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Pairwise Comparison Evolutionary Dynamics
with Strategy-Dependent Revision Rates:

Stability and �-Passivity
Semih Kara, Student Member, IEEE , and Nuno C. Martins, Senior Member, IEEE

Abstract— We report on new sufficient conditions for the
stability of evolutionary dynamics in population games. A
large number of agents interact noncooperatively in a pop-
ulation game by selecting strategies based on their payoffs.
Each agent is allowed to revise its strategy repeatedly with
an average frequency referred to as the revision rate. We
are interested in the case where an agent’s current strat-
egy influences directly the revision rate. Existing stability
results for this case assume that a memoryless potential
game generates the strategies’ payoffs. This article extends
these results to allow for payoff mechanisms that can be
either dynamic or memoryless games that do not have to
be potential. To make our analysis concrete, we assume
that the agents’ revision preferences follow a so-called pair-
wise comparison protocol. These protocols are ubiquitous
because they operate fully decentralized and with minimal
information requirements (they need to access only the
payoff values, not the mechanism). We use a well-motivated
example to illustrate an application of our framework.

Index Terms— Evolutionary dynamics, passivity, popula-
tion games, stability of nonlinear systems.

I. INTRODUCTION

I
N THIS paper, we model and analyze the strategic behavior
of large agent populations interacting noncooperatively in

the context of a population game. We adopt a population
games and evolutionary dynamics framework [1] in which
each agent follows one strategy at a time. The agents are
partitioned into populations, where each population can have a
distinct set of available strategies. The net reward of a strategy
is quantified by its payoff. A payoff mechanism determines the
strategies’ payoffs as a function of the strategies’ prevalence
in the populations as registered in the so-called social state.
Namely, the social state is a vector whose entries are the pro-
portions of the populations adopting the available strategies.

The agents are repeatedly allowed to revise their strategies
at instants called revision opportunity times. For an agent
carrying out a strategic revision, a so-called revision proto-

col specifies how to select the next strategy. Typically, the
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Fig. 1: Payoff mechanism and evolutionary dynamics.

agents tend to switch to strategies with higher payoffs. More
generally, the revision protocols, which can be stochastic,
model the agents’ preferences by specifying how they use the
information available (such as the payoffs) to choose their
strategies. These strategic choices by the agents in response
to the payoffs affect the social state, causing it to vary over
time. Consequently, the populations’ strategic choices act as a
dynamical system, denoted as evolutionary dynamics, whose
input is the strategies’ payoffs and output is the social state.
The evolutionary dynamics and the payoff mechanism form a
feedback system, as represented in Fig.1. This framework is
widely used for modeling large-scale engineering and social
systems (see [2], [3, §IV.B] and the references therein).

Our main goal is to ascertain the infinite-horizon properties
of the social state. To do so, we adopt the deterministic
approach described in [3], [4], which generalizes that used
in most previous work to study population games [1] and
evolutionary games [5], [6]. Specifically, we investigate the
global asymptotic stability (GAS) properties of a system called
the mean closed loop, which is a mean field approximation of
the system in Fig.1 valid under a large number of agents. As
we explain in §II, the GAS equilibria set of the mean closed
loop characterizes the long term behavior of the social state.

The rate with which the revision opportunity times occur,
which we call the revision rate, is central to this article. The
novelty of our work is that we will determine how allowing
the agents’ revision rates to depend on their current strategies
affect the GAS properties mentioned above.

All of the concepts introduced so far will be defined rigor-
ously in § II. Using the preliminary framework description we
just concluded, we can now preview our main contributions
and highlight their novelty relative to existing work.

A. Related Work And Main Contributions
Under some common revision protocols, an agent’s revision

rate cannot depend directly on the agent’s current strategy.
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A well-studied class of protocols that has this limitation is
the so-called impartial pairwise comparison (IPC) [7, §7.1]
protocols. The qualifier impartial was introduced in [7, §7.1]
to indicate that the revision rate may depend on the current
strategy only indirectly through its payoff. Specifically, under
an IPC protocol, any two agents whose current strategies
have the same payoffs also have the same revision rate. In
order to introduce strategy-dependent revision rates to the IPC
class, we will propose a straightforward modification of the
IPC protocols, which we will call the rate-modified pairwise

comparison (RM-PC) protocols.
Throughout this paper, we assume that the agents follow

RM-PC protocols. Provided that the strategies’ payoffs are
generated by a so-called �-antidissipative payoff dynamics

model (PDM) [4], we will provide conditions on the revision
rates that ensure the GAS of the mean closed loop’s equilibria.

Our work fills a clear gap in the literature. Although similar
approaches were followed in [4], [8], [9], they considered
impartial protocol classes, such as the IPC. As a result, the
analysis in these articles cannot be immediately employed
when the revision rates are strategy-dependent. On the other
hand, at the expense of restricting the payoff mechanism to
be a memoryless potential game [10], it is possible to show
the global attractivity of the mean closed loop’s equilibria
when the pairwise comparison protocol is not necessarily
impartial [11], [12]. However, the class of memoryless po-
tential games does not admit the presence of any dynamics
in the payoff mechanism, and it does not include important
types of memoryless payoff mechanisms such as contractive1

games [8], [13] and their weighted extensions [9].

B. Paper Structure
After the motivation and framework description in §II, in

§III we will rigorously describe our problem formulation and
in §IV we will state our main results. We will illustrate
numerically our results in §V and the article’s main body will
end with conclusions in §VI.

II. MOTIVATION AND FRAMEWORK DESCRIPTION

We start with an example that motivates the need to con-
sider strategy-dependent revision rates. Subsequently, we will
leverage the example to describe our framework in detail.

A. Hassle vs. Price Game (HPG) Example
A motivating example of application of our framework,

which we will be invoking throughout this article to illustrate
our contributions, is that of a “hassle vs. price” game (HPG).
In this example, each agent operates a machine that
uses a component that must be replaced when it fails.
There are several manufacturers that make the compo-
nent to varying degrees of reliability. Specifically, each
component has an exponentially distributed lifetime and
its failure rate depends on the manufacturer. The available

1Contractive games were originally called stable games in [13]. The
possibility that calling games stable could cause confusion with notions of
system-theoretic stability prompted the nomenclature change.

strategies are the manufacturers, and the payoff of each strat-
egy combines two non-positive terms: (i) a hassle (disruption)
cost that increases with the failure rate and (ii) the price of the
component, which is higher for more reliable manufacturers.
The revision opportunity time occurs when the component fails
and the agent must decide based on the available information,
such as the current payoffs ascribed to the strategies, whether
to keep the current strategy (buy again from the same man-
ufacturer) or follow a different strategy (decide on another
manufacturer to buy from). The agents are partitioned into
populations, each uniquely associated with a machine type
and/or the undertaking for which the machine is used.

In Example 1 (in §II-C.1) we will describe in detail a mem-
oryless payoff mechanism for the HPG, and in Appendix A
we will describe a PDM that generalizes Example 1.

With the HPG example in mind, we now proceed to describe
our framework in more general and precise terms.

B. Population States And The Social State

In our framework, a large number of agents is partitioned
into a finite number of populations {1, . . . , ⇢}. At any time
t � 0, each agent of any population r follows a single strategy
from a strategy set {1, . . . , nr}. The agents that belong to the
same population are nondescript. Hence, the strategy profile
of population r at time t can be described by the so-called
population state Xr(t), whose entries are the proportions
of agents in population r selecting the available strategies.
Specifically, if Nr is the number of agents in population r,
then NrXr

i
(t) is the number of agents following strategy i at

time t in population r. Consequently, Xr(t) is a jump process
(right continuous by convention) whose jumps occur at the
revision opportunity times for population r. For any t � 0,
Xr(t) is in the following simplex:

Xr := {xr 2 Rn
r

�0 | xr

1 + . . .+ xr

nr = 1}.

The so-called social state at time t is the concatenation of the
states of all populations X(t) := (X1(t), . . . , X⇢(t)). Thus,
X takes values in X := X1 ⇥ · · ·⇥ X⇢.

C. Payoffs

At any time t, we use P r

i
(t) to denote the payoff of

strategy i for population r. We denote the concatenation of the
populations’ payoff vectors as P (t) := (P 1(t), . . . , P ⇢(t)).

