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Abstract

Immersogeometric analysis (IMGA) is a geometrically flexible method that enables one to perform multiphysics analysis
directly using complex computer-aided design (CAD) models. While the IMGA approach is well-studied and has a remarkable
advantage over traditional CFD, IMGA still requires a well-defined B-rep model to represent the geometry. Obtaining such a
model can sometimes be equally as challenging as creating a body-fitted mesh. To address this issue, we develop a novel IMGA
approach for the simulation of incompressible and compressible flows around complex geometries represented by point clouds in
this work. The point cloud representation of geometries is a direct method for digitally acquiring geometric information using
LiDAR scanners, optical scanners, or other passive methods such as multi-view stereo images. The point cloud object’s geometry
is represented using a set of unstructured points in the Euclidean space with (possible) orientation information in the form of
surface normals. Due to the absence of topological information in the point cloud model, there are no guarantees for the
geometric representation to be watertight or 2-manifold or to have consistent normals. To perform IMGA directly using point
cloud geometries, we first develop a method for estimating the inside—outside information and the surface normals directly from the
point cloud. We also propose a method to compute the Jacobian determinant for the surface integration (over the point cloud)
necessary for the weak enforcement of Dirichlet boundary conditions. We validate these geometric estimation methods by
comparing the geometric quantities computed from the point cloud with those obtained from analytical geometry and tessellated
CAD models. In this work, we also develop thermal IMGA to simulate heat transfer in the presence of flow over complex
geometries. The proposed framework is tested for a wide range of Reynolds and Mach numbers on benchmark problems of
geometries represented by point clouds, showing the robustness and accuracy of the method. Finally, we demonstrate the
applicability of our approach by performing IMGA on large industrial-scale construction machinery represented using a point
cloud of more than 12 million points.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

In immersogeometric analysis (IMGA), a solid object is immersed into a non-boundary-fitted discretization of the
background fluid domain that is used to solve flow physics using finite-element-based computational fluid dynamics
(CFD) [1,2]. IMGA alleviates the labor-intensive and time-consuming geometry cleanup process needed to create a
boundary-conforming fluid mesh to perform traditional CFD. For example, in boundary-fitted CFD mesh generation,
small and thin geometric features often need to be manually defeatured, and the resulting gaps in the boundary
representation (B-rep) of the solid model need to be filled to create a watertight surface representation of the solid
object. This process can take up to several months for extensive industrial-scale simulations of flow over complex
geometries such as tractors and trucks [3—6].

IMGA has been shown to be a practical method [2,7-9] for the simulation of incompressible flow (both laminar and
turbulent) around geometrically complex objects in the context of a tetrahedral finite cell approach [10]. Since the
fluid domain is meshed independently, defeaturing or removing small geometric features from the immersed object
is no longer necessary. The method was extended by Xu et al. [11,12] to handle moving particles, by Zhu et al. [13]
to consider free-surface flows, and by Saurabh et al. [14,15] to perform industrial scale large eddy simulations
using adaptive octree meshes. Xu et al. [16] recently proposed a compressible-flow version of the IMGA formulation
for the simulation of aircraft aerodynamics, and Hoang et al. [17] developed a skeleton-stabilized IMGA technique for
the simulation of fluid flow through a porous medium. The immersogeometric approach has also been shown as
an efficient method to solve computational fluid—structure interaction (FSI) problems for heart valve applications [18—
26]. It is also flexible enough to be automated and placed in an optimization loop that searches for an optimal design
[27]. A subset of the immersogeometric FSI functionality was recently implemented as the open-source library
CouDALFISh [28,29].

We have previously developed the immersogeometric method to directly use the B-rep of the computer-aided
design (CAD) model to perform fluid flow simulations. We were able to perform IMGA of flow over B-rep
models represented using triangles [19], trimmed non-uniform rational B-splines (NURBS) [7], and finally analytic
surfaces [8]. These approaches were able to handle complex geometry without needing any geometric defeaturing.
However, they still worked based on the boundary representation of the well-defined CAD model (2-manifold,
watertight, and with consistent normals). This paper extends the work to perform IMGA directly with point cloud
representation of the solid geometry, which relaxes these restrictions (manifoldness and watertightness of the
boundary representation).

In a point cloud representation, the boundary of the object is represented using a set of unstructured points in the
Euclidean space with (possible) orientation information in the form of surface normals. Many geometric data
acquisition methods, including optical laser-based scanners, LiDAR scanners, and even passive methods such as
multi-view stereo, produce a point cloud representation of the geometry [30]. Further, there has been a high interest in
performing flow simulations over as-manufactured or in-use objects rather than ideal as-designed objects for
performing analysis (and to provide feedback) using digital twins [31-35]. In practice, we need the geometric
information corresponding to the in-use physical object to analyze the flow over them. While it is possible to
perform IMGA by first reconstructing the boundary surfaces and then using them for the analysis, reconstructing the
surfaces to generate watertight and manifold solid models is by itself very challenging. In addition, such an
approach would relax the restrictions on the B-rep CAD models obtained directly after design. The geometry no
longer needs to be cleaned up to ensure it is watertight; points can be directly sampled from boundary surfaces to
perform IMGA.

There are two main geometry processing steps for performing IMGA directly on point cloud representations.
First, we need to perform an inside—outside test to conduct a point membership classification (PMC) on the
background fluid mesh based only on the point cloud representation of the solid model. Second, we need to perform
surface integration over the point cloud to impose the weak Dirichlet boundary conditions [36]. Surface integration
requires estimating the surface normals and area for each point in the point cloud to be used as the Jacobian
determinant for each surface element during integration. In addition, the fluid mesh needs to be adequately refined
near the surface locations, i.e., the region around the points of the point cloud. In this paper, we exploit the prior art
in geometric processing methods to achieve these steps.

Inside—outside evaluation for the background fluid mesh is necessary to identify points inside the solid geometry.
Traditionally, a point membership classification is performed over the solid CAD model. However, these approaches
are restricted to 2-manifold solids with a watertight surface representation. Since point clouds are not manifold
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and do not have any inherent order, we propose using the generalized winding-number-based inside—outside
testing approach to perform the point membership classification. This method relaxes the manifold and watertight
requirements of the surface representation.

As mentioned earlier, the immersed objects used in previous immersogeometric methods consisted of tessella-
tions, trimmed NURBS, or analytic surfaces. In the case of triangles, the Gaussian quadrature points were directly
generated on the planar triangular surfaces [2]. In the case of trimmed NURBS, the NURBS parameterization was
used to generate the quadrature points [7]. Similarly, the surface parametric equations were used to generate the
Gaussian quadrature points for trimmed analytic surfaces [8]. In this work, it is convenient for the integration points to
be co-located with the points of the point cloud. However, this approach requires calculating the Jacobian of the
integration for each point in the point cloud. In this paper, we have developed a Voronoi projection-based area to
compute the Jacobian determinant (or the effective area) associated with each point of the point cloud. In addition, we
also need the surface normal corresponding to each point in the point cloud. We use a local hyperplane fitting
algorithm to compute the surface normals.

In many industrial applications, fluid flow analyses are employed to verify and validate the efficacy of thermal
control systems. The thermal analysis predicts the surface and ambient temperatures of critical components in an
industrial product assembly. Previous work demonstrated the capability to simulate heat transfer using a variational
multiscale method with weakly enforced Dirichlet conditions on conforming boundaries [37]. In this paper, we
develop a thermal IMGA formulation to apply fixed temperature boundary conditions weakly on immersed point
cloud surfaces, showing convection and conduction of thermal quantities in the flow. We first validate the proposed
formulation using benchmark problems and later demonstrate the utility of thermal IMGA on a large vehicle
assembly.

To summarize, the specific contributions in this paper include: (1) Methods to compute the surface Jacobian
determinant and surface normals from the point cloud representation of a solid model. (2) Methods to compute the
inside—outside information for classifying the quadrature points of the background fluid mesh. (3) A thermal IMGA
formulation for modeling the heat transfer in flow over an immersed object. (4) Validation studies on the proposed
methods to understand their efficacy in performing IMGA with a point cloud. (5) Demonstration of coupled fluid and
thermal flow analysis on a large industrial-scale object represented using a point cloud.

This paper is organized as follows. We provide the mathematical formulation of IMGA for incompressible and
compressible flows in Section 2. In Section 3, we provide details on processing the point cloud for computing the
normals, Jacobian determinant, and inside—outside information. We also perform validation studies for the point
cloud processing methods. Next, we provide the details of the flow and thermal validation studies in Section 4 and the
application of the method to industrial-scale parts represented as point clouds in Section 5. Finally, in Section 6, we
conclude our work and provide a few directions for future work.

2. Immersogeometric analysis

The immersogeometric flow analysis methodology consists of three main components: (1) The thermal fluid
system is modeled using stabilized finite element methods for incompressible [37-39] and compressible [40-42]
flows. (2) The Dirichlet boundary conditions imposed on the immersed objects are enforced weakly in the sense of
Nitsche’s method [2,16,43]. (3) To accurately capture the geometry of the flow domain, the concept of the Finite Cell
Method (FCM) is employed in which the quadrature rules are adaptively refined [2,44,45]. These numerical
ingredients are presented in this section.

