2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS) | 978-1-6654-7180-0/22/$31.00 ©2022 IEEE | DOI: 10.1109/MASS56207.2022.00121

2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS)

A Python Library for Matrix Algebra on GPU and
Multicore Architectures

1%t Nance, Jr., Delario
Mathematics and Computer Science
Davidson College
Davidson, United States
denance @davidson.edu

Abstract—Despite C/C++ and Python both being very popular
programming languages, each tool possesses unique advantages
and disadvantages. Notably, computers can run C/C++ code very
quickly, but C/C++ code has to first be compiled and the syntax
can be difficult for new programmers to understand. Python code,
however, sacrifices speed for an easy-to-understand syntax and
can be run interactively. Thankfully, it is possible to combine
the benefits of Python and C/C++. For example, NumPy is a
popular package of linear algebra operations written in C but
used with Python. Such a combination allows programmers to
not only utilize the fast speeds of C code but also Python’s
simple syntax. NumPy’s potential, however, is limited by its
inability to run on graphics processing units (GPUs), processors
specialized for handling computations. On the other hand, a
linear algebra library known as Matrix Algebra on GPU and
Multicore Architectures (MAGMA) is suited for running its code
on GPUs. Coupled with the fact that its code is written in
C/C++, MAGMA offers extremely fast computations. To combine
MAGMA’s speed with Python’s easy-to-understand syntax, we
researched how to use C++ code with Python. By researching
a tool known as Simplified Wrapper and Interface Generator
(SWIG), we created PYMAGMA - a library of chosen MAGMA
functions which can be imported in Python 3.9 for use.

Index Terms—BLAS, C++, MAGMA, Python, SWIG, wrapper

2" Tomov, Stanimire
Innovative Computing Laboratory National Institute for Computational Sciences
University of Tennessee, Knoxville

Knoxville, United States
tomov @icl.utk.edu

3" Wong, Kwai

University of Tennessee, Knoxville
Knoxville, United States
kwong@utk.edu

performing linear algebra operations such as BLAS routines,
LU decompositions, linear system solvers, and eigenvalue
problem solvers [8]. MAGMA'’s main advantage over other
linear algebra libraries, such as the Linear Algebra PACKage
(LAPACK) [1] and NumPy [4], is that it contains not only
functions which can run on central processing units (CPUs)
but also functions which can run on graphics processing units
(GPUs). Whereas CPUs are computer processors tasked with
most processing roles like handling input and output (I/O),
GPUs focus on performing computations, resulting in GPUs
running code much faster than CPUs. Because LAPACK
code is designed to run on CPUs but not GPUs, MAGMA
redesigns the LAPACK algorithms to perform efficiently on
GPUs. Thus, when using LAPACK on an Intel® Xeon® CPU
X5650 and MAGMA on a NVIDIA GeForce GTX 1650
SUPER to perform Single-precision GEMM (SGEMM) on
random square matrices with sizes not exceeding 10304 x
10304, MAGMA performs approximately ten times faster than
LAPACK (Fig. 1).

Single-Precision Matrix Multiplication
I. BACKGROUND Performance

A. Basic Linear Algebra Subprograms z:zz

Basic Linear Algebra Subprograms (BLAS) is a package %zooo /_’_f
of routines for performing standard linear algebra operations Z 1500
involving vectors and matrices. Originally written in Fortran, 2 1000 " MAGMA
BLAS routines are separated into three levels. Level 1 BLAS a w00 Numpy
contains routines for vector-vector operations, such as the dot . LAPACK
product [5]. Contrarily, Level 2 BLAS has routines for matrix- IR S SR S
vector operations, including GEMV - the GEneral Matrix- AU A
Vector product [3]. Level 3 BLAS contains routines for matrix- Matrix Order
matrix operations (e.g., GEMM - the GEneral Matrix-Matrix
product) which, through block matrix multiplication, become Fig. 1. Performing single-precision matrix multiplication with LAPACK

more memory efficient than Level 1 and 2 routines when ran
on “high-performance” computers [2].