We assume that a causal payoff mechanism determines
P := {P (t) | t � 0} in terms of X := {X(t) | t � 0}.
The simplest mechanism is memoryless, in which case P (t)
is determined by a map (referred to as game) applied to X(t).
More generally, the payoff mechanism is a so-called payoff

dynamics model (PDM) with input X and output P . Below,
we describe these payoff mechanism types in detail.

1) Memoryless Payoff Mechanism: A memoryless payoff
mechanism is specified by a globally Lipschitz continuous and
continuously differentiable function F : X ! Rn, acting as
F : X(t) 7! P (t), where n := n1 + · · · + n⇢. Such an F is
referred to as the game.
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Example 1: (An HPG game) The game F , with its i-th
component for population r specified below, is an example of
a memoryless payoff mechanism for our HPG example:

Fr

i
(x) :=

HPG

��r�r
i| {z }

hassle
(replacement) cost

� Ci
�
Di(x)

�
| {z }

component price

, x 2 X. (1)

The game’s components have the following meaning:
- �1, . . . ,�⇢ are positive constants quantifying the costs of

replacing a component for the respective population,
- {1, . . . ,} is the set of available manufacturers (this is

also the strategy set equally available to all2 populations),
- �r1, . . . ,�

r


are the failure rates of the components for the

r-th population according to the manufacturer, which we
assume are ordered as �r1 > . . . > �r


> 0 (manufacturer

 makes the most reliable components),
- D : X ! [0, d̄] gives the (effective) demand from each

manufacturer as

Di(x) :=
⇢X

r=1

↵rxr

i
, 1  i  , x 2 X. (2)

Here, ↵1, . . . ,↵⇢ are positive constants that quantify the rela-
tive weight of each population on the demand. These constants
may reflect, for instance, the relative sizes of the populations.
Finally, Ci : R�0 ! [ci,1) is a continuously differentiable
surjective function (of the demand) that quantifies the cost of
a component made by the i-th manufacturer.

Example 2: (A labour-market example) We could model
the effect of the contract value on employee turnover in a way
that would lead to another example analogous to Example 1.
In such an example, a population’s agents would be the busi-
nesses wishing to hire and retain an employee for a specific
job type. Each population would comprise businesses with
comparable characteristics from the employees’ viewpoint,
such as location, structure, and size. The strategies available to
a population’s agents would be the different types of contracts
they can offer. In this case, Ci in (1) would determine the
cost of contract i as a function of the demand. Cheaper
contracts offering worse benefits and/or lower salaries would
lead to a higher turnover rate (quantified by �r

i
) and associated

increased cost for retraining and rehiring (quantified by �r

i
�r
i
).

2) Payoff Dynamics Model (PDM): More generally, the pay-
off mechanism is modeled by a PDM [4], [8] with the
following structure:

Q̇(t) = G
�
Q(t), X(t)

�

P (t) = H
�
Q(t), X(t)

�, t � 0, Q(0) 2 Q0, (3)

where, for some m 2 N, the set Q0 ✓ Rm is compact,
G : Rm ⇥ X ! Rm is globally Lipschitz continuous,
H : Rm ⇥ X ! Rn is continuously differentiable and globally
Lipschitz continuous, and there is a game FG,H that equals H
in the stationary regime in the sense that

G(q, x) = 0 ) H(q, x) = FG,H(x), (q, x) 2 Rm ⇥ X. (4)

2This means that all populations have the same strategy set and the same
number of strategies (n1 = · · · = n⇢ = ).

As discussed in [3], [4], PDMs can account for dynamics
inherent to certain payoff mechanisms, such as delays, pricing
inertia, and agent-level learning. We present a PDM example
in Appendix A, which is a modification of Example 1.

The analysis in this article presumes, as was the case in [3],
[4], that the state Q remains in a bounded set Q. Notice
that this is guaranteed whenever the PDM is input to state
stable [14] because X and Q(0) take values in respectively the
bounded sets X and Q0. Furthermore, in combination with Q
and X being bounded, the fact that H is Lipschitz continuous
ensures that P remains in a bounded set P := P1⇥ · · ·⇥P⇢.

Remark 1: Games are specific PDM instances, because any
game F can be obtained as a PDM by choosing G(q, x) = 0
and H(q, x) = F(x) for all x 2 X, q 2 Rm. Moreover, if
a PDM is given by a game F , then FG,H = F (see [4] for
further information on how PDMs generalize games).

3) Nash Equilibria: The following Nash equilibria concept
defined for a game F will be central to our approach:

NE(F) :=
n

x 2 X
��� xTF(x) � yTF(x), y 2 X

o
.

When the payoffs are determined by a PDM, we will be
interested in NE(FG,H), which represents the Nash equilibria
set of FG,H. As shown in [1, Theorem 2.1.1], any game has
a nonempty set of Nash equilibria.

D. Strategy-Dependent Revision Rates: Key Concepts
In §II-B and §II-C, we introduced the underlying strategic

environment, and now we proceed to describe how the agents
revise their strategies.

1) Strategy-Dependent Revision Rates: We assume that, for
each i in {1, . . . , nr}, a positive constant �r

i
characterizes the

rate at which the agents in population r currently following the
i-th strategy revise their strategies. Namely, the length of the
time interval between any two consecutive revision opportu-
nities of an agent in population r is distributed exponentially
with rate �r

i
, where i is the agent’s strategy resulting from

the revision at the beginning of the interval. Additionally, the
event that an agent receives a revision opportunity in any time
interval (t, t̄) is conditionally independent, given its strategy
at t, of the revision opportunity events of all other agents. We
refer to �r1, . . . ,�rnr as the revision rates for population r and
denote �r := [�r1 . . . �r

nr ]T .
Remark 2: In the HPG example, the revision rates are the

failure rates of the components. Note that the conditional
independence requirement for the revision events holds for
the HPG. Indeed it is safe to assume that once an agent
installs a new component, its time of failure depends only
on its manufacturer and the agent’s population, and not on
the choices of the other agents or when the components they
currently employ fail.

2) Revision Protocols: Following the standard approach
in [1, §4.1.2], we assume that a probabilistic heuristic models
how the agents in population r revise their strategies. This
heuristic is characterized by a globally Lipschitz continuous
map T r : Xr ⇥ Rn

r ! Rn
r
⇥n

r

�0 referred to as the revision

protocol. Specifically, for infinitesimally small � > 0, the
probability that some agent of population r switches from
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strategy i to j during the time interval (t⇤, t⇤ + �) is ap-
proximately �NrXr

i
(t⇤)T r

ij
(Xr(t⇤), P r(t⇤)) (we refer to [4,

§V.A] for details on this probability). Each agent in a given
population revises its strategy according to the same protocol,
yet the populations’ protocols can be distinct.

Combining the above description with the revision rates
characterized in §II-D.1, we decompose T r as follows:

T r

ij
(xr, pr) = �r

i
⌧ r
ij
(xr, pr), (xr, pr) 2 Xr ⇥Pr, (5)

where ⌧ r
ij

: Xr ⇥ Rn
r ! R�0 is a globally Lipschitz

continuous map satisfying for all (xr, pr) 2 Xr ⇥ Pr the
equality

P
n
r

j=1 ⌧
r

ij
(xr, pr) = 1. We interpret ⌧ r as a transition

probability, meaning that if an agent of population r following
the i-th strategy is given a revision opportunity at time t⇤ then
limt " t⇤ ⌧ rij(X

r(t), P r(t)) is the probability that it will switch
to strategy j.

E. The Mean Closed Loop Model

We now proceed to describe a deterministic approximation
that will simplify our analysis to ascertain whether and in what
sense X(t) approaches NE(FG,H) as time progresses.

