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Abstract— The prevailing methodology for analyzing popula-
tion games and evolutionary dynamics in the large population
limit assumes that a Poisson process (or clock) inherent to
each agent determines when the agent can revise its strategy.
Hence, such an approach presupposes exponentially distributed
inter-revision intervals, and is inadequate for cases where each
strategy entails a sequence of sub-tasks (sub-strategies) that
must be completed before a new revision time occurs. This
article proposes a methodology for such cases under the premise
that a sub-strategy’s duration is exponentially distributed, lead-
ing to Erlang distributed inter-revision intervals. We assume
that a so-called pairwise comparison protocol captures the
agents’ revision preferences to render our analysis concrete.
The presence of sub-strategies brings on additional dynamics
that is incompatible with existing models and results. Our main
contributions are twofold, both derived for a deterministic ap-
proximation valid for large populations. We prove convergence
of the population’s state to the Nash equilibrium set when
a potential game generates payoffs for the strategies. We use
system-theoretic passivity to determine conditions under which
this convergence is guaranteed for contractive games.

I. INTRODUCTION

Population games and evolutionary dynamics have been
used as a tractable framework to model the strategic inter-
actions in populations with large numbers of agents [1]–[3].
In this framework, each agent follows one strategy at a time,
chosen from a finite set available to the population. Each
available strategy has a payoff at any time specified by a
map we refer to as “game”. The agents repeatedly revise
their strategies at the so-called revision times governed by
a process (or clock) inherent to each agent. At a revision
time, the agent may alter its strategy in response to the
population’s payoffs and the strategy profile. When revising
their strategies, the agents act according to a probabilistic
heuristic specified by a so-called revision protocol, which
reflects the population’s decision behavior and often has a
simple structure. The agents are nondescript; consequently,
a vector, called population state, whose entries are the popu-
lation proportions following the available strategies, suffices
to represent the population’s strategic profile.

A. Erlang Revision Times

Existing work [1] and recent generalizations [4] assume
that the inter-revision intervals are exponentially distributed.
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Applications where each strategy entails a sequence of
tasks (sub-strategies) an agent must complete before a new
revision opportunity occurs are not compatible with the
existing theory because the sum of the tasks’ service times
is generally not exponentially distributed. In this article,
our main goal is to propose a methodology to model and
analyze the equilibrium stability of population games and
evolutionary dynamics for such non-preemptive multi-task
applications. Inspired by the queueing literature, we assume
that the sub-strategies’ service times are independent and ex-
ponentially distributed, resulting in Erlang distributed inter-
revision intervals [5, Chapter 4.2].

Our work is motivated by applications, including the
modeling of traffic congestion in roadways as a so-called
congestion game [6]. Namely, in a congestion game the
agents are drivers and the strategies are the possible routes
connecting an origin to a destination. When each revision
time coincides with the completion of a trip, the inter-
revision interval becomes the trip duration. Hence, it is
relevant to observe that several studies [7]–[9] find that, in
many cases, trip duration is nearly Gamma distributed. Thus,
noting that the Erlang and Gamma distributions coincide
for certain parameter values, we conclude that allowing for
Erlang distributed inter-revision intervals is a worthwhile
generalization in the context of congestion games.

B. Deterministic Approximation And Stability Analysis

Similar to an extensive body of literature [1], [2], [10]–
[12], we use a deterministic (mean field) approximation [13],
[1, Appendix 12.B] to ascertain whether the population state
converges to a neighborhood of the Nash equilibria of the
game with high probability. In our analysis, the deterministic
approximation will be the state of a system designated as
Erlang Evolutionary Dynamics Model.

Existing convergence results for exponentially distributed
inter-revision intervals are conclusive when additional struc-
ture is imposed on the game and the revision protocol. The
cases in which the protocol is in the so-called pairwise
comparison class, which is fully decentralized [4], [14], and
the game is potential or strictly contractive1 are well-known
to have such a structure [15], [16]. Likewise, our focus in this
article will be on pairwise comparison protocols and games
that are potential or strictly contractive.

1Contractive games are also known as stable games. The recent arti-
cle [12] defines weighted-contractive games, which subsume contractive
ones. For simplicity, we limit our analysis to the non-weighted case.
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II. OVERVIEW OF THE FRAMEWORK

We start by presenting an overview of the population
games and evolutionary dynamics paradigm.

A. Agents, Strategies and the Population State

Consider a population2 comprising N agents, where N is
large. At any time, each agent follows a single strategy from
the same set of strategies {1, . . . , n}. As will be clarified
throughout §II, the agents are “nondescript”; therefore, the
proportions of agents playing the available strategies suffices
to characterize population’s strategy profile. We denote the
proportion of agents playing strategy i 2 {1, . . . , n} at
time t � 0 by X̄i(t), i.e., the number of agents playing
strategy i at time t is NX̄i(t). Moreover, we define X̄ :=⇥
X̄1 . . . X̄n

⇤T , and refer to X̄ as the population state.

