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Scientific Significance Statement

Many lakes are undergoing simultaneous increases in light-absorbing dissolved organic carbon (DOC) and nutrients due to a

combination of human activities in the watershed and climate change. Nutrient enrichment can result in algal blooms, or the

critical transition from a low to high state of phytoplankton biomass. However, it is unclear if DOC alters the resilience of

lakes undergoing nutrient enrichment. To understand this relationship, we evaluate resilience for experimentally enriched

lakes with contrasting DOC. Resilience of phytoplankton to enrichment was increased by higher DOC in combination with

thermocline depth and grazer biomass.

Abstract

Phytoplankton blooms often follow nutrient enrichment. Differences among lakes in light-absorbing dissolved

organic carbon (DOC) may shift bloom thresholds to higher nutrient loads and thereby increase resilience of

lakes to enrichment. To explore this idea, we measured resilience to experimental enrichment of two lakes with

contrasting DOC concentrations. We compared bloom thresholds in both lakes using a model of phytoplank-

ton response to DOC and nutrients, a dynamic time series indicator of resilience, and two empirical measures

of stochastic resilience, mean exit time and median survival time. For the dynamic indicator and ecosystem

model the lake with higher DOC was more resilient to enrichment. However, the distributions overlapped for

stochastic indicators of resilience of the two lakes. These analyses show that DOC interacts with mixing depth

and zooplankton biomass to affect resilience. Strong contrasts in DOC and many observations are needed to

discern effects of DOC on resilience to enrichment.

Enrichment of lakes and reservoirs by excessive nutrient

loads impairs water resources worldwide (Smith et al. 2006;

Schindler 2012). Enrichment causes blooms of cyanobacteria,

and consequences include hypoxia, mass mortality of fishes,

and adverse effects on human health (Huisman et al. 2018;

Isles and Pomati 2021). Blooms are characterized by a state of

high phytoplankton biomass, which contrasts with an alter-

nate state of low phytoplankton biomass. Transitions between
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states are shaped by the interaction of nutrient enrichment

with grazers and physical properties of the water column

(Soranno 1997; Kosten et al. 2012; Isles et al. 2015).

The contrasting states are separated by an unstable thresh-

old (Scheffer 2009). Each state is locally stable because equilib-

rium is restored after small disturbances. Large disturbances,

however, may cause the ecosystem to cross the threshold to

the alternate state (Carpenter et al. 2022).

Many lakes are simultaneously experiencing increases in

water color and nutrient loading (Leech et al. 2018). Water

color from chromophoric dissolved organic carbon (DOC) is

mainly terrestrial in origin (Wilkinson et al. 2013) and con-

centrations change in response to hydrogeology, vegetation,

and precipitation in the watershed (Gergel et al. 1999; Zwart

et al. 2016; Carpenter and Pace 2018). Inputs of DOC affect

stratification, phytoplankton growth, and response to nutri-

ent enrichment by altering light and nutrient availability

(Jones et al. 2005; Rinke et al. 2010; Solomon et al. 2015).

Higher loads of DOC decreased stability of mesocosm food

webs and increased their sensitivity to nutrient pulses (Jones

and Lennon 2015). Terrestrial DOC is accompanied by nitro-

gen and phosphorus some of which supports phytoplankton

growth (Qualls et al. 1991; Kissman et al. 2017; Corman

et al. 2018). Primary production has a hump-shaped response

to increasing DOC concentrations due to tradeoffs between

nutrient enhancement and shading effects (Kelly et al. 2018;

Olson et al. 2020). This response seems dependent on carbon-

nutrient stoichiometry (Isles et al. 2021), and correlations of

DOC, color, and limiting nutrients are variable among water-

sheds and lakes (Lapierre et al. 2021; Stetler et al. 2021).

Resilience measures the tendency of a state, such as the low-

phytoplankton state of a lake, to persist despite changes in its

environment, such as nutrient supply (Holling 1973). While sta-

bility measures the rate of recovery from local perturbations

(Ives and Carpenter 2007), resilience considers effects of repeated

and large disturbances, environmental trends, and the possibility

that the ecosystem could cross thresholds to alternate states

(Holling 1996; Scheffer et al. 2015). If the low-phytoplankton

state is resilient to a specified nutrient input then it does not

cross the threshold to the high-phytoplankton state. Thus resil-

ience is the response of a specified state of the ecosystem to a

specified environmental perturbation (Carpenter et al. 2001).

Resilience of phytoplankton to nutrient inputs depends on

nutrient stoichiometry, herbivory, and food-web structure (Elser

et al. 1998; Carpenter et al. 2001).

Since DOC affects phytoplankton stability and response

to nutrient enrichment, we hypothesized that the resilience

of phytoplankton to nutrient enrichment may depend on

DOC as well as grazing. This study compares resilience to

nutrient enrichment of phytoplankton biomass in two

experimental lakes with contrasting DOC for which we have

detailed data on phytoplankton response to enrichment

(Wilkinson et al. 2018). We apply three approaches to assess

resilience: (1) a model of chlorophyll responses to nutrient

enrichment, DOC, and grazers; (2) comparative resilience of

phytoplankton to experimental enrichment of two contra-

sting lakes while monitoring dynamic indicators of resilience

(Ives and Dakos 2012; Scheffer et al. 2015); and (3) compari-

sons of stochastic resilience of the low-phytoplankton state

to nutrient enrichment (Arani et al. 2021; Carpenter

et al. 2022). We find that higher DOC may increase resilience

of chlorophyll to enrichment but this effect is complicated

by thermocline depth, grazer biomass, and stochasticity.