1) Deterministic Approximation For Large Nr: When the re-
vision times of the agents occur as described in §II-D.1, the
payoffs are characterized by a PDM (which reduces to a
game if it is memoryless), and the agents decide on their
strategies according to the procedure in §II-D.2, a straight-
forward modification of the analysis in [4, §V]3 reveals
that the pair (X,Q) complies with the assumptions of [15,
Theorem 2.11]. Consequently, as discussed in [4, §V] and [3,
§IV.A], we can leverage [15, Theorem 2.11] to conclude the
following: as the number of agents in each population tends
to infinity, if (X(0), Q(0)) converges almost surely to some
(x0, q0) 2 X⇥Q0, then X and P converge in probability to
x and p uniformly over any finite time interval, where x and
p are obtained with initial state (x(0), q(0)) = (x0, q0) from
the solution of the system of differential equations

q̇(t) = G
�
q(t), x(t)

�
(6a)

p(t) = H
�
q(t), x(t)

�
(6b)

ẋr(t) = Vr

⇣
xr(t), pr(t)

⌘
, r 2 {1, . . . , ⇢}, (6c)

in which t � 0 and the components of Vr : Xr ⇥Rn
r ! Rn

r

are given for all (xr, pr) 2 Xr ⇥Pr, i 2 {1, . . . , nr} by

Vr

i

⇣
xr, pr

⌘
:=

n
rX

j=1,j 6=i

T r

ji

⇣
xr, pr

⌘
xr
j

| {z }
inflow switching to strategy i

�
n

rX

j=1,j 6=i

T r

ij

⇣
xr, pr

⌘
xr
i
.

| {z }
outflow switching away from strategy i

(7)

3The analysis in [4, §V] can be modified to address strategy-dependent
revision rates by replacing the ziTij/% in (15a) and (15b) (of [4, §V]) with
zi�i⌧ij/�T z, and reproducing the discussion that follows these equations.

Payoff Dynamics Model

(PDM)

Evolutionary Dynamics Model

(EDM)

p

x
Fig. 2: Diagram representing the feedback interconnection
between a PDM and an EDM. The resulting system is referred
to as the mean closed loop model.

We refer to x as the mean social state. Note that, when the
PDM is given by a game F , the equations in (6) reduce to

ẋr(t) = Vr

⇣
xr(t),Fr

�
x(t)

�
| {z }

pr(t)

⌘
, r 2 {1, . . . , ⇢}. (8)

2) Infinite Horizon Analysis: It follows from [1, Theo-
rem 12.B.3] that, if the equilibria of (6) is GAS, then the
stationary distributions of X concentrate near the equilibria
of (6) as the number of agents in each population tends to
infinity. This result and the assumption that Nr is large for all
r 2 {1, . . . , ⇢} justify the practical relevance of our work.

3) The Mean Closed Loop: Observe that (6a) and (6b) are
specified by the PDM, and the dynamics of x is characterized
by (6c). The system with input p and output x given by (6c)
is referred to as the evolutionary dynamics model (EDM) [4].

Henceforth, we will interpret (6) as the positive feed-
back interconnection between the PDM and the EDM. The
resulting feedback system, depicted in Fig.2, is called the
mean closed loop [4]. This interpretation will allow us to
employ a passivity-based methodology, which we present in
the following section.

III. PROBLEM FORMULATION AND KEY CONCEPTS

Having presented the framework, we proceed to formulate
in precise terms the technical problems we seek to solve.
Subsequently, we will introduce the concepts and techniques
that will be central to our technical approach.

A. Problem Formulation
We start by defining the following worst-case ratios quanti-

fying the relative discrepancies of a population’s revision rates.
Definition 1: Given r in {1, . . . , ⇢} and the revision rates

�r1, . . . ,�
r
nr for population r, we define the worst-case revision

rate ratio for the r-th population as follows:

�r
R
:= max

(
�r
i

�r
j

����� i, j 2 {1, . . . , nr}
)
. (9)

Notice that �r
R
� 1 holds by definition and �r

R
= 1 if and

only if the revision rates for the r-th population are identical.
In order to develop a methodology that can cope with the

case in which �r
R

> 1 for one or more populations (unequal
revision rates), we seek to solve the following sub-problems:
Problem-i) Propose practicable modified protocols that are
compatible, in the sense of the decomposition in (5), with
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any pre-selected revision rates. As we mentioned in §I-A, our
answer to this problem is called the RM-PC protocol class.
Problem-ii) Considering that the revision protocol of each
population belongs to the RM-PC class, show that if (x⇤, q⇤)
is an equilibrium point of the mean closed loop, then x⇤ is
in NE(FG,H). Moreover, determine conditions on {�r

R
| 1 

r  ⇢} and other parameters that ensure the GAS of the mean
closed loop’s equilibria. In view of the discussion in §II-E.2,
these conditions guarantee high probability convergence of X
to a close vicinity of NE(FG,H) for large populations.

In what follows, we introduce the concepts and techniques
that we use to address these problems.

B. Nash Stationarity
The Nash stationarity concept [4], [13] defined below will

be central in our approach to address Problem-ii.
Definition 2: Given r in {1, . . . , ⇢}, a protocol for popula-

tion r satisfies the Nash stationarity property if the following
equivalence holds for the r-th component of the EDM (7) for
all pr in Rn

r

:

(xr)T pr = max
y2Xr

yT pr , Vr(xr, pr) = 0. (10)

Thus, Nash stationarity implies that xr at an equilibrium must
be a best response to pr.

Notice that, if Nash stationarity holds for all populations,
then x⇤ 2 NE(FG,H) if and only if (x⇤, q⇤) is an equilibrium
point of (6). In this case, the mean social state is guaranteed
to converge to NE(FG,H) when the equilibria set of the mean
closed loop is GAS.

We refer to [16, §III.B] for a discussion on why Nash
stationarity, in combination with GAS, assuages some of the
well-known criticism of the Nash equilibrium concept and
gives it a well-motivated role in our context.

C. The �-Passivity Approach
To analyze the GAS of the equilibria of the mean closed

loop, we employ the �-passivity approach introduced in [8]
and extended in [4], [9]4. In doing so, we mainly invoke the
results in [9], which are the state-of-the-art.

The �-passivity approach facilitates the stability analysis of
the mean closed loop by exploiting its feedback structure and
allowing the EDM and the PDM to be investigated separately.
In particular, the GAS of the mean closed loop’s equilibria
can be ensured through [9, Theorem 2] by verifying that the
protocol of each population and the PDM respectively satisfy
the so-called �-passivity and �-antidissipativity conditions.
Now, we give further details on these conditions.

1) �-Antidissipativity: To employ the results in [9], we will
need the PDM to be �-antidissipative according to the defini-
tion below.

Definition 3: (PDM �-antidissipativity) Given positive
constants w1, . . . , w⇢, a PDM is said to be �-antidissipative
with weights w1, . . . , w⇢ if there are functions

4See [9, Remark 3] for a comparison between �-passivity as defined above,
�-dissipativity and �-passivity as proposed in [8].

Q : Rm ⇥ X ! R�0 and R : Rm ⇥ X ! R�0 such that
the following holds for all q 2 Rm, x 2 X and v 2 TX:

@Q(q,x)
@q

G(q, x) + @Q(q,x)
@x

v  �R(q, x)�  T⇧ (11a)

Q(q, x) = 0 , G(q, x) = 0 (11b)
R(q, x) = 0 , G(q, x) = 0, (11c)

where TX = TX1 ⇥ · · · ⇥ TX⇢ is the tangent space of X,
meaning that TXr := {vr 2 Rn

r |
P

n
r

i=1 v
r

i
= 0} for all

r 2 {1, . . . , ⇢},  is the vector specified by

 :=

"
@H(q,x)

@q
G(q, x) + @H(q,x)

@x
v

v

#
,

and ⇧ is the block matrix with blocks ⇧11 = ⇧22 = 0,
⇧12 = ⇧21 = 1/2W in which W is the block-diagonal matrix
W := diag (w1In1⇥n1 , . . . , w⇢In⇢⇥n⇢).

Remark 3: If a PDM is �-antidissipative with weights wr =
1 for all r 2 {1, . . . , ⇢}, then it is �-antipassive as defined
and studied in [4] (see [9, Remark 8]). Numerous examples
of �-antipassive PDMs can be found in [4]. These examples
demonstrate possible application areas for our results in §IV.

Remark 4: (Weighted contractivity) For the case when the
PDM is a game F , �-antidissipativity with weights w1, . . . , w⇢

reduces to the condition:
⇢X

r=1

wr

⇣
Fr(x)� Fr(y)

⌘T
(xr � yr)  0, x, y 2 X. (12)

The inequality in (12) coincides with the so-called contrac-
tivity [13] when the weights are identical and can be viewed,
more generally, as weighted contractivity [9] with respect to
the block-diagonal matrix W.

