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Abstract: Climate and weather data such as precipitation derived from Global Climate Models (GCMs)

and satellite observations are essential for the global and local hydrological assessment. However,

most climatic popular precipitation products (with spatial resolutions coarser than 10km) are too

coarse for local impact studies and require “downscaling” to obtain higher resolutions. Traditional

precipitation downscaling methods such as statistical and dynamic downscaling require an input of

additional meteorological variables, and very few are applicable for downscaling hourly precipitation

for higher spatial resolution. Based on dynamic dictionary learning, we propose a new downscaling

method, PreciPatch, to address this challenge by producing spatially distributed higher resolution

precipitation fields with only precipitation input from GCMs at hourly temporal resolution and a large

geographical extent. Using aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) data,

an experiment was conducted to evaluate the performance of PreciPatch, in comparison with bicubic

interpolation using RainFARM—a stochastic downscaling method, and DeepSD—a Super-Resolution

Convolutional Neural Network (SRCNN) based downscaling method. PreciPatch demonstrates

better performance than other methods for downscaling short-duration precipitation events (used

historical data from 2014 to 2017 as the training set to estimate high-resolution hourly events in 2018).

Keywords: GeoAI; natural disaster; flooding; global water cycle; spatiotemporal data analytics

1. Introduction

The studies of local climate impact are critical for environmental management [1], including

applications such as water resources, ecosystem services, and agricultural productivity [2,3]. Global

Climate Models, also known as general circulation models or GCMs [4], are our primary tools for

simulating future climatological variables such as temperature, wind, and precipitation [5]. GCMs

help us obtain critical scientific insights into the climate system changes [5], and the outputs (gridded

climate datasets) from GCMs played a crucial role in assessing the impact of large-scale climate

variation and human activities. However, GCM’s resolutions are often too coarse to resolve important

topographical features, and not sufficient to estimate and resolve mesoscale processes that govern local

climate changes [6–8]. Downscaling the low-resolution climate variables is used as a primary method

to obtain high-resolution information [9]. For example, Regional Climate Models (RCMs) are nested in

GCMs to produce higher resolution outputs in a dynamic downscaling fashion with limitations of
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computing-intensive and small study areas. Statistical downscaling methods are also developed to

enhance GCM outputs’ resolution directly to generate high-resolution results at low cost and with

high efficiency.

For hydrological impact studies, precipitation and temperature are the most relevant

meteorological variables [10–12]. Long-term precipitation prediction is significant for planning flood

responses, as well as strategic planning for agriculture, water resources, and other water-related hazards.

Meanwhile, shorter-term predictions have more immediate applications, such as hydrological extreme

prediction and management [13], and crop yields prediction for a specific area [10]. Precipitation is one

of the most challenging data in downscaling studies because precipitation events are not simulated

well by models, and precipitation is not spatiotemporally continuous [10,14–16]. Previous studies on

precipitation downscaling can only provide downscaled results as time-series predictions for a single

station point or multi-points. Thus, traditional downscaling methods are insufficient for understanding

the lifecycle of precipitation events in space, especially for short-duration events [17] than point scale

or areal averages. However, downscaling precipitation as spatially distributed fields is a challenging

task [10]. It usually cannot be achieved by using statistical downscaling methods when high-resolution

observation data are not available for the study area. The benefit of the proposed method is that it can

downscale the precipitation of short duration events with full coverage in any region.

Downscaling could be addressed as a disaggregation problem, in which theoretically, any

number of small-scale weather sequences can be associated with a given set of large-scale values [18].

Statistical downscaling is popular in precipitation downscaling but the recent opportunities in Single

Image Super-Resolution (SISR) for downscaling brought the advantage without requiring additional

downscaling parameters such as temperature, pressure, wind speed and direction. Many studies

have reviewed downscaling concepts and methods. For example, Hewitson and Crane [18] reviewed

process-based and empirical methods. Wilby and Wigley [19] investigated regression methods, weather

pattern (circulation)-based approaches, stochastic weather generators, and limited-area climate models.

Xu [11] and Wilby et al. [20] illustrated the guideline for statistical downscaling methods for climate

scenarios. Fowler et al. [21] discussed the hydrological community impact from downscaling, and

Maraun et al. [9] tried to connect dynamic downscaling with end-users. We review downscaling

according to the methodology as follows.

Statistical downscaling and dynamic downscaling are the two main methods to generate

high-resolution regional precipitation based on global climate model output or reanalysis data [22].

Dynamical downscaling [6,23] relies on the availability of GCM and climate model outputs. Statistical

downscaling adopts the relationship between local climate variables and large-scale variables [9]

depending significantly on the accessibility to other climate variables and the target parameter such

as precipitation. Most statistical downscaling methods rely on empirical mathematical relationships

from coarse resolution predictors to finer resolution predictands. These relationships are often much

faster to implement and compute than dynamical downscaling, which is the main reason for using

statistical downscaling. However, such relationships are subject to the stationarity assumption that the

relationship between predictors and predictands continues to hold, even in a changing climate [8,19].

Practically, statistical downscaling is coupled with dynamic downscaling methods to provide more

reliable results [24]. However, climate variables like precipitation are not well simulated in either GCM

or RCM, therefore it is difficult to downscale through statistical methods. Meanwhile, most statistical

methods are area limited and require the availability of higher resolution observation data [25], while

it is challenging for many regions to get observation data (e.g., mountain areas).

Additionally, statistical methods can hardly produce precipitation field output, but the precipitation

field is essential for driving distributed hydrological models for climate change impact studies [26].

Most researches in statistical downscaling focus on specific areas and lead to case-by-case studies.

The downscaled quality is highly dependent on the availability of local observation data. Specifically,

traditional statistical downscaling methods have the following limitations: (1) their dependency on

higher-resolution observations or other variables in addition to precipitation, (2) their results vary in
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quality across different regions and often not in the form of precipitation fields, and (3) their ability to

downscale future estimations of precipitation is limited to an hourly basis.

Stochastic downscaling can be realized without the consideration of other parameters, however,

it yields high-resolution output only through mathematical transformations and ignores the natural

features of the target. Machine learning methods are also proposed with the advancement of

AI technology [27] but lack in considering the natural characteristics of precipitation. Stochastic

downscaling can be considered as a weather pattern approach because of its similar assumption of

probability distributions. A more recent recognition is to treat the stochastic downscaling methods

as disaggregation techniques that could generate small-scale ensemble rainfall predictions [28–30].