Methods

Lake descriptions

Whole-lake enrichments were conducted on Peter and

Tuesday Lakes located in Gogebic County, Michigan, USA

(46!250 N, 89!500 W). Before enrichment Peter and Tuesday

lakes had relatively low primary production (Carpenter and Kit-

chell 1993; Carpenter et al. 2005). Both lakes are surrounded

by fringing bogs and hardwood-conifer forests. A third lake,

Paul Lake, served as undisturbed reference ecosystem.

Although the lakes are < 1 km apart they differ in some key

limnological characteristics. Prior to this experiment we mea-

sured DOC, total phosphorus (TP), total nitrogen (TN), and their

ratios during years with no enrichment, 2003–2012. Tuesday

Lake had higher concentrations of DOC, TP, and TN during

these unenriched years (Supporting Information Fig. S1).

During this study, the mean thermocline during summer

stratification was deeper in Peter Lake (1.9 m) than in Tuesday

Lake (1.2 m). DOC and chlorophyll mean summer concentra-

tions were higher in Tuesday Lake (9.7 mg L"1 and 17.0 μg L"1,

respectively) than in Peter Lake (5.4mg L"1 and 7.9 μg L"1). Zoo-

plankton biomass was relatively low in Tuesday Lake (1.8 μg

C L"1) vs. Peter Lake (12.2 μg L"1) consistent with food web con-

trasts established during earlier ecosystem experiments

(Carpenter et al. 2001; Pace et al. 2013).Overall, nutrient concen-

trations in this study and prior manipulations (Carpenter

et al. 2001) indicate phytoplankton limitation by nutrients, par-

ticularly phosphorus.

Limnological methods

During 2013–2015 we made weekly measurements of DOC

(Carpenter et al. 2017a) and nutrients (Carpenter et al. 2017b).

A portion of filtered water sample was preserved with 200 μL of

1 mol L"1 H2SO4 per 20 mL of sample and analyzed for DOC

with a Shimadzu 5050 TOC analyzer (Shimadzu). Zooplankton

biomass was estimated daily in 2015 by duplicate daytime verti-

cals tows of an 153 μm mesh conical net, towed through the

upper two-thirds of the water column over the deepest point of

the lake Zooplankton samples were concentrated onto

preweighted filters, dried, and reweighted to determine biomass

(Pace et al. 2013).

Phycocyanin, dissolved oxygen, and pH were measured at

5-min intervals using Hydrolab.

Carpenter et al. DOC and resilience to enrichment
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DS5X sensors (OTT Hydromet) sensors suspended at a

depth of 0.75 m from a centrally located buoy in Paul, Peter,

and Tuesday lakes (Pace et al. 2020b). Daily phycocyanin was the

mean sensor value between 22:00 h to 04:00 h to avoid quenching

(Rousso et al. 2021). Daily ranges (maximum " minimum for each

day) were calculated for dissolved oxygen saturation and pH. A

manual sample for chlorophyll analysis was taken near the buoy

each day between 1000 and noon and stored in a dark cooler. The

sample was filtered (pore size = 0.7 μm) and extracts from the fil-

ters were analyzed fluorometrically for chlorophyll a (Chl a) con-

centration (Holm-Hanson 1978; Pace et al. 2020a). We used

thermistor chains with temperature sensors every half meter. The

5-min temperatures were averaged to daily values to determine

mixed layer depth. Nutrient additions were made by dissolving

ammonium nitrate (NH4NO3) and phosphoric acid (H3PO4) in

~ 20 L of lakewater and then distributing themixture into the epi-

limnion of each lake in the propeller wash of an underway electric

motor. Nutrient additions occurred between 11:00 h and 13:00 h

daily. Descriptions of enrichments for 2013–2015 are presented by

Wilkinson et al. (2018).

Overview of stability and resilience analyses

We report three analyses of stability and resilience for two

enriched lakes with contrasting DOC: (1) analysis of a model of

phytoplankton response to DOC, grazers and enrichment fit to

daily data from 2015, (2) multivariate time series analysis of

daily data during 2015 to determine the time of transition from

a low-phytoplankton state to a high-phytoplankton state, and

(3) calculation of two indices of stochastic resilience, mean exit

time andmedian survival time, using high-frequency data from

2013 to 2015. Below we summarize each resilience method and

then the data used for the analyses.

Model of phytoplankton response to DOC and enrichment

We developed a simple ecosystem model to assess DOC and

enrichment effects onphytoplankton (see section “Phytoplankton

response to DOC, enrichment, and grazing” in Supporting

Information S1). Daily observed time series were phytoplankton

concentration A (μg C L"1), zooplankton biomass H (μg C L"1),

DOC concentration C (mg L"1), and thermocline depth ZT
(m) (Supporting Information Fig. S3). C, A and ZT are necessary to

estimate m, the mean irradiance in the mixed layer using extinc-

tion coefficientsmeasured for these lakes. A ismeasured as chloro-

phyll concentration (μg L"1) and converted to carbon units

(μg L"1) using the measured C : Chl mass ratio of 60 (Carpenter

et al. 2016). For model projections the time step Δt was 0.1 d. We

fit the model to data and calculated 1-d projections using the dif-

ference equation:

Atþ1 ¼At þ rmAt 1"
At

pP

! "

"
hmaxHA

q
t

vqþA
q
t

e"bAt

# $

∆tþεt : ð1Þ

DOC affects growth through mean irradiance in the mixed

layer m (Supporting Information Eqs. S1–S4) and daily P load

(P) determines phytoplankton carrying capacity through

parameter p. The model rationale, parameter definitions and

estimates, and methods of stability analysis are presented in

section “Phytoplankton response to DOC, enrichment, and

grazing” in Supporting Information S1.