B. Matrix Algebra on GPU and Multicore Architectures

Matrix Algebra on GPU and Multicore Architectures
(MAGMA) is a computational library of C++ functions for

National Science Foundation (NSF)

(SGEMM), MAGMA (SGEMM), and NumPy (MatMul)

C. Simplified Wrapper and Interface Generator

Simplified Wrapper and Interface Generator (SWIG) is one
of many tools for interfacing C/C++ code with other program-
ming languages. For example, programmers can use SWIG to
create interfaces through which C/C++ functions can be used

2155-6814/22/$31.00 ©2022 IEEE 770
DOI 10.1109/MASS56207.2022.00121

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 24,2023 at 20:09:31 UTC from IEEE Xplore. Restrictions apply.

in Python. Unlike other interface tools, however, SWIG can
generate interfaces in many high-level languages (e.g., Java,
Perl, Ruby, PHP), not only Python [9]. This unique feature
makes SWIG suited for programmers who might interface
C/C++ functions with multiple languages in the future.

For Python in particular, SWIG builds interfaces by gener-
ating three files: a wrapper file containing code for translating
C/C++ functions to the Python interpreter, a shared library
containing the compiled C/C++ code to interface as well as
the compiled wrapper file’s code, and a Python file allowing
users to import the shared library into Python and use the
C/C++ functions inside.

II. SIMPLIFIED WRAPPER AND INTERFACE GENERATOR
WORKFLOW

To illustrate the process of using SWIG to generate a Python
interface for a library of C++ functions, we give high-level
descriptions of the main files involved when using SWIG on
a Linux machine (Fig. 2). For more details on interfacing C
functions and C++ classes, using SWIG on Windows, how
to use SWIG with different target languages, or how SWIG
works internally, please refer to the SWIG 4.0 Documentation

[7].

{ Header File (.h) }

|

{ Interface File (.7) }—»{ Import File (.py) }

|

{meper File (_wrap.cxx)]

|

‘ Compiled Wrapper File (.0)

|

‘Shared Library (.s0) H File of C++ code }

Fig. 2. A flowchart of files created when building Python interfaces for C++
code with SWIG

A. Installation

To install SWIG on the Linux operating system, users
can type apt—get install swig in the command line
and then press Enter. To check if SWIG’s latest version
(4.0.2 as of July 2022 [9]) was installed, users should input
swig -version into the Linux command line.

B. Header File (.h)

To use SWIG after installing it, the user should decide what
C++ functions they wish to interface with Python. Once the
functions have been chosen, a header file must be created (Fig.

771

2). This file should contain the declarations (or definitions) of
all the C++ functions to interface with Python. In addition to
function declarations, the header file should include any macro
definitions or typedefs used by the C++ functions.

With the header file, a SWIG user can organize C++
functions which they want to interface into a single file. By
maintaining this file, the user can easily add functions to or
remove functions from the created Python interface by adding
or removing its declaration/definition in the header file and
then following Fig. 2 to recreate the interface’s shared library

(.s0).

C. Interface File (.i)

After the SWIG user creates a header file (.4) for the C++
functions which they wish to interface with Python, the user
must create a special SWIG file known as the interface file
(Fig. 2). According to Sec. 5.7.2 of [7], the interface file should
contain a #include statement and SWIG’s $include di-
rective for the header file and the name of the Python interface
which the user wants to create. Optionally, however, SWIG
features known as “typemaps” can be added to customize how
SWIG’s wrapper code will convert between C++ and Python
data types. Typemaps are further discussed in Sections 12 and
13 of [7].