In operations, the stochastic downscaling method is one of the few available techniques that could

produce downscaled precipitation output. Rainfall Filtered Autoregressive Model (RainFARM) is

one of the most successful stochastic downscaling models [29], which is based on the nonlinear

transformation of a Gaussian random field and constrained by rainfall amounts at larger scales. Many

have attempted to enhance the RainFARM. For example, Terzago et al. [30] added a map of extra

weights to adjust RainFARM output. Recent developments in the image processing field have shown

promising performance in increasing spatial resolution of a single image through prior knowledge

learned using machine learning approaches [31–34]. By adopting similar techniques or ideas and

using them in downscaling applications, Super-Resolution (SR) algorithms and frameworks have

drawn significant attention because of their potentials. The dictionary learning-based method, or

sparse regularization [35], and the Super-Resolution Convolutional Neural Networks (SRCNN) based

method [36] are two main approaches in precipitation downscaling applications. Dictionary learning

is an old method while SRCNN is newer and is one of the most popular methods for super-resolution

reconstruction in image processing. Although applying SISR algorithms to gridded datasets and

downscaling precipitation fields have been attempted by a few researchers [36], providing an appealing

result is still a difficult task.

We plan to fill this gap by proposing a novel downscaling method, called PreciPatch, to

produce hourly precipitation at a higher spatial resolution based on GCM outputs. The proposed

method uses dictionary learning to construct a dictionary for relationships between low-resolution

and high-resolution datasets based on historical data, and applies the dictionary to downscaling

low-resolution data for a certain timestamp. The remaining sections report our research as

follows: This section introduces and reviews related works in statistical downscaling, stochastic

downscaling, Single Image Super-Resolution (SISR) based spatial downscaling, and types of downscaled

precipitation products. Section 2 introduces the proposed methods in detail. Section 3 evaluates the

proposed methods using several study areas across CONUS and compares results generated by other

state-of-the-art downscaling methods. Section 4 concludes the study with discussions.

2. Methodology

The development of the PreciPatch is inspired by the idea of the Analog Method (AM) and

sparse regularization or, more recently called, dictionary learning. The general assumption is made that

future weather will behave similarly to the past. By constructing a dictionary for low-resolution and

high-resolution patches and using the dictionary with mapping information from historical data, the

downscaling process could be achieved through a dictionary learning approach.

2.1. Precipitation Downscaling Based on Dictionary Learning

2.1.1. Dictionary Learning for Super-Resolution

A classical dictionary trained for sparse coding consists of a limited collection of static atoms,

i.e. a set of sample-based fixed patches. It is not a problem in the image super-resolution field since

the goal for image enhancement is different from precipitation downscaling (sharpen the image vs.

create local variation), and the resolution enhancement rates are different (2 to 4 vs. 8 to 12) [16]. In a
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standard dictionary learning approach for image super-resolution, the estimation of a high-resolution

image, x = [x1, x2, x3, . . . , xm]
T
∈ Rm, from its low-resolution counterpart, y ∈ Rn, where n ≤ m, can

be recast as an inverse problem. x may be estimated from y through a linear structured degradation

operator, H ∈ Rn×m and a noise e [13]:

Equation (1): Inverse estimation

y = Hx + e (1)

The sparsity of x implies that it can be approximated by its orthogonal projection xS by a few

atoms, {∅i}
M
i=1 of a dictionary, Φ ∈ Rm×M with a vector of representation coefficient c. By approximating

x with xS, the equation could be rewritten as:

Equation (2): Inverse estimation with a dictionary

y = HΦc + e′, where e′ = H(x− xS) + e (2)

y could also be approximated by using a low-resolution dictionary. The idea of dictionary learning is

to train two dictionaries: one low-resolution dictionary and one high-resolution dictionary. By solving

the approximation problem for low-resolution, the high-resolution can be recovered using the gathered

information. The explanation above is a highly simplified version of sparse coding and dictionary

learning, but it could be accomplished in many ways. For example, the SRCNN super-resolution

method could be treated as a revised version of dictionary learning with modifications under a deep

learning framework [32].

2.1.2. Dynamic Dictionary Learning

A critical aspect of precipitation downscaling is to generate local variations from large-scale areal

averages. Ideally, the atom number in a dictionary should be large enough to create variations under

complex conditions. The generality of large-scale and local variables could be achieved by merging

closer patches, regularizing patches, or using regularized searching functions [37]. The dictionary

learning method is still inadequate in precipitation downscaling circumstances. One important reason

is that gridded data sets are different from pure image files, and variations in precipitation are difficult

to simulate and, hence hard to generalize.

The proposed approach is inspired by the idea of dictionary learning; however, it differs in many

ways and does not follow any dictionary learning frameworks. For example, the atoms in the dictionary

are not used directly as patches; instead, they were used as base patch values to simulate new patches.

Therefore, the dictionary learning process becomes a dynamic approach.

2.1.3. Downscaling Workflow

The general workflow for the proposed downscaling method is to construct a dictionary consisting

of linked low and high-resolution patches using historical datasets. A similarity search is then

performed on the low-resolution patch with the low-resolution GCM product as input to find the

linked high-resolution patch in the dictionary. The high-resolution output will be produced by

linearly aligning the corresponding high-resolution patches. In detail, the dynamic dictionary learning

approach includes the following steps:

1. Select a GCM precipitation product that needs to be downscaled.

2. Select a downscaling scale ratio or a desired spatial resolution. Let Ls denote the scaling factor,

for Ls ∈ Z
+.

3. Select an existing gridded precipitation dataset AHR (observation and bias-corrected data are

preferred) that has a native spatial resolution match or close to the desired output spatial resolution

Ls. The temporal resolution should also be matched on the same level (e.g., hourly, 6-hourly,

daily, etc.).
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4. Upscale AHR to the spatial resolution level that matches or is close to the GCM precipitation

product (a widely used method is to aggregate grids as averages from the higher resolution [30]).

5. Use the upscaled output and AHR as inputs to construct the patch dictionary.

6. Use the GCM precipitation product as input and perform a similarity search on the constructed

dictionary to find an estimated high-resolution patch for each grid.

7. Align each high-resolution patch to form a weight mask for the high-resolution precipitation field.

8. Use the weight mask as a basis, and the original GCM product as the rain rate constraint to

produce the downscaled output.

The workflow of the PreciPatch method (Figure 1) is detailed in the following subsections.

 

the difference between cells is defined as “top minus 
bottom” and “left minus right.” 

