IEEE

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

1009

= CSS

Excess Payoff Evolutionary Dynamics
With Strategy-Dependent Revision Rates:

Convergence to

Nash Equilibria

for Potential Games

Semih Kara

Abstract—Evolutionary dynamics in the context of pop-
ulation games models the dynamic non-cooperative strate-
gic interactions among many nondescript agents. Each
agent follows one strategy at a time from a finite set. A
game assigns a payoff to each strategy as a function of
the so-called population state vector, whose entries are the
proportions of the population adopting the available strate-
gies. Each agent repeatedly revises its strategy according
to a revision protocol. We focus on a well-known class of
protocols that prioritizes strategies with higher excess pay-
offs relative to a population-weighted average. In contrast
to existing work for these protocols, we allow each agent’s
revision rate to depend explicitly on its current strategy.
Motivated by applications and relevance to distributed
optimization, we focus on potential games and investigate
the population state’s convergence to the game’s Nash
equilibria. Our contributions are twofold: (1) For the con-
sidered protocol class, prior work established conditions
that ensure convergence under strategy-independent revi-
sion rates. We show that these conditions may be violated
when the revision rates are strategy-dependent. (2) We
prove that a minor, well-motivated modification of the con-
sidered protocol class satisfies these conditions for any
strategy-dependent revision rates. We also illustrate our
results using a distributed task allocation example.

Index Terms—Game theory,
systems.

stability of nonlinear

[. INTRODUCTION

HE POPULATION games and evolutionary dynamics
framework [1], [2] models the dynamic strategic inter-
actions among many agents. At any time, each agent follows a
single strategy from a finite strategy set {1, ..., n}. The agents
are nondescript and grouped into a population. Consequently,
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the proportions of the population playing the available strategies
suffice to specify the population’s strategy profile. The n-
dimensional vector composed of these proportions is called
the population state. At any time, a payoff mechanism assigns
a payoff to each strategy as a function of the population state.
Each agent repeatedly revises its strategy in response to the
payoffs and the population state, which causes the population
state to vary over time. When performing revisions, the agents
decide on their subsequent strategies via a stochastic heuristic,
characterized by a so-called revision protocol.

So-called revision rates [3], given by positive real numbers,
specify how frequently the agents revise their strategies. In
this letter, we investigate whether allowing the agents’ revi-
sion rates to depend on their strategies affects the long-term
behavior of the population state. This dependence means that,
given a vector of revision rates A = [A] . A]7, an agent
following strategy i revises it with the rate A;, which may
differ from A; for i # j. Allowing the revision rates to be
strategy-dependent was first proposed and motivated in [3].
This generalization enables modeling a large class of systems
that the original framework (in which A; = A; for all i, )
cannot. In [3, Example 1] and [3, Remark 1], the authors
introduce the hassle vs. price game and a labour market exam-
ple as instances of such systems. We present another such
instance in Section II-C, cast as a distributed task allocation
problem. In these systems, strategy-dependent revision rates
represent various phenomena, such as component lifetimes,
contract turnover rates, and task service times that vary with,
respectively, the manufacturer, company, and type of task.

Despite sharing the same framework and motivation, there
are two main differences between this letter and [3]: (1) We
consider excess payoff protocols [4], whereas the focus in [3]
is pairwise comparison protocols [5]. Protocols in the excess
payoff class prioritize strategies with higher excess payoffs
computed as the differences between the strategies’ payoffs
and a population-weighted (payoff) average. (2) Instead of
focusing on system-theoretic passivity properties as in [3], here
we seek conditions guaranteeing desirable convergence prop-
erties for the population state when the payoff mechanism is
a potential game [6]. Classical results were general enough
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to handle this case for pairwise comparison protocols, hence
potential games were not a focus in [3].

A. Relevance of Studying Population State Convergence

To ascertain the infinite-horizon properties of the popula-
tion state, we follow a common approach [1], [2], [3], [7],
[8], [9], [10] based on deterministic mean-field approximation
techniques valid for large populations. Specifically, we focus
on a dynamical system, called the mean closed loop, consisting
of the feedback interconnection of the so-called evolutionary
dynamics model (EDM) and the payoff mechanism. The EDM
is a nonlinear system specified by the revision protocol and
A, and its output is referred to as the mean population state.
Because of the large number of agents, the mean population
state is a good approximation of the population state over
any finite time interval [11]. Moreover, the convergence of
the mean population state to a set ensures that the population
state converges with high probability to the vicinity of this set
(see [3, Sec. II.C.4] and references therein).