Effect of DOC on thermocline depth

The model of phytoplankton response to DOC, nutrients,

and grazing requires an equation to predict thermocline depth

from DOC and P load rate. Thermocline depth affects the

phytoplankton model through the mean irradiance of the

mixed layer (Supporting Information Eqs. S4–S6) and dilution

of areal P loads to calculate P concentration. We estimated the

effect of DOC, P load rate, and lake fetch on depth of the ther-

mocline by regression analysis of eight nearby lakes for years

between 1999 and 2016 when all variates were measured

between 15 July and 15 August (see section “Estimating ther-

mocline depth from lake area, DOC and P load” in Supporting

Information S1).

Time series indicators of resilience

We assessed stability at each daily time step of 2015 using

multivariate time series models (Ives and Dakos 2012) esti-

mated by Bayesian updating (Pole et al. 1994). Multivariate

time series models (Supporting Information Eqs. S13–S15)

were fit to daily series of four observed variates (Supporting

Information Fig. S4): log10 phycocyanin, log10 Chl a, delta

dissolved oxygen saturation (daily maximum " daily mini-

mum), and delta pH (daily maximum " daily minimum).

Models are described in section “Multivariate time series

analysis to assess stability” in Supporting Information S1 and

worked examples with data and R scripts are presented by

Carpenter et al. (2022).

Stochastic resilience

We computed mean exit time and median survival time

(Arani et al. 2021) to measure stochastic resilience. Mean exit

time from a state is the mean time until the ecosystem crosses

the threshold to an alternate state, and median survival time

is the median time that the ecosystem occupies a specified

state. Stochastic resilience accounts for the random fluctua-

tions of the data, whereas resilience indicators from the multi-

variate time series analysis and fits of the ecosystem model

provide point estimates of the threshold. For details of the cal-

culations see “Stochastic measures of resilience” in Supporting

Information S1.

Data for analyses

The phytoplankton model and multivariate time series

analysis used daily observations from 2015 (Pace et al. 2020a)

including chlorophyll concentration, zooplankton biomass,

mixed layer depth, and DOC. 2015 was the only enriched

year with daily zooplankton biomass data needed for the phy-

toplankton model. During 2015, daily enrichments to Peter

and Tuesday lakes were identical (3 mg P m"2 d"1 with N: P

ratio 15 : 1) starting on day of year 152. In 2015, Peter

Carpenter et al. DOC and resilience to enrichment

468

 2
3
7
8
2
2
4
2
, 2

0
2
2
, 6

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://aslo
p

u
b

s.o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/lo

l2
.1

0
2
8
0
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/1

1
/2

0
2
2
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se



bloomed earlier and enrichment was ended on day 180 (Pace

et al. 2017). Tuesday bloomed later in the summer and enrich-

ment ended on day 240 (Wilkinson et al. 2018).

High-frequency measurements of phycocyanin from all

three enriched years (Pace et al. 2020b) were used to com-

pute stochastic resilience (exit time) because of the large

number of observations required by the method (Carpenter

et al. 2022).

Results

Phytoplankton model

The phytoplankton model uses chlorophyll to indicate bio-

mass because we have extensive data for the light extinction

coefficient of chlorophyll (Carpenter et al. 1998). Nonetheless

chlorophyll and phycocyanin are highly correlated at the

daily scale of the dynamic model (Supporting Information

Fig. S8; for Peter Lake r = 0.944, Tuesday Lake r = 0.891)

(A) (B)

(C) (D)

(E) (F)

Fig. 1. Time series of predictions (solid line) and observations (solid circles) of chlorophyll (μg/L"1) vs. day number of 2015 for (A) Peter Lake

(r = 0.947) and (B) Tuesday Lake (r = 0.950). Time series of predicted 1-d change in chlorophyll for (C) Peter Lake (r = 0.976) and (D) Tuesday Lake

(r = 0.571). Plots of net growth rate vs. chlorophyll concentration for (E) Peter Lake and (F) Tuesday Lake. Filled circles are stable equilibria and open

circles are unstable equilibria.

Carpenter et al. DOC and resilience to enrichment
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indicating the importance of Cyanobacteria in the observed

blooms. Covariates (DOC, thermocline depth, and zooplank-

ton biomass) appear in (Supporting Information Fig. S2).

One-day predictions of chlorophyll concentration track

the observations (Fig. 1A,B) and time series of predicted and

observed 1-d change in chlorophyll are similar (Fig. 1C,D).

The largest differences in predicted and observed 1-d

change, and the greatest variability, occur near the unstable

thresholds (approximately day 175 in Peter Lake and day

219 in Tuesday Lake). Analyses of residuals are presented in

section “Phytoplankton response to DOC, enrichment, and

grazing” in Supporting Information S1.

Model predictions are consistent with alternate states for

conditions that we have observed in each lake (Fig. 1E,F). The

net growth line of each panel crosses zero at three points,

stable equilibria at low and high phytoplankton biomass and

an intermediate unstable threshold.

We used the model to compare effects of DOC and

zooplankton biomass on the critical threshold for daily phos-

phorus load. The critical P load to a given lake is the lowest

P load where a high-pigment equilibrium appears. At the

critical P load a single low equilibrium for chlorophyll con-

centration transitions to three equilibria. The calculation of

the critical threshold for P load required a regression model

to predict thermocline depth from DOC and P load (see

section “Estimating thermocline depth from lake area, DOC,

and P load” in Supporting Information S1). For specified

values of DOC, zooplankton biomass, and thermocline depth

the critical threshold for P load is calculated from the phyto-

plankton model (see section “Equilibria and critical points”

in Supporting Information S1).

Using Peter Lake as an example thermocline depth decreases

as DOC and P load increase (Fig. 2A). Thermocline depths are

within the range observed for Peter Lake (Supporting Informa-

tion Fig. S2). Critical P load increases slightly with DOC for

constant zooplankton biomass (Fig. 2B). In contrast the critical

P load increases substantially with zooplankton biomass for

constant DOC (Fig. 2B).