B. Payoffs and The Game Generating Them

At any time t � 0, each strategy i 2 {1, . . . , n} is
endowed with a payoff Pi(t). We assume that the mecha-
nism assigning these payoffs is a continuously differentiable
function F : Rn ! Rn, called the “game”, that operates on
the population state X̄ . The payoff of strategy i is denoted
Fi and we write F :=

⇥
F1 . . . Fn

⇤T . Consequently, the
payoff vector at time t is given by P (t) = F(X̄(t)). Since
X̄ takes values in � := {⇠ 2 Rn

�0 |
Pn

i=1 ⇠n = 1} and F
is continuous, P takes values in a bounded set P given by

P := {F(⇠) 2 Rn | ⇠ 2 �}.

The notion of Nash equilibria of a game is defined as:

NE(F) :=

(
⇠ 2 �

���� ⇠i > 0 =) i 2 argmax
j2{1,...,n}

Fj(⇠)

)
.

According to [1, Theorem 2.1.1], the set NE(F) is nonempty,
and in our context may be interpreted as in [17].

C. The Revision Paradigm

Agents repeatedly revise their strategies conforming to
a procedure characterized by two components. The first
component is the process that specifies the agents’ revision
times. The second component is the so-called revision pro-
tocol, which describes how a revising agent decides on its
subsequent strategy.

1) Revision Times in the Original Framework: In the
original framework, the agents are uniquely associated with
independent and identically distributed (i.i.d.) Poisson pro-
cesses (clocks) with rate � > 0 and the revision times
of an agent are the instants when a jump occurs in its
clock. Hence, the inter-revision intervals are i.i.d. exponential
random variables [1]. The framework in [4] also considers
exponentially distributed inter-revision intervals, but allows
an agent’s revision rate to depend explicitly on its strategy.

2Although our results hold in the case of multiple populations (see [1]
for the setting with multiple populations), for ease of exposition, we assume
that there is a single population.

2) Revision Protocols: The revision protocol of the popu-
lation is a Lipschitz continuous function T : �⇥P ! Rn⇥n

�0

that satisfies
Pn

j=1 Ti,j(⇠,⇡) = � for all i 2 {1, . . . , n},
⇡ 2 P and ⇠ 2 �. Intuitively, for any i, j 2 {1, . . . , n}, Ti,j
gives the rate with which agents playing strategy i switch to
strategy j. An important quantity that appears in the stability
analysis in §V is

c := max
i2{1,...,n}, ⇠2�

nX

j=1, j 6=i

Ti,j(⇠,F(⇠)), (1)

which is a measure of the maximum rate of strategy switch-
ing that omits “self-switches”.

More precisely, the revision protocol determines the sub-
sequent strategy of a revising agent according to the follow-
ing description. Assume that an agent receives a revision
opportunity at time t̄. It follows from the definition of
revision times that, with probability 1, there is a t

⇤ (strictly)
between t̄ and the previous revision time of the population.
Denoting the strategy at t

⇤ of the revising agent as i, the
probability of its subsequent strategy being j is assumed
to be Ti,j

�
X̄(t⇤), P (t⇤)

�
/� for any j 2 {1, . . . , n}. Then,

the realization of this strategy is assigned to be the revising
agent’s strategy at time t̄.

D. The Evolutionary Dynamics Model (EDM)

As a result of the revision mechanism in §II-C, the popula-
tion state X̄ is a pure jump Markov process [1, Chapter 11].

Subsequently, an important question is whether X̄ con-
verges to NE(F). As explained in [2, Section 5] and [1,
Appendix 12.B], a deterministic (mean field) approximation
provides a methodology to answer this question. Namely,
provided that N is large, from [13] and [1, Appendix 12.B],
it follows that the convergence with high probability of X̄

to a neighborhood of NE(F) can be concluded by verify-
ing that NE(F) is globally attractive under a deterministic
dynamical system. This dynamical system is referred to as
the Evolutionary Dynamics Model (EDM) [2], where in this
paper we call it the standard EDM to distinguish it from its
Erlang counterpart introduced in §III.

III. ERLANG EVOLUTIONARY DYNAMICS

In this section, we propose a generalization of the popula-
tion games and evolutionary dynamics framework, outlined
in §II, by allowing Erlang inter-revision intervals.

A. Erlang Inter-Revision Intervals

To introduce Erlang clocks, we follow a construction
similar to that in §II-C.1, with the difference that an agent’s
inter-revision intervals are i.i.d. Erlang random variables with
rate � > 0 and parameter m 2 N. With this construction,
the resulting population state X̄ is a pure jump stochastic
process, but not necessarily a Markov process when m � 2.
This is undesirable because, to the best of our knowledge,
deterministic approximation results similar to that in [13] or
[1, Appendix 12.B] do not exist for pure jump processes
with Erlang distributed waiting times. So, it is not directly
evident how the deterministic approach summarized in §II-D
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Fig. 1: Possible sub-strategy transitions.

can be altered to fit the framework with Erlang distributed
inter-revision intervals. Therefore, in the following part, we
present an alternative way in which the results in [13] and
[1, Appendix 12.B] can be leveraged.

B. Erlang Evolutionary Dynamics

In what follows, we first characterize the population state
in terms of a pure jump Markov process that conforms to
the assumptions in [13] and [1, Appendix 12.B]. Then, we
apply the aforementioned deterministic approximation results
to this process and derive a deterministic dynamical system,
which we utilize in the upcoming sections to ascertain the
convergence properties of X̄ .

