

not impact accuracy significantly. To this end, we note that
the synaptic weight value of a non-critical synapse may not
necessarily be close to zero. It simply means that any change
of its weight value may not impact accuracy. For this reason,
any neuron and synapse pruning strategy such as [7] will not
eliminate non-critical synapses that are non-zero.

Second, for LeNet, only a small fraction (less than 1%) of
synapses lead to accuracy drop when resistance drifts by +1
and +2. This is because most of synaptic weights of LeNet
are positive. So any transition in the positive direction results
in no significant accuracy impact.

Third, tolerance to resistance drift depends on the spe-
cific CNN model and therefore, model-specific solutions are
needed. Our proposed approach is the following. First, we
identify the critical synapses, i.e., those that have high impact
on accuracy by analyzing a CNN model. Next, we exploit
device characteristics and mapping alternatives to minimize
the negative impact of resistance drift.

To motivate our solution, we discuss resistance drift in
NVMs, focusing on OxRRAM devices.

III. RESISTANCE DRIFTS IN NON-VOLATILE
MEMORY DEVICES

A. Oxide-based Resistive RAM (OxRRAM) Technology

The resistance switching random access memory (OxR-
RAM) technology presents an attractive option for implement-
ing the synaptic cells of a crossbar due to its demonstrated
potential for low-power multilevel operation and high integra-
tion density [2]. An OxRRAM cell is composed of an insu-
lating film sandwiched between conducting electrodes form-
ing a metal-insulator-metal (MIM) structure (see Figure 2).
Recently, filament-based metal-oxide OxRRAM implemented
with transition-metal-oxides such as HfO2, ZrO2, and TiO2

has received considerable attention due to their low-power and
CMOS-compatible scaling.

Fig. 2. Operation of an OxRRAM cell with the HfO2 layer sandwiched
between the metals Ti (top electrode) and TiN (bottom electrode). The left
subfigure shows the formation of LRS states with the formation of conducting
filament (CF). The right subfigure shows the depletion of CF on application
of a negative voltage on the TE.

Synaptic weights are represented as conductance of the
insulating layer within each OxRRAM cell. To program an
OxRRAM cell, elevated voltages are applied at the top and
bottom electrodes, which re-arranges the atomic structure of
the insulating layer. Figure 2 shows the High-Resistance State
(HRS) and the Low-Resistance State (LRS) of an OxRRAM
cell. An OxRRAM cell can also be programmed into interme-
diate low-resistance states, allowing its multilevel operations.

Authorized licensed use limited to: Drexel University. Downloaded on February 24,2023 at 15:03:21 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 I E E E. Pers o nal use is per mitte d, b ut re p u blicati o n/re distri b uti o n re q uires I E E E per missi o n. See htt p :// w w w.ieee. org/ p u blicati o ns _sta n dar ds/ p u blicati o ns/rig hts/i n dex. ht ml f or m ore i nf or mati o n.

T his article has bee n acce pte d f or p u blicati o n i n a f ut ure iss ue of t his j o ur nal, b ut has n ot bee n f ully e dite d. C o nte nt may c ha nge pri or t o fi nal p u blicati o n. Citati o n i nf or mati o n: D OI 10.1109/ M D A T.2022.3148967, I E E E Desig n
a n d Test

E E E D E SI G N & T E S T, V O L. 0, N O. 0, M O N T H Y E A R 3

B. R e a d Dist ur b a n c e Iss u es of O x R R A M C ells

I n O x R R A M t e c h n ol o g y, t h e tr a nsiti o n fr o m H R S t o o n e
of t h e L R S st at es is g o v er n e d b y a s u d d e n d e cr e as e of t h e
v erti c al fil a m e nt g a p o n a p pli c ati o n of a str ess v olt a g e d uri n g
s pi k e pr o p a g ati o n [3]. T his is ill ustr at e d i n t h e l eft s u b fi g ur e of
Fi g ur e 3 w h er e t h e v erti c al fil a m e nt g a p is s h o w n t o r e d u c e b y
a n a m o u nt h . T his m a y r es ult i n a c o n d u cti n g fil a m e nt b et w e e n
t h e t w o m et al l a y ers c a usi n g t h e r esisti v e st at e t o c h a n g e fr o m
H R S t o L R S. T h e r at e of c h a n g e of t h e fil a m e nt g a p of t h e
O x R R A M c ell is

d g

dt
= − ϑ 0 · e − E a

k T si n h
γ · a 0

L
·

q V

k T
, w h er e γ = γ 0 − β ·

g

g 0

3
(2)