(A) Thermocline depth, m

DOC
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(B) Critical P load, mg/(m2 d)
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Fig. 2. Contour plots of (A) thermocline depth vs. DOC (mg L"1) and

P load rate (mg P m"2 d"1) and (B) critical P load rate vs. DOC and zoo-

plankton biomass (mg C m"3) for the area of Peter Lake.

Fig. 3. Largest eigenvalue of interaction matrix vs. day of year 2015 in

(A) Paul, (B) Peter, and (C) Tuesday lakes. Vertical dashed lines indicate

the start and end of enrichment with identical daily loads of inorganic

P and N. Eigenvalues > 1 (horizontal dashed line) indicate critical transi-

tion between low and high pigment states.
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Multivariate time series analyses

Stability and loss of stability were estimated daily from

the parameter matrix of multivariate time series models (see

section “Multivariate time series analysis to assess stability”

in Supporting Information S1). Modulus of the maximum

eigenvalue indicates stability if the eigenvalue is less than

1, or loss of stability when the eigenvalue exceeds 1 (Fig. 3).

The unenriched reference lake, Paul Lake, had eigenvalues

below 1 and appeared to be stable throughout 2015

(Fig. 3A). Peter Lake (Fig. 3B) was destabilized on day

175, with Cyanobacterial blooms apparent by day 170 (Pace

et al. 2017; Wilkinson et al. 2018). Although Tuesday Lake

received an identical nutrient load, the first indication of

instability occurred 44 d later on day 219 (Fig. 3C).

Cyanophytes dominated during the blooms in both lakes in

2015 (Wilkinson et al. 2018).

Stochastic resilience

Stochastic indicators of resilience show no consistent dif-

ferences between Peter and Tuesday lakes (Fig. 4). Resilience

to enrichment is illustrated by mean exit time and median

survival time of the low-pigment state (Fig. 4A,C). For the low

pigment basin, Peter Lake has slightly shorter mean exit time

but slightly longer survival time. This difference may reflect

the greater influence of extreme values on the mean than the

median. Resilience of the Cyanobacterial bloom is illustrated

by mean exit time and median survival time of the high-

pigment state (Fig. 4B,D). Peter Lake has shorter mean exit

time and slightly shorter median survival time, suggesting

that the bloom of Peter Lake is less resilient than that of

Tuesday Lake. The relatively pronounced shift of the mean

suggests a stronger influence of extreme fluctuations in

Peter Lake.

Fig. 4. Density plots for Peter and Tuesday lakes of (A) mean exit time from low-pigment state, (B) mean exit time from high-pigment state, (C)

median survival time of low-pigment state, and (D) median survival time of high-pigment state. Each distribution is calculated from 1000 boot-

strap samples.

Carpenter et al. DOC and resilience to enrichment
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Discussion

The ecosystem model fitted to the data tracks the delayed

bloom in Tuesday Lake (Fig. 1). Analysis of the fitted model

suggests that the critical P load, an indicator of resilience, rises

steeply with zooplankton biomass and weakly with DOC

(Fig. 2B).

The multivariate time series analysis shows that, under

constant and equal rates of enrichment, Peter Lake was des-

tabilized 44 d before Tuesday Lake (Fig. 1). This contrast

shows greater resilience of Tuesday Lake to enrichment. How-

ever, the lakes differed in DOC, thermocline depth, and zoo-

plankton biomass and perhaps other dimensions. Given these

differences, we cannot conclude that higher DOC concentra-

tions caused the higher resilience of Tuesday Lake, but it is a

possible mechanism for the difference in resilience.

The multivariate time series analysis (Fig. 3) and the critical

P load (Fig. 2) provide point estimates of resilience. These

indicators show declining resilience and mark the time of crit-

ical transition but do not account for the shape of the stability

basin or the chance that a random shock may knock the eco-

system over the threshold (Scheffer et al. 2015). Stochastic

indicators of resilience use the random fluctuations of the eco-

system to sample the stability basins and thereby reconstruct

their shape from a large sample of data (Arani et al. 2021).

This more complete analysis revealed a more complex picture

(Fig. 4). Differences in resilience to enrichment and resilience

of the Cyanobacterial bloom are sensitive to random events,

and differences between the lakes are smaller than their

ranges of variability.

Due to the large number of observations required to com-

pute the stochastic indicators of resilience, we used the high-

frequency sensor data from all 3 yr of nutrient enrichments.

During 2013–2015 Tuesday Lake had higher DOC but zoo-

plankton biomass, thermocline depth, nutrient enrichment

rates and weather fluctuated in each lake each year (Wilkinson

et al. 2018; Pace et al. 2019). This variation potentially contrib-

uted to overlap in stochastic resilience of the lakes. More fre-

quent pigment measurements (e.g., each minute) could have

allowed calculations of stochastic resilience during 2015 alone

(Arani et al. 2021), providing a comparison of the stability

landscapes under constant enrichment.

Lakes are exposed to multiple, interacting stressors including

eutrophication and brownification (Leech et al. 2018). Using a

set of enrichment experiments in lakes with contrasting DOC

and other factors, we showed that DOC may affect influence

resilience but the effect is complicated by thermocline depth,

grazer biomass, and randomness. Further whole-lake experi-

ments are needed to assess the effects of DOC on resilience to

enrichment. High-frequency datasets can be collected from a

greater diversity of lakes, leading to comparison of stability

landscapes under different conditions. A direct manipulation

of DOC while collecting high-frequency data before, during,

and after the change in DOC is needed as a direct test of the

effect of DOC on resilience of phytoplankton. Such studies

would lead to a broader understanding of the factors that affect

lake ecosystem resilience to enrichment.
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DOC and Nutrients in Peter and Paul Lakes Prior to Enrichment 

 

DOC, TP, TN, and their ratios were calculated for years prior to enrichment, 2003-2012 (Fig. S1) 

from datasets posted online (Carpenter et al. 2017a; Carpenter et al. 2017b). Means and 

confidence intervals were calculated for all samples at and above the depth where irradiance was 

25% of surface irradiance. Data and R scripts for Fig. S1 are available online (Carpenter and 

Pace 2022a).  