B𝐿𝑅[3][3] 3 × 3
Diff(B𝐿𝑅[3][3]) = B𝐷𝐼𝐹𝐹[12] B𝐿𝑅[3][3]

Diff(B𝐿𝑅[3][3]) = B𝐷𝐼𝐹𝐹[12]B𝐷𝐼𝐹𝐹[0] = B𝐿𝑅[0][0] − B𝐿𝑅[0][1],B𝐷𝐼𝐹𝐹[1] = B𝐿𝑅[0][1] − B𝐿𝑅[0][2],B𝐷𝐼𝐹𝐹[2] = B𝐿𝑅[0][0] − B𝐿𝑅[1][0],B𝐷𝐼𝐹𝐹[3] = B𝐿𝑅[0][1] − B𝐿𝑅[1][1],B𝐷𝐼𝐹𝐹[4] = B𝐿𝑅[0][2] − B𝐿𝑅[1][2],B𝐷𝐼𝐹𝐹[5] = B𝐿𝑅[1][0] − B𝐿𝑅[1][1],B𝐷𝐼𝐹𝐹[6] = B𝐿𝑅[1][1] − B𝐿𝑅[1][2],B𝐷𝐼𝐹𝐹[7] = B𝐿𝑅[1][0] − B𝐿𝑅[2][0],B𝐷𝐼𝐹𝐹[8] = B𝐿𝑅[1][1] − B𝐿𝑅[2][1],

Figure 1. PreciPatch method workflow.

2.2. High-Resolution Dictionary Construction

The core of the proposed dynamic dictionary learning approach is to construct a dictionary

consisting of both low-resolution and high-resolution patches. Patches are defined as subsets from

the original gridded datasets, and the dictionary is enriched by ingesting more datasets. This section

introduces algorithms to construct the dictionary.

2.2.1. Recording the Spatial Difference

Before constructing the dictionary, the Diff Array is proposed and defined in Table 1 as a record of

space difference between grid cells, and is used in further analysis of other algorithms. Figure 2 shows

the construction of the Diff Array; the difference between cells is defined as “top minus bottom” and

“left minus right.” In the Diff Array, precipitation value differences between nearby grids are recorded

and will be used to classify the spatial differences between grids. The Diff Array stores 12 values in

total for a three by three array. The Diff Array will be used for dictionary construction (Section 2.2.2)

and similarity search (Section 2.4).

B𝐷𝐼𝐹𝐹[9] = B𝐿𝑅[1][2] − B𝐿𝑅[2][2],B𝐷𝐼𝐹𝐹[10] = B𝐿𝑅[2][0] − B𝐿𝑅[2][1],B𝐷𝐼𝐹𝐹[11] = B𝐿𝑅[2][1] − B𝐿𝑅[2][2]B𝐷𝐼𝐹𝐹[12]

na

L𝑠 for L𝑠 ∈ ℤ+A𝐻𝑅A𝐿𝑅 A𝐻𝑅 L𝑠
Array A𝐿𝑅[𝑚][𝑛] = [ 𝑙0,0 ⋯ 𝑙0,𝑛⋮ ⋱ ⋮𝑙𝑚,0 ⋯ 𝑙𝑚,𝑛] , for 𝑚, 𝑛 ∈ ℤ+ 
Array A𝐻𝑅[𝑞][𝑝] = [ℎ0,0 ⋯ ℎ0,𝑝⋮ ⋱ ⋮ℎ𝑞,0 ⋯ ℎ𝑞,𝑝] , for 𝑞, 𝑝 ∈ ℤ+, 𝑞 = (𝑚 + 1) ∗ L𝑠 − 1, 𝑝 = (𝑛 + 1) ∗ L𝑠 − 1

Figure 2. A graph representation of Diff Array.
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Table 1. The Diff Array.

Name: Create the Diff Array

Input:
Array BLR[3][3], a non-empty array with size 3× 3
Output:
Diff(BLR[3][3]) = BDIFF[12], the Diff array of BLR[3][3] with size 12
Procedure:
(1) Diff(BLR[3][3]) = BDIFF[12] is defined as:

BDIFF[0] = BLR[0][0] − BLR[0][1],
BDIFF[1] = BLR[0][1] − BLR[0][2],
BDIFF[2] = BLR[0][0] − BLR[1][0],
BDIFF[3] = BLR[0][1] − BLR[1][1],
BDIFF[4] = BLR[0][2] − BLR[1][2],
BDIFF[5] = BLR[1][0] − BLR[1][1],
BDIFF[6] = BLR[1][1] − BLR[1][2],
BDIFF[7] = BLR[1][0] − BLR[2][0],
BDIFF[8] = BLR[1][1] − BLR[2][1],
BDIFF[9] = BLR[1][2] − BLR[2][2],
BDIFF[10] = BLR[2][0] − BLR[2][1],
BDIFF[11] = BLR[2][1] − BLR[2][2]

(2) Return BDIFF[12]

2.2.2. The Dictionary Construction Algorithm

The patch dictionary used in this downscaling method is constructed using the algorithm

introduced in Table 2. The high-resolution and low-resolution dictionaries are integrated as one, and

the spatial information (i.e., DiffArray) of the low-resolution patches is stored. High-resolution datasets

and low-resolution datasets are decomposed into small patches and reorganized into a patch dictionary.

In this case, the low-resolution datasets are divided into three by three low-resolution patches,

and the high-resolution datasets are divided into high-resolution patches with sizes corresponding

to the scaling factor. The Diff Array of each low-resolution patch is also calculated and stored,

which provides additional information about the spatial relationships between nearby grids of each

low-resolution patch.

2.3. A Dynamic Time Warping (DTW) Based Similarity Search

After constructing the dictionary, a similarity search is performed against the dictionary using

low-resolution inputs. It is different from the widely used Mean Squared Error (MSE) or Euclidean

Distance-based similarity search. Dynamic Time Warping (DTW) distance is utilized in this research to

help to measure spatial similarities between two low-resolution patches. For example, the following

algorithm is used to calculate the DTW distance of two data series with equal length. The original

version of DTW distance is used for measuring the similarity between two-time series with different

lengths. See related research done by Itakura [38] and Keogh and Ratanamahatana [39]. Operational

speaking, the DTW distance could be applied to any data series in the form of arrays. Table 3 provides

the algorithm for an application, revised from the original version of DTW [39].
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Table 2. The dictionary construction algorithm.

Name: Construction of the High-Resolution Dictionary

Definition:
Ls is the scaling factor, for Ls ∈ Z

+

AHR is one-time slice from a gridded precipitation dataset
ALR is the aggregated (upscaled) result from AHR using area average based on the scaling factor Ls

Input:

Array ALR[m][n] =























l0, 0 · · · l0, n
...