D. Import File (.py)

The Python file which we will refer to as the “import file”
contains Python’s import command, which will let users
import the interfaced C++ functions into Python once the
shared library file (.so) is created. Also, inside the import file is
a Python function for each C++ function whose declaration or
definition is in the header file. Each of these Python functions
will call the corresponding C++ function inside the shared
library, letting Python users use a desired C++ function by
simply calling its Python counterpart. To create the import
file with the Linux command line, the user should use the
SWIG command swig —-c++ —-python NAME.i, where
NAME. i represents the name of the interface file (.7).

E. Wrapper File (_wrap.cxx)

SWIG generates the wrapper file after the user inputs into
the Linux command line the same SWIG command used to
create the import file (.py) (Fig. 2). Inside the wrapper file
is namesake wrapper code for translating the C++ functions,
which were declared in the header file (&), to the Python
interpreter. When the user calls a Python function from the
import file (.py), the wrapper code converts the function inputs
to their equivalent C++ data types, calls the corresponding C++
function with the generated C++ inputs, converts the return
value into its equivalent Python data type, and then returns
the Python value. If a user wants to customize specific type
conversions in the wrapper file, the user should enforce the
corresponding typemaps in the interface file (.i). For more
detail on SWIG’s wrapper code, please refer to Sections 4.2
and 5.2 in [7].

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 24,2023 at 20:09:31 UTC from IEEE Xplore. Restrictions apply.

F. Compiled Wrapper File (.0)

Before the SWIG-generated wrapper code can translate
C++ functions to the Python interpreter, the code must
first be compiled into object code (Fig. 2). To com-
pile the wrapper file (_wrap.cxx), users can try running
the Linux command g++ —fPIC —-c NAME_wrap.cxx
PATH_TO_PYTHON, where NAME_wrap . cxx represents the
name of the wrapper file, and PATH_TO_PYTHON represents
the path to the folder containing Python.h on the user’s Linux
machine. According to Section 6.4 in [7], the Linux command
used to compile the wrapper file differs across machines.

G. Shared Library (.so)

Assuming the user has a library containing object code
for the C++ functions declared in the header file (.h),
they can create the Python interface’s shared library with
the Linux command 1d -shared OBJECT_LIBRARY
COMPILED_WRAPPER.o —-o _MODULE.so. In this com-
mand, OBJECT_LIBRARY represents the path to the ex-
isting library of C++ object code to use with Python,
COMPILED_WRAPPER.o represents the name of the com-
piled wrapper file (.0), and MODULE is the name of the Python
interface specified in the interface file (.i). The shared library
file will be named _MODULE. so. After running the Python
command import MODULE (where MODULE is the interface
name defined in the interface file), the SWIG user can call the
interfaced C++ functions from Python.

III. GENERATING PYMAGMA

We now discuss the process of creating the first version of
PyMAGMA, our SWIG-generated library of C++ functions
from MAGMA to be used with Python 3.9. While the first
version of PyYMAGMA could be successfully imported into
Python, we could not use it to call MAGMA functions
containing pointer arguments. Our work to solve this problem
is detailed in Section IV.

A. Header File (pymagma.h)

To eventually interface many MAGMA functions in Python,
we first tried interfacing twenty-one MAGMA functions re-
quired for performing many of MAGMA’s GPU compu-
tations (e.g., GEMM). Notably, our first header file con-
tained declarations of C++ functions for managing memory,
managing queues, sending data between CPUs and GPUs,
and managing the GPU in use (Listing 1). Additionally,
the header file contained declarations for Double-precision
GEMM (DGEMM) and Double-precision GEneral TRiangular
Factorization (DGETRF).

magma_malloc // Dynamically allocates GPU memory
magma_malloc_cpu // Dynamically allocates CPU memory
magma_free_cpu // Frees allocated CPU memory
magma_free_internal // Frees allocated GPU memory
magma_getdevice // Returns the ID of the GPU in use
magma_setdevice // Sets the GPU to use with MAGMA

magma_getmatrix_internal // Sends a matrix from GPU to CPU
magma_setmatrix_internal // Sends a matrix from CPU to GPU
magmablas_dgemm // Performs DGEMM on GPU

Listing 1. Sample C++ functions declared in our first pymagma.h header file

772

B. Interface File (pymagma.i)

Our interface file (pymagma.i) for the first version of
PyMAGMA contained an include statement and include
directive for the pymagma.h header file and the name of the
Python library we wanted to create: PYMAGMA (Listing 2).
We did not enforce any SWIG typemaps.