B. Potential Games and Excess Payoff Protocols

Potential games were introduced in [12] and progressed to
be analyzed extensively. They were adapted to the popula-
tion games and evolutionary dynamics framework in [6], [13]
and were further investigated in this context in [10], [14].
Congestion games [1], [15] are celebrated examples of poten-
tial games. Notably, potential games have a valuable connec-
tion to distributed optimization [14]: a potential game’s Nash
equilibria coincide with the points that satisfy the Karush-
Kuhn-Tucker (KKT) conditions for the problem of maximizing
the game’s potential over the standard n-simplex.

Due to their suitability for capturing reluctance and mod-
eration in finding best-performing strategies, excess payoff
protocols were introduced in [4] as a well-motivated model
of individual choice. In subsequent works [2], [8], these pro-
tocols are called excess payoff target (EPT) protocols, which
is the nomenclature that we will use. Applicability of EPT pro-
tocols in engineering settings has been demonstrated in [16]
for water distribution systems and in [17] for distributed
wireless networks. We present another such application in
Section VI, based on the distributed task allocation problem
in Section II-C.

C. Nash Stationarity (NS) and Positive Correlation (PC)

When the payoff mechanism is a potential game, the work
in [6] shows that if the EDM satisfies the so-called Nash sta-
tionarity (NS) and positive correlation (PC) conditions (see
Section III for definitions), then the mean population state
has desirable convergence properties. For instance, in [6], the
author proves that if the payoff mechanism is a potential game
and the EDM satisfies (NS) and (PC), then the mean popula-
tion state converges to a Nash equilibrium of the game from
any initial state. Additionally, the author provides criteria on
the potential game that guarantee this convergence is to an
appropriately-defined social optimum.

In this letter, to ascertain the convergence properties of the
mean population state resulting from potential games and EPT
protocols, we investigate the (NS) and (PC) properties of the
associated EDM so as to use the results in [6]. Assuming

F p

(Potential Game)

Evolutionary Dynamics Model
x (EDM)

Fig. 1. Interconnection of the EDM and a potential game.

that the revision rates are identical, the work in [4] shows
that any EPT EDM satisfies (NS) and (PC). However, as we
explain in Section I-C and Section IV, existing results [4] on
the convergence properties of the mean population state under
EPT protocols and potential games are not conclusive when
there are strategies i and j for which A; # A;.

Our contributions are twofold: (1) We unveil the existence of
EPT protocols and X for which the EDM violates (NS) or (PC).
Using these results, we show that for some EPT protocols and
A, the mean population state does not converge to a Nash
equilibrium under a broad class of potential games. (2) We
propose a modification of the EPT class, which we call sign
preserving rate-modified EPT protocols. For any protocol in
the modified class and any A, we prove that the EDM satisfies
(NS) and (PC). As we discuss in Section V and illustrate in
Section VI, the protocols in the modified class are easy to
implement.

D. Auxiliary Notation

We denote the standard n-simplex by A and the n-
dimensional column vector of ones by 1. We use R'LO, R’io
and R” to symbolize respectively the n-dimensional non-
negative, positive and non-positive orthant. Given S C R”,
we use inf(S) and §(S) to denote respectively the interior and

boundary of S, and define R} := R" \ int(R’éO).

Il. FRAMEWORK DESCRIPTION

The mean closed loop, depicted in Fig. 1, is a determin-
istic dynamical system composed of the positive feedback
interconnection of two sub-systems: the evolutionary dynamics
model (EDM) and the payoff mechanism (as we will explain
shortly, we focus on payoff mechanisms given by potential
games). The input of the EDM, called the deterministic pay-
off, is denoted by p, and its output, called the mean population
state, is denoted by x. In this section, we describe the payoff
mechanism and the EDM in more precise terms.

Before we proceed, we revisit Section I-A, which summa-
rizes the relation of the mean closed loop with the finite-agent
model described at the beginning of Section I. Recall that, due
to the large population assumption, both the finite and infinite
horizon behavior of the population state can be approximated
via x. We refer to [3] and the references therein for details on
the finite-agent model and these approximations.