. . .
...

lm, 0 · · · lm, n























, for m, n ∈ Z+

Array AHR[q][p] =























h0, 0 · · · h0, p

...
. . .

...
hq, 0 · · · hq, p























, for q, p ∈ Z+, q = (m + 1) ∗ Ls − 1, p = (n + 1) ∗ Ls − 1

Output:
D{dLR, dHR, dDIFF}, the patch dictionary consists of the low-resolution patch set dLR, high-resolution patch set
dHR, and spatial difference set dDIFF (defined in Table 1)
Procedure:
(1) For ( j = 1 to j = m− 1) do {

For (i = 1 to i = n− 1) do {

New Array BLR[3][3], Array BHR[Ls][Ls], Array BDIFF[12]

For (k = −1 to k = 1) do {
For (r = −1 to r = 1) do {

BLR[k + 1][r + 1] = ALR[ j + k][i + r]

}
}

Appending BLR as the last element of dLR

BDIFF[12] = Diff(BLR[3][3])
Appending BDIFF as the last element of dDIFF

BHR = AHR[( j ∗ Ls) to (( j + 1) ∗ Ls − 1)][(i ∗ Ls) to ((i + 1) ∗ Ls − 1)]
Appending BHR as the last element of dHR

}
}

(2) Return D{dLR, dHR, dDIFF} as the integration of sets dLR, dHR, and dDIFF

Table 3. DTW distance review.

Name: DTW Distance of Two Data Series with Equal Length (n)

Input:
Array A = [a1, a2, . . . , ai, . . . , an]

Array B =
[

b1, b2, . . . , b j, . . . , bn

]

Output:
distanceDTW(A, B), the DTW distance between A and B
Procedure:
(1) Construct an n-by-n matrix where the

(

ith, jth
)

element of the matrix contains the distance dist
(

ai, b j

)

between the two points ai and b j, (i.e. dist
(

ai, b j

)

=
(

ai − b j

)2
).

(2) A warping path W is a contiguous set of matrix elements that defines a mapping between A and B. The kth

element of W is defined as wk = (i, j)k, therefore,

W = w1, w2, . . . , wk, . . . , wK, where n ≤ K ≤ 2n− 1

W is subject to several constrains:
• Boundary conditions: w1 = (1, 1) and wK = (n, n)
• Continuity: given wk = (c, d), then wk−1 = (c′, d′), where c− c′ ≤ 1 and d− d′ ≤ 1
• Monotonicity: given wk = (c, d), then wk−1 = (c′, d′), where c− c′ ≥ 0 and d− d′ ≥ 0

(3) The DTW path is the path that minimizes the warping cost:

DTW(A, B) = min{

√

√

√

K
∑

k=1

wk}

(4) Define the cumulative distance γ(i, j) as the distance found in the current cell and the minimum of the
cumulative distances of the adjacent elements:

γ(i, j) = dist
(

ai, b j

)

+ min
{

γ(i− 1, j− 1),γ(i− 1, j),γ(i, j− 1)
}

(5) distanceDTW(A, B) = γ(n, n), where the path is DTW(A, B)
(6) Return distanceDTW(A, B)
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2.4. Generate the High-Resolution Weight Mask Through a Double-Layer DTW Similarity Fuzzy Search
Algorithm

DTW distance offers a more comprehensive estimation for similarity than simple MSE.

This approach could capture linear changes; however, precipitation field downscaling requires

estimation of spatial changes. A double-layer DTW similarity search is then proposed in Table 4,

which utilizes the Diff Array stored in the previous steps to compare rainfall peaks and valleys in the

neighborhood cells spatially. Additionally, a fuzzy search layer is added into the algorithm to avoid

the overfitting of patches. In Table 4, each grid from the low-resolution input is compared with the

patches in the constructed dictionary along with its spatial relationship with nearby eight grids (the

Diff Array). The final high-resolution patches will be estimated by comparing the similarity of the

low-resolution input grids with low-resolution dictionary patches. Specifically, closest patches from

the dictionary are selected for each input grid, and their corresponding high-resolution patches are

averaged to produce a final high-resolution patch for the input grid. The final high-resolution output

field is produced by aligning each high-resolution patch found for each input grid.

Table 4. A double-layer Dynamic Time Warping (DTW) similarity fuzzy search algorithm.

Name: Similarity Fuzzy Search Based on a Double-layer DTW Distance

Input:
Ls, for Ls ∈ Z

+, is the scaling factor
D{dLR, dHR, dDIFF}, is the patch dictionary with size TD for each set

Array CLR[y][x] =























l0, 0 · · · l0,x
...

. . .
...

ly, 0 · · · ly, x























, for y, x ∈ Z+ and y, x ≥ 2, is the low-resolution dataset

Output:

Array CHR[g][k] =























h0, 0 · · · h0,k
...

. . .
...

hg, 0 · · · hg, k























, for g, k ∈ Z+, g = (y− 1) ∗ Ls − 1, k = (x− 1) ∗ Ls − 1, is the

downscaled weight mask
Procedure:
(1) For ( j = 1 to j = y− 1) do {

For (i = 1 to i = x− 1) do {
New Array ELR[3][3], Array EDIFF[12],
New Array E1st[Ls][Ls], Array E2nd[Ls][Ls], Array E3rd[Ls][Ls]
For (K = −1 to k = 1) do {

For (r = −1 to r = 1) do {
ELR[k + 1][r + 1] = CLR[ j + k][i + r]

}
}

EDIFF[12] = Diff(ELR[3][3])
Let 1st_best_so_far = infinity
Let 2nd_best_so_far = infinity
Let 3rd_best_so_far = infinity

For each t in TD do {
distpart1 = distanceDTW( f lat(ELR), f lat(dLR[t]))
distpart2 = distanceDTW(EDIFF, dDIFF[t])
distall = distpart2 + distpart2

If ( distall < 1st_best_so _far ) then {
1st_best_so_far = distall

E1st = dHR[t] }
Else if ( distall < 2nd_best_so _far) then {

2nd_best_so_far = distall

E2nd = dHR[t] }
Else if ( distall < 3rd_best_so _far) then {

3rd_best_so_far = distall

E3rd = dHR[t] }
Else {Continue}

}
CHR[(( j− 1) ∗ Ls) to ( j ∗ Ls − 1)][((i− 1) ∗ Ls) to (i ∗ Ls − 1)] =

Average(E1st + E2nd + E3rd)
}

}
(2) Return CHR
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The result from the algorithm in Table 4 is a high-resolution weight mask, but it cannot be treated

as the final downscaling result, yet it is very close to the aimed output. The downscaling algorithm

described in Table 5 is a necessary step to make sure the final output is constrained by the original

low-resolution input, i.e., consistent with the large-scale precipitation amount.