I n t h e a b o v e e q u ati o n, t d e fi n es t h e st at e tr a nsiti o n ti m e, g 0 i s
t h e i niti al fil a m e nt g a p of t h e O x R R A M c ell, V i s t h e v olt a g e
a p pli e d t o t h e c ell, γ i s t h e l o c al fi el d e n h a n c e m e nt f a ct or,
w hi c h is r el at e d t o t h e g a p g , a 0 i s t h e at o mi c h o pi n g dist a n c e,
E a i s t h e a cti v ati o n e n er g y, k i s t h e B olt z m a n n c o nst a nt, T i s
t h e t e m p er at ur e (i n K el vi n), L i s t h e l e n gt h of t h e v erti c al
fil a m e nt, q i s t h e fil a m e nt c h ar g e, ϑ 0 i s a c o nst a nt r el at e d t o
v erti c al fil a m e nt gr o wt h, a n d γ 0 a n d β ar e fitti n g c o nst a nts.

T h e tr a nsiti o n fr o m o n e of t h e L R S st at es is g o v er n e d b y
t h e l at er al fil a m e nt gr o wt h [3]. T his is ill ustr at e d i n t h e ri g ht
s u b fi g ur e of Fi g ur e 3. T h e ti m e f or st at e tr a nsiti o n i n t h e
O x R R A M c ell is gi v e n b y

t(L R S) = 1 0 − 1 4 .7 ·V + 6 .7 s e c (3)

!

"

Fi g. 3. R e a d dist ur b a n c es d u e t o str u ct ur al alt er ati o n i n a n O x R R A M c ell.
T h e l eft s u b fi g ur e s h o ws a r e d u cti o n of t h e c o n d u cti v e fil a m e nt g a p (i. e.,
r e a d dist ur b a n c e of H R S st at e) o n t h e a p pli c ati o n of a str ess v olt a g e. T h e
ri g ht s u b fi g ur e s h o ws t h e l at er al gr o wt h of t h e c o n d u cti v e fil a m e nt (i. e., r e a d
dist ur b a n c e of L R S st at e) d u e t o a p pli c ati o n of a str ess v olt a g e.

If t h e st at e tr a nsiti o n ti m e of a n O x R R A M c ell is 1 0 0 0 ms,
t h e n a si n gl e q u asi-st ati c r e a d o p er ati n g usi n g o n e 1 0 0 0 ms
r e a d p uls e or e q ui v al e ntl y, 1 0 0 0 r e a d a c c ess es usi n g 1- ms s pi k e
p uls es c a n l e a d t o a n a br u pt c h a n g e i n t h e c ell’s st at e. 2

Fr o m E q u ati o ns 3 & 2, w e s e e t h at t h e st at e tr a nsiti o n
ti m e of a n O x R R A M c ell d e p e n ds h e a vil y o n t h e v olt a g e
of o p er ati o n of t h e c ell. T o t his e n d, w e i n v esti g at e t h e
i nt er n al ar c hit e ct ur e of a pr o c essi n g c or e i n a n e ur o m or p hi c
h ar d w ar e. I n m a n y r e c e nt d esi g ns, a n al o g cr oss b ars ar e us e d
as c or es. Fi g ur e 4 (l eft) s h o ws a n N × N cr oss b ar w h er e t h e
O x R R A M c ells ar e or g a ni z e d i n a t w o- di m e nsi o n al gri d wit h
h ori z o nt al w or dli n es a n d v erti c al bitli n es. Pr e-s y n a pti c n e ur o ns
ar e m a p p e d al o n g w or dli n es a n d p ost-s y n a pti c n e ur o ns al o n g
bitli n es as s h o w n i n t h e fi g ur e. T h e s y n a pti c w ei g ht b et w e e n a

2 A p art fr o m r esist a n c e drift, t h er e ar e als o ot h er f or ms of r eli a bilit y iss u es
r e p ort e d f or O x R R A M i n t h e c o nt e xt of n e ur o m or p hi c h ar d w ar e [8] –[1 1].

pr e-s y n a pti c n e ur o n (n i , pl a c e d o n t h e it h w or dli n e) a n d a p ost-
s y n a pti c n e ur o n (n j , pl a c e d o n t h e j t h bitli n e) is pr o gr a m m e d
as c o n d u ct a n c e of t h e O x R R A M c ell (i, j) l o c at e d at t h e
i nt ers e cti o n of it h w or dli n e a n d j t h bitli n e.

Fi g. 4. A n N × N cr oss b ar s h o wi n g t h e p ar asiti c c o m p o n e nts wit hi n.