 

 

Fig. S1. DOC and nutrients during summer stratification in epilimnions of Peter and Tuesday 

lakes during 2003–2012, prior to the nutrient enrichment experiments. Error bars are 95% 

confidence intervals. N = 236 for Peter Lake and N = 26 for Tuesday Lake. 

 

Upper row: DOC, TP, and TN.  Lower row: Ratios (by mass). 
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Phytoplankton Response to DOC, Enrichment and Grazers 

We developed a model of phytoplankton response to fluctuations of DOC, P load and grazing 

during the whole-lake experiments. We focus on phytoplankton dynamics in the mixed layer (as 

chlorophyll mg m-3 and carbon mg C m-3 converted with the observed C-to-Chl ratio of 60) 

(Carpenter et al. 2016) (Fig. S2).  

 

Figure S2. Daily time series of variates used to fit the model of phytoplankton biomass responses 

to DOC, P load, and zooplankton grazing during 2015 in Peter and Tuesday lakes (left and right 

columns respectively). Variates (rows) are chlorophyll (µg/L), zooplankton biomass (µg C/L), 

DOC (mg/L) and mixed layer depth (m).  
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Irradiance and shading by phytoplankton and DOC 

 

The irradiance in the mixed layer depends on light absorption by DOC (C) and phytoplankton 

(A). The shading coefficient for depth z  = − − −  where the ϕ are extinction 

coefficients for water, DOC, and chlorophyll measured directly in these lakes (Carpenter et al. 

1998). 

 

The mean irradiance in the mixed layer ( ) over thermocline depth zT with surface irradiance 

I0 is found using the Beer-Lambert law with pooled solutes with light absorption coefficient   

k = + +   : 

 

( ) =  ∫  [S.4]  

 

Completing the integral: 

 

( ) = + | = − − −  [S.5] 

 

Simplifying the algebra: 

 

( ) = [1 − ] [S.6] 

 

Phytoplankton dynamics 

 

To construct a dynamic model for phytoplankton we assume that DOC and grazer biomass (which 

affects grazing loss rate) change slowly compared to phytoplankton biomass. Further we assume 

that irradiance affects phytoplankton growth rate (r  below) and cumulative phosphorus enrichment 

affects maximum phytoplankton biomass (K below). We cannot assess nitrogen effects on 

phytoplankton because N and P were added at a fixed ratio and not varied independently.   

Experience shows that dissolved inorganic P concentration is usually not detectable due to rapid 

uptake by phytoplankton (while dissolved inorganic N accumulates). Thus all of the available P is 

in phytoplankton and we base the model on P-limitation of phytoplankton.  However at high 

phytoplankton biomass the phytoplankton are limited by shading not nutrients and dissolved 

inorganic P may be measurable (Carpenter and Lathrop 2014; Carpenter et al. 2001).  

 

We assume that mean irradiance affects r and that P enrichment affects K. K = pP where p is a 

positive constant and P is the current P enrichment rate in mg P m-2 d-1. We set p = 1/5 where 5 

mg P m-2 d-1 was the loading rate associated with high sustained summer chlorophyll concentration 

of 60 mg m-3 (Carpenter et al. 2001).  

 

 The dynamics of phytoplankton biomass (as carbon concentration in the mixed layer) follow: 

 

= − −  [S.7] 

 



5 

 

including growth r∙m where m = µ(zT), the mean mixed layer irradiance defined above, 

competition = ⁄  where p and P are defined above, and grazing loss G. As an example, 

for algal A growth without grazing the equilibria dA/dt = 0 are A = 0 and A = rm/c = K by the 

definition of carrying capacity (Scheffer et al. 2008).   

 

G is a grazing function of A and herbivore biomass H: 

 

=   [S.8] 

 

with maximum rate hmax and half-saturation v. The coefficient b accounts for reduced grazing rate 

at high phytoplankton biomass due to interference with the grazing mechanism (Scheffer et al. 

2008) 

 

Collecting terms, the model is: 

 

= − −   [S.9] 

 

where m is mean light intensity in the mixed layer given by [S.7]. 

 

In conventional logistic form the model is     

 

= 1 − −   [S.10] 

 

To calculate one-step projections and link the model to data, phytoplankton dynamics of 

equation S.10 were rewritten in discrete form with one-step error εt:  

 

= + 1 − − ∆ +  [S.11] 

 

We set surface irradiance to 600 µE m-2 s-1, a typical summer value (Carpenter et al. 2016). The 

mean irradiance in the mixed layer m was calculated  from DOC and chlorophyll concentrations 

using extinction coefficients measured by Carpenter et al. (1998) (equations S4 – S7). The 

grazing half-saturation parameter v (18 µg C/L) was based on mass-balance estimates of grazing 

loss (Carpenter et al. 2016). The rate parameters r (0.147 d-1) and hmax (1.06 L mg-1C) and model 

error σ(εt) (4.18 mg C L-1) were estimated by minimizing the negative log likelihood of εt 

(Hilborn and Mangel 1997). The grazing exponent q = 2, the classical value for the type-III 

functional response, had lower negative log likelihood than the discrete alternatives 1 or 3. The 

interference coefficient for grazing at high algal biomass was 10-4 (Scheffer et al. 2008).   