Table 5. Downscaling algorithm based on a weighted mask and constrains.

Name: Produce Downscaled Results from a Weighted Mask and Constrains

Input:
Ls, for Ls ∈ Z

+, is the scaling factor

Array CLR[y][x] =























l0, 0 · · · l0,x
...

. . .
...

ly, 0 · · · ly, x























, for y, x ∈ Z+ and y, x ≥ 2, is the low-resolution dataset

Array CHR[g][k] =























h0, 0 · · · h0,k
...

. . .
...

hg, 0 · · · hg, k























, for g, k ∈ Z+, g = (y− 1) ∗ Ls − 1, k = (x− 1) ∗ Ls − 1, is the

downscaled weight mask
Output:

Array DSHR[g][k] =























h0, 0 · · · h0,k
...

. . .
...

hg, 0 · · · hg, k























, for g, k ∈ Z+, g = (y− 1) ∗ Ls − 1, k = (x− 1) ∗ Ls − 1, is the

downscaled precipitation field from CLR

Procedure:
(1) For ( j = 1 to j = y− 1) do {

For (i = 1 to i = x− 1) do {
DSHR[(( j− 1) ∗ Ls) to ( j ∗ Ls − 1)][((i− 1) ∗ Ls) to (i ∗ Ls − 1)] =

Sum(CLR[ j][i]) ∗ (
CHR[(( j−1)∗Ls) to ( j∗Ls−1)][((i−1)∗Ls) to (i∗Ls−1)]

Sum(CHR[(( j−1)∗Ls) to ( j∗Ls−1)][((i−1)∗Ls) to (i∗Ls−1)])
)

}
}

(2) Return DSHR

2.5. Patch Dictionary Classification and Loose Index

The spatiotemporal complexity of DTW is O
(

n2
)

for the data series with the same length n [39].

A patch dictionary containing K data series would have a complexity of O
(

K·n2
)

. The databases or

dictionary used in prior research is relatively small, typically less than 10,000 samples [40]. However,

the dictionary constructed in previous sections will easily exceed 1,000,000 samples after absorbing

years of data. Therefore, classification and indexing become necessary if we want to maintain searching

performance at a practical level. The following sections will introduce one classification algorithm

to divide the patch dictionary into sub-dictionaries, an effective loose index method to generate an

individual index for each sub-dictionary, and an updated similarity search that utilizes the classification

and indexing system.

2.5.1. Dictionary Classification Algorithm

The patch classification algorithm in Table 6 is a simple but effective coding method based on the

spatial difference of low-resolution patches. Sub-dictionaries are classified according to the code. A

similarity search will be done against individual sub-dictionary instead of the whole dictionary, which

saves tremendous scan time.
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Table 6. Patch dictionary classification algorithm.

Name: Build up Classification

Input:
D{dLR, dHR, dDIFF}, is the patch dictionary with size TD for each set
Output:
The classification code CodeD of an element D

{

dLR[t], dHR[t], dDIFF[t]
}

in D{dLR, dHR, dDIFF} for an element
t in TD

Procedure:
(1) Let CodeD = ””
(2) For each d in dDIFF[t] do {

If (d < 0 ) then {CodeD+ = string(9)}
Else if (d > 0 ) then {CodeD+ = string(1)}
Else if (d = 0 ) then {CodeD+ = string(0)}
Else {print (NaN)}

}
(3) Return CodeD

Figure 3 gives a preview of the classification system when implementing. Each file folder in the

figure represents a sub-dictionary that has been classified according to the encoding system.

𝐶𝑜𝑑𝑒𝐷 = "" 𝑑 𝐢𝐧 𝑑𝐷𝐼𝐹𝐹[𝑡]𝑑 < 0 𝐶𝑜𝑑𝑒𝐷+= 𝑠𝑡𝑟𝑖𝑛𝑔(9)𝑑 > 0 𝐶𝑜𝑑𝑒𝐷+= 𝑠𝑡𝑟𝑖𝑛𝑔(1)𝑑 = 0 𝐶𝑜𝑑𝑒𝐷+= 𝑠𝑡𝑟𝑖𝑛𝑔(0)
𝐶𝑜𝑑𝑒𝐷

 

𝑆𝐷{𝑠𝑑𝐿𝑅 , 𝑠𝑑𝐻𝑅 , 𝑠𝑑𝐷𝐼𝐹𝐹} 𝐶𝑜𝑑𝑒𝑆𝐷 𝑇𝑆𝐷
𝑠𝑑𝑖𝑛𝑑𝑒𝑥 𝑇𝑆𝐷

 𝑡 𝐢𝐧 𝑇𝑆𝐷𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡1 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑓𝑙𝑎𝑡(𝑠𝑑𝐿𝑅[𝑡]), 𝑓𝑙𝑎𝑡(𝑧𝑒𝑟𝑜𝑠(𝑠𝑑𝐿𝑅[𝑡])))𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 =  𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐷𝑇𝑊(𝑠𝑑𝐷𝐼𝐹𝐹[𝑡], 𝑧𝑒𝑟𝑜𝑠(𝑠𝑑𝐷𝐼𝐹𝐹[𝑡]))𝑑𝑖𝑠𝑡𝑧𝑒𝑟𝑜 = 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2 + 𝑑𝑖𝑠𝑡𝑝𝑎𝑟𝑡2

Figure 3. Dictionary classification.

2.5.2. Loose Index Algorithm for Sub-Dictionaries

Although the atom number in sub-dictionaries is much less than the original dictionary, the

scanning process will still hold if large amounts of historical data are used in constructing the dictionary.

Therefore, an indexing system is always needed to reduce lookup time. An index is introduced in

Table 7 to store comparative DTW distance between the patches and the x-axis (sets with all zeros).

The idea is to filter potential solutions for arbitrary similarity searches. In Table 7, the combined DTW

distance is pre-calculated for each low-resolution patch between the zero-vector and its Diff Array

between the zero-vector. The combined DTW distance could not be treated as the exact index but

enough for a loose indexing system.