F or f or w ar d pr o p a g ati o n of n e ur o n e x cit ati o n, a s pi k e v olt-
a g e is cr e at e d b y n i , w hi c h g e n er at es a c urr e nt t h at pr o p a g at es
t o t h e n e ur o n n j vi a t h e c o n d u ct a n c e of t h e (i, j) t h O x R R A M
c ell. Fi g ur e 4 (ri g ht) s h o ws t h e p ar asiti c c o m p o n e nts o n s u c h
c urr e nt p at hs. F or m all y, t h e n u m b er of p ar asiti c c o m p o n e nts
o n t h e c urr e nt p at h vi a t h e (i, j) t h O x R R A M c ell is (i + j + 1) .

P ar asiti c c o m p o n e nts o n bitli n es a n d w or dli n es of a cr oss b ar
cr e at e v ari ati o n i n c urr e nts pr o p a g ati n g vi a diff er e nt O x R-
R A M c ells of t h e cr oss b ar; hi g h er t h e n u m b er of p ar asiti c
c o m p o n e nts, s m all er is t h e c urr e nt, a n d vi c e v ers a. T h er ef or e,
t h e c urr e nt t hr o u g h (0 , 0) t h O x R R A M c ell is hi g h er t h a n
(N − 1 , N − 1) t h O x R R A M c ell i n a n N × N cr oss b ar.

Fi g ur e 5 s h o ws t h e diff er e n c e b et w e e n c urr e nts o n t h e
s h ort est a n d l o n g est p at h f or 3 2 x 3 2, 6 4 x 6 4, 1 2 8 x 1 2 8, a n d
2 5 6 x 2 5 6 cr oss b ars at 6 5 n m pr o c ess n o d e. T h e i n p ut s pi k e
v olt a g e of t h e pr e-s y n a pti c n e ur o ns is s et t o g e n er at e 5 0 µ A o n
t h e l o n g est p at h. T his c urr e nt v al u e c orr es p o n ds t o t h e c urr e nt
n e e d e d t o r e a d t h e r esist a n c e st at e of t h e O x R R A M c ell o n
t his p at h. We o bs er v e t h at t h e c urr e nt o n t h e l o n g est p at h is
l o w er t h a n t h e s h ort est p at h b y 1 3. 3 % f or 3 2 x 3 2, 2 5. 1 % f or
6 4 x 6 4, 3 9. 2 % f or 1 2 8 x 1 2 8, a n d 5 5. 8 % f or 2 5 6 x 2 5 6 cr oss b ar.

3 2 x 3 2 6 4 x 6 4 1 2 8 x 1 2 8 2 5 6 x 2 5 6
0

5 0

1 0 0

1 5 0

Cu
rr

en
t

(
µ
A)

5 7 6 6 8 2
1 1 3l o n g est p at h s h ort est p at h

Fi g. 5. Diff er e n c e b et w e e n c urr e nt o n t h e s h ort est a n d l o n g est p at hs i n a
cr oss b ar f or diff er e nt cr oss b ar si z es.

C urr e nt v ari ati o n i n a cr oss b ar l e a ds t o a diff er e n c e i n t h e
v olt a g e a p pli e d a cr oss diff er e nt O x R R A M c ells i n a cr oss b ar.
T his is ill ustr at e d i n Fi g ur e 6 a, w h er e t h e mi ni m u m a n d
m a xi m u m v olt a g es ar e 0. 4 V a n d 0. 5 7 V, r es p e cti v el y. S u c h
v olt a g e diff er e n c es c a us e v ari ati o n of t h e st at e tr a nsiti o n ti m e
(s e e E q u ati o ns 2 & 3). Fi g ur e 6 b s h o ws s u c h v ari ati o n f or
O x R R A M c ells i n t h e cr oss b ar, wit h e a c h c ell pr o gr a m m e d t o
t h e H R S st at e. T h e mi ni m u m a n d m a xi m u m st at e tr a nsiti o n
ti m es ar e 5, 2 2 7 ms a n d 3 1, 2 1 4 ms, r es p e cti v el y.

I n a r e c e nt w or k, w e h a v e s h o w n t h at t h e u nit p ar asiti c
r esist a n c e of bitli n es/ w or dli n es i n cr e as es fr o m 1 Ω at 6 5 n m t o

A ut h ori z e d li c e n s e d u s e li mit e d t o: Dr e x el U ni v er sit y. D o w nl o a d e d o n F e br u ar y 2 4, 2 0 2 3 at 1 5: 0 3: 2 1 U T C fr o m I E E E X pl or e. R e str i cti o n s a p pl y.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3148967, IEEE Design
and Test

EEE DESIGN & TEST, VOL. 0, NO. 0, MONTH YEAR 4

0 32 64 96 128
Post-synaptic Neurons

128

96

64

32

0

P
re

-s
yn

ap
ti

c
N

eu
ro

ns

0.40

0.45

0.50

0.55

O
xR

R
A

M
V

ol
ta

ge
(V

)

(a) Voltage variation in a 128x128
crossbar at 65nm node.