1) The Population State in Terms of a Markov Process:

Given a strategy i 2 {1, . . . , n}, let us define (i, j) to be the
j-th sub-strategy of i for j 2 {1, . . . ,m}. Now, consider that
an agent who chooses strategy i starts playing (i, 1). Suppose
that, for any j 2 {1, . . . ,m � 1}, after playing (i, j) for a
period of time the agent transitions to playing (i, j+1). Let
the time that the agent spends playing sub-strategy (i, j), for
any j 2 {1, . . . ,m}, be distributed exponentially with rate
�. Furthermore, assume that the agent is given a revision
opportunity after it is finished playing sub-strategy (i,m)
and that, when it is given an opportunity, the agent chooses
its subsequent strategy according to the procedure in §II-
C.2. Finally, assume that the times spent by agents playing
the sub-strategies are i.i.d. We illustrate the possible sub-
strategy transitions in Fig.1.

Notice that the inter-revision intervals arising from the
description above are i.i.d. Erlang random variables with rate
� and parameter m. Let us denote the proportion of agents
playing sub-strategy (i, j) by Xi,j and define

X :=
⇥
X1,1 . . . X1,m . . . Xn,1 . . . Xn,m

⇤T
.

Then, X is a pure jump Markov process, to which the results
in [13] and [1, Appendix 12.B] can be applied. Moreover,
given any i 2 {1, . . . , n},

Pm
j=1 Xi,j and X̄i have the same

distribution. Therefore, we can infer the long term behavior
of X̄ by analyzing X .

2) The Deterministic Approximation: Considering that
the number of agents is large, we adopt a deterministic

approximation x structured as

x :=
⇥
x1,1 . . . x1,m . . . xn,1 . . . xn,m

⇤T
,

and obtained as the unique solution of the initial value
problem, with x(0) = X(0), of the following system of
differential equations:

ẋi,1 =
nX

j=1

xj,mTj,i(x̄, p)� �xi,1, 1  i  n, (EEDMa)

with the additional dynamics below present when m � 2:

ẋi,l = �(xi,l�1 � xi,l), 2  l  m, 1  i  n. (EEDMb)

The input of (EEDM) is p, and is generated as

p := F(x̄), x̄ :=
⇥
x̄1 . . . x̄n

⇤T
, x̄i :=

mX

l=1

xi,l.

We refer to x̄ as the mean population state, x as the
extended mean population state, p as the deterministic pay-
off and the dynamical system given by (EEDM) as the Erlang
Evolutionary Dynamics Model (Erlang EDM). For all t � 0,
we have x̄(t) 2 � and x(t) 2 X, where

X :=

(
⇠ 2 Rnm

�0

����
nX

i=1

mX

l=1

⇠i,l = 1

)
.

In the remainder of the paper, given ⇠ 2 Rnm, we denote
⇠ =

⇥
⇠1,1 . . . ⇠1,m . . . ⇠n,1 . . . ⇠n,m

⇤T and ⇠̄i :=Pm
l=1 ⇠i,l for any i 2 {1, . . . , n}.
From the results in [13], [2, Section V] and [1, Ap-

pendix 12.B] we have for any T > 0 and ✏ > 0 that

lim
N!1

P
 

sup
t2[0,T ]

kX(t)� x(t)k < ✏

!
= 1,

Importantly, the discussions in [2, Section V] and [1, Ap-
pendix 12.B] indicate that, if a set S is globally attractive
under the Erlang EDM, then the stationary distributions of X
concentrate near S as the number of agents tends to infinity.
This result and the assumption that N is large legitimizes
the stability analysis carried out in the subsequent sections.

Note that, if m = 1, then x̄ = x and the Erlang EDM
reduces to the standard EDM [1], [2]. This agrees with the
fact that, when m = 1, the constructions of the revision times
in §II-C.1 and §III-A coincide. Furthermore, the Erlang EDM
conforms to the higher order evolutionary dynamics format,
which requires the number of states to be greater than the
number of strategies. Instances of such dynamics have been
analyzed in [18], [19], although the results therein do not
address the dynamics that we investigate in this paper.

C. Prelude to Stability Analysis

In the upcoming sections, we analyze the stability prop-
erties of the Erlang EDM. However, to have a meaningful
analysis, we need further structure on the revision protocols
and the game.
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1) Pairwise Comparison Protocols: An important class
of protocols that induce preferable stability results is the
pairwise comparison class [14].

Definition 1: A protocol T is said to belong to the
pairwise comparison (PC) class if for all i 2 {1, . . . , n},
j 2 {1, . . . , n} \ {i}, ⇠̄ 2 � and ⇡ 2 P it can be written as

Ti,j(⇠̄,⇡) = �i,j(⇡),

where �i,j : Rn ! R�0 satisfies sign preservation in the
sense that �i,j(⇡) > 0 if ⇡j > ⇡i and �i,j(⇡) = 0 if ⇡j  ⇡i.

Essentially, an agent following a PC protocol can only
switch to strategies with payoffs that are greater than the
payoff of its current strategy. Their desirable incentive prop-
erties [14, §2.5] and inherently fully decentralized operation
result in the applicability of the PC class in many engineering
problems. For instance, the Smith protocol [20], which
belongs to the PC class, has been widely used to study traffic
problems.