2.5.3. Updated Similarity Search Based on Dictionary Classification and Loose Index

After classifying the dictionary and building the loose index, the similarity search algorithm

should be revised to leverage the index structure. Table 8 offers the updated version part of the

double-layer similarity fuzzy search algorithm from Table 4. In Table 8, each low-resolution input

grid is compared with the patches in the corresponding sub-dictionaries that follows the same spatial

relationship with its 8 nearby grids. The DTW distance between the patches and the zero-vector

haven been pre-calculated and is compared with the DTW distance between the input grid with the
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zero-vector to form a candidate set of patches. Then the exact DTW distance is calculated among the

candidate patches to find the three closest patches and produce the final patch piece.

Table 7. The sub-dictionary loose indexing algorithm.

Name: Build up a Loose Index for the Sub-dictionary

Input:
SD{sdLR, sdHR, sdDIFF}, is the sub-dictionary under a classification code CodeSD with size TSD for each set
Output:
Index set sdindex with size TSD

Procedure:
(1) For each t in TSD do {

distpart1 = distanceDTW( f lat(sdLR[t]), f lat(zeros(sdLR[t])))
distpart2 = distanceDTW(sdDIFF[t], zeros(sdDIFF[t]))
distzero = distpart2 + distpart2

Appending distzero as the last element of sdindex
}

(2) Return sdindex

Table 8. The similarity search algorithm based on dictionary classification and the index.

Name: Using the Classification and Index to Search

Input:
Ls, for Ls ∈ Z

+, is the scaling factor
Npatch, for Npatch ∈ Z

+, is the minimum number of patches will be examined
Fully classified patch dictionary D{dLR, dHR, dDIFF}, for each sub-class with code CodeSD, the indexed
sub-dictionary is SD{sdLR, sdHR, sdDIFF, sdindex}with size TSD, for SD ∈ Z+

A non-empty array ELR[3][3], and its Diff array EDIFF[12]
Output:
The similarity fuzzy search results: E1st[Ls][Ls], E2nd[Ls][Ls], and E3rd[Ls][Ls]
Procedure:
(1) Find code CodeSD for EDIFF[12] and locate the sub-dictionary SD{sdLR, sdHR, sdDIFF, sdindex}

(2) Calculate distzero for ELR[3][3] and EDIFF[12]
distpart1 = distanceDTW( f lat(ELR[3][3]), f lat(zeros(ELR[3][3])))

vspace-12pt distpart2 = distanceDTW(EDIFF[12], zeros(EDIFF[12]))

vspace-12pt distzero = distpart2 + distpart2

(3) Calculate absolute differences between distzero and each element in sdindex

(4) Sort sdindex based on the absolute differences in ascending order

(5) Find distthd threshold as distthd = sdindex

[

Npatch

]

, if (TSD ≤ Npatch), then { distthd = sdindex[TSD]
}

(6) For each t in TSD do {
If (sdindex[t] ≤ distthd ) then {

Let 1st_best_so_far = infinity
Let 2nd_best_so_far = infinity
Let 3rd_best_so_far = infinity

For each t in TSD do {
distpart1 = distanceDTW( f lat(ELR), f lat(sdLR[t]))
distpart2 = distanceDTW(EDIFF, sdDIFF[t])

distall = distpart2 + distpart2

If ( distall < 1st_best_so _far ) then {
1st_best_so_far = distall

E1st = sdHR[t] }
Else if ( distall < 2nd_best_so _far) then {

2nd_best_so_far = distall

E2nd = sdHR[t] }
Else if ( distall < 3rd_best_so _far) then {

3rd_best_so_far = distall

E3rd = sdHR[t] }
Else {Continue}

}
}

Else {Continue}
}

(7) Return E1st[Ls][Ls], E2nd[Ls][Ls], and E3rd[Ls][Ls]



Remote Sens. 2020, 12, 1030 12 of 20

3. Implementation and Results

To exam the performance of the proposed precipitation downscaling method on the gridded

precipitation product, we use the Integrated Multi-satellitE Retrievals for GPM (IMERG) precipitation

estimates as the testing data source. The original IMERG data is aggregated to a lower resolution,

to which the downscaling method is applied. Then, the results are compared and assessed with the

original high-resolution data, as well as the output from other approaches such as bicubic, DeepSD,

and RainFARM.

The downscaling method was implemented using Python and open-source scientific libraries,

including NumPy, NetCDF, numba, and itertools. The proposed downscaling method is implemented

as a batch of computation processes from dictionary construction to downscaled output production.

The system accepts NetCDF and HDF files as input and output downscaled results in NetCDF

formats. The current implementation method is not under any existing frameworks (to maximize

implementation flexibility), the implementation of dictionary learning is based on programming each

algorithm in individual programs, and could be treated as a complete downscaling system.

3.1. Synthetic Experiments

A common problem in evaluating the downscaling method is the lack of ground truth data.

Climate variables like precipitation are simulated differently across models and show different patterns

and rainfall amounts. So, instead of downscaling a GCM output directly, synthetic experiments

are often used to evaluate downscaling performance. Synthetic experiments are conducted through

upscaling higher resolution rainfall products and use them as inputs and compare downscaled results

to original products to evaluate overall performance [31]. The upscaling process is achieved through

aggregate grids as averages from the higher resolution.

3.1.1. Study Areas

The main study area is the Chesapeake Bay, which is an estuary in the Eastern U.S. Additional

areas are also included for parallel comparison of the downscaling results. The specific areas are

separated regions within California, Kansas, and Florida. Downscaling methods are used for all four

regions, and more sets are generated for the Chesapeake Bay for long-term comparison. Figure 4 maps

the geographical coverage of each study region on the U.S. map.

 

’ 0.1°

 

Figure 4. Study areas for downscaling studies.

3.1.2. Dataset

IMERG dataset for the U.S. coverage is collected and selected as experimental data, which

is generated by NASA’s Precipitation Processing System every half hour with 4-hours (Early) to

3.5-months (Final) latency from acquisition time. IMERG V06 Final is chosen, which is a satellite-gauge

product. The spatiotemporal resolution of the precipitation variable in IMERG is 0.1
◦

with half-hour
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reads for each day of the year. The year 2014 to 2018 are selected in the experiment, and 2014 to 2017

were used for any model or dictionary training process, while 2018 is used for method comparison in

the production process.