A. Potential Games

We consider that a Lipschitz continuous map F : A — R”,
called a population game (or game in short), determines the
deterministic payoff at any time t > 0 as p(f) = F(x()).
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Moreover, we focus on F that is a potential game according
to the definition! in [6], which we reproduce below.

Definition 1: A game F is said to be a potential game if
there is a differentiable function f : R” — R, called the game’s
potential, that satisfies Vf(§) = F (&) for all £ € A.

The Nash equilibria set is defined in the context of popula-
tion games as follows.

Definition 2: The Nash equilibria of a game F is the set

NE(F) = {& € A | & > 0= F;(§) = F;(&) for all j}.

We note that the Nash equilibria set of any population game
is non-empty [1, Th. 2.1.1] and can be interpreted in the “mass-
action” sense as explained in [18].

From the definition of the EDM (which we present in the
following section), it follows that x(r) € A for all + > 0.
Since F is continuous, this implies that p takes values in the
bounded set P := {F (&) e R" | £ € A}

B. The Evolutionary Dynamics Model

The main object of our analysis in this letter is the EDM,
which is specified by A and the revision protocol. Before pro-
ceeding with the description of the EDM, we give further
information about the protocol.

The population’s revision protocol is a Lipschitz contin-
uous function 7 : A x P — RIF" that satisfies for all
i€fl,...,n}and (§,7) € A x P the normalization equality
Z}Ll 7;;(§, m) = 1. In the finite-agent model, T quantifies the
agents’ strategic behavior by specifying the probabilities with
which they switch strategies. We refer to [3] for details.

A protocol class that is of particular interest to this letter is
the excess payoff target (EPT) protocols, introduced in [4].

Definition 3: A protocol t is said to be an excess payoff
target (EPT) protocol if we can use # := 7 — 17 T& to write
it for all (§,7) € A xP and i,je {1,...,n} with i #j as:

n

C T =1— Y e m). ()

0=1,04i

(&, ) = ‘”"(f”)

Here, ¢ : R" — R’;O is a function that satisfies acuteness,
which requires that_w(n)Tn > 0 for all n € int(R}) [4].
Moreover, T is a constant such that 7; is non-negative for
all i € {1,...,n}, and 7 is called the excess payoff.

Intuitively, acuteness ensures that an agent following an EPT
protocol is more likely to switch to strategies with payoffs that
are higher than the population-average payoff. An example
of an EPT protocol is the Brown-von Neumann-Nash (BNN)
protocol, which is obtained by setting ¢;(7) = max{0, 77;}. The
BNN protocol was introduced in [19] to analyze symmetric
zero-sum games and later used in [20] to show the existence
of Nash equilibria in normal-form games.

Having described the revision protocols in more detail, we
now characterize the EDM. The EDM is the system with input
p, output x, and the state equation

x(1) = V(x(@®),p®), >0,

n several articles, games satisfying Definition 1 are referred to as full
potential games [1], [14]. However, we conform to the terminology in [6]
because we frequently invoke the results therein.

where x(0) € A, and V : A x R" — R" is given for all
E,m)eAxPandie{l,...,n} by

Vilg. ) =) nmi(s.n)g - Do rmE n)E @)
j=1 j=1

inflow to strategy i outflow from strategy i

Observe that x(0) € A assures that x(t) € A for all ¢+ > 0.

C. Motivating Example

The following distributed task allocation problem illustrates
our framework and motivates allowing the revision rates to be
strategy-dependent. Distributed task allocation problems in the
population games and evolutionary dynamics framework have
been studied in [21]. However, the setting in [21] is different
from ours because [21] assumes identical revision rates.

Suppose that there is a large number of agents and 3 types
of tasks that the agents perform, which constitute their strat-
egy set. Tasks of type i € {1, 2, 3} have expected service time
A1 > 0, which may differ from ,\;1 > 0 for i # j. Each
agent undertakes a new task, possibly of a different type, only
after completing its current one. Hence, the revision rate asso-
ciated with tasks of type i is A; > 0 (see [3] for the physical
meanings of the revision rates). At any time ¢ > 0, a central
entity assigns a payoff vector P(¢) to the types of tasks and
disseminates P(#). When an agent completes a task, it decides
on the type of its new task in a distributed manner using a
protocol t and announces the types of its completed and new
tasks to the central entity. Let us denote the fraction of agents
working on tasks of type i at time 7 by X;(#). Given 6 € A, the
distributed task allocation problem is to find a T and a payoff
mechanism that drives X near 6 in the long run. We will revisit
this problem in Section VI to demonstrate our results.