We give examples of a �-antidissipative PDM and a
weighted contractive game by requiring the HPG with the
payoffs specified respectively in Example 4 (in Appendix A)
and Example 1 to satisfy the following assumption.

Assumption 1: (Properties of C for Example 1 and Ex-

ample 4) We assume that C in equations (1) and (22) have
the following properties:

a) C1, . . . , C are increasing.
b) More reliable components are more expensive, i.e., if

i > j then Ci(d) > Cj(d), for d in [0, d̄].
When C satisfies Assumption 1.a we can show, by following

an approach analogous to that of [9, §IV.A], that Example 1
is weighted contractive with (w1, . . . , w⇢) = (↵1, . . . ,↵⇢).
Moreover, by appropriately modifying the steps in the proof
of [9, Proposition 3], we can also show that the PDM example
described in Appendix A satisfies �-antidissipativity with
(w1, . . . , w⇢) = (↵1, . . . ,↵⇢).

In economic theory, Assumption 1.a is referred to as
demand-pull inflation [17] that occurs when the supply of a
product is limited5, the manufacturer discounts the price when
the demand is weak (and gradually eliminates the discount
as demand rises), or when the manufacturer raises the price

5Factors restricting supply may include scarcity of raw materials, manufac-
turers strategically opting to limit production to keep prices up (as dynamic
random-access memory manufacturers have been doing in the last 3 years),
difficulty in ramping up production fast enough to meet demand, and sanctions
to name a few.

This article has been accepted for publication in IEEE Transactions on Control of Network Systems. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TCNS.2023.3237485

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.� � See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland College Park. Downloaded on February 24,2023 at 17:47:16 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. XX, NO. XX, XXXX XXXX

with increasing demand as a way to increase profits when the
product becomes popular. Higher cost (decrease in payoff) for
a strategy with higher demand, as measured by the portion
of the population following it, is common in many other
applications, such as congestion games [18].

Additional examples of contractive and weighted contractive
games can be found respectively in [1] and [9], while other
instances of �-antipassive and �-antidissipative PDMs can be
found respectively in [3,4,8] and [9].

2) �-Passivity: In order to leverage the results in [9], we
will also need the protocol of each population to be �-passive
according to the following definition.

Definition 4: (Protocol �-passivity) Given r in {1, . . . , ⇢},
the protocol for population r is �-passive if there are functions
Sr : Xr ⇥ Rn

r ! R�0 and Sr : Xr ⇥ Rn
r ! R�0 such that

the following holds for all xr 2 Xr and pr, ur 2 Rn
r

:

@S
r(xr

,p
r)

@xr Vr(xr, pr) + @S
r(xr

,p
r)

@pr ur

 �Sr(xr, pr) + Vr(xr, pr)Tur (13a)

Sr(xr, pr) = 0 , Vr(xr, pr) = 0 (13b)
Sr(xr, pr) = 0 , Vr(xr, pr) = 0. (13c)

Following the convention in [3], [4], we will refer to Sr as a
�-storage function.

D. Reformulation Of Problem-ii
The �-passivity and Nash stationarity concepts provide us

with tools to determine the conditions for GAS, as called for
in Problem-ii of §III-A. Specifically, as outlined in §III-C,
it follows from [9, Theorem 2] that, if the protocol of each
population is �-passive and the PDM is �-antidissipative, then
the equilibria of the mean closed loop is GAS. Additionally,
on account of the arguments in §III-B, if the protocol of each
population is Nash stationary, then x⇤ 2 NE(FG,H) for every
equilibrium point (x⇤, q⇤) of the mean closed loop.

Consequently, together with the �-antidissipativity of the
PDM, Nash stationarity and constraints that guarantee �-
passivity of RM-PC protocols provide an answer to Problem-ii.
Therefore, in the subsequent section, we will examine the Nash
stationarity and �-passivity properties of RM-PC protocols.

IV. RM-PC PROTOCOLS AND MAIN RESULTS

In this section, we address the problems formulated
in §III-A and refined in §III-D. We begin by precisely defining
the RM-PC protocol class. Then, we argue that RM-PC
protocols are Nash stationary and derive conditions under
which they are �-passive. Finally, by means of the discussion
in §III-D, we leverage these results to draw conclusions on
the equilibrium stability of the mean closed loop.

A. The RM-PC Protocol Class
To cope with the case of unequal strategy-dependent revi-

sion rates, we extend the class of IPC protocols [7] as follows.
Definition 5: (RM-PC protocol) Given r in {1, . . . , ⇢}, the

protocol (5) of the r-th population is of the rate-modified

pairwise comparison (RM-PC) class if ⌧r can be written for
all (xr, pr) 2 Xr ⇥Pr and i, j 2 {1, . . . , nr} with i 6= j as:

⌧r
ij
(xr, pr) = 1

⌧̄r �
r

j
(pr

j
� pr

i
), (14a)

⌧r
ii
(xr, pr) = 1�

n
rX

`=1,` 6=i

1
⌧̄r �

r

`
(pr

`
� pr

i
), (14b)

where ⌧̄r is a positive normalization constant for which ⌧r
ii

is non-negative, and �r
j
: R ! R�0 is a globally Lipschitz

continuous and sign-preserving map, meaning that �r
j
(�) > 0

for � > 0 and �r
j
(�) = 0 for �  0.

By substituting (14) into (7), we obtain the following RM-
PC EDM for the r-th population for each i in {1, . . . , nr}:

(VRM-PC
i

)r(xr, pr) :=
n

rX

j=1,j 6=i

�r
j

1
⌧̄r �

r

i
(pr

i
� pr

j
)xr

j

�
n

rX

j=1,j 6=i

�r
i

1
⌧̄r �

r

j
(pr

j
� pr

i
)xr

i
. (15)

Remark 5: (IPC is an RM-PC subclass) In the particular
case where the revision rates for the r-th population are
equal (�r1 = · · · = �r

nr ), an RM-PC protocol becomes of
the IPC class considered in previous work characterizing �-
passivity [4], [8], [9].

Example 3: (RM-Smith protocol) As an example of an
RM-PC protocol, we can define the rate-modified Smith pro-
tocol (RM-Smith) by substituting �r

j
(·) = [·]+ := max{0, ·}

in (14) and (5), leading to:

T r

ij
(xr, pr) =

RM-Smith
�r
i

1
⌧̄r [p

r

j
�pr

i
]+, (xr, pr) 2 Xr⇥Pr. (16)

Consequently, agents that follow the RM-Smith protocol
switch strategies with probabilities proportional to the positive
parts of the payoff differences. When the revision rates are
equal (�r1 = · · · = �r

nr ), the RM-Smith protocol reduces to
the well-known Smith protocol originally proposed in [19] to
analyze the dynamics of traffic assignment strategies.

Remark 6: (RM-PC informational requirements) It fol-
lows from (14) that, other than the knowledge of the payoffs
of the available strategies for the population it is a part of,
each agent following an RM-PC protocol does not need to
coordinate with other agents and it does not require any
additional information about the social state or the strategic
choices of the other agents.

B. Nash Stationarity And �-Passivity Of RM-PC
Protocols

Having introduced the RM-PC protocol class, we now estab-
lish its Nash stationarity and identify its �-passivity properties.

1) Pairwise Comparison Protocols And Nash Stationarity:
The RM-PC class can be interpreted as a particular case
of the so-called pairwise comparison protocol class defined
in [12, §4.1]. It is relevant to recognize this because, although
previous �-passivity results that we seek to generalize [4], [8],
[9] were restricted to IPC protocols only, there is existing work
establishing other useful properties for the much broader pair-
wise comparison protocol class. Pertinently, [12, Theorem 1]
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states that a pairwise comparison protocol is Nash stationary,
which leads directly to the following lemma.

Lemma 1: (RM-PC protocols are Nash stationary) Given
r in {1, . . . , ⇢}, if the r-th population’s protocol is of the
RM-PC class, then (10) holds for any positive revision rates
�r1, . . . ,�

r
nr .