// Naming the PyMAGMA library
J%module pymagma
%4

#include
%}

%include “pymagma.h”

”pymagma.h”

Listing 2. The contents of our pymagma.i interface file

C. Import File (pymagma.py)

def magma_print_environment ():
return _pymagma.magma_print_environment ()
magma_malloc (ptr_ptr , bytes):

return _pymagma.magma_malloc(ptr_ptr ,

def

bytes)

Listing 3. Sample Python functions in the pymagma.py import file for calling
the interfaced C++ functions from MAGMA

After creating the pymagma.h header file and pymagma.i
interface file, we used SWIG to generate our pymagma.py
import file. With this file, we could try importing the first
version of PyMAGMA after building it. For each C++
function which we declared in the pymagma.h header file,
our import file contained a Python function for calling the
C++ function (Listing 3). To create the pymagma.py im-
port file and pymagma_wrap.cxx wrapper file, we entered
the following SWIG command into the Linux terminal:
swig -DSWIG_NO_CPLUSPLUS_CAST -c++ -python
pymagma.i (Listing 4).

swig —-DSWIG_NO_CPLUSPLUS_CAST -c++ —python pymagma. i

g++ —fPIC —-c pymagma_wrap.cxx
—I/home/userl/anaconda3/include/python3.9

1d —shared /home/userl/magma/lib/libmagma.so
/usr/1ib/x86_64—linux —gnu/libopenblas.so pymagma_wrap.o
—0 _pymagma. so

Listing 4. The Linux commands used to generate pymagma.py and py-
magma_wrap.cxx, pymagma_wrap.o, and _pymagma.so

D. Wrapper File (pymagma_wrap.cxx)

SWIGINTERN PyObject #_wrap_magma_malloc (...) {

arg2 (size_t)(val2);
result (magma_int_t)magma_malloc (argl ,arg2);
resultobj SWIG_From_int((int)(result));
return resultobj;

fail :
return NULL;

Listing 5. Low-level wrapper code for MAGMA’s magma_malloc() function
in the pymagma_wrap.cxx wrapper file

As its name suggests, our pymagma_wrap.cxx wrapper file
contained wrapper code for translating our chosen MAGMA
functions to Python’s interpreter (Listing 5). To create the py-
magma_wrap.cxx wrapper file, we used the same SWIG com-
mand for creating our pymagma.py import file (Listing 4). Ini-
tially, we did not include ~-DSWIG_NO_CPLUSPLUS_CAST
in the Linux command; however, not doing so resulted in
an error when trying to compile the wrapper file (Listing

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 24,2023 at 20:09:31 UTC from IEEE Xplore. Restrictions apply.

6). Specifically, SWIG’s use of C++ typecasting (i.e., static,
const, and reintepret) in the wrapper file was invalid, pre-
venting the wrapper file from being compiled. Thus, to force
SWIG to use C-style typecasts instead of C++ typecasts, an
Innovative Computing Laboratory researcher helped us include
-DSWIG_NO_CPLUSPLUS_CAST in the Linux command
used to generate the pymagma_wrap.cxx wrapper file.

error: reinterpret_cast from type 'const_void:s’

‘void=x’ casts away qualifiers

to type

Listing 6. The error from trying to compile pymagma_wrap.cxx without using
—DSWIG_NO_CPLUSPLUS_CAST when creating the file

E. Compiled Wrapper File (.0)

To compile our pymagma_wrap.cxx wrapper file into
the pymagma_wrap.o object file, we used the Linux

command 'g++ —fPIC -c pymagma_wrap.Cxx
-I/home/userl/anaconda3/include/
python3.9 (Listing 4). In the command, the

-I/home/.../python3.9 path is

Python.h file on our Linux machine.

the path to the

FE. Shared Library (_pymagma.so)

In the first version of PYMAGMA, our _pymagma.so shared
library contained object code from the pymagma_wrap.o file
and libmagma.so file - a shared library of object code for
various C++ functions in MAGMA. To create _pymagma.so,
we successfully ran the Linux command 1d -shared
/home/userl/magma/lib/libmagma.so
pymagma_wrap.o —-o _pymagma.so (Listing 4).