IIl. PROBLEM FORMULATION

In the upcoming sections, we first study the infinite-horizon
properties of x resulting from potential games and EPT proto-
cols. This analysis shows that desirable convergence properties
are not ensured by the EPT class when the revision rates are
strategy-dependent, thus we propose a modification of this
class that does.

As summarized in Section I-C, provided that F is a potential
game, the work in [6] develops a methodology to ascertain the
long-run properties of x. Namely, in [6], the author shows that
if F is a potential game and the EDM satisfies the so-called
Nash stationarity (NS) and positive correlation (PC) conditions
(which we will define shortly), then x has several desirable
convergence guarantees. One of these guarantees is that x con-
verges to NE(F) from any initial state. Denoting the potential
of F by f, the set of points satisfying the KKT conditions
for the problem of maximizing f(£) over & € A coincides
with NE(F) [6]. Hence, if f is concave, then this conver-
gence is also to the set argmaxgcf(§). Another guarantee is
that, under an additional so-called homogeneity constraint [6]
on F, the mean population state x converges to an appropri-
ately defined social optimum from any initial state. For the
remaining long-run properties derived in [6] we direct the
reader to [6] and proceed by presenting the definitions of (NS)
and (PC).
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Definition 4: The EDM is said to be Nash stationary (NS)
if for every (§,7) € A x P the following holds:

VE, ) =0 << £ ¢ argmaxneAnTn. (NS)

Definition 5: The EDM is said to satisfy positive correlation
(PC) if for every (&, ) € A x P the following holds:

VE ) 0= VE 1) 7 > 0. (PC)

Notice that (NS) establishes an important connection
between F and the mean closed loop. Namely, the mean closed
loop is at equilibrium if and only if x belongs to NE(F). As
for (PC), it means that x and F(x) make an acute angle as
long as x is not stationary.

To perform the analysis stated at the beginning of this sec-
tion, we employ the methodology in [6] and focus on the
following two problems. (Problem 1) Does the EDM satisfy
(NS) and (PC) for every EPT protocol and A € R” ;? When
the revision rates are identical, the EDM is known to satisfy
(NS) and (PC) for every EPT protocol [4]. However, we show
in Section IV that the answer to Problem 1 is negative because
we allow A; # A; for i # j. Thus, we also pose the ensuing
problem. (Problem 2) Can we modify the EPT class so that
the EDM satisfies (NS) and (PC) for every t in the modified
class and A € R” ;7 Sign preserving rate-modified EPT (RM-
EPT) protocols, which we introduce at the end of Section IV
and analyze in Section V, will be our answer to this problem.

IV. EPT PROTOCOLS UNDER STRATEGY-DEPENDENT
REVISION RATES AND RM-EPT PrRoTOCOLS

In this section, as opposed to the existing results under
identical revision rates, we show that the EPT class does not
ensure (NS) and (PC) when the revision rates are allowed to
be strategy-dependent. Using our results on (NS) we also show
that, for some EPT protocols and potential games, the conver-
gence of x to NE(F) is not robust under perturbations of the
revision rates. Subsequently, we modify the EPT class so that
the EDM satisfies (NS) and (PC) for all A € RZ,.

We begin by showing that even one of the most ubiquitous
EPT protocols, the BNN protocol, produces an EDM that vio-
lates (PC) for some A. Recall from Section II-B that the BNN
protocol is obtained by setting ¢; () = max{0, 7;} in (1).

Counterexample 1: Consider 7 to be the BNN protocol with
T=1andlet& =[1/2 0 1/2)7, 7 =[0 1/2 3/4]T,
A = [1 1 16]". Substituting these into (2), we have
V(&, ) # 0 and V(&, 7)Tn = —0.0156 < 0. Therefore, the
EDM specified by t and A violates (PC).

Having established that EPT protocols may fail to guarantee
(PC) for all A € R”,, we modify the EPT class to elimi-
nate this issue. We construct the modified class, which we
name rate-modified EPT (RM-EPT) protocols, by replacing 7
in Definition 3 with 7 defined as

Yo AT
DA

where we refer to 7 as the rate-weighted average payoff.
Thus, given an EPT protocol as in Definition 3, we obtain
its rate-modified version by simply replacing 7 in (1) with 7.
Notice that an EPT protocol coincides with its rate-modified
counterpart when the revision rates are identical.