Thus, in the remainder of this paper, we consider the
Erlang EDM under the assumption that T is a PC protocol.
We refer to the resulting dynamics as the Erlang Pairwise
Comparison EDM (Erlang PC-EDM).

Confining the protocol to be of the PC class readily
yields a desirable characteristic. Namely, leveraging the so-
called Nash stationarity of PC protocols [14], we identify the
equilibria of the Erlang PC-EDM as

ENE(F) :=
�
⇠ 2 X

�� ⇠̄ 2 NE(F), ⇠i,l =
1
m ⇠̄i

 
,

which implies that ⇠̄ 2 NE(F) for all ⇠ 2 ENE(F). Notably,
if m = 1 then NE(F) = ENE(F).

2) Potential and Contractive Game: We proceed to ascer-
tain global convergence in the following senses.

Definition 2: We say that x̄ converges to NE(F) when

lim
t!1

inf
⇠̄2NE(F)

kx̄(t)� ⇠̄k = 0, x(0) 2 X. (2)

Definition 3: We say that x converges to ENE(F) when

lim
t!1

inf
⇠2ENE(F)

kx(t)� ⇠k = 0, x(0) 2 X. (3)

Remark 1: If x converges to ENE(F) then x̄ will also
converge to NE(F), but not necessarily the other way
around. Hence, the former criterion is more informative.

Our analysis will focus3 on potential [15], [21] and strictly
contractive games [16] defined as follows.

Definition 4: A game F is said to be a potential game if
there is a continuously differentiable function f : Rn ! R
satisfying rf = F . We refer to f as the game’s potential.

Definition 5: A game F is said to be contractive if
⌘
T
DF(⇠̄)⌘  0 for all ⌘ 2 T� := {⌫ 2 Rn |

Pn
i=1 ⌫i = 0}

and ⇠̄ 2 �, where DF denotes the Jacobian of F . Moreover,
F is said to be strictly contractive if ⌘

T
DF(⇠̄)⌘ < 0, in

which case we define

¯
� := � max

⇠̄2�,⌘2T�
⌘
T
DF(⇠̄)⌘,

�̄ := � min
⇠̄2�,⌘2T�

⌘
T
DF(⇠̄)⌘.

3Assumptions on the game’s structure are necessary to ascertain stability
for PC protocols even in the original framework [1, Chapter 9].

We note that the class of potential and strictly contractive
games do not contain one another. For instance, the 123-
coordination game [1, Example 3.1.5] is potential, but not
contractive, and the “good” rock-paper-scissors (RPS) game
[1, Example 3.3.2] is strictly contractive, but not potential.

IV. CONVERGENCE FOR POTENTIAL GAMES

In this section, we assume that F is a potential game,
T is a PC protocol and show that x̄ converges to NE(F).
We also discuss the relevance of this result to distributed
optimization.

A. Stability Analysis

When F is a potential game, we follow a similar approach
to that in [15] to ascertain the convergence properties of x̄,
which is to investigate the potential of F evaluated along the
trajectories of x̄.

Theorem 1: If F is a potential game and T is a PC
protocol, then (2) holds.

Proof: Since F is a potential game, it has a potential
f as specified in Definition 4. Let us define L : Rnm ! R
by L(⇠) = �f(⇠̄). Taking the time-derivative of L along the
trajectories of the Erlang PC-EDM yields

� d

dt
f(x̄) = �(rf(x̄))T ˙̄x = �

nX

i=1

pi

mX

l=1

ẋi,l

= �
nX

i=1

pi

0

@
nX

j=1

xj,mTj,i(x̄, p)�
nX

j=1

xi,mTi,j(x̄, p)

1

A

= �
nX

i=1

nX

j=1

xi,m�i,j(p)(pj � pi)  0, (4)

where the inequality in (4) follows from the sign-preservation
property of PC protocols. Moreover, the inequality in (4)
holds with equality if and only if, whenever i, j 2 {1, . . . , n}
and t � 0 satisfies pj(t) > pi(t), we have xi,m(t) = 0.
Therefore, noting that X is compact and positively invariant
under (EEDM), it follows from LaSalle’s invariance principle
[22, Theorem 3.4] that x converges to the largest subset of
E that is invariant under the Erlang PC-EDM, where

E :=

(
⇠ 2 X

���� ⇠i,m > 0 =) i 2 argmax
j2{1,...,n}

Fj(⇠̄)

)
.

Now, we show that such largest invariant subset of E
is M := {⇠ 2 X | ⇠̄ 2 NE(F)}.

To begin with, notice that M ✓ E. Furthermore, observe
that for all t � 0 satisfying x(t) 2 E, we have ˙̄x(t) = 0.
This implies that M is invariant under the Erlang PC-EDM.