2.1. Mathematical formulation

2.1.1. Variational multiscale formulation of the incompressible thermal fluid flow

Let Q (subsets of RY,d {2,3}) denote the spatial domain, and I be its boundary. In the context of
immersogeometric flow analysis, the computational domain Q consists of two exclusive parts, the physical domain
Qphys, i.e., the fluid domain, and the fictitious domain Qyic, i.e., the domain enclosed by solid objects. Quhys and Qrict
are separated by the immersed boundary ', as shown in Fig. 1. Consider a collection of disjoint elements {Q¢}, &
Q¢n Rd with closures covering the computational domain, Q B & Qe, and let " be discretized |toa collection of
boundary elements {r°}. In what follows, Q¢ = Q¢ Qphys and Q¢ = Q°" Qiq. Note that
the finite-element discretization of the domain Q is created WItY‘IOUt conforming to the géometry I, which greatly
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Fig. 1. An example of flow over an object. The object with boundary I is immersed into the domain Q. The immersed boundary separates
the domain Q into a physical part Qpnys and a fictitious part Ofic.

simplifies the mesh generation process. In what follows, a superscript h indicates that the variable is evaluated in the
discrete space. The variational multiscale (VMS) discretization of the incompressible thermal fluid flow problem can
be stated as: find the pressure p", fluid velocity u", and temperature T in the discrete solution space S, such

that for all their corresponding test functions whp, w", and w"_in the test function space V",

( ) ( )
B'C {wh, w", wh}, {p", u", T"Y - F'C {wh, w", wh} = 0, (1)
where
)
h
B'C {wy, w" W?},{ph,uh,Th)} =
{ aun J J
h u h . meih h h h h h
w'-p —+ u"-Bu dQ + gw"):o(u", p") dQ + wpldl - u” dQ
ot
Q hys J‘ Qphyi J’ nphys
- pul-Ew"+ BwW" U dO,- pE-wh dQ
e IQphys J- e Qy:nhys )
+ pw" - (u -Bu") dQ - pEW" : U Bu dQ
e J-Qpehys e Qpehys
, ) (.
+ pu-Bwh T u-BU" dQ
e Opehys
+ whpc —+ u"-@T" dQ+ aw" - kBT"dQ
Qph‘rs Qphys
+ AW - kgcBT"dQ
ths
s 1 ) J (. )
- pc u"-BWY TdQ + whpcu -BT" dQ
e J.Qpehys e Qpﬁwys
> (._)
- e pcEw - u' T dQ, (2)
e Qphys
and
I I I
[ ({wg,wh,w_hr}) = W - pfpuoy dQ + wh-hdrl + wihr dr. (3)
Qphys rN rN

In the above equations, p, c, and k are the density, specific heat capacity, and thermal conductivity of the fluid,
respectively. o(u", p") = -p"l + 2ue(u") and g(u") = L(@u" + (Bu")") are the Cauchy stress and strain-rate 4
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tensors of incompressible fluid, respectively, with p being the dynamic viscosity. | is the d x d identity matrix if
not otherwise specified. fouoy is the buoyancy force per unit mass modeled using Boussinesq approximation as—p (T
- Tret) g, with B being the fluid thermal expansion coefficient, T being the reference temperature, and g

being the gravitational acceleration. h and ht contain the prescribed traction and heat flux conditions, respectively,
applied on FN and I' , which are the portions of I where the correspondlng Neumann boundary conditions are

applied. The flne scale velocity, pressure, and temperature are defined by u' = -tmrm/p, p = -pTcrc, and
T = -tere/(pc), respectively, where
h )
= p F+ uh-Bu - B-o1 U, ph - pfbuoy , (4)
re=@-u" (5)
re = pc— +u-BT" - @ kETM . (6)

In the above equations, the stabilization parameters are given by

( ). 1

Ct h 2 2
™™ = A—2+u -Gu"+ Cv°G:G , (7)
T = (tmtrG)7t, (8)
( |
€ h h 2 ’
Te=  _+u-Gu'+Cia’G:G , 9
; N ! (9)
T= u-Gu' 2, (10)
where At is the time step size, the constants Ct = 4 and C, = 3 are chosen from an appropriate element-wise

inverse estimation [46,47], v = u/p is the kinematic viscosity, a = «k/(pc) is the thermal diffusivity, and G

contains the information about the element size derived from the element geometric mapping from the parametric
parent element to physical coordinates x(§). The components of G are defined as Gi; = d;)': OEX" The term |<
formulates a discontinuity capturing (DC) operator, which provides additional numerical stablllty to locations where

temperature gradients are large. The DC stabilization parameter [48] is given by

ic ic (oon hl-, 1
= Cpc BAT"-GAT" 2 |re], (11)

where C:DCC is a positive constant scaling the strength of the DC operator and is set to 0.5 in this paper.

The standard way of imposing Dirichlet boundary conditions is to enforce them strongly by ensuring that these
conditions are satisfied by all trial solution functions, which is not feasible in immersed methods. Instead, the
strong enforcement is replaced by weakly enforced Dirichlet boundary conditions originally introduced by Bazilevs et
al. [36,49,50] for incompressible isothermal flows and later extended in Refs. [37,51,52] for thermal fluid flows. Let
ro=rbn ar b berthe portions of I' on which the velocity and temperature Dirichlet boundary conditions are
applled The semi-discrete problem of the thermal fluid system can now be stated as follows:

( )

B'C({V\}p,w Wi {p" T SUSIC {w", wh, w

i
( ) )
- wh- =p"n+ 2pe(uM)n dr - whn+ y2uew")n - uh - u T dr
b @ b b2 rp P P
b II’ Iy Zb II' My ( )
>
- wh-p(uh-n)(uh—uD)dr+ whet!C U - u T
b ro® reo- b o rp "
> 1 - T S .
- W KET -ndrl - VKBEW' -n T" - Tp dr
. re-r.o b rer, o
s 1 CoCe 0, L) s f el )
- whipcu'-n T"-Tp dl + wit, T"- Tp dl = 0. (12)
p rPor%” b rbornD

In the above, up is the prescribed velocity on I'[J, Tp is the prescribed temperature on F':%, n is the unit outward
normal vector, and P~ is the inflow part of T?, on which u" - n < 0. The value of ¥ can be selected
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as 1 or -1 which determines whether Eq. (12) is a symmetric or non-symmetric type of Nitsche’s method,
respectively [16,36,53]. Finally, rLC and t'S are stabilization parameters that need to be estimated element-wise as
a compromise between the conditioning of the stiffness matrix, variational consistency, and the stability of the
formulation. The choice of y influences the performance of the weak boundary condition operator and the selection of
t'c and '€, which will be discussed in detail in Section 2.1.3.

An important advantage of using weakly enforced Dirichlet boundary conditions is the release of the point-wise
no-slip condition at the boundary of the fluid domain. This, in turn, allows the flow to slip slightly on the solid
surface and imitates the presence of the thin boundary layer that typically needs to be resolved with spatial
refinement. It was shown in Bazilevs et al. [50] and Hsu et al. [54] that weak boundary conditions allow for an
accurate overall flow solution even if the mesh size in the wall-normal direction is relatively large. In the
immersogeometric method, the fluid mesh is arbitrarily cut by the object boundary, leaving a boundary layer
discretization of inferior quality compared to the boundary-fitted counterpart. However, it was shown in Xu et al. [2]
that accurate flow solutions were obtained using the immersogeometric method with a mesh resolution and
refinement pattern comparable to the boundary-fitted mesh used to obtain the reference values. We believe this is
partially due to the use of weak-boundary-condition formulation.

2.1.2. Compressible flow formulation

The compressible-flow governing equations are discretized using a streamline upwind Petrov—Galerkin (SUPG)
formulation [55-69] augmented by a DC operator [70-81]. In what follows, Roman indices take on values
{1,...,d}, and summation convention on repeated indices is applied. In addition, we use (-): to denote a partial
time derivative, and we use (-); to denote the spatial gradient. Let Y = [p u T]" denote the solution vector of
pressure, velocity and temperature, and W = [wp, w wt]T denote the test function vector of their respective test
functions. The problem can be stated as follows: find Y" @ S" such that for all Wh @ V",

( ) (. n)

B 'wWh, yM - FC'wh = 0, (13)
where
( ) ) ( o )
BC W, v = W AgY" + ASTPYR 4 ATPYR T dO
Qphys
J‘ pny:
- wh -(Aith - K;J-thj) dQ
Qphs
L (S S I R N
+ A + Aip W,i . Aaltsqu Res Y"' dQ
e J-Qshys
2 (. ) ¢ h
+ W, Kpcho Y dQ, (14)
e Q;hys
and
S IR b
FC'wh = wh.sda+ W' H dr. (15)
Q MH

In the above, A’s and K;i; are the Euler Jacobian matrices and the diffusivity matrix, respectively, whose specific
definitions can be found in Appendix. Note that the superscript h for A’s and K;; are dropped for the clarity of
notation, even though they are evaluated in the discrete space. H contains the prescribed fluid traction and heat flux
boundary conditions, and 'y is the subset of I where H is specified. Res is the residual of the compressible-flow
equations defined as

() ( ) ( )
Res Y' = Ao+ A+ AP Y- Kijvh - s (16)

The stabilization matrix €supc is defined as

( ( ) ( ) )-4
tsupG = ACthlJ' Gij Ai+ AP Aj+ AP + Ci1GijGuKikRij " (17)
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Note that in Eq (17), the identity matrix | is (d+2) x (d +2), and the notation ( - ) on top of the matrices indicates that
they are evaluated based on the governing equations using conservation variables. The term associated with Ry in