2) Conditions For �-Passivity: We now proceed to investigate
the �-passivity properties of RM-PC protocols. Inspired by
the Lyapunov and �-storage functions introduced respectively
in [7] and [8], we choose the �-storage function described as
follows. Given a population r 2 {1, . . . , ⇢} with a protocol
T r of the RM-PC class, we set our �-storage function to be
(SRM-PC)r : Xr ⇥ Rn

r ! R�0 specified by

(SRM-PC)r(xr, pr) :=
n

rX

i=1

1

⌧̄r
�r
i
xr
i

 
n

rX

k=1

 r

k
(pr

k
� pr

i
)

!
,

(17a)
where

 r

k
(pr

k
� pr

i
) :=

Z
p
r
k�p

r
i

0
�r
k
(s)ds. (17b)

Denoting
P

n
r

k=1  
r

k
(pr

k
�pr

i
) by �r

i
(pr) we can write (SRM-PC)r

in a more compact form as

(SRM-PC)r(xr, pr) =
n

rX

i=1

1

⌧̄r
�r
i
xr
i
�r
i
(pr). (17c)

Our analysis of (SRM-PC)r yields the following theorem,
which presents a condition that ensures �-passivity of RM-
PC protocols.

Theorem 1: Given r in {1, . . . , ⇢}, consider that the r-th
population follows an RM-PC protocol specified by a given
�r and a worst-case revision rate ratio �r

R
(see (9)). The RM-

PC protocol for population r is �-passive if (i) nr = 2 or
(ii) nr � 3 and the following inequality holds:

�r
R
< �̄�r (nr), (18)

where �̄�r is determined from �r as

�̄�r (nr) := min
1knr

inf
pr2Rnr

(
�r
k
(pr)

P
n

r

i=1 �
r

i
(pr

i
� pr

k
)

P
nr

i=1 �
r

i
(pr

i
� pr

k
)�r

i
(pr)

)
.

(19a)
Although (to avoid cluttered notation) we do not explicitly
indicate in (19a), the infimum is computed subject to the
following constraint on pr:

n
rX

i=1

�r
i
(pr

i
� pr

k
)�r

i
(pr) 6= 0. (19b)

In Appendix B.1 we will prove Theorem 1 by showing that
(SRM-PC)r satisfies (13).

Remark 7: (When to compute (19)) According to Theo-
rem 1, an RM-PC protocol is always �-passive for a popula-
tion with two strategies nr = 2, irrespective of the revision
rates. Hence, only when nr � 3 will one need to compute (19)
to test whether (18) holds. Notably, in many cases (19) can
be computed numerically [20].

We now illustrate the practical significance of (18) in the
context of the HPG. Suppose that there are 5 manufacturers
and the agents of population r follow the RM-Smith protocol.
In §IV-C, we will compute �̄�r (5) to be 4.65 for the RM-
Smith protocol. Consequently, in this setting, (18) requires
the worst-case failure rates of the component when used by
population r (calculated via (9)) to be less than 4.65.

Although in many cases (19) can be computed numerically,
this computation can be cumbersome. To facilitate bypassing
the computation of (19), we will present in Proposition 1
a simple lower bound for �̄�r (nr) that is valid for RM-PC
protocols satisfying the following assumption.

Assumption 2: For a non-decreasing map �̄r : R ! R�0,
the following holds:

�r
i
(p) = �̄r(p), p 2 R, i 2 {1, . . . , nr}. (20)

Proposition 1: Consider that a population r in {1, . . . , ⇢}
(with nr � 3) follows an RM-PC protocol. If the protocol
satisfies Assumption 2 then the following holds for nr � 3:

�̄�r (nr) � nr � 1

nr � 2
. (21)

A proof of Proposition 1 is presented in Appendix B.2. We
note that this proof also provides an alternative way to compute
�̄�r (nr) for the case in which Assumption 2 holds (see (29)).

Remark 8: We can conclude from (21) that, for the pro-
tocols satisfying the conditions of Proposition 1, �̄�r (nr) is
strictly greater than 1, which, according to Theorem 1, affords
some �-passivity robustness with respect to �r

R
regardless of

the number of strategies. This fact is in contrast to previous
results establishing �-passivity only for protocols in which �r

R

is exactly 1 (see Remark 5).
We emphasize that Assumption 2 is critical in obtaining

Proposition 1 and the following counterexample illustrates the
reason for this.

Counterexample 1: Consider that nr = 3 and population
r adopts an RM-PC protocol specified by �r1(·) = [·]2+,
�r2(·) = �r3(·) = [·]+. This protocol violates Assumption 2
and, as we proceed to show, it will infringe (21) with
�̄�r (3) = 1. To do so, we use the following inequality that
we obtain by setting pr1 = 0, pr2 = �✏, pr3 = �✏+ ✏7/4, with
✏ > 0, when computing the infimum in (19a):

�̄�r (3)  lim
✏!0+

(2✏3 + 3✏7/2)(✏2 + ✏7/4)

2(✏� ✏7/4)3✏7/4
= 1.

C. Numerical Evaluation Of �̄�r For RM-Smith
Let us denote �̄�r for the RM-Smith protocol as �̄RM-Smith. In

Fig. 3, we plot the values of �̄RM-Smith(nr) for 3  nr  10,
which we determined by computing (19) numerically [20].
Fig. 3 also displays the lower bound in (21) for �̄RM-Smith. Note
that, since the RM-Smith protocol satisfies Assumption 2, the
lower bound in (21) holds for �̄RM-Smith, for any nr � 3.

The plots in Fig. 3 illustrate that the lower-bound in (21)
may be conservative – a consequence of it being valid for a
large subclass of RM-PC protocols. Notably, from the values
of �̄RM-Smith plotted in Fig. 3 we observe that the RM-Smith
protocol satisfies �-passivity even if the revision rates vary by
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Fig. 3: Comparing �̄RM-Smith with the lower-bound in (21).

a multiplicative factor of 9.44 when the number of strategies
is 3. For the case where there are 9 strategies, the RM-Smith
protocol remains �-passive even when the revision rates vary
by a multiplicative factor of 3.1.

D. Establishing GAS Of NE(FG,H)

As outlined in §III, �-passivity and Nash stationarity, to-
gether with [9], suffice to draw conclusions about the equi-
librium stability of the mean closed loop. Consequently, our
results on the Nash stationarity and �-passivity of RM-PC
protocols lead to the theorem given below, which we state
without proof because it follows directly from [9, Theorem 2]
in conjunction with Lemma 1 and Theorem 1.

Theorem 2: Consider that a PDM is given and that each
population follows an RM-PC protocol. If the protocols satisfy
the conditions of Theorem 1 and the PDM is �-antidissipative
(see Definition 3), then the equilibria set of the mean closed
loop is GAS. In addition, if (x⇤, q⇤) is an equilibrium point
of the mean closed loop, then x⇤ 2 NE(FG,H).

Recall from Remark 4 that, for the case when the PDM is
given by a game, the �-antidissipativity requirement reduces to
weighted contractivity. This, in combination with Theorem 2,
leads to the corollary presented below.

Corollary 1: Consider that a game F is given and that
each population follows an RM-PC protocol. If the protocols
satisfy the conditions of Theorem 1 and the game is weighted
contractive (see Remark 4), then the equilibria set of the mean
closed loop is NE(F) and is GAS.

We note that Corollary 1 generalizes the earliest stability
results for IPC protocols, established in [7, Theorem 7.1],
in two ways. In comparison to [7, Theorem 7.1], which
presumes that the game is contractive and the revision rates
are identical within each population, Corollary 1 allows for
weighted contractive games and it contends with unequal
revision rates so long as they satisfy the conditions of the
corollary. The stability theorems in [9] allow for weighted
contractive games, but the article lacks the results needed
to consider the case in which the revision rates within each
population are different.

V. NUMERICAL EXAMPLES

As industrial-grade data-driven processing centers and
vehicle-to-vehicle networks are becoming more prevalent, life

cycles of dynamic random-access memories (DRAMs) used
in these applications emerge as important benchmarks. To
provide examples of how our results can come into play, we
look into the HPG, introduced in §II-A, in the context of the
DRAM market.