Data of Fig. S2 and R scripts for fitting the model and calculating equilibria and critical values of 

P load are available online (Carpenter 2022b).  
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Model Residuals 

Time series of one-step predictions of chlorophyll and daily change in chlorophyll are shown in main text  

Figure 1. The model fit has lower negative log likelihood by 2.3 units compared to a null model A(t) = 

A(t+1).  

Observed chlorophyll concentration is plotted against predictions and residuals in Fig. S3. Residuals are 

larger at higher chlorophyll concentrations. 

Figure S3. Left: Predicted versus observed chlorophyll (µg/L).  Note log-log axes.  Right: Predicted 

chlorophyll versus residuals. Note log x-axis. 

 

 

 

 

 

 

 

 

 

 

 

Residuals are nearly uncorrelated (Fig. S.4A, B) and the original data are highly autocorrelated (Fig. 

S4C,D).   
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Figure S4. Autocorrelation functions for residuals (A,B) and observed chlorophyll (C,D). 

 

 

 

 

 

 

 

 

 

 

 

Residuals show no notable trends versus covariates (Figs. S5, S6).  When plotted versus day of 2015 (Fig. 

S5 and S6 top left) residuals are larger in magnitude at the times that the unstable threshold was reached.  

Figure S5.  Model residuals for Peter Lake versus day of 2015, DOC, thermocline depth, and zooplankton 

biomass. 
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Figure S6. Model residuals for Tuesday Lake versus day of 2015, DOC, thermocline depth, and 

zooplankton biomass. 

 

 

 

 

 

 

 

 

 

 

 

 

Estimating Thermocline Depth from Lake Area, DOC and P Load  

We fit an empirical model to estimate thermocline depth from DOC and daily P load rate. The 

regression model was needed to calculate equilibria of the phytoplankton model, including 

critical transitions points, as a function of DOC, P load rate, and grazer biomass.  We regressed 

Zmix (thermocline depth in m) on DOC (mg L-1), P load rate (mg P m-2 d-1), and square root of 

lake area (m), an index of average fetch using data from Paul, Peter, and Tuesday lakes as well 

as 5 neighboring lakes we studied in previous years (Carpenter and Pace 2018): Crampton, East 

Long, Hummingbird, Ward, and West Long.  

 

Square root of lake area was included as a covariate because the 8 lakes vary more than thirty-

fold in area.  However model results reported in the main text (Fig. 2) use observed mixed layer 

depths (Fig. S2).  

 

We analyzed means of Zmix, DOC, and P load for dates between 15 July and 15 August in each 

available year for each lake. We used these late-summer dates to minimize effects of seasonality 

and transients of manipulations. 

 

The fitted regression is presented in Table S1 with residual plots in Figure S7. Data and the R 

scripts are provided online (Carpenter and Pace 2022b). 
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Table S1. Regression model to predict Zmix as a linear function of intercept, square root of lake 

area, DOC, and P load. Residual standard error was 0.41 m on 82 degrees of freedom with 

adjusted R2 = 0.733. For DOC and P load effects p < 10-9.  The area0.5 effect has p = 0.0369 after 

accounting for the smaller error degrees of freedom among 8 lakes.  

 

Independent  

variate 

Estimate Standard  

Error 

Intercept 3.53 0.147 

Area0.5 0.00692 0.00010 

DOC -0.114 0.012 

P load -0.151 0.032 

 

Larger lakes have longer fetch, indexed by square root of area, and deeper thermocline depth. 

Thermocline depth became shallower with increasing DOC and P load, consistent with an effect 

of light extinction as reported previously by Kling (1988). Other research has shown that 

phytoplankton biomass affects the depth and strength of stratification (Jones et al. 2005) and 

thermal dynamics of the water column (Rinke et al. 2010). 

 

Residual plots show no discernible bias (patterns that suggest additional model terms)(Draper 

and Smith 1981) and residuals are consistent with a normal distribution (Fig. S7).  

 

Fig. S7.  Residual plots of errors from the regression in Table S1. Starting from top left, panels 

show:  observed versus predicted thermocline depth with solid blue 1:1 line; normal QQ plot 

(normal probability plot) with solid blue line where Normal distribution matches the observed 

distribution; scatterplots of residuals versus DOC and square root of lake area. 
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Equilibria and critical points 

Equilibria of S.11 are values of A where At+1 = At, hence the bracketed rate function f(A) is zero: 

( ) = 1 − −   [S.12] 

We found equilibria numerically by solving f(A) = 0 using Brent’s method in the optim() 

function of R 4.1.1.  

The critical transition between low- and high-biomass states occurs at a value of A where f(A) = 

0 and df(A)/dA = 0. The critical point depends on DOC (which affects mixed layer depth and 

mean irradiance in the mixed layer, m, through S.6), grazer biomass H, and enrichment rate P. 

For fixed values of DOC and H, we found the critical values of A and P by solving 

simultaneously for f(A) = 0 and df(A)/dA = 0 using the Nelder-Mead method in the optim() 

function of R 4.1.1. The derivative df(A)/dA was computed using small (± 1%) increments and 

decrements of A. To check critical values of P we also computed equilibria along a gradient of P 

values and then found the lowest P value where the system switched from one to three equilibria.   

The R script for fitting and analyzing the model (Carpenter 2022b) includes code for finding the 

equilibria and critical point.  

Multivariate time series analysis to assess stability 

 

When an ecosystem arrives at an unstable threshold the net rate of change approaches zero and 

variance increases rapidly (Scheffer et al. 2015). The appearance of a threshold in time series 

data can be determined by fitting time-varying autoregressions (equations S1 – S3). If the 

ecosystem data are generated by a nonlinear multivariate stochastic process, then the 

linearization of that process around an equilibrium is a multivariate  autoregression with time-

varying parameters, as shown by Ives et al. (2003) equations 11 and 12 on p. 305 of their paper.  