Ea. (14) is a DC operator, where the DC stabilization parameter is given by

_1
2

( )1
RSc = CSc GijU" A;TUM, * Res(Y") A7'Res(Y") 7. (18)

In the above, C‘Lf)c is a O(1) positive constant (CDCc = 0.5 in this work), and TAo'l is the inverse of the zeroth Euler
Jacobian of the transformation between the conservation and entropy variables (see Rajanna et al. [82, Appendix A]).
Eqg. (18) is an extension of the 691 definition designed by Tezduyar and colleagues [58,83], where only the convective
part of the full residual operator Res(Yh) was employed. While the SUPG terms provide the necessary stability
across a wide range of Reynolds numbers, the DC operator provides the necessary additional dissipation in the
shock regions. Finally, the compressible-flow version of the weak-boundary-condition formulation is added to the
weak form:

Bc(Wh Yh) _fcC (Wh)

s I A R o)
- w' - =p'n+ AR -u" n+ 2ue(u’)n dr
b rbarp
2 (( ) ) (
- p"Wn+ v OAE-w" n+ 2ug(wh)n” - Ul - up dr
p rearf P
>
- wh-ph(uh-n ut = up dr
L e
> ! o L R P (U T
+ w-ru(u—uD)dI’+ w'-n T, u'-up -n dr
b rbanID b rbﬂruD
z I h h z I h ( h )
- WTKT -ndl - VKWT-nT - T, dr
b Irbm—_ll? p renrP [
2 AT S 1 s ) 2 h C(th
- wiplcy u'-n TV - Tp dl + wr T (T" - Tp)dl =0, (29)
p rbnrp- p roenrP

where A is the second coefficient of viscosity (A = -2u/3 based on Stokes’ hypothesis), and T, T¢, gnd t¢ are the
stabilization parameters of Nitsche’s method. In this work, the compressible gas is assumed to be calorically perfect
and the specific heats at constant volume and constant pressure can be defined as ¢y = R/(y - 1) andc, = yR/(y
- 1), respectively, where R is the ideal gas constant and y is the heat capacity ratio. The pressure, density, and
temperature are related through the ideal gas equation of state, p = pRT. In addition, thermal conductivity can
be calculated by k = cpp/Pr, where Pr is the Prandtl number.

2.1.3. Stabilization parameter selection for weak boundary conditions

Egs. (12) and (19) can be either the symmetric or non-symmetric form of Nitsche’s method, depending on the
value of y being selected as 1 or -1, respectively. The symmetric Nitsche method provides excellent accuracy and
robustness when the stabilization parameters are properly estimated, which sometimes requires the solution of a local
eigenvalue problem [84—88]. However, the arbitrarily intersected elements in immersed methods make obtaining
accurate solutions to the eigenvalue problem challenging. An intuitive way to circumvent this difficulty is to use a
uniform value that can be determined by a trial-and-error approach to simultaneously satisfy the requirements for
numerical stability and conditioning of the system matrix [1,2]. Some delicately designed algorithms have been
proposed for the local selection of stabilization parameters in intersected elements [86,89] and for preconditioning of
the linear system [90-92]. However, even with the added algorithmic complexity, careful estimations of t’s do
not necessarily result in improved accuracy in L2 errors when compared with the uniform-valued stabilization
parameters [53]. Therefore, in our IMGA CFD for incompressible flows, we set 'E:lc = 10° and T/ = ct/C to take
advantage of this most straightforward but effective strategy.

Our previous numerical experiments suggest that, compared with incompressible flows, IMGA CFD for
compressible flows is more sensitive to the oscillations around immersed boundaries caused by the uniform, large-
value stabilization parameters. With this observation, the non-symmetric Nitsche type weak boundary condition
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Fig. 2. Adaptive quadrature of mesh cells cut by the point cloud object boundary. Black points define the object’s point cloud, green points are
(inactive) quadrature points inside of the object, and the pink points are (active) quadrature points outside of the object. Two levels of
subdivisions are shown here. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

operator [16,53,93—96] becomes an attractive alternative. The non-symmetric Nitsche formulation can be parameter-
free [97-101], or with a stabilization added to reduce the oscillations near interfaces and to improve the L?
accuracy [102-105]. Since the stabilization parameter in this case is not required to be larger than a specific lower-
bound value to ensure stability, the estimation of the parameter becomes much simpler. In addition, the value of
stabilization does not need to be very large, so it is less likely to overshadow the consistency term. Inspired by Wu et
al. [27], we scale the stabilization parameters as t¢€ = ¢ = 4phe/At and T¢ = ¢t for compressible-flow IMGA
with non-symmetric Nitsche-type weak boundary conditions. Note that here h® = (n - gn)‘ /2 is calculated from the
full element, which greatly simplifies the evaluation in intersected elements.

2.2. Adaptive quadrature near point cloud surface

Accurate numerical integration over the physical domain Qunys With the presence of intersected elements is crucial
for obtaining accurate simulation results in immersogeometric flow analysis. This is achieved in this paper via a
subdivision-based adaptive quadrature rule in the context of the tetrahedral finite cell method [2]. Without changing the
original background elements that support the basis functions, the method adaptively refines the quadrature
distributions to create an aggregation of quadrature points in the vicinity of the immersed boundary. We refer to
the elements used for generating adaptive quadrature rules as cells to avoid confusion with elements used for
constructing basis functions. An intersected cell is recursively split into sub-cells until the sub-cell is completely
inside Qphys or Qsict, or when the subdivision reaches a prescribed refinement level. Standard quadrature rules are
applied to determine the set of quadrature points and weights within the sub-cells.

For clarity of visualization, Fig. 2 shows an illustration of the method in 2D based on adaptive sub-cells for
triangles. The adaptive quadrature scheme needs two phases of point membership classification: the first
classification is performed on the cell vertices to determine whether this cell is intersected, and the second
classification is performed on the quadrature points to determine whether they should be active (inside Qpnys) or
inactive (inside Qsict). In the context of point cloud surface representation, a point membership classification method
based on winding number will be presented in Section 3.3. For more details on the adaptive quadrature algorithms, see
Xu et al. [2, Section 3.2].

3. Point cloud processing

Before we extend the IMGA for point cloud representation, we begin with a few notations for representing
the point cloud and its associated differential quantities. A solid geometry is represented as a smooth manifold S
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isometrically embedded in the Euclidean space R?, and the boundary surface of the solid geometry is represented as
I (interacting with the domain Q). A point cloud P B I could be defined as a set of points sampled from the
boundary surface,i.e. P = {p BT }. We assumethat I is 2-manifold (to ensure thatS is solid) and piecewise smooth (for
estimating the normals and curvatures). Further, P is sampled randomly from ', with the number of points denoted
by |P|. For performing IMGA using point clouds, we present the following methods for (i) estimating the normal
or the orientation of each point in the point cloud, (ii) enforcing Dirichlet boundary conditions, and (iii) performing
point membership classification for any given domain point with respect to the boundary surface represented by
point clouds for adaptive quadrature computations.

3.1. Normal computation

The raw point cloud P does not contain any information of the orientation (or the normal vector for each point
in the point cloud). We estimate the normals from the raw (unoriented) point cloud by constructing a local surface
proxy for each point and then estimating the normals for the surface proxy as illustrated in Fig. 3. For constructing
this surface, we first identify the neighborhood of each point. For a given query point p; B P, where i & [1, |P|],
we define the neighborhood N; to be the k-nearest neighbors of the point in the set P. For fitting the local surface
for each point pi, we first transform all the neighboring points, g @ N;, to a local coordinate system with the origin
atp,. Considering the points lie in R?, we now define a height function for f(x, y):

( )
f(x,y)= Jan(x,y)+ O B(x,y)@a""*", (20)
with
2" r o
JB,”(XI V) = HB,F(XI Y): HB,F(XI Y) = Br—j,jxr_JyJ' (21)
r=0 j=0

Here, B..) are different constants for a n-degree surface fit for the height function, z = f(x, y). The neighboring
points are fit with this height function by minimizing objective function of |k=0 (f(xi, y1) = z1)2. To simplify this
problem, we write it in m[atrix representation, where ahe objective function is to minimize @MB - Z&2. Here, M is
the Vandermonde matrix " 1, xi, yi, X%, ..., X|yf,1'1, W and B is the matrix with constants of the surface fit

Bo,0, Bo,1, B1,0,..., B1,n-1 . We then find the solutiorlftl(')"the linear system MB = Z, which is equivalent to fitting
the best-fit surface. The guarantee for the existence of a unique solution and the accuracy of the solution to B as
O(h"~i*1) are proven in Cazals and Pouget [106]. Once the solution for B is obtained, the normal can be computed

as follows:

)
-B1,0,-Bo,1,1
n= 1,0 0,1 . (22)

2 2
1+ Bl,O + Bo'1

Note that when fitting a surface, we use a different and simpler approach by constructing a covariance matrix
C, which can be defined as:

2r 0
AP az1p

c- el 2_ pm 23

g . (23)

gk — p gk — p

Here, p represents the centroid of the neighboring points cluster N;. We can estimate the normal vector for the plane at
point pi by computing the eigenvalues and eigenvectors of the covariance matrix C. The normal is defined as the
eigenvector corresponding to the smallest eigenvalue [107]. Since the eigenvector corresponding to the smallest
eigenvalue is also a principal component for the point cloud, this method is also known as principal component
analysis (PCA)-based normal estimation.