To show that M is the largest of the invariant subsets of
E under the Erlang PC-EDM, we proceed by contradiction.
So assume that there is a set M̂ ✓ E satisfying M ⇢ M̂
and M̂ is invariant under the Erlang PC-EDM. Then, there
is ⇠ 2 M̂ such that ⇠̄ /2 NE(F) and x with x(0) = ⇠

remains in M̂ for all t � 0. In what follows, we assume
that x(0) = ⇠ and arrive at a contradiction by showing
that the resulting x leaves E (therefore leaves M̂). Since
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⇠̄ /2 NE(F), there exists i
⇤ 2 {1, . . . , n} for which ⇠̄i⇤ > 0

and i
⇤

/2 argmaxj2{1,...,n} Fj(⇠̄). In other words, there
is a strategy i

⇤ such that ⇠̄i⇤ > 0 and i
⇤ is sub-optimal

at t = 0. Observe from (EEDMb) that ⇠̄i⇤ > 0 implies
xi⇤,m(t) > 0 for all t > 0. Moreover, define G : R�0 ! R�0

as G(t) = maxj2{1,...,n} Fj(x̄(t))�Fi⇤(x̄(t)). Because G is
continuous and G(0) > 0, there exists ⌘ such that G(t) > 0
for all t 2 [0, ⌘]. Hence, within the time interval [0, ⌘], the
strategy i

⇤ stays sub-optimal. However, xi⇤,m(t) > 0 for all
t 2 [0, ⌘], meaning that x leaves E. As a result, M̂ is not
invariant under the Erlang PC-EDM.

When the game F has a strictly concave potential, Theo-
rem 1 can be augmented to arrive at the following corollary.

Corollary 1: If F is a potential game with a strictly
concave potential and T is a PC protocol, then (3) holds.

Proof: If F has a strictly concave potential f , then
NE(F) = {⇠̄⇤}, where ⇠̄

⇤ is the unique maximizer of f

over � [1, Corollary 3.1.4]. From Theorem 1, it follows that
limt!1 x̄(t) = ⇠̄

⇤. Moreover, ˙̄x is uniformly continuous,
because T and F are Lipschitz continuous and x takes values
in a compact set. Hence, leveraging Barbalat’s lemma, we
obtain limt!1 ˙̄x(t) = 0.

Now, consider the dynamics (7) of the auxiliary state x̃ de-
fined in Appendix A. From the matrix A (given in (6)) being
Hurwitz and limt!1 ˙̄x(t) = 0, we have limt!1 x̃(t) = 0.
Consequently, for all i 2 {1, . . . , n} and l 2 {1, . . . ,m},
limt!1 |xi,l(t)� xi,m(t)| = 0. This and limt!1 x̄(t) = ⇠̄

⇤

imply that limt!1 inf⇠2ENE(F) kx(t)� ⇠k = 0.

B. Potential Games and Distributed Optimization

In §VI-A, we will describe a congestion game, which
is a common example of a potential game, and use it to
illustrate how to employ Theorem 1. For this and other
applications [15, §2.2], potential games are often associated
with various forms of optimality, as we proceed to explain.
The equivalence in [15, Proposition 3.1] establishes that for
a game F with potential f , NE(F) is identical to the subset
of � satisfying the Karush–Kuhn–Tucker conditions [23]
for the problem of maximizing f(⇠̄) subject to ⇠̄ 2 �.
Consequently, Theorem 1 guarantees for any m � 1 that
x̄ will converge to the global maxima set of f when f is
concave. Hence, concave potential games induce an emergent
behavior in the population that tends to maximize f . When F
is efficient [15, §5] the maxima of f are also social optima.
Interestingly, isoelastic congestion games are efficient (see
[15, Lemma 5.2]). Potential games in strategic form [21],
which may not be tractable for large populations, have also
been used in the context of distributed optimization [24].

V. CONVERGENCE FOR STRICTLY CONTRACTIVE GAMES

For F strictly contractive, we proceed to present a condi-
tion ensuring the convergence of x to ENE(F).

It is known that, even when m = 1, the PC-EDM may not
exhibit stable behavior (see [1, Exercise 7.2.10]) for strictly
contractive F . Nonetheless, stability for m = 1 is ensured
when the protocol is in the following impartial subclass [14].

Definition 6: A protocol T is said to be of the impartial
pairwise comparison (IPC) class if for i, j in {1, . . . , n},
with i 6= j, ⇠̄ 2 � and ⇡ 2 P it can be written as
Ti,j(⇠̄,⇡) = �j(⇡j � ⇡i), where �j : R ! R�0 is sign
preserving (meaning �j(⇡j�⇡i) > 0 if and only if ⇡j > ⇡i).

Consequently, we seek to generalize to m � 2 the results
in [14] for IPC protocols. To do so, we will need the
following time-scale separation constant:

¯
� := 2c�̄

 
n�̄

(m+ 1)
¯
�

!1/2

. (5)

Here, �̄,
¯
� are given in Definition 5, c is specified by (1), and

�̄ := sup!2[0,1) �max((j! � A)�1
B), where �max denotes

the maximum singular value, and A, B are given by

A :=

2

6664

�1 0 . . . 0 �1
1 �1 . . . 0 �1
0 1 . . . 0 �1
...

...
. . .

...
...

0 0 . . . 1 �2

3

7775
⌦ In, B := e1 ⌦ In, (6)

in which ⌦ is the Kronecker product, In is the n⇥n identity
matrix and e1 is the first standard basis vector in Rm�1.

Remark 2: We note that �̄ is the H1-norm of the linear
system specified by ż = Az +Bu (with input u and output
z). For the case when m  4, we can compute �̄ simply
as �̄ = ((2m2 � 3m + 1)/(6m))1/2. As for the m > 4
case, computation of �̄ is more challenging, yet can be
done numerically via the bisection H1-norm computation
algorithm [25].