7=x—1n, =wn =

3)

Remark 1: Suppose that, at every revision time, the revis-
ing agent declares (possibly to a coordinator) the payoff of
the strategy it was following immediately prior to the revi-
sion time. For instance, in our distributed task allocation
problem in Section II-C, this would correspond to the agents
announcing the payoffs they received from the tasks that
they recently completed. Since the number of agents is large,
the average of the payoffs announced within a short time
interval is approximately the rate-weighted average payoff.
Consequently, in such a setting, RM-EPT protocols can be
implemented effortlessly, without any knowledge of A.

Although this modification suffices to ensure (PC), it does
not guarantee (NS). Consider the rate-modified version of the
EPT protocol in [4, Proposition 2.1], characterized by

9 (@) =D (T (k+ D7D + eTic( @1, @)

i=1

where ¢ > 0, k > 0, (k+ 1)é¥*2 + 1 > n and [¢]4 denotes
max{0, ¢} for every ¢ € R. A key property of this protocol is
that it satisfies the positivity condition (Pos) given below:

£ ¢ argmaxneAnTn = mint;(,7) >0, 7 eR". (Pos)
ij

The following counterexample shows that the EDM violates
(NS) for the protocol specified by (4) and some A.

Counterexample 2: Let v be the RM-EPT protocol charac-
terized by (4) and assume that F satisfies int(A) ¢ NE(F)
(for instance, F given by F(§) = £€—(1/n)1 satisfies this crite-
rion because NE(F) = {(1/n)1}). Let us take & € int(A) such
that & ¢ NE(F) and set 7 = F(&). Note that V(&§, ) = 0 if
and only if

(€, 1) 8r = BA, 5)

where E denotes the n-by-n diagonal matrix with its (i, i)-th
entry given by &; for all i € {1, ..., n}. From & ¢ NE(F) and
(Pos), it follows that 7;;(§,7) > O for all i,j € {1,...,n}.
Therefore, by t(£,m) being a stochastic matrix and the
Perron-Frobenius Theorem, 7(&, )7 has an eigenvector v
that corresponds to the eigenvalue 1 and all entries of v are
positive. Because Z is invertible, E~'v is the unique A for
which EA = v. In addition, from E~! being a diagonal
matrix with positive diagonal entries and v having posi-
tive entries, it follows that each entry of E~!v is positive.
Thus, choosing A = 21y does not conflict with A € R’LO,
and with this choice (5) holds. Since & ¢ NE(F) implies
§ ¢ argmax, . AT[TY], we conclude that the EDM generated by
t and XA violates (NS).

Remark 2: Our derivations in Counterexample 2 are valid
not only for the protocol specified by (4), but for every t that
satisfies (Pos).

Remark 3: For any t satisfying (Pos), there are A, &,
and a potential game JF (see Counterexample 2) such that
V(E,F(E)) =0 and & ¢ NE(F). Hence, the resulting tra-
jectory of x with initial state & remains at £ and does not
converge to NE(F). Importantly, the EPT protocol in [4,
Proposition 2.1] (not rate-modified version) satisfies (Pos) [4].
Consequently, when the revision rates are strategy dependent,
convergence of x to NE(F) is not guaranteed by the EPT class,
even when F is potential.
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In view of Remark 2, to arrive at a protocol class that
assures both (PC) and (NS) under every A € R’;O, we impose
a “sign preservation” requirement on RM-EPT protocols. The
resulting subclass of RM-EPT protocols, which we call sign
preserving RM-EPT protocols, is explicitly defined below.

Definition 6: A protocol t is a sign preserving RM-EPT
protocol if it can be written for all (§,7) € A x*P and i,j €

{1,...,n} with i #j as:

n

C T =1— Y & m). (6)

0=1,04i

Tz‘j(é,ﬂ)=@

Here, ¢; : R" — R is a Lipschitz continuous map that is
sign preserving in the j-th component of its argument (meaning
@j(7) > 0if and only if 77; > 0), 7 is the excess payoff relative
to the rate-weighted average (see (3)) and 7 is a constant such
that t; is non-negative for all i € {1, ..., n}.