Note that the method above does not guarantee that the calculated normals consistently point inward or outward
with respect to the point cloud geometry. For a given point, we construct a minimum spanning tree consisting of the
nearest neighbors and flip the calculated normal vector if its orientation is inconsistent with the neighbors [107].
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Voronoi arca for P;

Fig. 3. Estimation of the normal and Jacobian determinant for each point on the surface. The image on the left shows the estimation of
normals. First, we identify the k-nearest neighbors for each point. Then we fit a local surface using the neighbors, and the computed normal of
the local surface is considered as the normal for that corresponding point. On the right, we show the estimation of the area (Jacobian)
corresponding to each point. Using the k-nearest neighbors computed earlier, we first use Delaunay triangulation to obtain the local
triangulation surrounding the query point. Then using the barycentric coordinates, we compute the Voronoi area corresponding to each point.

While the PCA-based normal estimation performs well (using plane fitting), for better accuracy, we can fit a
quadratic surface to obtain better curvature and smoothness [106,108] (also commonly known as 2-jet fitting, or
simply, jet fitting). In this paper, we compare both methods (PCA and jet fitting) to understand the advantages and
disadvantages of both methods.

3.2. Point cloud surface integration rules

To weakly enforce the Dirichlet boundary conditions on TP, we first discretize the boundary surface into
elements. We then compute the weak-boundary-condition (or Nitsche) terms in Eq. (12) using the points of the
point cloud and their corresponding Jacobian for each discrete element of the surface. For a point cloud represented
using P, we do not need any additional discretization, and hence we consider each point p; B P as a surface
element? and its associated (single) quadrature point for performing the integration of the Nitsche terms overP.
However, computing the Jacobian determinant for each quadrature point for performing the integration is not
straightforward. While the surface area or the Jacobian determinant is not defined in a strict sense for a point-
cloud-based representation, we define an effective surface area a; for each point in the point cloud (i.e., point area or
Voronoi area). This area can be associated with the geodesic Voronoi area of the point p; on the boundary surface
I'. For some point cloud acquisition processes, this is already available from the sensors [109], and for others, this
can be approximated as shown in Belkin et al. [110] and Barill et al. [111]. Similar to the approach used for
computing the normals of the point cloud, we construct a local neighborhood for each point p;i @ P to obtain the
geodesic Voronoi area a;j as shown in Fig. 3b.

The complete process can be detailed in three steps: (i) For each point p; in the set of point cloud P, we
compute the neighborhood N; to be the k-nearest neighbors. (ii) Using each set of neighborhood points N;, we
perform Delaunay triangulation to result in a local surface T .;(iii) The dual graph of a Voronoi diagram V; is the
Delaunay triangulation T . Therefore, computing the Voronoi area of pi can be easily performed by taking the
contribution area of each triangle in T to aj. Once we obtain the area a; corresponding to each quadrature point, we

|
can integrate and obtain the weak-boundary-condition terms in Eq. (12).

3.3. Point membership classification

For IMGA, the attribution of a given point g in the domain Q to the physical domain Qpnys or fictitious
domain Qsict is fundamental. In other words, we would have to determine if the point q is inside the solid S

2 In this work, a surface element is represented by a point of the point cloud, which we sometimes refer to as a point cloud element.
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Fig. 4. lllustration of winding number for (a) a manifold representation of a circle and (b) a non-manifold representation of a circle. The
circle is centered at (0.0, 0.0) and with a radius of 0.5. The non-manifold point cloud shown on the right is represented using 1000 points.

or outside it. Traditional B-rep CAD representations perform inside—outside testing by using ray-intersection-
based methods. However, these approaches assume that the surface I' representing the boundary of solid S is 2-
manifold and watertight. When the CAD geometry is represented using a non-watertight surface representation or
badly oriented normals, the ray-intersection-based methods fail to determine the membership correctly. Particularly,
ray-intersection-based methods do not work for representations such as point clouds (which are non-manifold).

There has been recent work on defining inside—outside tests for arbitrary non-manifold geometries such as triangle
soups and point clouds using generalized winding numbers [111,112]. The winding number w(q,) B R can be
computed as:

1 J

w(q, )= i . dA. (24)

Here, A refers to the total solid angle subtended by ' on q, d A refers to the differential solid angle subtended by each
element of I on g. We then project the surface onto a unit sphere to obtain the surface integral and further simplify it
for a discrete point cloud represented by P as follows:

b ! |
wiary= = da=  oan, 2 pi-am 25
art r 4mBx - qeB . Bpi — qF 3

pi, ni, and a; refer to the point coordinates, the normal, and the geodesic Voronoi area, respectively, for the ith point
in the point cloud P. Although the winding number is defined as a real number, for a 2-manifold, watertight
representation of the geometry, the possible winding number value at any given point q @ R3 are positive integers.
Further, if the surface does not have self-intersections, the winding number is in the binary set of {0, 1}. In other
words, for any point q B R3:

1 q Q phys
0 Q/@ Qphys-

However, in the case of a non-manifold boundary representation such as a point cloud representation P, the winding
number w(q, I') is still zero for all g Qphys With a continuous value between 0 and s + 1, where s is the number of
self-intersections of the surface I'. We illustrate how the winding number field for a non-manifold and manifold
boundary representation differs in Fig. 4. Therefore, for attribution of a given point q to be inside or outside of
Qphys, We threshold the winding number at 0.5, and any point with a smaller winding number is considered outside the
physical domain, Qphys.

w(q, ) = (26)

4. Validation

4.1. Validation of geometric quantities

Before performing IMGA using point clouds, we first validate the estimated geometric quantities to understand
their accuracy in representing the geometry. We consider three different geometries represented by point clouds for
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Fig. 5. The x, y, and z components of the normals estimated from 163,842 points sampled from an icosphere and the histogram of the

deviation in the estimated normals (right).
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Fig. 6. The x, y, and z components of the normals estimated from 200,000 randomly sampled points and the histogram of the deviation in
the estimated normals (right).

our study: (i) an icosahedron-based sampling of a sphere; (ii) a randomly sampled sphere; and (iii) a Fandisk model
(a benchmark CAD geometry) containing sharp and smooth features [113].

4.1.1. Validation on icosphere and randomly sampled sphere

While our proposed method for estimating the geometric quantities required for IMGA works independent of the
point sampling, for the first study, we consider the case of an icosphere. An icosphere is a set of points obtained by
tessellating an icosahedron inscribed inside a sphere of unit radius [114]. Icosphere provides an ideal set of points
sampled on a sphere such that there is a uniform distance between the points lying on the sphere. This geometric
setup provides an ideal example for understanding the behavior of different parameters used to estimate geometric
quantities. A more realistic geometry is a randomly sampled point cloud. We randomly generate points on a sphere
by generating a set of random points and then projecting them to the sphere by dividing each point by its distance
to the sphere center. Using this method, we can obtain an arbitrarily large number of points on the spherical surface.

For some methods used for acquiring the point cloud, the normal information is not available. Hence, we estimate
the normals using the 2-jet fitting (mentioned above) for the point cloud. It takes 4.06s to estimate normals for
163,842 points on the icosphere. Fig. 5 shows the visualization of the estimated normals for the icosphere. Here,
we visualize the three components of the normal vector individually. We observe that each normal component is
aligned with the corresponding primary axes. A similar visualization for a randomly sampled sphere with 200,000
points is shown in Fig. 6.

We also compute the deviation between the estimated and theoretical spherical normals. The theoretical normal
of a given point on a unit sphere can be calculated by normalizing the vector from the sphere center to the point. The
deviation is computed by subtracting the dot product between the estimated normal vector nesi and the theoretical
normal vector Nieo from unity (1 = Ntheo * Nesti). The maximum deviation in estimating the normals for 163,842
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Fig. 7. Trends of deviation in normal estimation (left) and area estimation (right) with the increase in the number of points.
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Fig. 8. Trends of deviation in normal estimation (left) and area estimation (right) with the increase in the number of neighboring points
used for estimation.

points is 1.15x 1071, A similar behavior can be observed for 200,000 randomly sampled in Fig. 6 with a slightly
larger deviation of 2.00 x 10719,

Since the method for normal estimation relies on the local geometry, naturally, this deviation reduces with the
number of points used to represent the geometry (hence capturing more intricate features of the geometry). In Fig. 7, we
compare the mean deviation in normal estimation and deviation in total area estimation. For normal estimation, we use
1 - Niheo - Nesti fOr estimating the deviation at each point and then use the mean deviation for comparison. However,
we compare the sum of each point area for area estimation. The analytical value of the surface area of a sphere is
used as the baseline for comparing the deviation. We see a linear trend for deviation of the geometric quantities with
the increase in the number of points on the log scale. Also, the difference in mean deviation of normals obtained
from the icosphere and randomly sampled sphere reduces with an increase in the number of points. The total area
deviation for randomly sampled points is almost similar to the icosphere.

Another parameter affecting the estimation of geometric quantities is the number of neighbors used to estimate
them. Fig. 8 shows the trend in the mean deviation of the estimated normals and the deviation in the estimated total
surface area of the point cloud for different numbers of neighbors. The deviation is the minimum with an optimal
number of neighbors (empirically close to 18-20 neighboring points, subject to change based on the number of
points in the point cloud) and remains almost constant with a slight increase in the mean deviation of the estimated
normals. This increase in deviation with an increase in the number of neighbors is because of adding more points that do
not meaningfully contribute to the normal estimation. While a similar behavior is observed in normal estimation for
a randomly sampled number of points, we also observe that random sampling increases the optimal number of
neighbors to account for non-uniform distances between the points, specifically in point area estimation.