G. Testing

>>> import pymagma as pmg

>>> pmg.magma_init() # 0 represents success
>>> pmg. magma_finalize () # O represents success

Listing 7.
PyMAGMA

Successfully calling magma_init() and magma_finalize() with

By using SWIG to generate the pymagma_wrap.cxx,
pymagma.py, and _pymagma.so files, we successfully
built our first version of the PYMAGMA library. To test the
functionality of that PyYM AGMA version, we tried calling three
C++ functions which we declared in the pymagma.h header
file: magma_init (), magma_print_environment (),
and magma_finalize (). We successfully called
magma_init () and magma_finalize () through
PyMAGMA in a Python environment on the Linux terminal
(Listing 7), but magma_print_environment () was not
completely functional with PYMAGMA. Specifically, when
trying to call magma_print_environment (), correct
output was displayed before the warning *** stack smashing
detected *** appeared. We believed that data in our local
machine’s stack memory was somehow getting incorrectly
overwritten.

To resolve the issue,
PyMAGMA on Google
magma_print_environment ()

we tried creating
Colab and calling
with Google Colab’s

773

command line. Correct output was displayed with no
warnings (Listing 8), possibly due to Google Colab using
SWIG 3.0.12. Specifically, whereas SWIG 4.0.1 was used
to create PyMAGMA locally, SWIG 3.0.12 was used to
create PYMAGMA on Google Colab. Possibly, SWIG’s newer
4.0.1 version contains code for triggering “stack smashing”
warnings while the older 3.0.12 version does not. Nevertheless,
we desired to call magma_print_environment ()
locally without stack smashing since SWIG 4.0.1 is newer
than version 3.0.12. After relinking the object files in the
libmagma.so library and locally creating PYMAGMA again
with the same Linux commands (Listing 4), we could
run magma_print_environment () without any stack
smashing warnings (Listing 8).

>>> import pymagma as pmg

>>> pmg.magma_print_environment ()

% MAGMA 2.6.0 svn 32-bit magma_int_t,

Compiled with CUDA support for 3.5

% CUDA runtime 11030, driver 11040. OpenMP threads 24.

% device 0: NVIDIA GeForce GTX 1650 SUPER, 1740.0 MHz clock ,
3910.6 MiB memory, capability 7.5

% Tue Aug 2 14:33:20 2022

64-bit pointer.

Listing 8. Successfully calling magma_print_environment() with PyYMAGMA

IV. EXTENDING PYMAGMA

>>> import pymagma

>>> address = 0

>>> bytes = 4

>>>

>>> pymagma.magma_malloc (address , bytes)

TypeError: in method 'magma_malloc’, argument 1 of type

‘magma_ptr.s’

Listing 9. Attempting to call PYMAGMA’s magma_malloc() function, which
expects a pointer as its first argument, even though Python users cannot
normally create pointers

Python users do not normally have the ability to create
pointer types, but many MAGMA functions in PyYMAGMA
require pointer arguments (Listing 9). Therefore, we wanted
to give PYMAGMA users the ability to somehow generate
pointers in Python. To combat this issue, we created and added
to the pymagma.h header file C++ functions which act as
new versions of some of the original functions in PyYMAGMA
(Listing 10). Other than not requiring arguments of pointer
types, many of these new functions operate nearly identically
to their original MAGMA counterparts.