A. A DRAM Market HPG
We proceed by introducing an HPG in the context of the

DRAM market. Two classes of systems in which DRAMs are
commonly used are industrial and automotive systems, which
we refer to as respectively class 1 and 2. Hence, there are
two populations, where we use population r to represent the
collection of agents that utilize DRAMs in class r. We assume
that there are 3 manufacturers producing DRAMs with failure
rates in these utilization classes given by �11 = 5, �21 = 10,
�12 = 4, �22 = 9 and �13 = 3, �23 = 5, where �r

i
is the failure

rate of DRAMs produced by manufacturer i when utilized in
class r. Moreover, we let the replacement costs for industrial
and automotive DRAMs to be respectively �1 = 2 and �2 = 1.

We assume that the payoffs are determined by a game F
with the structure presented in Example 1. We specify the
component price from manufacturer i 2 {1, 2, 3}, which is
the Ci in (1), as the sum of a fixed production cost, C0i,
and a term reflecting the pull-back inflation, Cpi. To represent
the pull-back inflation on the cost, we use a quadratic term
Cpi(Di(x)) = (Di(x))2 = (↵1x1

i
+↵2x2

i
)2, where ↵r is in pro-

portion to the share of class-r in the DRAM market. Finally,
we set ↵1 = 1 and ↵2 = 2, and the fixed DRAM production
costs to be C01 = 1, C02 = 1.2 and C03 = 1.5, which completes
the construction of F (as in (1)) for our DRAM market HPG.6
Notice that this F satisfies Assumption 1, hence is a weighted
contractive game.

B. Dynamics Under The RM-Smith Protocol
Now we illustrate how Corollary 1 can be utilized. Consider

the mean closed loop (8) formed by the F constructed in §V-A
and the EDM in which all populations follow the RM-Smith
protocol (16) with the revision rates specified in §V-A. Assume
that initially the buyers are distributed on the manufacturers
according to x1(0) = x2(0) = (2/3, 1/6, 1/6).

Since the failure rates satisfy the conditions of Theorem 1
and F is weighted contractive, we can invoke Corollary 1 to
conclude that x converges to NE(F), which in this case is the
singleton {x⇤} with (x1)⇤ = (0, 1, 0), (x2)⇤ = (0, 0, 1) [20].
For this example, the trajectory and the time domain plot of
x are portrayed respectively in Fig. 4 and Fig. 5. We note
that the way in which the trajectories in Fig. 4 are portrayed
is a common way to represent the trajectory of the mean
social state when the populations have 3 strategies (see for
instance [1, §2.3.4]).

C. Smoothed HPG For The DRAM Market And
Dynamics Under The RM-Smith Protocol

We also carry out an analysis that is analogous to that in
§V-B, but with the PDM characterized by the smoothed HPG

6We would like to clarify that the functions and parameters selected in this
section are for illustration purposes, and they are not estimated from data.
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Fig. 4: Trajectory of distribution of DRAM buyers on manu-
facturers under the HPG and RM-Smith protocol.

0 0.2 0.4 0.6 0.8 1
0

1
x1
1

x1
2

x1
3

Time (t)

St
at

e
of

po
pu

la
tio

n
1

(x
1

)

(a) Industrial-grade users

0 0.2 0.4 0.6 0.8 1
0

1
x2
1

x2
2

x2
3

Time (t)

St
at

e
of

po
pu

la
tio

n
2

(x
2

)

(b) Automotive-grade users

Fig. 5: Time domain plots of the distribution of DRAM buyers
on manufacturers under the HPG and RM-Smith protocol.

given in Appendix A. We select a = 5 in (22) while keeping
all the other parameters from §V-A and §V-B unchanged.
Note that the C constructed in §V-A satisfies Assumption 1,
therefore this PDM is �-antidissipative.

Since the failure rates satisfy the conditions of Theorem 1
and the PDM specified above is �-antidissipative, we conclude
from Theorem 2 and Remark 9 (in Appendix A) that, like
in §V-B, x converges to NE(F). The time evolution of the
PDM’s state q and the mean social state x are plotted in
Fig. 6, indicating that x1 and x2 indeed converge respectively
to (0, 1, 0) and (0, 0, 1).

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this article we generalized the approach in [4], [8] and [9]
to a class of pairwise comparison protocols we called RM-
PC, for which the agents’ revision rates may depend on
their current strategies. We stated and proved two results
establishing global asymptotic stability of the equilibria of the
mean closed loop for the cases when the payoff mechanism
is a memoryless game or a payoff dynamics model (PDM).
These results rely on Theorem 1 establishing conditions for
�-passivity of RM-PC protocols. Proposition 1 establishes
for an RM-PC protocol subclass a rather simple (but more
conservative) sufficient condition for �-passivity.

Our results also raise pertinent questions for future research.
Future Direction 1: The excess payoff target (EPT) [21]
protocols is another class of revision protocols that can’t
accommodate strategy-dependent revision rates, but induces
desirable stability properties under uniform revision rates.
Hence, a meaningful next step would be to introduce strategy-
dependent revision rates to the EPT class and study the �-
passivity of the ensuing protocols by appropriately generaliz-
ing the approach in [9].

0 0.2 0.4 0.6 0.8 1

1
2.19

5.5

q1

q2

q3

Time (t)

PD
M

st
at

e
(q

)

(a) State of the smoothed HPG

0 0.2 0.4 0.6 0.8 1
0

1
x1
1

x1
2

x1
3

Time (t)

St
at

e
of

po
pu

la
tio

n
1

(x
1

)

(b) Industrial-grade users

0 0.2 0.4 0.6 0.8 1
0

1
x2
1

x2
2

x2
3

Time (t)

St
at

e
of

po
pu

la
tio

n
2

(x
2

)

(c) Automotive-grade users

Fig. 6: Time domain plots of the PDM’s state and distribution
of DRAM buyers on manufacturers under the smoothed HPG
and RM-Smith protocol.

Future Direction 2: Although when every population has
two strategies Theorem 1 guarantees �-passivity of an RM-
PC protocol for any revision rates (undoubtedly a strong
result), if a population has three or more strategies the theorem
only provides a sufficient condition. Considering that we were
unable to construct an example of an RM-PC protocol that
is not �-passive when this condition fails, we believe that it
would be important to continue to investigate whether such an
example exists or whether the condition could be weakened.

APPENDIX

A. Smoothed HPG: A PDM Example
The following is an example of a PDM that can be viewed

as a dynamic version of Example 1. Our construction parallels
that in [9, §VI.A].

Example 4: Given a positive time constant a and parame-
ters as defined in Example 1, the following is the “smoothed”
HPG PDM:

aq̇(t) = �q(t) +

2

6664

C1
⇣
D1
�
x(t)

�⌘

...
C
⇣
D

�
x(t)

�⌘

3

7775
, t � 0, q(0) 2 Q0

(22a)
pri (t) = ��r�ri � qi(t), 1  i  , 1  r  ⇢. (22b)

Here Q = Q0 := [0, d̄]. We can also specify a set P that
includes all possible p as follows:

P :=
n
p 2 R⇢

��� pri = ��r�ri � qi, for some q in Q
o
.

Note that, in (22), p is the effective payoff perceived by the
agents and q represents a smoothed version of the costs of the
component (produced by different manufacturers).

In [8], the authors argue that dynamically modifying a game
via smoothing reduces the impacts of short-term fluctuations
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and isolates the longer-term trends. We can motivate this effect
in the context of our HPG in two ways. Firstly, even though the
costs of the component may change persistently (e.g. due to
the demand-pull inflation outlined in Assumption 1), retailers
often do not change the sale prices as frequently, and rather, the
sale prices follow the long-term trends of the costs. Secondly,
it might take agents some time to learn and react to the sale
prices, causing the effects of the changes in costs on the
payoffs to be smoothed.

Remark 9: It follows immediately from (22), (1) and (4)
that, for the smoothed HPG, F is identical to FG,H.

B. Proofs Of Theorem 1 And Proposition 1

Before presenting the proofs of Theorem 1 and Proposi-
tion 1, we define a partial order � (respectively ⌫) on the
elements of Rn

r

as follows: given any x, y 2 Rn
r

we write
x � y (respectively x ⌫ y) if and only if xi > yi (respectively
xi � yi) for all i 2 {1, . . . , nr}. Moreover, given �r 2 Rn

r

and ur, lr 2 R with ur > lr, we use a slight abuse of
notation and let ur � �r � lr (respectively ur ⌫ �r ⌫ lr)
denote ur > �r

i
> lr (respectively ur � �r

i
� lr) for all

i 2 {1, . . . , nr}. We drop the superscript r in the proofs for
notational convenience.