Another parameter to study is the degree of the surface used for fitting from the nearest neighbors. Recall that the
linear plane fitting is equivalent to PCA-based fitting and is faster than the jet-fitting approach. While in terms of speed,
the PCA-based plane fitting takes 0.79s for normal estimation (compared to 4.06s for 2-jet fitting), there is a
difference of an order of magnitude in the estimation of the normals and consequently even in the area estimation. Fig.
9 shows the histogram of deviation in normals estimation for icosphere and randomly sampled points using
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Fig. 9. Trends in the histogram of deviation in normals estimation from PCA-based estimation and 2-jet-based fitting for icosphere (left)
and randomly sampled sphere (right).
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Fig. 10. Normal estimation on Fandisk model. (a) Surface representation of Fandisk model. (b) Variation of the maximum deviation in
estimation of normals with the number of nearest neighbors used for fitting the surface. (c) Visualization of deviations of the normals at each
point on the surface.

both PCA and 2-jet fitting. While there is a significant difference in the computational time and the deviation, the
maximum deviation in the estimation is still less than 1074, and hence is still a viable method for estimating the
quantities for IMGA. Both methods, with appropriately chosen neighbors and point cloud density, have very little
deviation for the sphere.

4.1.2. Validation of normals estimation on a point cloud sampled from the Fandisk model

As mentioned above, the normal estimation depends on the nearest neighbors for a given point. This means
there could be significant deviation when the geometry has sharp edges or very fine features. To test this, we use a
benchmark CAD model (Fandisk model, shown in Fig. 10a). The Fandisk model consists of smooth and sharp
features, thus enabling us to test the robustness of the normal and area estimation methods. While the experiments
elucidated above can also be performed for the Fandisk model, we show just a few key results that provide insights for
brevity.

We use the normals computed from the triangle faces of the benchmark CAD model to set a baseline for the
normal vectors. This baseline preserves sharp features since the normals are completely different for adjacent
triangles. However, such sharp features cannot be replicated using point clouds due to a lack of connectivity
information. In Fig. 10b, we show the histogram of deviations in normal estimation. While most points have very
little deviations, about 20% of the total points have some significant deviation. We visualize the deviations of the
normals at each point on the surface in Fig. 10c. While most of the points at the center of each face have minimal
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Fig. 11. Line-cuts of winding number along the x axis for a sphere with (a) a different number of points in the point cloud, and (b) with
an increase in the noise for the sampled point cloud.

deviation, all the points near the edges show significant normal deviation, which is expected. Note that the deviation of
0.30 (the maximum deviation for a point) refers to a deviation of 45° between the two normal vectors, the average
direction between perpendicular planes.

4.1.3. Validation of winding number computation

Since the winding number is a scalar field, we analyze the behavior by plotting the winding number at one point
along the x axis. The ideal winding number for a sphere looks similar to the line-cut representing 163,842 points as
shown in Fig. 11(a). The winding number at x < -0.5 and x > 0.5 for a sphere centered around origin with a
diameter 1.0 is 0, and 1 for -0.5 £ x < 0.5. When fewer points are sampled, the dipole moments (see Barill et al.
[111] for a detailed discussion on dipole moments) do not cancel in the local region around the boundary, which
leads to local self-intersections. However, we can resolve a watertight geometry without local self-intersections by
using 0.5 as a threshold to classify a given point to be within the geometry.

4.1.4. Robustness to noise

Often point clouds acquired from actual sensors have significant noise associated with them. While understanding
the efficacy of noise removal approaches is not in the scope of this paper, we still would like to ensure that the
proposed method is robust to noise. To understand the effect of noise, we add a specified Gaussian noise at each
point. Fig. 12 shows the increase in the deviation with an increase in the % noise added to the original point
cloud. To see how this affects the geometric reconstruction, we obtain line cuts of the winding number as earlier in
Fig. 11(b). As would be expected, adding more noise makes the reconstruction non-manifold. Fig. 13 shows the
renderings of the reconstructed surface mesh of the sphere. With the increase in noise, many dimples are created on the
surface that could change the aerodynamics of the shape; nevertheless, the shapes generated are all 2-manifold and
watertight.

4.2. Incompressible flow around a point cloud sphere

We perform mesh convergence and validation studies using icosphere point clouds representing spheres. We
create an icosphere by subdividing the faces of an icosahedron and projecting the resulting nodes onto the enclosing
sphere. Though the icosphere does not achieve an ideal pattern of equilateral triangles, the generated geometry is
equivalent to a well-defined 2-manifold surface mesh. From this tessellated icosphere, points are spawned at the
center of each triangle element and collected into a point cloud. We begin with a description of the problem setup and
background meshes used for the convergence studies and validations.

4.2.1. Problem setup
We follow the flow around a sphere study undertaken by Xu et al. [2] with the same domain dimensions and
very similar background meshes. Note that the problem is non-dimensional, and the icosphere has a diameter of
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Fig. 14. Computational domain for the icosphere flow validations. The outer frame bounds the fluid domain, enclosing an outer refinement
region, which itself encloses an inner refinement region. The icosphere point cloud resides at the origin.

one. The computational domain, boundary conditions, and immersed icosphere are shown in Fig. 14. A uniform
inflow velocity of one in the x-direction is set at the inlet, and the no-penetration condition is set at the lateral
walls, both enforced strongly. The outflow boundary is traction free. The no-slip condition is enforced weakly on the
sphere point cloud using the methods described in the previous sections. The density of the fluid is set to one,
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Table 1
Element sizes in tetrahedral meshes for simulating flow around a sphere.
_Mesh No. of elements Cut element Inner_region Outer region Base domain
INMO. inl’flf!ﬂ n.n'm n_’m D.Q’/\vl 2 12
M1 1,833,434 0.010 0.10 0.4N 2 1.0
_IM2 _ 9,041,302 0.005 0.05 0.2/y 2 0.8
BM2-[2] 8,519,435 0.005 0.05 0242 0.8
Table 2

Point cloud convergence for flow around a sphere with adaptive quadrature level 2 (AQ2) on
background mesh IMO. Blank values indicate divergent solutions as a result of insufficient point
cloud density.

Points Re = 100 Re = 300 Re = 3700

Co L/d Co St Co St
642 3.531 1.627
2562 1.404 1.092 1.104 0.105
10,242 1.087 0.982 0.690 0.125 0.643 0.062
40,962 1.094 0.973 0.676 0.144 0.419 0.093
163,842 1.094 0.973 0.676 0.144 0.419 0.093
655,362 1.094 0.973 0.676 0.144 0.419 0.093

and the Reynolds number (Re = p~!) is defined as the inverse of the viscosity. Non-dimensional mesh settings
used for this problem are summarized in Table 1. IMO, IM1, and IM2 are immersogeometric tetrahedral meshes of
increasing mesh density. Note that IM2 has a comparable mesh resolution to the boundary-fitted mesh BM2 used in
Xu et al. [2], which we use as a reference. We consider Re = 100, 300 and 3700 in this study, and the time step sizes in
the simulations are set to 1.0 x 1072, 1.0 x 1073 and 1.0 x 1073, respectively.

As point clouds lack continuous surfaces to recursively refine surface quadrature points, a certain spatial density
of point cloud relative to the background mesh’s cut element size is required to prevent flow leakage. Hsu et al.
[7] recommends a maximum ratio of 2 between the sizes of a tessellated surface element and the volume element
cut by it. Before conducting validation studies, we derive an analogous ratio for point clouds with an icosphere
geometry. This is found by converging flow quantities with increasingly dense point clouds on a fixed background
mesh, specifically IMO.

4.2.2. Point cloud convergence with fixed mesh

We simulate flow over six different densities of point clouds on IMO for Re = 100, 300, and 3700. The coarsest
geometry has an average point spacing equal to about five times the cut element size, while the finest geometry has a
point spacing of approximately 1/6 of IMQ’s cut element size. This tabulation aims to find the point cloud density at
which our measured flow heuristics gain independence from point spacing. In Table 2, drag coefficient (Cp) and
recirculation length (L/d) are listed for the steady-state Re = 100 solutions, whereas we report time-averaged drag
coefficient (Cp) and Strouhal number (St) for vortex shedding cases of the two other Reynolds numbers. The drag
coefficient is computed as Cp = 2Fp/(pU?A), where Fp is the drag force, p is the fluid density, U is the inflow
speed, and A is the frontal area of the sphere. The drag force is evaluated using the variationally consistent
conservative definition of traction [2,115]. The recirculation bubble length is computed as L/d, where d is the
diameter of the sphere, and L is the length from the rear end of the sphere to the point where the velocity in x-
direction changes sign. The Strouhal number is computed as St = fd/U, where f is the frequency of vortex
shedding.

As Re increases, we observe an increase in the minimum point cloud density required to achieve stable flow
solutions. As indicated by the blank cells in Table 2, the coarsest point clouds exhibit divergent solutions at higher
Reynolds numbers, even with small time step sizes. As Re increases, it becomes more necessary that each cut
element encloses at least one icosphere point so that each cut element adequately “feels” the forcing contribution
from the immersed point cloud to prevent flow leakage.
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Table 3
Convergence study for flow around a sphere at Re = 100 with different mesh densities and adaptive
quadrature levels.