0 32 64 96 128
Post-synaptic Neurons

128

96

64

32

0

P
re

-s
yn

ap
ti

c
N

eu
ro

ns

10000

20000

30000

S
ta

te
T

ra
ns

it
io

n
T

im
e

(m
s)

(b) State transition times in a
128x128 crossbar with all cells pro-
grammed to the HRS state.

Fig. 6. Variation of voltage and state transition time in a 128x128 crossbar.

3.8Ω at 16 nm [10]. Such increase in the value of parasitic resis-
tance leads to a higher voltage applied across each OxRRAM
cell in the crossbar, which further reduces its state transition
time. To illustrate this, Figure 7 shows the variation in state
transition time of OxRRAM cells in a crossbar at different
process technology nodes. We make the following two key
observations. First, the state transition time decreases with
technology scaling. This is due to an increase in the voltage
within the crossbar at scaled nodes. Second, the variation of
state transition time increases at smaller nodes due to higher
voltage and current variations [10].

65nm 45nm 32nm 16nm
0

20

40

S
ta

te
T

ra
ns

it
io

n
T

im
e

(s
)

5.2 2.6 1.6 0.9

(0,0) (127,127)

Fig. 7. Variation in state transition time of OxRRAM cells in a crossbar as
a function of current.

Finally, the state transition time of OxRRAM cells also
depends on the resistance state. Figure 8 shows the dependence
of the minimum state transition time of OxRRAM cells in a
crossbar for the four process technology nodes. We make two
key observations. First, the state transition time reduces with
technology scaling, which we have analyzed before. Second,
the state transition time of an OxRRAM cell is higher when the
cell is programmed in the HRS state for all process technology
nodes. This is because the vertical filament growth phenomena
(in HRS state) in OxRRAM technology is slower than the
lateral filament growth (in LRS state).

65nm 45nm 32nm 16nm
0

2

4

6

S
ta

te
T

ra
ns

it
io

n
T

im
e

(s
)

5.2

2.6
1.6

0.9

HRS LRS

Fig. 8. Variation in state transition time of OxRRAM cells in a crossbar as
a function of the resistance state.

During each inference operation, OxRRAM cells of a cross-
bar propagate spikes from a machine learning workload. To
compute the inference lifetime of an OxRRAM cell, which is
defined as the number of inference operations it takes for the
resistance state of the cell to drift from its programmed value,
we let η be the average number of spikes through the cell per
inference operation. Formally, inference lifetime L is

L =
t(LRS/HRS)

η
(4)

To ensure integrity of machine learning, i.e., to prevent
accuracy drop, the OxRRAM cell must be reprogrammed to
the original resistance state once every inference lifetime.
Since different OxRRAM cells in a neuromorphic crossbar
have different inference lifetime, the reprogramming interval
tRPI of model parameters to the hardware (see Eq. 1) is
defined as the minimum inference lifetime of all OxRRAM
cells in the crossbar, i.e.,

tRPI = min
∀i,j

Li,j (5)

The number of spikes propagating through an OxRRAM
cell depends on the machine learning workload and how the
workload is mapped to the crossbar. This is described next.

IV. WORKLOAD DEPENDENCY OF INFERENCE LIFETIME

To understand the workload dependency of inference life-
time, we focus on Equation 9. Here, η is the average spikes per
image through an OxRRAM cell implementing the machine
learning workload. This is computed as follows. Consider our
machine learning model is represented as M(N,S) with the set
N of neurons and the set S of synapses. If xi is the number of
spikes communicated via si from its pre-synaptic to its post-
synaptic neuron, then the total number of spikes for the image
is ∑

i xi. In our implementation, each synapse (i.e., its weight)
is programmed on an individual OxRRAM cell. Therefore, the
number of spikes through all OxRRAM cells of the hardware
is ∑

i xi. We compute the average number of spikes per image
through an individual OxRRAM cell as the sum of spikes for
all images inferred by the model averaged over the number of
images and synapses, i.e.,

Avg. Spike Per Image =

∑I
j=1

∑
i xi

I × |S|
, (6)

where I is the number of images inferred by M.
Figure 9 shows the histogram of average spikes per image

propagating through the synapses of VGGNet. We collected
these statistics by analyzing CIFAR-10 training and test
datasets. We see that there are 20 synapses in the model
that communicate between 1-2 spikes per image, 30 synapses
that communicate between 2-3 spikes per image, and so on.
Therefore, some synapses propagate more spikes than others.