1) Proof Of Theorem 1: We want to show that the candidate
�-storage function SRM-PC, given by (17), satisfies �-passivity for
RM-PC protocols that meet either n = 2 or condition (18).

With the SRM-PC and VRM-PC given respectively in (17) and
(15), we have

@SRM-PC

@x
(x, p)VRM-PC(x, p) +

@SRM-PC

@p
(x, p)u

=
nX

i=1

1

⌧̄
�iVRM-PC

i (x, p)�i(p) + uTVRM-PC(x, p).

Hence, in order to show that RM-PC protocols satisfying
n = 2 or (18) are �-passive, we can define SRM-PC as

SRM-PC(x, p) = �1

⌧̄

nX

i=1

�iVRM-PC
i (x, p)�i(p) (23)

and prove, assuming n = 2 or (18), that SRM-PC and SRM-PC are
non-negative and satisfy (13b), (13c).

To begin with, non-negativity of ⌧̄ , �, x and � imply
that SRM-PC is non-negative. Moreover, plugging SRM-PC to [4,
Lemma 4] it follows that SRM-PC satisfies (13b). Thus we are
left with the analysis of non-negativity of SRM-PC and conditions
under which SRM-PC satisfy (13c). We partition the remainder
of the proof into 2 steps. Step (i) discusses the non-negativity
of SRM-PC and step (ii) establishes the validity of (13c).

Step i: In this step we discuss the non-negativity of SRM-PC.
With our choice of �-storage function, the results that we get
for n = 2 and n � 3 differ and we split our analysis for these
two cases.

n = 2: Under n = 2, we will show that SRM-PC is non-

negative for all � � 0. For this instance, we have

�SRM-PC(x, p) =
1

⌧̄
(�1(x2�2�1(p1 � p2)

� x1�1�2(p2 � p1)) 2(p2 � p1)

+ �2(x1�1�2(p2 � p1)

� x2�2�1(p1 � p2)) 1(p1 � p2)). (24)

Let us analyze the cases p1 = p2, p1 > p2 and p1 < p2
separately. When p1 = p2, (24) becomes 0 by the sign
preservation of �. If we assume p1 > p2, then (24) becomes
��22x2�1(p1 � p2) 1(p1 � p2)/⌧̄ which is non-positive for
all x 2 X and � � 0. If p1 < p2, then (24) becomes
��21x1�2(p2 � p1) 2(p2 � p1)/⌧̄ which is again non-positive
for all x 2 X and � � 0.

n � 3: Results that we have for the n = 2 and n � 3
differ in the sense that, when n � 3 we show non-negativity
of SRM-PC only for RM-PC protocols satisfying (18). Hence,
in what follows we assume that (18) holds. Let us denote
u := maxi2{1,...,n} �i and l := mini2{1,...,n} �i, so (18) can
be written as u/l < �̄�. Notice that

�SRM-PC(x, p)

=
1

⌧̄

nX

i=1

�i(p)�i

0

@
nX

j=1

xj�j�i(pi � pj)

1

A

� 1

⌧̄

nX

i=1

�i(p)�i

0

@
nX

j=1

xi�i�j(pj � pi)

1

A

=
1

⌧̄

nX

i=1

nX

j=1

xj�i(pi � pj)�j(�i�i(p)� �j�j(p))

=
1

⌧̄

2

64

P
n

i=1 �i(pi � p1)�1(�i�i(p)� �1�1(p))
...P

n

i=1 �i(pi � pn)�n(�i�i(p)� �n�n(p))

3

75

T

x.

From x ⌫ 0, it follows that �SRM-PC(x, p)  0 for all u ⌫ � ⌫
l, x 2 X and p 2 Rn if and only if the inequality below holds:

sup
k2{1,...,n},p2Rn,u⌫�⌫l

(
X

i2{1,...,n}\{k}

�i(pi � pk)

�k(�i�i(p)� �k�k(p))

)
 0. (25)

We can take supremum with respect to one set of the variables,
and then take the supremum of the resulting expression with
respect to the ones left [22]. We first choose to take supremum
with respect to �. Fixing any k 2 {1, . . . , n} and p 2 Rn,
since �i and �i are non-negative for all i 2 {1, . . . , n},
the expression on the left-hand side of (25) is maximized
with respect to � when �i/�k is maximized for all i 2
{1, . . . , n}\{k}. Due to the box constraint u/l � �i/�k � l/u,
we have that for any i 2 {1, . . . , n}, supremum of �i/�k is
reached when �i/�k = u/l. Thus (25) holds if and only if the
following holds for every k in {1, . . . , n}:

nX

i=1

�i(pi � pk)
⇣u
l
�i(p)� �k(p)

⌘
 0, p 2 Rn. (26)
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Notice that if
P

n

i=1 �i(pi�pk)�i(p) = 0, then (26) is satisfied,
meaning that (26) holds if and only if

u

l
 inf

k2{1,...,n},p2Rn s.t.Pn
i=1 �i(pi�pk)�i(p) 6=0

⇢
�k(p)

P
n

i=1 �i(pi � pk)P
n

i=1 �i(pi � pk)�i(p)

�
.

(27)

Since (18) holds by assumption, (27) is satisfied with strict
inequality. Thus, SRM-PC(x, p) � 0 for all x 2 X and p 2 Rn.

Step ii: In the second step we discuss under what conditions
SRM-PC satisfies (13c). Similar to that of the conclusions on
non-negativity of SRM-PC, with our choice of �-storage function,
results that we obtain for the n = 2 and n � 3 cases differ.

n = 2: Assuming n = 2, we show that SRM-PC(x, p) = 0
if and only if VRM-PC(x, p) = 0 for all � � 0. We present a
proof by analyzing the cases p1 = p2, p1 > p2, and p1 < p2
separately. Recall that when n = 2, SRM-PC is given by (24). If
p1 = p2, then (24) is 0, but in this case VRM-PC(x, p) = 0. Now
assume p1 > p2. Then, SRM-PC(x, p) becomes ��22x2�1(p1 �
p2) 1(p1�p2)/⌧̄ , but since �1(p1�p2) > 0 and  1(p1�p2) >
0 we see that SRM-PC(x, p) = 0 implies x2 = 0. Moreover, from
p1 > p2, we have �2(p2 � p1) = 0. These combined yield
VRM-PC(x, p) = 0. For the case p2 > p1, SRM-PC(x, p) becomes
��21x1�2(p2 � p1) 2(p2 � p1)/⌧̄ . But since �2(p2 � p1) > 0
and  2(p2 � p1) > 0 we see that SRM-PC(x, p) = 0 implies
x1 = 0. From p2 > p1, we also have �1(p1 � p2) = 0.
These combined again yield VRM-PC(x, p) = 0. Hence, we arrive
at SRM-PC(x, p) = 0 implies VRM-PC(x, p) = 0. For the other
direction, assume VRM-PC(x, p) = 0. Then, since SRM-PC(x, p) =
�
P

n

i=1 �iVRM-PC
i

(x, p)�i(p)/⌧̄ , it follows that SRM-PC(x, p) = 0.
As a result SRM-PC(x, p) = 0 if and only if VRM-PC(x, p) = 0.

n � 3: Now assume n � 3. We will show that for all RM-
PC protocols satisfying (18) we have SRM-PC(x, p) = 0 if and
only if VRM-PC(x, p) = 0. Recall that

SRM-PC(x, p) = �
nX

i=1

nX

j=1

xj
⌧̄
�i(pi � pj)�j(�i�i(p)� �j�j(p)).