Mesh Cp L/d
IMO M1 IM2 IMO IM1 M2
AQO 0.927 0.960 0.988 1.010 0.848 0.857
AQ1l 1.078 1.080 1.092 0.997 0.846 0.859
AQ2 1.094 1.091 1.092 0.982 0.853 0.858
AQ3 1.094 1.091 1.092 0.973 0.854 0.858
BM2 [2] 1.093 0.857
Table 4

Convergence study for flow around a sphere at Re = 300 with different mesh densities and adaptive
quadrature levels.

Mesh Cp St
IMO IM1 M2 IMO IM1 IM2
AQO 0.602 0.620 0.649 0.139 0.144 0.139
AQ1 0.675 0.643 0.657 0.144 0.139 0.136
AQ2 0.677 0.658 0.662 0.142 0.136 0.135
AQ3 0.676 0.659 0.662 0.144 0.135 0.135
BM2 [2] 0.661 0.135
Table 5

Convergence study for flow around a sphere at Re = 3700 with different mesh densities and
adaptive quadrature levels. BF denotes the boundary-fitted solution from Xu et al. [2].

Mesh ED St

IMO IM1 IM2 IMO IM1 M2
AQO 0.562 0.468 0.399 0.083 0.164 0.219
AQ1l 0.516 0.407 0.395 0.089 0.163 0.218
AQ2 0.419 0.402 0.394 0.093 0.160 0.218
BF [2] 0.393 0.217

The results in Table 2 show that convergence is consistently achieved when using a point cloud of 40,962 points.
This density translates to an average point spacing valued at about 2/3 of IM0’s cut element size. This agrees with the
spatial density recommendations of Xu et al. [2], as this point cloud is the coarsest permutation that maintains a point
cloud spacing smaller than IMOQ’s cut element size. In subsequent simulations, we prescribe a point cloud density that
ensures at least one point per cut element.

4.2.3. Mesh convergence and flow validation

Here, we perform convergence studies on mesh density and adaptive quadrature level and validate the flow
quantities of interest at Re = 100, 300, and 3700 against those reported in Xu et al. [2]. The adaptive quadrature
refinement cases are denoted as AQ followed by the level number. One icosphere cloud, with its average point
spacing less than the cut element size of the finest mesh IM2, is used in all simulations in this section. The same flow
qualities as in Section 4.2.2 are evaluated and the results are shown in Tables 3-5. For all cases, the convergence under
adaptive quadrature refinement is clearly shown.

For Re = 100 and 300, data obtained above and including IM1 and AQ2 refinement levels are in excellent
agreement with the reference values (BM2) reported in Xu et al. [2]. The results clearly show mesh convergence and
demonstrate the importance of capturing the point cloud geometry in cut cells when integrating the background
elements. For Re = 3700, the results show that IM2 is essential to obtaining accurate solutions. For this
configuration and flow condition, there occurs a laminar flow separation near the equator of the sphere and a
transition to turbulence in the wake of the object [116]. Compared to the drag coefficient, the Strouhal number
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Fig. 15. (a) Time-averaged pressure coefficient along the upper crown line of the sphere obtained using IM2 with different AQ levels.
Immersogeometric results are compared against the reference boundary-fitted result [2]. (b) Velocity magnitude contour on a planar cut
around the sphere.

appears particularly sensitive to mesh density, unable to reach a closer value until IM2. In Fig. 15, the time-averaged
pressure coefficient (Cp) along the sphere’s upper crown line is plotted for the IM2 case. 8 = 0° corresponds to the
stagnation point and 6 = 180° is the trailing point of the sphere. AQO shows oscillatory behavior in C p,_signifyingthat
further refined quadrature points are required in cut elements. AQ1 remedies the oscillation but largely follows the
same pressure coefficient curve as AQQO. Finally, AQ2 produces a result that is in excellent agreement with the
boundary-fitted reference [2]. It should be noted that the refinement levels, solution accuracy, and convergence
behavior presented in this section are in full agreement with those in Xu et al. [2].

4.3. Buoyancy-driven flow

After the validation of isothermal fluid flow, we validate the thermal IMGA by simulating buoyancy-driven

flows. Following the problem of natural convection in an enclosure with a heated sphere investigated by Yoon et al.
[117], a static spherical boundary is situated within a sealed cubical enclosure filled with air, as shown in Fig. 16.
Buoyant flow is driven by a temperature differential between the sphere and the enclosure walls. This case is
chosen as it requires simulation of heat transfer involving immersed Dirichlet boundaries and accurate resolution and
application of buoyant forces on fluids. The sphere’s boundary, with a non-dimensional radius of R = 0.2, is
immersed within the cubical simulation mesh. This cube has non-dimensional edge lengths of 1, with the coordinate
system at the domain’s center and coordinate axes parallel to the domain’s edges. The gravity acts in the -z
direction. All boundaries are treated as no-slip walls. A high temperature Tp = 1 is applied on the sphere, while a
low temperature T, = 0 is applied on the cube domain surfaces. The normalized temperature can be defined as ©
(T - Tc)/(Th - Tc)-
We simulate two cases at Rayleigh number Ra = 1000 with 6 = 0 and 6 = 0.25. Rayleigh number is defined as Ra
gBL3(Th - Tc)/(va), where g = 1is the gravitational acceleration, B = 1 is the thermal expansion coefficient, L = 1
is the length of the enclosure, v is the kinematic viscosity, and a is the thermal diffusivity. 6 refers to the z
coordinate of the sphere where x = 0 and y = 0. For both cases, the Prandtl number, Pr = v/a, of air is used (Pr
= 0.7). With the aforementioned problem setup, one can adjust the value of v or a to achieve the desired Ra
number. Three meshes are tested with each of the two § cases, with non-dimensional element sizes listed in Table 6.
The mesh sizes on the cube domain surfaces and near the immersed sphere are the “base elements” and “cut
elements” sizes, respectively, and a smooth transition is achieved in the space between the boundaries. A time step
size of 5.0 x 1073 is used in all simulations.

For each of the six simulation case permutations, the Nusselt number (Nu) is calculated at the top surface of the
enclosure, referring to the wall perpendicular to the z-axis located at z = 0.5. The Nusselt number can be calculated by
Nu = BEO -n, where n is the unit normal vector to the wall. In Fig. 17, we plot this value along a line between
(0.0,0.0,0.5) and (0.5, 0.0, 0.5) and compare our results with the reference values reported by Yoon et al. [117].
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Fig. 16. Computational domain for the problem of natural convection in a sealed cube enclosure with a heated sphere. The red line indicates
where Nusselt number is plotted to compare against reference data.
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Fig. 17. Nusselt number along the centerline of the top surface of the sealed enclosure for § = 0 (left) and for 6 = 0.25 (right).

Table 6
Non-dimensional element size settings of each simulation mesh for buoyancy-driven
flow validation.

Mesh Cut elements Base elements
Coarse 0.020 0.040
Medium 0.010 0.020
Fine 0.005 0.010

In the case of 6 = 0, for the most part, even the coarse mesh is sufficient in reproducing the temperature gradient
curve. All meshes accurately simulate boundary values relative to the reference solution. Unsurprisingly, the coarse
mesh produces some notable solution oscillations. Grid independence is apparent after the medium mesh, where the
medium and fine meshes improve the solution accuracy and track the reference data to a strong degree. Similarly, all
three meshes with § = 0.25 produce comparable solutions near the edge of the top surface. The coarse mesh solution
noticeably deviates from the reference solution at the center of the top surface. Again, the coarse mesh exhibits
some oscillations throughout the solution, whereas the medium and fine meshes are successful in reproducing the
reference curve.
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4.4, Compressible flow over a torpedo-shaped body

In this section, we simulate laminar flow around a torpedo-shaped body represented by the point cloud data
in both the subsonic and supersonic regimes. The dimension of the geometry and the computational domain can
be found in Wang et al. [8]. The point cloud representation of the torpedo-shaped body is shown in Fig. 18a. To
perform the simulation at subsonic speed of M = 0.8, the inflow quantities are set to p = 1.1161, BuR = 1.0,
and T = 3.8713 x 1073, The dynamic viscosity | is set to a constant value of 0.01. For the supersonic case of
M = 2.0, the inflow quantities are setto p = 0.1786, Au@ = 1.0, and T = 6.1941x 10~*. The dynamic viscosity is
determined from Sutherland’s law: p = (C1T 2)AT + S), where S = 1.406 x 1074 and C; = 0.906. For both
the subsonic and supersonic cases, no-penetration and zero-heat flux boundary conditions are enforced on all the
lateral boundaries of the domain. The outlet boundary is set to have the same total traction as the inlet. On the
point cloud object, the velocity is set to zero, and the temperature is set as the stagnation temperature determined
by To = (1+ 0.5(y — 1)M?2)T; both conditions are enforced weakly. The heat capacity ratio y is 1.4, the ideal gas
constant R = 288.293, and the Prandtl number Pr is 0.72. Note that all quantities are dimensionless.