Having defined IPC protocols and introduced the constant

¯
�, we are now ready to state the following theorem.

Theorem 2: If F is strictly contractive, the protocol is IPC
and � >

¯
�, then (3) holds, i.e., x converges to ENE(F).

We present a proof of Theorem 2 in Appendix B, which
follows mainly from the two time-scale structure of the
Erlang EDM. Namely, when � is large in comparison to
c, the dynamics associated with the sub-strategies gives the
“fast” part of (EEDM), whereas the dynamics of x̄ gives
its “slow” part. Thus, for any i 2 {1, . . . , n}, xi,1, . . . , xi,m

rapidly equalize and closely track x̄i/m. Thereafter, (EEDM)
approximates the standard EDM, and global attractivity of
ENE(F) ensues from the stability properties of the standard
IPC-EDM [2], [26].

VI. NUMERICAL EXAMPLES

We proceed to illustrate our results for two examples
using the Smith protocol [20], meaning that in (EEDMa)
we employ Ti,j(⇠̄,⇡) = max{⇡j � ⇡i, 0}, for all ⇠̄ 2 �,
⇡ 2 P and i, j 2 {1, . . . , n} such that i 6= j.

A. A Congestion Game Example

We consider the congestion game in [1, Chapter 2.2.2],
characterized by the graph in Fig. 2(a). Here, O denotes the
origin, D denotes the destination, the links represent roads
and the arrows on links represent the direction in which an
agent choosing the link travels. As depicted in Fig. 2(b), the
agents can choose to go from the origin to the destination via
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O D

link 1 link 2

link 3

link 4 link 5

(a)

strategy 1 strategy 2 strategy 3

(b)

Fig. 2: Congestion game example with one origin/destination
pair: (a) depicts the topology of the links and (b) illustrates
the 3 strategies representing all possible routes from the
origin to the destination.

one of the three available routes forming the strategy set. To
each link l 2 {1, . . . , 5}, we assign a utilization-dependent
cost given by cl

P
{i | i2⌦l} ⇠̄i, where ⌦l comprises the

strategies using link l, ⇠̄i is the percentage of agents using
route i and cl is a positive constant quantifying the impact
of utilization (congestion) on link l. Hence, noting that
Fig. 2(b) displays which route corresponds to which strategy,
the payoffs of using the routes under the population state
value ⇠̄ 2 � are

FCon(⇠̄) = �
"
c1 + c2 0 c1

0 c4 + c5 c5
c1 c5 c1 + c3 + c5

#
⇠̄.

Suppose the parameters in FCon are c1 = 2.5, c2 = 1.5,
c3 = 0.5, c4 = 2.5, and c5 = 0.7. Since congestion
games are potential games [1, Example 3.1.2] and the Smith
protocol belongs to the PC class, we can invoke Theorem 1
to conclude that x̄ converges to NE(FCon).

We display in Fig. 3 a trajectory of x̄ for m = 3 and
� = 5 obtained via simulation initialized with x1,3(0) =
x2,1(0) = 0.2, x3,1(0) = 0.6 and xi,l(0) = 0 for all other
i, l 2 {1, 2, 3}. Observe from Fig. 3 that x̄ indeed converges
to NE(FCon), which is {(0.349, 0.513, 0.137)}. Fig. 3 also
presents the trajectory of x̄ for m = 1, while keeping the
other parameters unchanged. Recall from §III-B.2 that when
m = 1 we are back to the standard case (see §II-C.1). As
expected, the trajectories of x̄ differ for m = 3 and m = 1.

B. A Rock-Paper-Scissors (RPS) Game Example

As noted in §III-C.2, the class of potential games and
strictly contractive games do not contain one another, and
the good RPS game [1, Example 3.3.2] is an example of a
strictly contractive game that is not potential.

We consider m = 4 and specify the good RPS game by

FRPS(⇠̄) =

"
0 �2 3
3 0 �2
�2 3 0

#
⇠̄, ⇠̄ 2 �.

0.2

0.25
0.3

0.2

0.3

0.4

0.5

0.2

0.4

0.6

(0.2,0.2,0.6)

(0.349,0.513,0.137)

Erlang (m = 3)
standard (m = 1)

Fig. 3: Trajectories of x̄ for the congestion game example.

Since FRPS is strictly contractive but not potential, Theo-
rem 1 can’t be utilized and we have to resort to Theorem 2.
We proceed by computing (�̄,

¯
�, c), and, as stated in §V,

when m  4 we have �̄ = ((2m2 � 3m � 1)/(6m))1/2,
meaning that for m = 4 the value of �̄ is 0.9354. Hence,
we obtain

¯
� = 5.7965 and it follows from Theorem 2 that,

if � > 5.7965, then x converges to ENE(FRPS).
We performed a simulation for � = 5.8 initialized with

x1,4(0) = x2,1(0) = 0.2, x3,1(0) = 0.6 and xi,l(0) = 0
for all other i 2 {1, 2, 3}, l 2 {1, 2, 3, 4}. The resulting
trajectories of x̄ for m = 4 and m = 1 are displayed
in Fig. 4. We can verify from Fig. 4 that the trajectories
are surprisingly close and that in both cases x̄ converges to
NE(FRPS) = {(1/3, 1/3, 1/3)}.