To test PYMAGMA'’s accuracy of MAGMA’s linear algebra
routines, we desired the ability to create C++ arrays in Python
with values chosen by us, pass those arrays into linear algebra
routines, and then print the resulting array to see if its contents
are correct. However, Section 5.4.5 of [7] shows that Python
users cannot normally index or print interfaced C++ arrays
like Python lists. Therefore, to put specific values into C++
arrays and then print them, we created PYMAGMA functions
for managing C++ arrays with Python. Furthermore, to test
PyMAGMA'’s speed, we created functions for generating ran-
dom C++ arrays with Python.

In this section, we will discuss one of the functions which
we added to PyYMAGMA to generate pointers in Python

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 24,2023 at 20:09:31 UTC from IEEE Xplore. Restrictions apply.

(Listing 10) and four of the functions which we created to
manage C++ arrays with Python (Listings 11 - Listing 14).

A. pymagma_malloc()

magma_int_t

magma_malloc(magma_ptr sptr_ptr, size_t bytes);
void

pymagma_malloc(size_t bytes)

void# a;
magma_malloc(&a,
return a;

bytes);

¥

Listing 10. The definition for the pymagma_malloc() function to let Py-
MAGMA users dynamically allocate GPU memory

The magma_malloc() function in MAGMA is designed to
dynamically allocate memory on the current GPU but requires
a ptr_ptr argument of type magma_ptr* (acts as the void**
type in C++). To let PYMAGMA users dynamically allocate
GPU memory, we created a pymagma_malloc() function with
a similar purpose to the MAGMA version but returns a pointer
to the Python user and does not require the ptr_ptr argu-
ment (Listing 10). Specifically, pymagma_malloc() declares
a pointer of type void*, calls magma_malloc() function to
allocate a block of GPU memory starting at the address stored
in the created void pointer, and finally returns the pointer.

B. pymagma_sarray_cpu()

float =

pymagma_sarray_cpu(magma_int_t height, magma_int_t width)

void# void_array pymagma_malloc_cpu (

sizeof (float) # height % width);
float* sarray = (float=)void_array;
return sarray ;

}

Listing 11. The definition for the pymagma_sarray_cpu() function to let
PyMAGMA users create arrays of C++ floats in CPU memory

To test PYMAGMA'’s accuracy, we desired a way to create
matrices of C++ floats on CPUs. We achieved this by creating
the pymagma_sarray_cpu() function (Listing 11). After a
Python user passes height and width arguments into the func-
tion, pymagma_sarray_cpu() calls our pymagma_malloc_cpu()
function to dynamically allocate a 1D block of CPU memory
for height * width C++ floats, and then returns the base
address of that block as a float* pointer. Despite the allocated
block of CPU memory being stored linearly, PYMAGMA users
can manipulate the float values stored in the block as if the
block was a 2D matrix (Listing 12).

C. pymagma_sset_cpu()

void
pymagma_sset_cpu(floats A,
magma_int_t row,

magma_int_t lda,

magma_int_t col,
float value)

Alrow + lda # col] value ;

}

Listing 12. The definition for the pymagma_sset_cpu() function to let
PyMAGMA users change values in arrays of C++ floats in CPU memory

774

To check if PYMAGMA gives accurate results for MAGMA
routines, we wanted a way to test MAGMA routines with
specific matrices chosen by us. Therefore, we created the
pymagma_sset_cpu() function (Listing 12) for editing the
values in arrays of C++ floats on CPUs. Specifically, after
an user passes A, row, col, lda, and value arguments into
the function, the function sets the float value in the position
at row + lda * col in the 1D memory block A returned
by pymagma_sarray_cpu(). From a high-level, 2D matrix
perspective, pymagma_sset_cpu() simply updates the value at
row row and column col in the given matrix A.