Given any j 2 {1, . . . , n}, there are three possibilities: out of
p1, . . . , pn it must be that, pj is the largest, pj is the second
largest, or there exist l,m 2 {1, . . . , n} \ {j} such that pm >
pl > pj . We analyze these three cases separately. If j is such
that pj is the largest, then for all i 2 {1, . . . , n}, �i(pi �
pj)�j(�i�i(p) � �j�j(p)) = 0, and any xj gives xj�i(pi �
pj)�j(�i�i(p)��j�j(p))/⌧̄ = 0. In the second case, pj is the
second largest. Let us denote I = {i 2 {1, . . . , n} | pi > pj},
so I is the set of strategies having greater payoff than that of
j. For any l 2 I we have that �l(p) =

P
n

k=1  k(pk � pl) = 0
and �j(p) =

P
n

k=1  k(pk � pj) �  l(pl � pj) > 0. However,
for any k 2 {1, . . . , n}\I we have �k(pk�pj) = 0, implying
�k(pk � pj)�k(�k�k(p)� �j�j(p)) = 0. Therefore,

nX

i=1

�i(pi � pj)�j(�i�i(p)� �j�j(p))
1

⌧̄

=
X

k2{1,...,n}\I

�k(pk � pj)�k(�k�k(p)� �j�j(p))
1

⌧̄

+
X

l2I

�l(pl � pj)�l(�l�l(p)� �j�j(p))
1

⌧̄
< 0.

Finally, if j is such that there exist l,m 2 {1, . . . , n} \ {j}
with pm > pl > pj , then �l(p) =

P
n

k=1  k(pk � pl) >
0, thus

P
n

i=1 �i(pi � pj)�i(p) � �l(pl � pj)�l(p) > 0.
Consequently, (18) can be utilized to arrive at the following:
for all p 2 Rn such that there exists l,m 2 {1, . . . , n} \ {j}
with pm > pl > pj , it holds that (u/l) < (�j(p)

P
n

i=1 �i(pi�
pj))/(

P
n

i=1 �i(pi�pj)�i(p)). This implies that for all p 2 Rn

with l,m 2 {1, . . . , n} \ {j} satisfying pm > pl > pj we have
nX

i=1

�i(pi � pj)�j(�i�i(p)� �j�j(p))
1

⌧̄


nX

i=1

�i(pi � pj)l
⇣u
l
�j(p)� �i(p)

⌘ 1

⌧̄
< 0.

From the analysis of these three cases on pj , it be-
comes evident that SRM-PC(x, p) = �

P
n

j=1 xj
P

n

i=1 �i(pi �
pj)�j(�i�i(p) � �j�j(p))/⌧̄ = 0 if and only if xj > 0 only
when j 2 argmaxk2{1,...,n} pk. Hence, SRM-PC(x, p) = 0 if and
only if x 2 argmaxy2X yT p. Finally, by the Nash stationarity
of RM-PC protocols, we arrive at SRM-PC(x, p) = 0 if and only
if VRM-PC(x, p) = 0. ⌅

2) Proof Of Proposition 1: Assume that n � 3 and notice
that, under Assumption 2, we can substitute �i with �̄ (also
denote  ̄(v) = sv0 �̄(s)ds for v 2 R and �̄i(p) =

P
n

k=1  ̄(pk�
pi) for i 2 {1, . . . , n}, p 2 Rn) to rewrite (19) as

�̄�(n) = min
1kn

inf
p2⇥k

O(k, p), (28)

where

O(k, p) :=
�̄k(p)

P
n

i=1 �̄(pi � pk)P
n

i=1 �̄(pi � pk)�̄i(p)
,

⇥k :=

(
p 2 Rn

���
nX

i=1

�̄(pi � pk)�̄i(p) 6= 0

)
.

In what follows, we show that the right-hand side of (21) is
a lower bound to (28). Our approach consists of three steps.
(i) First, we show that without loss of generality we can fix
k in (28) to be n, effectively discarding the minimization
over k. (ii) Then, we prove that the value of infp2⇥n O(n, p)
is unchanged when we introduce the additional constraint
p1 � · · · � pn. (iii) Finally, by exploiting the fact that �̄
is non-decreasing, we derive a lower bound to the value of
infp2⇥n O(n, p) under the additional constraint p1 � · · · � pn.
Step i: We begin by showing that (28) is equal to
infp2⇥n O(n, p). Given k, l 2 {1, . . . , n} and p 2 ⇥k, let us
construct p̃ by swapping the values of the k-th and l-th indices
of p. Then, p̃ 2 ⇥l and O(k, p) = O(l, p̃). Therefore, infimum
of O(k, p) over p 2 ⇥k is independent of k, implying that
without loss of generality we can fix the k in (28) to be n
and discard the minimization over k. Hence, we can conclude
from (28) that �̄�(n) = infp2⇥n O(n, p).
Step ii: Now we prove that the value of infp2⇥n O(n, p) does
not change when the additional constraint p1 � p2 � · · · � pn
is imposed on the problem. First, observe that for any given p
in ⇥n, we have that O(n, p) = O(n, p̃) for any p̃ constructed
from p by arbitrarily permuting the first n � 1 entries and
leaving the n-th entry unchanged. Therefore, imposing the
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additional constraint p1 � p2 � · · · � pn�1 does not change
infp2⇥n O(n, p). Second, we will show that the infimum is
unchanged even if we impose the more stringent constraint
p1 � p2 � · · · � pn�1 � pn. Specifically, we will show
that given any p in ⇥n with p1 � · · · � pn�1, there
exists a p̃ in ⇥n satisfying p̃1 � · · · � p̃n�1 � p̃n for
which O(n, p) = O(n, p̃). To do so, we take an arbitrary
p in ⇥n satisfying p1 � · · · � pn�1. From p 2 ⇥n,
it follows that p1 � pn, since otherwise we would haveP

n

i=1 �̄(pi � pn)�̄i(p) = 0. Thus, for any p 2 ⇥n we either
have pn�1 � pn, or there is m in {2, . . . , n � 1} such that
p1 � p2 � · · · � pm�1 � pn > pm � · · · � pn�1. If p
is such that pn�1 � pn, then taking p̃ = p gives the desired
result. On the other hand, if there is m in {2, . . . , n� 1} such
that p1 � p2 � · · · � pm�1 � pn > pm � · · · � pn�1,
then we construct p̃ by setting p̃i = pn for all i in {m, . . . , n}
and p̃j = pj for all j in {1, . . . ,m � 1}. We can now verify
by direct substitution that for the constructed p̃ it holds that
O(n, p) = O(n, p̃) and p̃ is in ⇥n, which concludes our proof
of the second step.

Thus, defining the vectors �̃n(p) and �̄(p) as

�̃n(p) :=

2

64
(�̃n)1(p)

...
(�̃n)n(p)

3

75 =

2

6664

�̄(p1�pn)Pn�1
i=1 �̄(pi�pn)

...
�̄(pn�pn)Pn�1
i=1 �̄(pi�pn)

3

7775
; �̄(p) :=

2

64
�̄1(p)

...
�̄n(p)

3

75 ,

we have shown up to this point that

�̄�(n) = inf
p2Rn s.t. p1�···�pn,

�̃
T
n (p)�̄(p) 6=0

1

�̃Tn (p)�̄(p)/�̄n(p)
. (29)

Note that for p 2 Rn satisfying �̃Tn (p)�̄(p) 6= 0 and p1 � · · · �
pn, there is m 2 {1, . . . , n� 1} such that pm > pn, which in
turn implies �̄n(p) =

P
n

k=1  ̄(pk � pn) �  ̄(pm � pn) > 0.
Step iii: As for the final step, we will derive a lower bound for
(29). From the proof of [1, Theorem 7.2.9] it is known that for
any i, j 2 {1, . . . , n}, pi � pj implies �̄i(p)  �̄j(p). Hence,
under the constraint p1 � · · · � pn, we have 0 = �̄1(p) 
· · ·  �̄n(p). Thus, for all p 2 Rn such that p1 � · · · � pn
and

P
n

i=1 �̄(pi � pn)�̄i(p) 6= 0 we have

�̃Tn (p)�̄(p)/�̄n(p) 
n�1X

i=2

(�̃n)i(p) = 1� (�̃n)1(p).

The function �̄ being non-decreasing implies under the con-
straints p1 � · · · � pn and

P
n

i=1 �̄(pi � pn)�̄i(p) 6= 0
that (�̃n)1(p) � 1/(n � 1). As a result �̃Tn (p)�̄(p)/�̄n(p) 
1�1/(n�1) = (n�2)/(n�1), meaning that (n�1)/(n�2)
is a lower bound to (29). ⌅
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