!"# !# !"#
!"## !# !"#
!"# !# !"#
!"# !# !"#
!"$!$!"$
%"$ %$ %"$
!"& !& !"&
!"& !& !"&
&"' &' &"'
&"! &! &"!
(") () (")
#"% #% #"%
#"& #& #"&
%"& %& %"&
#"$ #$ #"$
%") %) %")
!"! !! !"!
!"! !! !"!
&") &) &")
&"! &! &"!
%"& %& %"&
%"& %& %"&
&"! &! &"!
&"! &! &"!
&") &) &")
#"$ #$ #"$
#"$ #$ #"$
& &* &

!"% !% !"%
!"# !# !"#
#"$ #$ #"$
#*

$"# $# $"#
!") !) !")
!") !) !")
&"+ &+ &"+
! !* !

&"& && &"&
&"' &' &"'
!"# !# !"#
!"# !# !"#
!"+ !+ !"+
& &* &
& &* &

&") &) &")
("$ ($ ("$
&"! &! &"!
("' (' ("'
&"' &' &"'
&"' &' &"'
("+ (+ ("+
!"$!$!"$
!"& !& !"&
!"& !& !"&
&"% &% &"%
!"% !% !"%
$ $* $

#"+ #+ #"+
#*
#*

!"+ !+ !"+
&"(&(&"(
&"(&(&"(
("' (' ("'
!") !) !")
%"(%(%"(
!"(!(!"(
!"& !& !"&
#"(#(#"(
#*

$"# $# $"#
$"# $# $"#
#"& #& #"&
#"& #& #"&
%"% %% %"%
%"% %% %"%
("! (! ("!
&") &) &")
#"% #% #"%
#"% #% #"%
!") !) !")
&"% &% &"%
&"! &! &"!
&"! &! &"!
#"% #% #"%
%"% %% %"%
#") #) #")
#") #) #")
(") () (")
(") () (")
#"! #! #"!
!"% !% !"%
!"% !% !"%
!"% !% !"%
("# (# ("#
("# (# ("#
&"& && &"&
&") &) &")
&") &) &")
&"(&(&"(
&"(&(&"(
#"% #% #"%
("' (' ("'
("' (' ("'
!"! !! !"!
!") !) !")
%"% %% %"%
%"% %% %"%
$ $* $
#*

!"! !! !"!
#"(#(#"(
#"! #! #"!
#"# ## #"#
& &* &

!"$!$!"$
!"$!$!"$
%"' %' %"'
%"$ %$ %"$
!"(!(!"(
!"(!(!"(
!"(!(!"(
!"(!(!"(
#"! #! #"!
#"! #! #"!
!"$!$!"$
!"+ !+ !"+
!"+ !+ !"+
!"(!(!"(
#"$ #$ #"$
$"($($"(
#"# ## #"#
!"& !& !"&
! !* !

#"$ #$ #"$
!"& !& !"&
!"$!$!"$
&"+ &+ &"+
%") %) %")
%") %) %")
%"$ %$ %"$
!"(!(!"(
!"(!(!"(
#"! #! #"!
!"$!$!"$
&"# &# &"#
&"# &# &"#
&") &) &")
#"(#(#"(
%"! %! %"!
%"! %! %"!
%"& %& %"&
#"& #& #"&
#"& #& #"&
#"& #& #"&
("' (' ("'
("' (' ("'
& &* &
& &* &
& &* &

("' (' ("'
&") &) &")
!"+ !+ !"+
!"+ !+ !"+
!"+ !+ !"+
&"' &' &"'
&"' &' &"'
&"' &' &"'
!") !) !")
!") !) !")
&"# &# &"#
&"! &! &"!
%"' %' %"'
%"' %' %"'
%"' %' %"'

,("#-.#"*)/ 0#"*)-.#"'%/ 0#"'%-.&"+(/ 0&"+(-.%"$+/ 0%"$+-.!"!!/ 0!"!!-.$"%#/
1234563.789:37.834.9;563

*
(*
#*
&*
%*
!*

<=
>5

87
37

,("#-.#"*)/ 0#"*)-.#"'%/ 0#"'%-.&"+(/ 0&"+(-.%"$+/ 0%"$+-.!"!!/ 0!"!!-.$"%#/
1234563.789:37.834.9;563

*
(*
#*
&*
%*
!*

<=
>5

87
37

Fig. 9. Spike distribution across the synapses of VGGNet.

If we consider two different synapses of a model with
different spike count, then the one with a higher number of
spikes will result in a lower inference lifetime when mapped
to the OxRRAM cell at a specific position in the crossbar.