D. pymagma_sprint_cpu()

void

pymagma_sprint_cpu(magma_int_t m, magma_int_t n,
const floatx A, magma_int_t lda)

{

A,

magma_sprint(m, n, Ida);

Listing 13. The definition for the pymagma_sprint_cpu() function to let
PyMAGMA users print arrays of C++ floats in CPU memory

To verify PYMAGMA'’s accuracy of MAGMA routines
like SGEMM, we desired a way to print matrices of C++
floats on CPUs. We achieved this by creating the py-
magma_sprint_cpu() function (Listing 13). After an user
passes m, n, A, and lda arguments into the function,
pymagma_sprint_cpu() calls magma_sprint() - an existing
MAGMA function which we also added to PYMAGMA - to
print the first m rows and n columns of a submatrix with
width [da from the 2D representation of the memory block A
generated with pymagma_sarray_cpu().

E. pymagma_slarnv()

void

slarnv_(intx IDIST, intx ISEED, ints N, floats X);
floats

pymagma_slarnv(int dist, int height, int width)

int n height * width;

int iseed[4] = {0,0,0,1};

float+ rand_sarray pymagma_sarray_cpu(height ,
slarnv_(&dist , iseed, &n, rand_sarray);

return rand_sarray;

width);

¥

Listing 14. The definition for the pymagma_slarnv() function to let Py-
MAGMA users generate random arrays of C++ floats in CPU memory

To test PyYMAGMA's speed at performing MAGMA routines
(e.g., GEMM), we desired a way to quickly generate large
arrays of random C++ floats on CPUs without manually
setting values with pymagma_sset_cpu(). To do so, we created
the pymagma_slarnv() function (Listing 14). After an user
passes in dist, height, and width arguments into the function,
pymagma_slarnv() will first create a linear block of memory
representing an empty height X width matrix, Next, the
function calls slarnv_() - an LAPACK function which we
added to PYMAGMA. At each position in the generated array,
slarnv_() will place a C++ float from a random distribution,
depending on the value of dist. For example, if dist equals
2, then slarnv_() will use random floats from the normal
distribution (—1,1).

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 24,2023 at 20:09:31 UTC from IEEE Xplore. Restrictions apply.

V. TESTING PYMAGMA

Due to Level 3 BLAS routines being very memory-efficient
for “high-performance” computations [2], we evaluated the
current state of PYMAGMA by testing the library’s accuracy
and performance of SGEMM.

A. Accuracy

To test PYMAGMA'’s accuracy of SGEMM, we first called
pymagma_sarray_cpu() to allocate CPU memory for three
C++ arrays of floats: A, B, and C. Arrays A, B, and C
each respectively represented a 5 x 3 matrix, 3 X 5 matrix,
and 5 x 5 matrix. Next, we used pymagma_sset_cpu() to
set float values, chosen by us, at every position in the three
arrays. After copying the arrays to GPU memory with a
NVIDIA GeForce GTX 1650 SUPER, we obtained the result
C —AB + C by passing the three GPU arrays into
pymagmablas_sgemm() - a function which we created for call-
ing MAGMA'’s magmablas_sgemm() function. By calling py-
magma_sprint_cpu, we saw that the resulting array contained
the values which we expected, showing that PyMAGMA
accurately performed SGEMM.

B. Performance

Single-Precision Matrix Multiplication
Performance
3000
. 2500 el
=
2000
g — MAGMA
G 1500
= PYMAGMA
glooo e Py Torch (avg.)
(2]
500 NumPy
0
G A S S Y SR SN S HAPACK
RN R S A S L e $
Matrix Order
Fig. 3. Performing single-precision matrix multiplication with LAPACK

(SGEMM), MAGMA (SGEMM), NumPy (MatMul), PYMAGMA (SGEMM),
and PyTorch (MatMul)

To test PYMAGMA'’s performance of SGEMM, we used
pymagma_slarnv() to generate three 1088 x 1088 square
matrices A, B, and C with random floats from the normal
distribution (—1,1). After copying each of the matrices to
a NVIDIA GeForce GTX 1650 SUPER, we calculated the
rate (gigaflop/s) at which PyMAGMA performed the com-
putation C = —AB + C with SGEMM. We then compared
PyMAGMA’s performance to that of MAGMA on the same
GPU, as well as LAPACK’s performance of SGEMM and
NumPy’s single-precision performance of MatMul on a Intel®
Xeon® CPU X5650. Also, we obtained the single-precision,
GPU performance of MatMul with PyTorch, a popular Python
machine learning framework [6]. We repeated the performance
tests for nine increasing matrix sizes.