3.1.3. Downscaling Methods

The methods used in downscaling case studies are chosen based on the ability to provide

precipitation field as the final output and whether they require climate variables other than precipitation

when producing downscaled results. Besides the statistical downscaling methods, bilinear interpolation

(e.g., bicubic) is considered the baseline for spatial downscaling of precipitation fields [32]. Specifically,

three methods are selected to evaluate besides the proposed method: (1) bicubic interpolation, (2)

DeepSD, as an SRCNN based super-resolution downscaling method [36], and (3) RainFARM [28] as

a stochastic downscaling method. Although there are other downscaling methods available in the

research, most of them are not able to produce precipitation fields as output, require other datasets

when downscaling, or they are limited to a specific area. Statistical methods like regression and PP

methods are not chosen because they failed to produce continuous precipitation fields and require

additional variables other than precipitation, which are not suitable for downscaling requirements in

the previous section. Most of the statistical methods are involved using either observation data from

the same time frame or other variables if precipitation field is desired as the downscaled result. Under

this consideration, statistical methods are chosen.

3.2. Results

For each study area, two images from different time slices are selected to show a brief view of

the general performance of the bicubic method, DeepSD, RainFARM, and PreciPatch. The original

high-resolution IMERG data set is also visualized to compare with the downscaled results from

different methods with a direct visual comparison. DeepSD is trained using the data from 2014 to 2017

at the same region, bicubic and RainFARM do not need a training process, and PreciPatch dictionary is

trained using the whole U.S. coverage data from 2014 to 2017.

Figure 5 presents the downscaled results for different study areas. The input column in each figure

contains the inputs for different downscaling methods and is used as the only input in downscale

methods. The results from bicubic, DeepSD, RainFARM, and PreciPatch are in the next four columns,

respectively. All the images from the same row share the same color scale. Original IMERG data are

in the last column for visual comparison with different results. Generally, PreciPatch outperformed

RainFARM, DeepSD, and bicubic, showing results closer to the ground truth in most cases. RainFARM

method is a valid solution that meets downscaling requirements and can produce downscaling results

with fast speed. However, due to the theoretical limitations of this method, which assumes rainfall

fields as Gaussian random fields at all scale levels [27], the practical shapes and textures of rainfall

are not sufficiently simulated by RainFARM. Bicubic is often treated as the baseline for downscaling,

and the results from DeepSD are very close to those from bicubic. DeepSD is showing great potential

for improvements.

3.3. Validation and Evaluation

The downscaled results are compared with ground truth statistically.

Figures 6 and 7 show the direct comparison between the downscaled point values (predicted

values) to the ground truth in the cases corresponding to the ones showing in Figure 5. Each plot

represents a time slice. Statistically speaking, for R2, bicubic and PreciPatch performs better than

DeepSD and RainFARM in most cases. Six more criteria are used to evaluate the performance between

different methods. A total of 2208 time slices (hourly precipitation from 2018 June, July, and August)

are used from all four study regions to generate results. The statistical comparison is made through a

grid-to-grid comparison between the predicted values from each method to the ground truth at each

time slice. The detailed statistical comparison is shown in Table 9; the values are averaged from all
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time slices, where PreciPatch shows the best statistical accuracies in almost all aspects, followed by

RainFARM and bicubic. DeepSD has comparatively low performance in this case study, which agrees

with the results from the pre-test and visual comparison. PreciPatch outperforms RainFARM, bicubic,

and DeepSD in this synthetic experiment regarding statistical accuracy.

 

Figure 5. Downscaling results. The x-axis refers to the longitude, and the y-axis refers to the latitude.

Each row is the input aggregated Integrated Multi-satellitE Retrievals for GPM (IMERG) rain rate,

Bicubic result, DeepSD result, RainFARM result, PreciPatch result and original high-resolution IMERG

rain rate respectively for each location. 1st row: hourly precipitation at Chesapeake Bay area on

2018/7/21 (23:30:00 UTC), 2nd row: hourly precipitation at Chesapeake Bay area on 2018/7/21 (16:30:00

UTC), 3rd row: hourly precipitation at Florida area on 2018/12/14 (05:30:00 UTC), 4th row: hourly

precipitation at Florida area on 2018/12/14 (18:30:00 UTC), 5th row: hourly precipitation at Kansas

area on 2018/7/29 (04:30:00 UTC), 6th row: hourly precipitation at Kansas area on 2018/7/29 (08:30:00

UTC), 7th row: hourly precipitation at California area on 2018/1/9 (00:30:00 UTC), 8th row: hourly

precipitation at California area on 2018/1/9 (08:30:00 UTC).
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—Figure 6. The Chesapeake Bay and Florida—R2. The x-axis refers to the ground truth, and the y-axis

is the prediction. The 45 degrees line in each graph is the perfect match reference line between the

prediction and the ground truth, showing as the dashed line, the solid line is the trending line. 1st row:

hourly precipitation at Chesapeake Bay area on 2018/7/21 (23:30:00 UTC), 2nd row: hourly precipitation

at Chesapeake Bay area on 2018/7/21 (16:30:00 UTC), 3rd row: hourly precipitation at Florida area on

2018/12/14 (05:30:00 UTC), 4th row: hourly precipitation at Florida area on 2018/12/14 (18:30:00 UTC).

—

downscaled results was implemented to test the downscaling method’s ability to hold precipitation 

Figure 7. Kansas and California—R2. The x-axis refers to the ground truth, and the y-axis is the

prediction. The 45 degrees line in each graph is the perfect match reference line between the prediction

and the ground truth, showing as the dashed line, the solid line is the trending line. 1st row: hourly

precipitation at Kansas area on 2018/7/29 (04:30:00 UTC), 2nd row: hourly precipitation at Kansas area

on 2018/7/29 (08:30:00 UTC), 3rd row: hourly precipitation at California area on 2018/1/9 (00:30:00 UTC),

4th row: hourly precipitation at California area on 2018/1/9 (08:30:00 UTC).
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Table 9. Statistical comparison.

mm/hour Bicubic DeepSD RainFARM PreciPatch

Average Bias per grid 0.03 0.12 4.3 × 10−9 0.003

Average R2 0.18 -0.16 0.29 0.42

Average (+) R2 0.44 0.3 0.47 0.57

RMSE 0.45 0.61 0.49 0.42

Mean Absolute Error 0.13 0.28 0.13 0.1

Maximum Absolute
Error

7.75 7.95 4.2 3.87

STDV Absolute Error 0.2 0.27 0.09 0.07

In addition to the visual and statistical comparison between methods, aggregation of the

downscaled results was implemented to test the downscaling method’s ability to hold precipitation

consistency from large-scale to small-scale. As designed with constrains for both RainFARM and

PreciPatch, the downscaled results from these two methods could be upscaled to the original

coarse-resolution input with visually unnoticeable variations. However, the downscaled results

from bicubic interpolation and DeepSD methods could not be aggregated back to low-resolution inputs,

which means such downscaling approaches represent a biased transformation from large-scale data to

small-scale outputs.