0.2

0.3

0.4

0.2

0.3

0.4

0.2

0.4

0.6

(0.2,0.2,0.6)

(1/3,1/3,1/3)

Erlang (m = 4)
standard (m = 1)

Fig. 4: Trajectories of x̄ for the RPS game example.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present an extension of the population
games and evolutionary dynamics paradigm by allowing the
agents’ inter-revision intervals to be i.i.d. Erlang random
variables with rate �. We show that the long term behavior
of the population state resulting from this generalization can
be inferred by analyzing, what we call, the Erlang EDM.
Then, we confine our focus to PC revision protocols and
consider the Erlang PC-EDM. When the game F is potential,
we show that the mean population state converges to NE(F)
for any revision rate and number of sub-strategies. Similarly,
when F is strictly contractive, we show that ENE(F) is
globally attractive under the Erlang PC-EDM provided that
the protocol is impartial and � satisfies a bound condition.
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The work presented in this paper also raises questions for
future research. For instance, despite the results in §V, it
is still unclear whether global attractivity of ENE(F) under
the Erlang PC-EDM induced by an impartial protocol and
strictly contractive game is guaranteed for any revision rate.
Moreover, [2], [11], [12] generalizes the class of admissible
payoff mechanisms to so-called payoff dynamics models;
however we only consider static games. Hence, it can be
investigated whether the analysis in §V can be altered to
fit the �-passivity [2] or �-dissipativity [12] framework,
which would broaden the global attractivity results therein
to accommodate more general payoff structures.
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APPENDIX

A. Auxiliary Notation and Analysis

In this section we introduce the auxiliary states used in
the proofs of Corollary 1 and Theorem 2, and characterize
the dynamics of these states.

Given any l 2 {1, . . . ,m}, let El be the n⇥ nm matrix

El := In ⌦ eTl ,

where el is the l-th standard basis vector in Rm. Moreover,
given ⇠ 2 Rnm we denote

⇠̃ :=
⇥
(E1 � Em)⇠ . . . (Em�1 � Em)⇠

⇤T
.

Now, let us introduce the auxiliary states y, � and x̃:

y :=
⇥
y1,1 . . . y1,m�1 . . . yn,1 . . . yn,m�1

⇤T
,

� :=
⇥
�
T
1 . . . �

T
m�1

⇤T
, x̃ :=

⇥
x̃1 . . . x̃m�1

⇤T
,

where, for any i 2 {1, . . . , n} and l 2 {1, . . . ,m � 1} we
set �l :=

⇥
y1,l . . . yn,l

⇤T , x̃l := (El � Em)x, and define
yi,l to be a solution of ẏi,l =

Pn
j=1 �i(pi � pj)xj,l � �xi,l.

Notice that, from the definition of x̃ we have ˙̃xl = (El �
Em)ẋ. Consequently,

˙̃x = �Ax̃+B ˙̄x, (7)

where we remind that A and B are given in (6).
Moreover, let us define � : Rn ! Rn⇥n as the matrix-

valued function given for all ⇡ 2 Rn by

�ij(⇡) =

(
�i(⇡i � ⇡j), if i 6= j,
Pn

j=1 �j(⇡j � ⇡i), if i = j.

Then, for all l 2 {1, . . . ,m� 1}, we can write

�̇l = �(p)Elx� �(p)Emx = �(p)x̃l. (8)

B. Proof of Theorem 2

We proceed to present a proof of Theorem 2 and the
discussion that leads up to it. Our approach is based on
analyzing the function L↵ : Rnm ⇥ Rn ! R�0 inspired
by the Lyapunov function for the standard IPC-EDM [16].
Namely, based on a modification of that in [16, Theorem 7.1],
we set

L↵(⇠,⇡) :=
nX

i=1

⇠̄i

nX

j=1

 j(⇡j � ⇡i) + ↵⇠̃
T
M ⇠̃, (9)
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where M is the solution of the Lyapunov equation A
T
M +

MA = �I (since A is Hurwitz, such M exists and is sym-
metric positive-definite), ↵ is a positive constant satisfying
↵ < (m+ 1)

¯
�/(2kMBk22), and  : Rn ! Rn is given by

 j(⇡j � ⇡i) :=

Z ⇡j�⇡i

0
�j(s)ds.

From a procedure similar to that in [16, Appendix A.4],
we obtain the following time-derivative of L↵ along the
trajectories of a solution of the Erlang PC-EDM and the
deterministic payoff:

d
dtL↵(x, p) = �P(x, p) +Q(x, p), (10)

where P(x, p) and Q(x, p) are specified as

P(x, p) := �↵�x̃
T
x̃

+
nX

i,j=1

�i(pi � pj)xj,m

nX

k=1

 k(pk � pi)� k(pk � pj),

Q(x, p) :=
⇣
m ˙̄xT

ṗ+
⇥
ṗ
T

. . . ṗ
T
⇤
�̇ + ↵2x̃T

MB ˙̄x
⌘
.

The argument in [16, Appendix A.4] can be readily
adapted to prove the following proposition.

Proposition 1: If F is contractive, then for all ⇠ 2 X and
⇡ 2 Rn we have P(⇠,⇡) � 0.