Remark 4: Observe from Definitions 3 and 6 that sign
preservation implies acuteness. Therefore, sign preserving
RM-EPT protocols form a subclass of RM-EPT protocols.

V. (NS) AND (PC) PROPERTIES OF SIGN PRESERVING
RM-EPT ProTOCOLS

We proceed by showing that the EDM satisfies (NS) and
(PC) for every sign preserving RM-EPT protocol and A € R” .
Later, leveraging this result and the discussion in Section III,
we establish a guarantee for the convergence of x to NE(F).

Theorem 1: If t belongs to the sign preserving RM-EPT
class, then the EDM satisfies (NS) for every A € R” .

We prove Theorem 1 in the Appendix.

Theorem 2: If t belongs to the sign preserving RM-EPT
class, then the EDM satisfies (PC) for every A € R” .

We present a proof of Theorem 2 in the Appendix.

As indicated in Section III, when F is a potential game,
the (NS) and (PC) properties associated with sign preserving
RM-EPT protocols lead to the convergence result below.

Corollary 1: If 7 is a sign preserving RM-EPT protocol and
F is a potential game, then for every xo € A and A € R”
the mean population state with initial value xo satisfies

llx(r) — &Il = 0.

lim  inf
1—00 £ eNE(F)

Corollary 1 is an immediate consequence of [6, Th. 4.5],
Theorem 1 and Theorem 2.

Remark 5: Pursuant to the discussion in Section III, there
are results in [6] that lead to refinements of Corollary 1. For
instance, under the conditions in Corollary 1 and an addi-
tional so-called homogeneity constraint on the game, it follows
from [6, Th. 5.5] that x converges to a social optimum.

Remark 6: Notice that in order for Corollary 1 to hold, the
potential of F does not need to be concave. Notably, this result
holds for any potential game.

V1. NUMERICAL EXAMPLE

Consider the distributed task allocation problem in
Section II-C. Suppose that the agents decide on the types of
their new tasks in a distributed manner using the rate-modified
BNN (RM-BNN) protocol, obtained by setting goj(i’(t)) =
max{0, P;(r)} in (6). Hence, in addition to P(f), let the
central entity also calculate and announce P@t) = P(t) —

(0,1,0)

Wi

(0,0,1) (1,0,0)

Fig. 2. Trajectories of x for the numerical example.

1, MXi(OPi(0)) Y1y 4Xj(0). As stated in Remark 1,
the central entity can approximate P(f) accurately and effort-
lessly by averaging the payoffs of the types of tasks completed
within [¢ — €, ] for a small € > 0.

Now, given any desired allocation & € A of proportions
of agents on the types of tasks, let the central entity set
P(t) = F(X(t)), where F(§) = 6 — & for all £ € A. Notice
that F is a potential game with NE(F) = {6}. Furthermore,
the RM-BNN protocol is a sign preserving RM-EPT pro-
tocol. Therefore, from Corollary 1, it follows that {0} is
globally attractive under the mean closed loop resulting from
F, the RM-BNN protocol and any A € RZ,. This is dis-
played in Fig. 2 for & = (1/3)1 and » = [I 10 100]7.
Together with the mean-field approximation discussion in
Section I-A, this global attractivity result ensures that X con-
verges with high probability to the vicinity of 6. As a result,
the RM-BNN protocol and the payoff mechanism specified
by P(t) = 6 — X(¢) is a solution to the distributed task allo-
cation problem in Section II-C. Notably, 8 € NE(F) means
that, when X(¢) = 6, none of the agents can receive a higher
payoff by unilaterally changing the types of tasks that they are
performing.

VIlI. CONCLUSION

In this letter, we consider the mean population state result-
ing from potential games and EPT protocols and analyze
the effects of strategy-dependent revision rates on its infinite-
horizon properties. To do so, we investigate the (NS) and (PC)
properties of the EDM induced by EPT protocols and employ
the results in [6]. Contrary to the conclusions attained under
identical revision rates [4], we show the existence of EPT
protocols and (strategy-dependent) revision rates that lead to
EDM instances that violate (NS) or (PC). Hence, we pro-
pose a modification of the EPT class, which we call sign
preserving rate-modified EPT (RM-EPT) protocols, and show
that the resulting EDM satisfies (NS) and (PC) under any revi-
sion rates. We use this result to derive a guarantee for the
convergence of the mean population state to Nash equilibria.