The stability of the multivariate autoregression at any time point is given by the modulus of 

largest eigenvalue of the parameter matrix (Ives and Dakos 2012). In a stable region this 

modulus is smaller than 1. At an unstable threshold the modulus reaches or exceeds 1. Because 

parameters are updated at each time step we constructed a time series of eigenvalues (as 

modulus) and measured the resilience as the amount of time, or amount of P load, required to 

reach the unstable threshold (Ives and Dakos 2012).  

 

We applied the method to assess stability each day of 2015. Eigenvalues of a multivariate 

autoregressive time series model are calculated at each time step. Stability is indicated by the 

eigenvalue of largest modulus (dominant eigenvalue) at each step. When the dominant 

eigenvalue is less than 1 then the system is stable. When the dominant eigenvalue reaches or 

exceeds 1 then the system has reached or crossed a threshold (Ives and Dakos 2012).  

 

The multivariate autoregressive model in state-space form includes a data or observation 

equation   
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= + +  [S.13] 

 

where yt the 4-element vector of observed variates at time t, bt is the 4-element vector time series 

of the intercept or level parameter, ϕt is the 4x4 matrix of autoregressive parameters at time t, 

and εt is the 4-element vector time series of observation errors. The four variates observed daily 

were log10 phycocyanin, chlorophyll a, delta DOsat (daily maximum – daily minimum), and 

delta pH (daily maximum – daily minimum) (Fig. S8).  Under nutrient enrichment of these lakes,  

large pH variation occurs over 24 hours due to net uptake of dissolved inorganic carbon during 

photosynthesis and net release of dissolved inorganic carbon during night respiration (Bade and 

Cole 2006). 

 

The evolution of parameters over time follows the system equations, one for each parameter 

 

= + ,   [S.14] 

= + ,   [S.15] 

 

Where ωb,t-1 is the 4-element vector time series of process errors in the level vector bt, and ωφ,t-1 

is the 4x4 matrix time series of process errors in the autoregression coefficient matrix ϕ. The 

observation errors and the process errors are multivariate Normal processes independent of each 

other and over time.  Using prior distributions for initial values, the full model was estimated 

sequentially from the data by Bayesian updating (West and Harrison 1989) using the algorithm 

presented by Pole et al. (1994). Eigenvalues were computed using the 4x4  matrix of 

autoregression coefficients ϕt at each time step and the modulus of the largest eigenvalue was 

taken as the indicator of stability for that time step (Ives and Dakos 2012). For these datasets 

(Fig. 3) the eigenvalues were real (not complex) numbers.  

 

The R script and the dataset to generate the time series of eigenvalues Fig. 3 from the time series 

in Fig. S8 are available online (Carpenter 2022c). 
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Figure S8. Indicators of response to 

enrichment versus day of year 2015 

in Peter and Tuesday lakes: log10 of 

phycocyanin RFU measured each 

night between 2200 and 0400; 

log10 of chlorophyll measured by 

fluorometric analysis in the 

laboratory of a sample collected 

from the epilimnion at mid-day; 

daily range (maximum – minimum) 

of dissolved oxygen saturation; and 

daily range of pH.  

 

 

 

 

 

 

 

 

Stochastic Measures of Resilience 

We computed mean exit time as a measure of stochastic resilience (Arani et al. 2021) for both 

lakes using high-frequency phycocyanin time series data measured every 5 minutes during 

summer stratified seasons of 2013-2015 (Wilkinson et al. 2018).  It was necessary to use all 3 

years of data because precise estimation of mean exit time requires a large sample (Arani et al. 

2021).  

Peter and Tuesday lakes, like other bistable ecosystems, have alternate stable states separated by 

an unstable threshold. In this case the alternate states have low versus high concentrations of 

phycocyanin, a characteristic pigment of Cyanobacteria, and occasionally cross the threshold 

between states.  An exit event occurs each time that the ecosystem crosses the unstable threshold, 

and the time lag between two exit events is a single realization of exit time. Mean exit time is the 

average exit time over the estimated stochasticity of exit times. The distribution of mean exit 

times over the data can be estimated by bootstrap sampling. 

The procedure for estimating mean exit time, testing assumptions of stationarity and 

Markovicity, and bootstrapping the distribution over the data of mean exit times  is explained in 

detail in the S.I. of Arani et al. (2021) and Carpenter et al. (2022). Data, R scripts, and step-by-

step instructions are posted online (Carpenter and Arani 2021; Pace et al. 2020).  An abbreviated 

summary is presented here. 

 

We first standardized the time series of phycocyanin relative fluorescence units as levels bt/s(bt) 

of the univariate autoregression equation S.13, where bt is given by equation S.14 and s(bt) is the 

standard deviation of ωb,t (eq. S.15). The standardized data are approximately stationary 
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according to the Augmented Dickey-Fuller (ADF) test, function adf.test() in the tseries library of 

R.  

In addition to stationarity the standardized data should have the Markov property, i.e. each 

observation depends only on the previous observation.  We could not reject the Markov 

hypothesis (p < 0.01) using the Box-Ljung and Rank tests in the spgs library of R. As a further 

test of the Markov property we estimated the Markov-Einstein time scale using the Chapman-

Kolmogorov equation (Tabar 2019) calculated by the Matlab program provided by Arani et al. 

(2021). The Markov-Einstein time scale should be 1. For our data the estimates were less than 5. 

Although these data are near-Markov we still followed the Langevin approach (below) since it is 

likely more appropriate than advanced reconstruction schemes intended to account for colored 

noise (Hassanibesheli et al. 2020). 