We now focus on the Q term. The following proposition
is a key step in proving Theorem 2.

Proposition 2: Assume that F is strictly contractive and
� satisfies

� �
 

2�̄(↵+ 2�̄nc2)

(m+ 1)
¯
� � 2↵kMBk22

!1/2

, (11)

where �̄,

¯
� are given in Definition 5, c is specified by (1)

and �̄ is the supremum of the maximum singular value of
((j! �A)�1

B) over ! 2 [0,1). Then, the following holds
for all t � 0:

Z t

0
Q(x(⌧), p(⌧))d⌧ 

�
↵+ 2�̄nc2

�
ke�At

x̃(0)k22. (12)

Proof: We begin by deriving a bound on
R t
0 kx̃(⌧)k22d⌧ .

Observe from (7) that

x̃(t) = e
�At

x̃(0) +

Z t

0
e
�A(t�⌧)

B ˙̄x(⌧)d⌧.

Thus, utilizing Parseval’s theorem, we get
Z t

0
kx̃(⌧)k22d⌧  ke��At

x̃(0)k22 +
�̄

�2

Z t

0
k ˙̄x(⌧)k22d⌧.

(13)

We proceed by deriving a bound on k�̇(t)k2. Notice from
(8) that for all l 2 {1, . . . ,m� 1} we have

k�̇l(t)k22  k�(p(t))k22kx̃l(t)k22
 nk�(p(t))k21kx̃l(t)k22 = 4nc2kx̃l(t)k22, (14)

where c = max⇠̄2�

Pn
j=1 �j(Fj(⇠̄)�Fi(⇠̄)) exists, since �

and F are Lipschitz continuous, and � is compact.

Now, we leverage (13) and (14) to obtain a condition that
guarantees (12). Negative definiteness of DF(x̄) with respect
to T� implies for all l 2 {1, . . . ,m� 1} that

1

2
(��̇

T
l DF(x̄)�̇l � ˙̄xT

DF(x̄) ˙̄x)  |�̇Tl DF(x̄) ˙̄x|. (15)

From (15), with 2|x̃T
MB ˙̄x|  kx̃k22 + kMBk22k ˙̄xk22 and

negative definiteness of DF(x̄) with respect to T�, we get
Z t

0
m ˙̄x(⌧)T ṗ(⌧) +

m�1X

l=1

�̇l(⌧)
T
ṗ(⌧) + ↵2x̃(⌧)TMB ˙̄x(⌧)d⌧


Z t

0
�m+ 1

2 ¯
�k ˙̄x(⌧)k22 +

1

2
�̄k�̇(⌧)k22

+ ↵kx̃(⌧)k22 + ↵kMBk22k ˙̄x(⌧)k22d⌧. (16)

Finally, combining (16), (13) and (14), it follows that
Z t

0
m ˙̄x(⌧)T ṗ(⌧) +

m�1X

l=1

�̇l(⌧)
T
ṗ(⌧) + ↵2x̃(⌧)TMB ˙̄x(⌧)d⌧


�
↵+ 2�̄nc2

�
ke�At

x̃(0)k22 +
Z t

0

 
� m+ 1

2 ¯
�

+ ↵kMBk22 + (↵+ 2�̄nc2)
�̄

�2

!
k ˙̄x(⌧)k22d⌧. (17)

As a result, if (11) holds, then
Z t

0
Q(x(⌧), p(⌧))d⌧ 

�
↵+ 2�̄nc2

�
ke�At

x̃(0)k22. (18)

Now, we are ready to present a proof of Theorem 2,
which is a direct consequence of Propositions 1 and 2, and
Barbalat’s lemma.

Proof: Assume that � >
¯
�, where

¯
� is specified in

(5). Then, there exists ↵
⇤

> 0 satisfying ↵
⇤

< (m +
1)
¯
�/(2kMBk22) such that (11) holds with ↵ = ↵

⇤. Thus,
we can leverage Propositions 1 and 2 to arrive at

Z t

0
|P(x(⌧), p(⌧))|d⌧

 �L↵⇤(x(t), p(t)) + L↵⇤(x(0), p(0))

+
�
↵
⇤ + 2�̄nc2

�
ke�At

x̃(0)k22
 L↵⇤(x(0), p(0)) +

�
↵
⇤ + 2�̄nc2

�
ke�At

x̃(0)k22 (19)

for all t � 0. Combining (19) with the fact that A is Hurwitz,
we get

lim
t!1

Z t

0
|P(x(⌧), p(⌧))|d⌧ < 1. (20)

Since
R t
0 |P(x(⌧), p(⌧))|d⌧ is increasing in t, it follows from

(20) that
R t
0 |P(x(⌧), p(⌧))|d⌧ has a finite limit as t ! 1.

Additionaly, F and T are Lipschitz continuous and x takes
values in a compact set. Therefore x and p are uniformly
continuous, meaning that P(x, p) is uniformly continuous.
As a result, we can invoke Barbalat’s lemma to conclude
that P(x(t), p(t)) ! 0 as t ! 1. Finally, combining
limt!1 P(x(t), p(t)) = 0 with P(⇠,F(⇠̄)) = 0 if and only
if ⇠ 2 ENE(F), we get limt!1 inf⇠2ENE(F) kx(t)�⇠k = 0.
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