Additionally, the spike count on a synapse also depends on
the input presented to a model. To illustrate this, Figure 10
plots the spike firing rate of 100 randomly-selected neurons

Authorized licensed use limited to: Drexel University. Downloaded on February 24,2023 at 15:03:21 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3148967, IEEE Design
and Test

EEE DESIGN & TEST, VOL. 0, NO. 0, MONTH YEAR 5

0 20 40 60 80 100
0

20

40

60

80

100
S

pi
ke

ra
te

(H
z) train-image-1

train-image-2

test-image-1

test-image-2

Fig. 10. Spike rate of 100 randomly-selected neurons in VGGNet for 2
training images and 2 test images.

in VGGNet. We observe that the spike firing rate of a neuron
in VGGNet depends on the image presented to the model.

The proposed design methodology incorporates such appli-
cation and model-dependent behavior to better optimize the
synapse mapping to OxRRAM cells. This is described next.3

V. PROPOSED DESIGN METHODOLOGY

Figure 11 shows the proposed system architecture designed
in NeuroXplorer [6]. A machine learning model is first
trained using training data. The model parameters are stored
in memory. The trained model is clustered using the graph
partitioning algorithm of NeuroXplorer. For each cluster, an
optimization is performed to map the neurons and synapses of
the cluster to the OxRRAM cells of a crossbar, by exploiting
1) spike data collected from the training set and 2) technology-
specific state-transition time data obtained from characterizing
the hardware. The cluster optimization step generates the
parameter reprogramming interval tRPI, which is then used to
periodically reprogram the model parameters to the hardware
via bandwidth-limited memory channels. The new blocks that
we introduce in NeuroXplorer are shown in red in Fig. 11.

Fig. 11. System architecture.

We introduce the following notations to formulate the
cluster optimization problem.

M = Set of pre-synaptic neurons of a cluster
N = Set of post-synaptic neurons of a cluster
S = Set of synapses of a cluster

ηi,k = spikes on the synapse si,k ∈ S
ej,l = State transition time of the (j, l)th OxRRAM cell in a crossbar

xi,j =

{
1 if pre-synaptic neuron mi ∈ M is mapped to crossbar input Ij
0 otherwise

yk,l =

{
1 if post-synaptic neuron nk ∈ N is mapped to crossbar output Ol

0 otherwise

3The scope of the current work is on design-time approaches in mitigating
resistance drift. Our future work will involve designing a run-time framework
to evaluate spike count of synapses based on the model input and enable
remapping of the synaptic connections to further reduce the system overhead.

Following are the constraints.

• A pre-synaptic neuron can be mapped to exactly one input
port of a crossbar, i.e.,

∑
∀j

xi,j = 1 ∀ i (7)

• A post-synaptic neuron can be mapped to exactly one
output port of a crossbar, i.e.,

∑
∀l

yk,l = 1 ∀ k (8)

We formulate the optimization problem as follows. xi,j ·yk,l
defines the mapping of synapse si,k ∈ S to the (j, l)th OxRRAM
cell in the crossbar. The inference lifetime of this mapping is

Li,j,k,l =
ej,l

ηi,k
(9)

The optimization problem is

Maximize tRPI = min
∀i,j,k,l

xi,j · yk,l · Li,j,k,l (10)

The non-linear operation of multiplication of two binary
variables xi,j and yk,l is linearized by introducing a new prod-
uct variable zi,j,k,l, with the following additional constraints.

• If xi,j = 0 and/or yk,l = 0, then zi,j,k,l = 0, i.e.,

zi,j,k,l ≤ xi,j and zi,j,k,l ≤ yk,l (11)

• If xi,j = 1 and yk,l = 1, then zi,j,k,l = 1, i.e.,

zi,j,k,l ≥ xi,j + zi,j,k,l − 1 (12)

The new optimization problem is

Maximize min
∀i,j,k,l

zi,j,k,l · Li,j,k,l (13)

This max-min optimization problem is a convex one (proof
of KKT conditions are omitted for space limitations). The
problem can be solved using CVXPY by introducing a slack
variable τ as

Maximize τ � τ ≤ zi,j,k,l · Li,j,k,l ∀ i, j, k, l (14)

To incorporate the criticality of a synaptic connection (see
Section II), we assign a very small number as the spike count
η for the synapse. In other words, the spike count of critical
synapses is identified using the training set, while those for
non-critical synapses are set to a very small value. In this
way, we force L (see Eq. 9) to a very large value for the non-
critical synapses. This allows the convex optimizer to eliminate
them from the critical path of determining the reprogramming
interval tRPI (see Eq. 14).

Authorized licensed use limited to: Drexel University. Downloaded on February 24,2023 at 15:03:21 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3148967, IEEE Design
and Test

EEE DESIGN & TEST, VOL. 0, NO. 0, MONTH YEAR 6

TABLE I
MAJOR SIMULATION PARAMETERS EXTRACTED FROM [2].