775

After the ten tests, we saw that PYMAGMA'’s performance
was almost identical to that of MAGMA (Fig. 3). Further-
more, like MAGMA, PyMAGMA performed approximately
ten times faster than LAPACK and NumPy. Concerning Py-
Torch, we took its average performance on the NVIDIA GPU
from the ten tests because its performance drastically increased
and decreased across the tests. While PyTorch’s average per-
formance exceeded LAPACK’s and NumPy’s, (Py)MAGMA
eventually outperformed PyTorch (Fig. 3).

VI. RESULTS AND FUTURE DIRECTION

By researching how to use the Simplified Wrapper and
Interface Generator (SWIG) to interface C++ functions with
Python, we successfully created PYMAGMA: a Python library
for using chosen MAGMA functions with Python. Further-
more, we see that PYMAGMA obtains similar SGEMM per-
formances to MAGMA for square matrices with sizes not
exceeding 10304 x 10304 (Fig. 3). Currently, PyYMAGMA
contains thirty-two C++ functions from MAGMA as well as
two functions from LAPACK and thirty functions which we
created when extending PYMAGMA. By successfully defining
and using added functions in PYMAGMA, we see that we can
easily add functions to the PYMAGMA library by adding their
declaration or definition to the pymagma.h header file. To use
PyMAGMA functions containing pointer arguments without
creating new functions, we plan to research how to use SWIG
typemaps with Python.

ACKNOWLEDGMENTS

Nance thanks God for granting him this opportunity. This
project was sponsored by the National Science Foundation
through the Research Experience for Undergraduates (REU)
award no. 2020534 with additional support from the National
Institute of Computational Sciences and Innovative Computing
Laboratory at the University of Tennessee, Knoxville. Nance
also thanks Dr. Kwai Wong, Dr. Stanimire Tomov, Julian Hal-
loy, and his fellow 2022 REU participants for their assistance.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D.
Sorensen, LAPACK Users’ Guide (3rd ed.), Society for Industrial and
Applied Mathematics, 1999, ISBN 0-89871-447-8 (paperback)

J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, A set of
Level 3 Basic Linear Algebra Subprograms, ACM Trans. Math. Soft.,
16 (1990), pp. 1—17.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An
extended set of FORTRAN Basic Linear Algebra Subprograms, ACM
Trans. Math. Soft., 14 (1988), pp. 1—17.

Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Array programming
with NumPy. Nature 585, 357-362 (2020). DOIL: 10.1038/s41586-020-
2649-2.

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic Linear
Algebra Subprograms for FORTRAN usage, ACM Trans. Math. Soft.,
5 (1979), pp. 308—323. Pages 232-240, ISSN 0167-8191.

] The PyTorch website. [Online]. Available: https://pytorch.org/.

1 The SWIG 4.0 Documentation. [Online]. Auvailable:
https://www.swig.org/Doc4.0/index.html.

Stanimire Tomov, Jack Dongarra, Marc Baboulin, “Towards dense
linear algebra for hybrid GPU accelerated manycore systems”, Parallel
Computing, Volume 36, Issues 5-6, 2010, Pages 232-240, ISSN 0167-
8191.

(2019, Apr.) The SWIG website. [Online]. Available: https://swig.org/.

Authorized licensed use limited to: UNIVERSITY OF TENNESSEE LIBRARIES. Downloaded on February 24,2023 at 20:09:31 UTC from IEEE Xplore. Restrictions apply.