We perform a mesh refinement study to assess the performance of the compressible-flow point-cloud IMGA
formulation. Simulations are carried out on three meshes named IMO, IM1, and IM2, from coarser mesh to finer
mesh, respectively (see Wang et al. [8] for the notation and statistics of these meshes). To illustrate the mesh design, we
plot a planar cut through the center of the coarsest mesh IMO in Fig. 18b. The simulations are performed using a time
step size of 0.005 until a steady state is reached. Figs. 19a and 20a show the Mach number contour plots computed
on IM2 for the subsonic and supersonic cases, respectively. The pressure coefficient distributions along the upper
crown line of the torpedo-shaped body as a function of the streamwise coordinate for different meshes for the
subsonic and supersonic cases are plotted in Figs. 19b and 20b, respectively. The pressure coefficient results are also
compared with the boundary-fitted computations using a comparable mesh resolution for both cases. The results
demonstrate that IM1 and IM2 meshes produce converged solutions and show excellent agreement with the boundary-
fitted computations. They are also in excellent agreement with those reported in Xu et al. [16]. Note that a two-level
recursive adaptive quadrature rule is employed to faithfully capture the immersed geometry and produce an essentially
converged solution.

5. Flow over an industrial vehicle

Extending upon the practical application of IMGA to industrial geometry in B-reps and tessellated formats [2,7,
8,16], we demonstrate the compatibility of this method with remarkably detailed geometry in a point cloud format.
The workflow for computational analysis of an industrial product design typically begins with a B-rep CAD model
representing an industrial object to be manufactured. This B-rep model primarily exists for purposes other than
CFD, meaning that the geometry is often unsuitable for boundary-fitted analysis. Significant effort is invested to
either “clean up” the existing B-rep or create a surrogate version with limited complexity and airtight topology.
Only then may boundary-fitted mesh generation begin, accompanied by its own set of difficulties. Hsu et al. [7] and
Wang et al. [8] subverted these computational analysis roadblocks using IMGA on an agricultural tractor and a
tractor-trailer truck in trimmed NURBS and analytic surface formats. Compared to the tractor and truck, the
geometry of this demonstration is unique in that it is overwhelmingly composed of finite-thickness shells, one type of
topology targeted by CAD cleanup operations.

The geometry in this demonstration represents a medium-sized construction vehicle: a John Deere 544K Wheel
Loader. Given that this is a low-speed utility vehicle, there is little concern for aerodynamic forces experienced by the
vehicle, which is contrary to common vehicular CFD analysis, like that of a tractor-trailer truck. For this type of vehicle
in an actual product analysis application, fluid simulation seeks to forecast how components, especially the engine and
electronics, remain within thermal constraints throughout their continuous operation. Physics-coupled simulations
are particularly useful to predict temperatures that the key components of the vehicle experience. Regarding the
544K demonstration that we subsequently exhibit, fluid flow similarly transpires within this low-speed incompressible
flow regime, though we purposely avoid boundary conditions expressing resemblance to conditions within the
operating range of the real-life vehicle. In this section, we demonstrate the utility of point-cloud IMGA applied to an
industrial analysis workflow.

The generality of the point cloud format affords flexibility regarding the types of CAD formats that can be
analyzed. The as-manufactured analysis advantage of point-cloud IMGA is fully realized with the virtualization
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Fig. 18. (a) Point cloud representation of the torpedo-shaped body. (b) IMO mesh with a zoom on the region near the point cloud representation
of a torpedo-shaped body.
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Fig. 19. (a) Mach number contours for the subsonic flow (M = 0.8) around a torpedo-shaped body. (b) Pressure coefficient along the upper
crown line of the torpedo-shaped body as a function of the streamwise coordinate.
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Fig. 20. (a) Mach number contours for the supersonic flow (M = 2.0) around a torpedo-shaped body. (b) Pressure coefficient along the
upper crown line of the torpedo-shaped body as a function of the streamwise coordinate.
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Fig. 21. Translation of John Deere 544K construction vehicle’s surface representation to point cloud format. (Left) Translucent surfaces
exposing complex details within the vehicle. (Right) Sampling of surface representation into points, each point colored by its scalar area. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of physical objects, but true as-designed analysis still presents worthwhile advantages over conventional analysis of
simplified geometries. Lacking a practical 3D scan, we begin with the comprehensive CAD assembly used by Deere
&Company for design and manufacturing purposes. This B-rep is ill-suited for boundary-fitted analysis as it is non-
manifold with gaps, intersections, and collocations. Instead of converting it to watertight NURBS, analytic, or
tessellated surfaces, the assembly is sampled into points with normal vectors and area scalars as in Fig. 21 in a
matter of minutes. A significant amount of manual labor is saved by circumventing the geometry simplification
process typically required for boundary-fitted analysis of such complex geometry. All impermeable features within
the vehicle are retained; in the absence of support for sub-scale porosity, this preliminary demonstration omits porous
screens and radiators. It should be noted that all parameters utilized to simulate the 544K are unrepresentative of
reality, and presented simulation results make no claims regarding the performance of the actual product as it
exists physically. This exercise demonstrates point-cloud IMGA’s compatibility with multiphysics simulation using
complex point clouds.

5.1. Geometric pre-processing accuracy

The vehicle’s point cloud is discretized by sampling its B-rep surface model. We begin with a 0.025m
spacing between points, which returns a total of 4,041,875 point cloud elements. This operation filters small
geometric features, automating an otherwise intensive manual task. Similar to the icosphere, sampling of the surface
geometry provides normal vectors and area scalars as analytical values to compare the quality of pre-processing
approximations. Point spacing is decreased to produce three more point clouds with greater element populations of
8,135,975 points, 11,855,474 points, and 27,937,410 points. Normals estimation is performed using 4 neighboring
points, and a box plot of each point cloud’s collection of normal vector deviations is displayed in Fig. 22.

Here, the performance of jet-fitting resembles the normal estimation on the Fandisk. A deviation of two indicates
flipped normals, suggesting that the point cloud with 4 million elements contains an excess of incorrectly aligned
normal vectors. Cazals and Pouget [106] point out that the ambiguity of normal vectors on flat surfaces is a
weakness of normal vector calculation in its current form. Using a larger number of neighboring points for the
normal estimation increases the error, which we theorize is due to the ubiquity of thin plates in this geometry. As the
number of neighbors increases for a point on a thin plate, points on one side of the plate are grouped with
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Fig. 22. Box plot of the deviation of calculated normals against analytical normal vectors of the John Deere 544K. The same procedure is
performed on four point clouds of the 544K with varying point density.
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Fig. 23. Mesh refinement, domain dimensions (in meters), and boundary conditions for the flow analysis of John Deere 544K driving
forwards.

points on the other side, malevolently affecting calculations for points on both sides. As the density of the point
cloud increases, a point on one side of a plate is more likely to be in a neighborhood exclusively with points also on
the same side of the plate. As will be discussed later, we find that the two coarsest point clouds are too sparse to
produce reliable normals for stable flow simulations of John Deere 544K using point-cloud IMGA. The vehicle point
cloud with 12 million elements, which has an average distance of 0.00625 m between points, is therefore used for the
subsequent studies.

5.2. Problem setup

Fig. 23 visualizes a mid-plane clip of the domain mesh along with the boundary condition setup. A uniform flow
velocity of 5.8 m/s is applied at the inlet, and the outlet is traction free. A slip velocity of 5.8 m/s is applied on the
stationary ground boundary to produce the ground effect of a forward-moving vehicle in a stationary fluid domain.
No-penetration conditions are applied on the top and lateral walls. The wheels of the construction vehicle are modeled
as rotating no-slip walls, with the angular velocity matching the tire surface velocity with the floor’s slip velocity at
their common interface. The fan located rearward of the vehicle is modeled similarly and rotates at 600 RPM to draw
air out of the engine compartment. All other elements of the point cloud are treated as stationary no-slip walls. These
no-slip velocity boundary conditions are weakly enforced on the vehicle’s point cloud.
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In this incompressible airflow simulation, we use standard properties of air at atmospheric pressure and
temperature T = 20°C. The density is 1.204 kg/m3, the dynamic viscosity is 1.825 kg/(m s), the specific heat is
1007 J/(kg K), and the thermal conductivity is 0.02514 W/(m K). Points belonging to the engine, transmission, and
axles are weakly enforced to a temperature of T = 100 °C. For all other elements of the vehicle point clouds, zero-
heat flux thermal conditions are assumed. The domain is initialized with an ambient temperature of 20 °C, which is
also applied strongly at the inlet as a reference. Zero-heat flux conditions are prescribed on all other surfaces of the
fluid domain. The time step size for the simulation is At = 1.0 x 10°.

5.3. Immersed mesh generation

Only in rare cases is an open-source meshing tool such as Gmsh [118] suitable for boundary-fitted volume
meshing of production-ready product assemblies. However, owing to the topological simplicity of generating a
parallelepiped volume mesh, notable examples of open-source mesh generation software typically provide more
than enough features to set up an IMGA simulation case such as this example. Here, the functionalities accessed
through Gmsh allow us to create the simulation domain in a streamlined manner. 2D and 3D element size parameters
help control mesh density in the flow regions of interest. For targeted refinement of tetrahedra near the John Deere
544K point cloud, Gmsh’s “Attractor” field trivializes the import of point coordinates to define smooth refinement
regions surrounding every point cloud element. Continuing the theme of open-source workflow, sampling discrete
points from CAD surfaces is similarly straightforward with Open CASCADE [119] and freely available Python
packages libigl [120] and trimesh [121].