Nonparametric regression of the first and second moments of dx on x, where x is the time series 

of standardized levels defined above, is used to fit a drift-diffusion model known as the Langevin 

equation  

 

= ( ) + 2 ( )     [S.16] 

(Carpenter and Brock 2011; Rinn et al. 2016; Tabar 2019).  One-step changes (dx) that cross 

between years were not used in further analysis, although their effect on mean exit time and 

median survival time is trivial. In these equations x is the dynamic variable, t is time, and dW is a 

Weiner stochastic process. The function D1(x) or ‘drift’ is the deterministic core of the model. 

The function D2(x) or ‘diffusion’ is the stochastic variance of the model. The potential, stationary 

distribution, and exit times presented in Figs. S.9 and S.10 are computed from the drift and 

diffusion functions.  

The potential function or ‘ball and cup’ diagram of ecology textbooks, with hills and valleys 

corresponding to stable and unstable regions respectively, is the integral of the drift function over 

x plotted against x. We instead present ‘effective potential’ which is appropriate when D2 is not 

constant with x (Arani et al. 2021), as seen in our data (below). The effective potential Uf is  

( ) = log (x) − ∫ ( )
( )     [S.17] 

Here y is a dummy variable and xmin is the smallest observed value of x. 

The stationary probability distribution is the probability distribution of the fitted Langevin 

equation at stationarity, i.e. after simulating the equation for infinite time. The stationary 

probability distribution can be calculated as  

( ) ∝ ( )exp ∫ ( )
( )    [S.18] 

(Arani et al. 2021).  Our R code (Carpenter and Arani 2021) uses the hcubature() function of the 

cubature library in R to integrate the Fokker-Planck equation directly. The code follows  

Horsthemke and Lefever (1984) pages 110-111 as coded in Matlab by Carpenter and Brock 

(2006). We found that the curves generated by the two methods are nearly identical, and 

equation S.18 is easier to code and faster to compute  When S.18 is used then a normalization 

factor is found by integrating pst(x) over the full range of x.  
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Mean exit time T(x0) is the average time it takes for particles starting at x0 to exit a basin of 

attraction. In our case ‘exit’ means crossing the unstable threshold to the other basin. Writing x 

for x0 to simplify notation, T(x) is the solution of a boundary value problem (Arani et al. 2021; 

Gardiner 2009) 

( ) ( ) + ( ) ( ) = −1  [S.19] 

The boundary value problem is solved separately for each basin. In each basin the absorbing 

boundary (i.e. where T(x) = 0) is the unstable threshold value of x and the reflecting boundary 

(i.e. where 
( ) = 0) is a plausible value of x near the range limit of the observed data. We 

solved eq. S.19 using the bvptwp() function of the bvpSolve package in R (Carpenter and Arani 

2021).  

 After solving for mean exit time as a function of x, T(x), and the stationary distribution as a 

function of x, pst(x), the weighted mean exit time over an entire basin is found as the weighted 

average of T(x) where the weights are pst(x), following eq. S.24 of Arani et al. (2021).  

Survival time is found by solving the survival equation for the survival function S(t,x0) where x0 

is a starting value of x (Arani et al. 2021; Tabar 2019). Writing S(t,x0) as simply S and x0 as 

simply x for notational convenience the survival equation  

= 1(x) + 2( )     [S.20] 

with boundary conditions S(0,x0) = 1. We solved eq. S.20 using the ode.1D() function of the 

deSolve library in R. The median survival time is defined as S(Tmed(x0),x0) = 0.5 and calculated 

directly from the solution of the survival equation. R scripts to fit D1 and D2 and then compute 

mean weighted exit time and median survival time are provided online (Carpenter and Arani 

2021). 

Calculations of mean exit time for Peter and Tuesday lakes are presented in Figures S9 and S10. 

In all panels the x-axis is standardized level bt/s(bt) of phycocyanin relative fluorescence units, 

where bt is given by equation S.2 and s(bt) is the standard deviation of ωb,t.  

Panels S9A and S10A show the time series that were analyzed.  

Panels S9B and S10B present the drift functions, or deterministic core of the dynamics estimated 

by nonparametric regression of the time series. Equilibria occur where a drift function crosses 

the zero line. 

Panels S9C and S10C show the stochasticity of the dynamics estimated by nonparametric 

regression of the time series.  Diffusion is plotted as 2 ( ) to have the same units as D1.  

Panels S9D and S9D show the effective potential, or stability landscapes for each lake. Valleys 

represent stable regions and hilltops are unstable.   

Panels S9E and S10E present the stationary probability densities for each lake. These densities 

show that each lake spends most of the time in a stable valley.  
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Panels S9F and S10F show the exit time curves for each attractor in each lake. Exits, or 

transitions between attractors, occur when the stochastic path of the ecosystem crosses the 

critical threshold, an unstable equilibrium.  Mean exit time is the probability-weighted mean over 

the x-axis range of an attractor where weights are the stationary probability densities.  

Uncertainties of mean exit times were computed by bootstrapping from the data following the 

procedure of Carpenter et al. (2022) for 1000 cycles. Bootstrap frequency distributions of mean 

exit times are presented in the main text. An example with R code is posted online (Carpenter 

2022a).  

Figure S.9 (left) and S.10 (right). Resilience analysis of Peter Lake (left column) and Tuesday 

Lake (right column) during 2013-2015. For each lake the panels are (A) Phycocyanin 

(standardized level) versus year during the experiment. Solid horizontal line denotes the unstable 

equilibrium. (B) Drift function versus phycocyanin standardized level showing stable equilibria 

(solid dots) and critical threshold (open circle). (C) Diffusion function versus phycocyanin 

standardized level. (D) Effective potential versus phycocyanin standardized level. (E) Stationary 

probability density versus phycocyanin standardized level. (F) Exit time (hours) versus 

phycocyanin standardized level, with probability-weighted means, for the two stable basins. 

Vertical dotted line is the threshold between the basins. 
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