Neuron technology 16nm CMOS (original design is at 14nm FinFET)

Synapse technology HfO2-based OxRRAM [2]

Supply voltage 1.0V

Energy per spike 23.6pJ at 30Hz spike frequency

Energy per routing 3pJ

Switch bandwidth 3.44 G. Events/s

TABLE II
CNN APPLICATIONS USED TO EVALUATE THE PROPOSED DESIGN.

CNN Dataset Neurons Synapses Avg. Spikes/Image Accuracy-Full Accuracy-2 bit
LeNet CIFAR-10 80,271 275,110 724,565 86.3% 55.4%

AlexNet CIFAR-10 127,894 3,873,222 7,055,109 66.4% 69.5%
VGGNet CIFAR-10 448,484 22,215,209 12,826,673 81.4 % 55.3%
ResNet CIFAR-10 266,799 5,391,616 7,339,322 57.4% 48.0%

DenseNet CIFAR-10 365,200 11,198,470 1,250,976 46.3% 28.2%

VI. RESULTS AND DISCUSSION

We evaluate the proposed design methodology for
OxRRAM-based neuromorphic hardware. We configure Neu-
roXplorer with the hardware parameters listed in Table I.

We use five commonly-used convolutional neural network
(CNN) applications with 2-bit quantized synaptic weights.
These applications are described in Table II.

We evaluate the following techniques.
• SpiNeMap. This Baseline approach first clusters a

machine-learning inference model to minimize the inter-
cluster spike communication [12]. Clusters are then
mapped to crossbars of a neuromorphic hardware with
synapses of each cluster implemented randomly on OxR-
RAM cells of a crossbar.

• Endurer. This is our previous work, which addresses the
reprogramming of model parameters on crossbars of a
neuromorphic hardware to maintain model integrity [5].
A machine learning model is clustered using SpiNeMap.
Clusters are placed to crossbars to maximize inference
lifetime. To map cluster synapses to the OxRRAM cells
of a crossbar, Endurer uses a binary non-linear optimiza-
tion problem formulation.

• Proposed. The proposed approach is based on Endurer. It
introduces the following two new changes to Endurer –
1) it characterizes a machine learning model to identify
non-critical synapses such that they could be eliminated
from the critical path of determining the reprogramming
interval, and 2) the convex optimization formulation
and the proposed linearization technique improves the
solution quality and improves the speed-up, accelerating
the design space exploration.

A. Accuracy

Figure 12 reports the accuracy improvement due to pe-
riodic reprogramming of model parameters in Endurer and
the proposed approach compared to SpiNeMap, where no
reprogramming is performed. We observe that by enabling
reprogramming of model parameters, model accuracy can be
improved by 25% (between 3% and 87%). This is because,
without periodic reprogramming in place, model parameters
may drift due to frequent accesses of OxRRAM cells where

these parameters are programmed. Parameter drift leads to
lower accuracy. Additionally, the extent of accuracy impact
depends on the specific model that is programmed to the
hardware. For AlexNet, we observe a 47% drop, while for
ResNet and DenseNet, the drop is only 4%.

LeNet AlexNet VGGNet ResNet DenseNet AVERAGE
20

40

60

80

100

T
op

-1
A

cc
ur

ac
y

(%
)

48
.3

37
.0 51

.2

46
.1

27
.2 41

.9

SpiNeMap Endurer/Proposed

Fig. 12. Accuracy improvement due to periodic reprogramming.

B. System Overhead

Figure 13 reports the system overhead of the proposed ap-
proach compared to Endurer for the evaluated CNNs. Results
are normalized to Endurer. Since SpiNeMap does not involve
periodic reprogramming, so there is no system overhead. We
have therefore not shown SpiNeMap in the figure.

LeNet AlexNet VGGNet ResNet DenseNet AVERAGE
0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

S
ys

te
m

O
ve

rh
ea

d

0.
77

0.
60 0.

71

0.
50 0.

66

0.
65

Endurer Proposed

Fig. 13. Overhead improvement of the proposed approach.

We observe that the system overhead of the proposed
approach is on average 35% lower than Endurer (between
23% and 50%). This improvement is due to the increase
of reprogramming interval in the proposed approach. Such
improvement is attributed to two factors. First, non-critical
synapses are not on the critical path for determining the
reprogramming interval tRPI in the proposed approach, while
such synapses are factored in determining tRPI in Endurer.
Second, the convex optimizer CVXPY of the proposed ap-
proach generates a better solution than the approximate binary
non-linear optimization technique of Endurer.