Visible in Fig. 23, the meshing strategy includes two rectangular prism refinement regions with the “outer” region
completely enclosing the “inner” region, and elements adjacent to the floor have element size equal to that of the
“inner” region’s elements. A spherical refinement zone originates from each point cloud element of the coarsest
case (@4 million points), prescribing a tetrahedral element size of 0.025 m to comfortably retain an average of at least
one point cloud element per volume boundary element. This heuristic ratio is chosen to negate leakage of physical
domain flow into the quiescent fictitious domain, based on the study conducted in Section 4.2. The size of the elements
that contain (cut cells) or are near the point cloud is 0.025 m. The element size in the inner refinement zone and close to
the floor is 0.1 m. The element sizes in the outer refinement zone and in the far field are 0.4 m and 1.0 m, respectively.
Including both the physical and fictitious domains, the immersed mesh consists of 19,803,968 tetrahedral elements. A
large majority of elements within the interior compartment must be refined, which increases the overall element count.

As mentioned earlier, the average distance between the points sampled on the B-rep model for the coarsest case
is 0.025 m. Point spacing is decreased to produce three more point clouds with denser point distributions. For IMGA
flow simulations, we observe that the estimated normals on the two coarsest point clouds are not sufficiently accurate
to produce stable flow solutions, even though they satisfy the one-point-per-element criterion defined earlier. In the
evaluation of weak-boundary-condition formulation, oscillatory normals can lead to significant instability. We find
that the point cloud with 12 million points, which has an average spacing between points to be around 0.00625 m, has
enough accuracy in the normal estimation and can produce a stable flow solution for our demonstration purposes. It
should be noted again that requiring higher point cloud density here is not due to the point-cloud IMGA formulation
but because of the need to obtain better normals estimation.

The parallelization strategy proposed by Hsu et al. [122] is employed for the IMGA simulations presented in this
paper. In this strategy, the problem mesh is partitioned into subdomains by balancing the number of elements in each
partition; each subdomain is then assigned to a processing core. However, this approach can sometimes create a
highly unbalanced distribution of quadrature points in each partition since quadrature points aggregate in the cut
elements due to the use of adaptive quadrature. In this work, we use the strategy proposed by Xu et al. [16] and
weigh each element by the number of quadrature points it contains. This is then used as the metric in the
graph/mesh partitioning package METIS [123] for determining mesh partitions by balancing the summation of user-
defined weights. This approach produces a more balanced computational load on each processing core.

5.4. Simulation results

We solve for the airflow around the construction vehicle with the aforementioned boundary conditions and mesh.
In this section, we observe an instantaneous snapshot of the flow solution. We focus on the velocity field, confirming
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Fig. 24. Visualization of the instantaneous vortical structures of turbulent flow around the John Deere 544K colored by the velocity magnitude. The
point cloud representation of the vehicle is used directly to perform IMGA. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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Fig. 25. Planar slice of the velocity field down the vehicle’s center line.

that external airflow conforms to the immersed boundaries constructing the outer shell of the vehicle. We also look
further inside the wvehicle, especially in the engine compartment, to reveal the treatment of complex thin shell
boundaries by inside—outside testing based on winding number. The latter portion of this section examines the
vehicle interior, focusing on heat conduction and convection in the flow temperature field.

As is expected at Re = 3 x 10°, external flow is fully turbulent across the vehicle. Fig. 24 shows the
visualization of the instantaneous vortical structures colored by the velocity magnitude of turbulent flow around the
John Deere 544K. The construction vehicle is visualized using a point cloud that was used to directly perform
immersogeometric fluid flow and heat transfer analysis. To distinguish internal airflow from external airflow in
subsequent visualizations, we substitute the surface CAD model in place of the point cloud utilized for simulation.
Fig. 25 shows that the front bucket attachment forces the brunt of flow movement, simulating a recirculation
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Fig. 26. Slice of the velocity field on a plane parallel to the ground.

bubble above and downstream of the bucket. The driver cabin appears to direct some flow into the lower engine
compartment, whereas flow over the top of the cabin immediately separates and heightens the large wake region
behind the 544K. Thicker boundary layers are apparent at the rear of the vehicle due to the adverse pressure gradients
present there. Finally, the fan extracts air from the engine compartment and adds axial flow to the turbulent wake.

Looking at another sample of the same velocity field snapshot in Fig. 26, the rotating wheel boundary conditions
are evident. The surface velocity of each wheel’s contact patch is equal to the freestream velocity, applied as
a weak boundary condition to elements containing pertinent elements of the point cloud. The tires create minor
recirculation bubbles downstream, but vortex shedding appears to be deterred by the presence of mudguards. We
see another dimension of flow movement by the front bucket attachment to the degree that the vehicle’s entire width
is engulfed by the bucket’s wake region. From this angle of the velocity field slice, the fan shows a greater level of
flow extraction and interacts with the weak vortex street trailing the vehicle. Moving onto the interior compartment
in Fig. 27, we feature the same velocity field sample as in Fig. 25 but with 2D slicing of the 544K and visualization
of individual mesh elements. The bulk of airflow enters the interior section through the gap between the cabin and
the hydraulic assembly. We observe moving air in the inner region, desirable for convecting heat away from critical
components into the colder ambient air.

We conclude this solution analysis by looking at the temperature field in Fig. 28, which is purely demonstrative
of point-cloud IMGA’s heat transfer capabilities and unrepresentative of the real-life vehicle’s actual performance.
A temperature boundary condition of value T = 100°C is weakly imposed on points belonging to the front axle
hub, electronics housing, transmission case, rear axle hub, and engine. The long diagonal plate above the front
axle hub impedes heat convection in that direction. As expected, the group of components in the primary engine
compartment emits a greater heat load into the vehicle’s wake region. The fan extracts high-temperature air that
mixes with cooler air around the extremities of the compartment, pushing this air into the vehicle’s wake. Again,
the plates above the engine demonstrate heat conduction without air penetration across the boundaries.

6. Conclusions

We have presented a new method for immersogeometric fluid flow and heat transfer analysis that directly uses
point cloud representation of objects. Analogous to previous work using analytic surface equations to generate
surface Gaussian quadrature points, our method here repurposes point cloud elements into quadrature points. We
employed computationally cheaper methods of normal vector and area generation using spatially local neighbors of
points, proving that the results are appreciably accurate compared to full surface reconstruction. Prominent
difficulties associated with geometry cleanup are avoided entirely, and the point cloud format trivializes immersed
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Fig. 27. Planar slice of both the normalized velocity field and John Deere 544K along the vehicle’s center line. The velocity magnitude is
normalized by the freestream velocity.

Fig. 28. Planar slice of both the temperature field (T, in °C) and John Deere 544K along the vehicle’s center line.

mesh generation using even basic meshing codes. Simulation results obtained using immersogeometric point clouds
are in excellent agreement with reference solutions. Our method is painlessly applied to perform flow analysis of an
incredibly complex industrial geometry, a large construction vehicle, incorporating moving point clouds and thermal
fluid boundary conditions to demonstrate the utility of point-cloud IMGA in commercial and industrial applications.
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Appendix. Definitions of Euler Jacobian and diffusivity matrices

In this appendix, we use the strong form of governing equations of compressible flows in 3D space to illustrate the
definitions of Euler Jacobian and diffusivity matrices. The solution variables of compressible flows can be written using
conservation variables U or pressure-primitive variables Y, defined as

el l
P U
u-= pu1 and Y = ELu ' (A.1)
PU3 U3
pe T
where p is the density, u; is the ith velocity component, i = 1,...,d with d = 3 here being the space dimension, e is

the specific internal energy, p is the pressure, and T is the temperature. The pressure, density, and temperature are
related through the ideal gas equation of state, p = p RT, where R is the ideal gas constant. Furthermore, we assume a
calorically perfect gas in this work and define the specific internal energy as e = ¢, T, where ¢y, = R/(y - 1)is
the specific heat at constant volume, and vy is the heat capacity ratio. The governing equations of compressible flows
can then be written as

Ui+ FAV 4 psp_ pdiff g = (A.2)
i,i ii

Fdiff

where F'“}d" and F¢"" are the vectors of convective and diffusive fluxes, respectively, defined as
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F*P is the contribution of stress—power in the energy equation, defined as
?
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0
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and S is the source term. In Eqgs. (A.3)—(A.4), &j is the Kronecker delta, and tij and q; are the viscous stress and
heat flux, respectively, given by

( )
Tij = Aukkbij + |ouij+ Ui, (A.5)
g = -kT,i, (A.6)

where U is the dynamic viscosity, A is the second coefficient of viscosity (A = -2u/3 based on Stokes’ hypothesis),
and « is the thermal conductivity. We further split the convective flux into Fad" = F"’d"\p + Fp, where Fadv\p and

Fp are the first and second terms, respectively, on the right-hand side of Fad"’s deflnltlon in Eq (A.3).
With these preliminaries being defined, the Euler Jacobian and dlffuswlty matrices can be defined as follows:

c ORI : , , 4 U OF™ _ 9aF™ou _
A= =, A®is such that AU ; = F*®, K;; is such that Ki;U ; = FIff, Ag = — A= ——=
du ' ’ ' Y ay 00U aY
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AiAo, A" is such that A*PY ; = FP, and K;j is such that Ki; Y, j = F9ff. Based on the splitting of F*%" into Fadv\:’and

FP, we can further split A as Aj = Aad"i\p +AP to separate the pressure term from the convective flux. Detailed
expressions for the matrices appearing in the quasi-linear forms can be found in Appendix A of Xu et al. [40].
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