APPENDIX

Before presenting the proofs of Theorems 1 and 2, we
note that we are going to use the notation in Section I-D.
Furthermore, we define A to be the n-by-n diagonal matrix
with its (7, i)-th entry given by A;. Lastly, given a sign
preserving RM-EPT protocol 7, we conform to the notation
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in Definition 6 and use ¢ to write it as in (6). We prove
Theorem 1 below.

Proof: Assume that t is a sign preserving RM-EPT protocol.
Our aim is to show that the EDM satisfies § € arg max, .5 nlx
if and only if V(§,7) = 0. But first, we give an aux-
iliary result. Recall that A; > O for all i € {l1,...,n}.
Hence, § € argmax,7eAnT71 if and only if AE/(ATE) €
arg max, AnTrr. Moreover, from [4, Proposition 3.4], we
know that & € argmax,’eAnTrr if and only if 7 € §(R}).
Therefore, we arrive at 7 € §(R}) if and only if 7 € §(R}).

We return to the proof of (NS) and let § € arg max, nlrm.
Then, the auxiliary result above gives 7 € §(R}). Since ¢ is
sign preserving, 7 € §(R?) implies that V(§, m) = 0. Thus,
V(& m) = 0 whenever & € argmax, An’7.

For the reverse direction, we prove the contrapositive.
Assume that § ¢ argmax,can Tr and define J = {j €
{1,...,n} | m; > 0}. Note that £ € arg max, .51 Tr if and
only if (A&/(ATeENTm > mj for all j € {1, ..., n}. So, it fol-
lows from & ¢ argmax, ,n’7 that J # . We proceed by
showing that this implies the existence of a k € {1,...,n}
for which 7 < 0 and & > 0. Since (A&/(ATENTR = 0,
we have 3 . ; A& + 3 icje A7) = 0, where we denote

{1,...,n} \ J. There are two possible cases: either
& = 0 for all j € J or there exists i € J such that & > 0.
The first case implies, because 27:1 & = 1, that there is a
k € J¢ such that & > 0. Now consider the second case,
i.e., there is an i € J such that & > 0. Then, due to
i€ Jand ), Mg+ 3 icse Ay = 0, it must be that
> jese i&7tj < 0. Consequently, there exists k € J such that
& > 0. Hence, in both cases, there exists a k € {1, ..., n} for
which 7 < 0 and & > 0. Finally, we leverage this to show
that V(&, w) # 0. Since ¢ is sign preserving and 7 < 0 we
have that @i (77) = 0. Therefore,

Y Mte®

=ik

Vi, m) = Y Ater(R)E —
Jj=1,j#k
= —M&t Y. @) (7)

=ik

Observe that k ¢ J, together with J # (), implies
27:1’#,( @j(7) > 0. Combining this with & > 0, 7 > 0 and
A > Oforall i € {1,...,n}, we conclude that (7) is negative.
As a result, (£, ) is not a rest point of V. [ ]

Now, we present a proof of Theorem 2.

Proof: Let T be a sign preserving RM-EPT protocol. Our
aim is to show that the EDM satisfies V(£, m)Tnr > 0
whenever V(&, ) # 0. Observe that

Vi = (4) 7 S vie.m + Y avie m.

i=1 i=1
From ), Vi(§, ) =0, the above equality simplifies to

VE T =) Fit Y (hei@)E — higi(7)E).

=l =L

Furthermore, notice that

Zi’( Z ?»j%wi(ﬁ)f‘?j— Z Ai%%’(ﬁ)éz‘)

i=1 jzl,#i J=1j#
=%Zm¢>l(n) Z ,s,——Zn,Aa Z @j(7)
J= J#l J=1j#
=%Zﬁi¢i<ﬁ) Z 2i&j, ®)
i=1 j=1j#i

where the last equality follows from )", ;A& = 0. Now,
assume that V(&, w) # 0. Then, since sign preserving RM-
EPT protocols satisfy (NS), there exists a strategy k for which
7 > 0. Moreover, it must be that & < 1, because other-
wise 7 would have been 0. These, combined with the sign
preservation of ¢, imply that

Zn,go,(n) Z A > Frpn () Z A& > 0.

Jj=1j#i Jj=1,j#k

Since 7 is also positive, we conclude that (8) is positive. W
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