We also observe that the improvement is usually higher
for models with higher fraction of non-critical synapses.
Therefore, the improvement for ResNet is higher than LeNet.

VII. CONCLUSION

In this work, we study the resistance drift related reliabil-
ity issues in OxRRAM-based neuromorphic hardware used
to implement machine learning inference models. Through
circuit-level simulations we show the dependence of these
issues on 1) the resistance state of an OxRRAM cell (model
parameter dependency), 2) the current through the cell (circuit
dependency), and 3) the spikes propagating through the cell
(workload dependency). We incorporate this study in a system
software framework and show a significant accuracy drop due
to resistance drift. To maintain the integrity of machine learn-
ing inference, model parameters need to be reprogrammed to
the hardware periodically, which incurs a significant system
overhead. We propose an approach to minimizing this system
overhead by first analyzing a machine learning model to

Authorized licensed use limited to: Drexel University. Downloaded on February 24,2023 at 15:03:21 UTC from IEEE Xplore. Restrictions apply.

2168-2356 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2022.3148967, IEEE Design
and Test

EEE DESIGN & TEST, VOL. 0, NO. 0, MONTH YEAR 7

identify non-critical synapses, and then proposing a convex
optimization solution to maximize the reprogram interval.
The proposed optimizer eliminates the non-critical synapses
from the critical path of determining the reprogram interval.
Evaluations with five commonly-used CNN applications show
an average 35% improvement in the system overhead.

ACKNOWLEDGMENT

This work is supported by the National Science Foundation
Faculty Early Career Development Award CCF-1942697 (CA-
REER: Facilitating Dependable Neuromorphic Computing:
Vision, Architecture, and Impact on Programmability).

REFERENCES

[1] M. L. Varshika et al., “Design of many-core big little µBrains for energy-
efficient embedded neuromorphic computing,” in DATE, 2022.

[2] A. Mallik et al., “Design-technology co-optimization for OxRRAM-
based synaptic processing unit,” in VLSIT, 2017.

[3] W. Shim et al., “Impact of read disturb on multilevel RRAM based
inference engine: Experiments and model prediction,” in IRPS, 2020.

[4] V. Milo et al., “Multilevel HfO2-based RRAM devices for low-power
neuromorphic networks,” APL Materials, 2019.

[5] S. Song et al., “Improving inference lifetime of neuromorphic systems
via intelligent synapse mapping,” in ASAP, 2021.

[6] A. Balaji et al., “NeuroXplorer 1.0: An extensible framework for
architectural exploration with spiking neural networks,” in ICONS, 2021.

[7] S. Han et al., “Deep compression: Compressing deep neural networks
with pruning, trained quantization and Huffman coding,” arXiv, 2015.

[8] A. Chaudhuri et al., “Hardware fault tolerance for binary RRAM
crossbars,” in ITC, 2019.

[9] T. Spyrou et al., “Neuron fault tolerance in spiking neural networks,” in
DATE, 2021.

[10] T. Titirsha et al., “Endurance-aware mapping of spiking neural networks
to neuromorphic hardware,” TPDS, 2021.

[11] A. Paul et al., “Design technology co-optimization for neuromorphic
computing,” in IGSC Workshops, 2021.

[12] A. Balaji et al., “Mapping spiking neural networks to neuromorphic
hardware,” TVLSI, 2020.

Ankita Paul Ankita Paul is currently pursuing a Ph.D. degree from Drexel
University under the supervision of Dr. Anup Das. She received a Bachelor’s
degree from West Bengal University of Technology in 2016. Her research in-
terests include brain inspired computing, deep learning, and machine learning.

Shihao Song Shihao Song is currently pursuing a Ph.D. degree from
Drexel University under the supervision of Dr. Anup Das. He received a
Bachelor’s degree from Drexel University in 2017. His research interests
include computer architecture, non-volatile memory, and compiler design for
neuromorphic hardware and accelerators.

Twisha Titirsha Twisha Titirsha is currently pursuing a Ph.D. degree from
the Department of Electrical and Computer Engineering, Drexel University,
Philadelphia. She received a Bachelor’s degree from Military Institute of
Science and Technology, Bangladesh in 2015. Her research interests include
computer architecture, non-volatile memory and mixed-signal circuit design.

Anup Das Dr. Anup Das is an Assistant Professor at Drexel University. He
received a Ph.D. in Embedded Systems from National University of Singapore
in 2014. Following his Ph.D., he was a post-doctoral fellow at the University of
Southampton and a researcher at IMEC. His research focuses on neuromorphic
computing and architectural exploration. He is a senior member of the IEEE.

Authorized licensed use limited to: Drexel University. Downloaded on February 24,2023 at 15:03:21 UTC from IEEE Xplore. Restrictions apply.