3.4. Discussion

Major differences between our method and previous precipitation downscaling research include:

• Full-field generation instead of area limited generation or fixed size.

• Precipitation fields as target production instead of station networks (e.g., single or multiple),

providing continuous information in 2D space.

• Precipitation field distribution simulated closer to precipitation observation

• Data independence in production (available for downscaling future predictions).

• Hourly precipitation downscaling to precipitation fields (downscaling short-duration precipitation

events) instead of a daily average or seasonal downscaling used in other research.

• Using the prior knowledge learned in one data set and successfully applied to another related

data set.

• The rainfall amount is consistent with large-scale vs. rainfall inconsistency in others.

Major differences between PreciPatch and other downscaling approaches regarding methodology

includes: (1) comparing to statistical downscaling method: there is no need for other climate variables

in the downscaling process, no regression process or probability assumption process, (2) comparing to

stochastic downscaling method: the proposed method is making use of prior knowledge, not purely

hypothesis and mathematical transformation based, (3) comparing to SRCNN based methods like

DeepSD: when interpolation process is involved, the final output is constrained by coarse-resolution

inputs, which is equal to an unbiased disaggregation of precipitation amounting to space, (4) comparing

to traditional dictionary learning: one master dictionary is constructed instead of two in traditional

approaches, the proposed method uses dynamic patches to recover the high-resolution image, while

the traditional approach uses stored fixed patches, DTW distance is used instead of MSE or Euclidean

distance, fuzzy search is utilized in the new method instead of exact search for similarity patches,

and rainfall amount is consistent in the downscaled result, 5) comparing to Analog Method (AM):

similarity searching is executed spatially with a fuzzy search instead of linearly with a direct search.
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In this research, there are also some limitations to PreciPatch. For example, the computing time is

longer than other downscaling methods, which makes it hard to apply to large datasets. The detailed

comparison is in Table 10.

Table 10. Comparison of tested downscaling method.

Bicubic DeepSD RainFARM PreciPatch

Training time N/A
~1 hour for 3 months of data

(national coverage)
N/A

~200 hours for 300 Million
patches (national coverage)

Applicability to different areas?
Direct apply, no training

is needed

Additional training is
needed if the area is different
or the input size is different

Direct apply, no training
is needed

Direct apply, no need for
additional training

Computing time < 0.001 sec per grid point ~0.005 sec per grid point ~0.005 sec per grid point
~2 sec per grid point

per process

Overall downscaling
performance

Baseline
Not good—close to

the baseline
Rainfall clusters are not

well simulated
Best

Holds rainfall consistency with
large-scale input?

No No Yes Yes

However, this limitation could be resolved by including an additional index layer for the dictionary

and reprogramming the system using more efficient languages such as C/C++. Another limitation

for the proposed method is its assumption: future precipitation would behave similarly as its past,

relationships developed for present climate also hold for possible future climates [39] (the same

assumption is used in all statistical downscaling methods). One advantage compares with other

models like DeepSD is that PreciPatch does not need additional training when applying to different

areas, even for regions outside of the training area.

4. Conclusions

The importance of precipitation downscaling is well recognized in hydrological impact studies

and local climate change-related domains. However, few statistical downscaling methods can provide

universally applicable downscaling solutions for arbitrary GCM outputs, large amounts of precipitation

downscaling related studies are area limited and highly additional data-dependent, not applicable

for random locations. Meanwhile, major research can only provide the downscaled result on a level

of single or multiple stations. Providing precipitation fields as outputs are still beyond the reach

for most traditional methods. Recent developments in the stochastic downscaling method and the

SR based method brought new opportunities to enhance downscaling studies. A new precipitation

downscaling method based on dynamic dictionary learning is proposed with detailed algorithms and

procedures. Four precipitation downscaling study cases are conducted to evaluate the performance

of the proposed method and compare it with other downscaling methods (RainFARM and DeepSD),

along with the comparison baseline, the bicubic interpolation method. Results from case studies

have shown positive feedback on the proposed downscaling method, demonstrating good quality

for simulating spatially distributed precipitation fields and yielding the best performance among all

other tested methods through visual inspection and quantitative analyses. It is hard for traditional and

machine learning super-resolution based methods to exclude the interpolation process and include

the non-linear characteristics of precipitation event into the method design [41]. Meanwhile, many

downscaling methods like bicubic interpolation and DeepSD do not have extra constraints to enforce

the final outputs to hold rainfall consistency with the initial inputs. The proposed method interprets

the downscaling task as a constrained single image super-resolution problem, different from traditional

approaches and other downscaling methods, it addresses the precipitation downscaling issue using a

novel approach which excludes the interpolation process and is able to generate non-linear spatial

patterns that are closer to rainfall observations. Additionally, rainfall consistency is ensured by

adding extra constraints in the proposed method. As a result, PreciPatch achieved better results than

other downscaling methods in precipitation downscaling study cases because it takes the spatial
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characteristics of precipitation into the method design consideration and optimizes the method to fit

precisely for the precipitation downscaling scenario.

Precipitation field downscaling is a challenging task, and related research topics have been

explored by many studies. The proposed precipitation downscaling method, PreciPatch has shown its

ability to spatially downscale short-duration precipitation events to precipitation fields and can be

applied to downscale future estimations from GCMs or other gridded data sources. The bias correction

is not addressed by PreciPatch, and the bias from GCMs are preserved at the same spatial scale as the

input. This research contributes to hydrological impact studies and local climate change studies by

providing a precipitation downscaling method and associated algorithms for simulating precipitation

fields in local scale and being consistent with large-scale information, in detail:

• This method does not require additional data as predictors to produce downscaled results, and it

could be used for downscaling future estimations from GCMs.

• This downscaling method has the potential to aid climate models like WRF by providing higher

resolution inputs.

• The downscaled results from this method could be used to force mountain glacier models for local

impact studies, where the complete absence of climate monitoring activities within the regions of

interest presents a data challenge.

For future work, more (spatiotemporal) indexing techniques [42] will be integrated to accelerate

the similarity search process in PreciPatch. PreciPatch will be converted and rebuilt on top of a machine

learning framework to generalize the dictionary into a model, accelerate the downscaling process, and

reduce storage requirement. More observation data will be used to evaluate the downscaling method

regarding expandability and transferability.
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